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Abstract

In this paper we consider compound conditionals, Fréchet-Hoeffding bounds and the probabilistic inter-
pretation of Frank t-norms. By studying the solvability of suitable linear systems, we show under logical
independence the sharpness of the Fréchet-Hoeffding bounds for the prevision of conjunctions and disjunc-
tions of n conditional events. In addition, we illustrate some details in the case of three conditional events.
We study the set of all coherent prevision assessments on a family containing n conditional events and their
conjunction, by verifying that it is convex. We discuss the case where the prevision of conjunctions is as-
sessed by Lukasiewicz t-norms and we give explicit solutions for the linear systems; then, we analyze a
selected example. We obtain a probabilistic interpretation of Frank t-norms and t-conorms as prevision of
conjunctions and disjunctions of conditional events, respectively. Then, we characterize the sets of coherent
prevision assessments on a family containing n conditional events and their conjunction, or their disjunction,
by using Frank t-norms, or Frank t-conorms. By assuming logical independence, we show that any Frank
t-norm (resp., t-conorm) of two conditional events A|H and B|K, T,(A|H, B|K) (resp., S .(A|H, B|K)), is
a conjunction (A|H) A (B|K) (resp., a disjunction (A|H) v (B|K)). Then, we analyze the case of logi-
cal dependence where A = B and we obtain the set of coherent assessments on A|H, A|K, (A|H) A (A|K);
moreover we represent it in terms of the class of Frank t-norms 7, with A € [0, 1]. By considering a family
¥ containing three conditional events, their conjunction, and all pairwise conjunctions, we give some results
on Frank t-norms and coherence of the prevision assessments on ¥ . By assuming logical independence, we
show that it is coherent to assess the previsions of all the conjunctions by means of Minimum and Product
t-norms. In this case all the conjunctions coincide with the t-norms of the corresponding conditional events.
We verify by a counterexample that, when the previsions of conjunctions are assessed by the Lukasiewicz t-
norm, coherence is not assured. Then, the Lukasiewicz t-norm of conditional events may not be interpreted
as their conjunction. Finally, we give two sufficient conditions for coherence and incoherence when using
the Lukasiewicz t-norm.

Keywords: Coherence, Conditional previsions, Convexity, Conjunction and disjunction,
Fréchet-Hoeffding bounds, Frank t-norms

*Corresponding author
Email addresses: angelo.gilio@sbai.uniromal.it (Angelo Gilio), giuseppe.sanfilippo@unipa.it (Giuseppe
Sanfilippo)
'Both authors equally contributed to this work
ZRetired
3 Also affiliated with INAAM-GNAMPA, Italy

International Journal of Approximate Reasoning


http://arxiv.org/abs/2010.14382v2

1. Introduction

In this paper we consider conjunctions and disjunctions of conditional events. These compound condi-
tionals are defined in the setting of coherence as suitable conditional random quantities, with values in the
unit interval (see, e.g. [Iﬂ, @, , @, @, @, , @]). In [@] we proved the sharpness of the Fréchet-
Hoeffding bounds for the prevision of the conjunction and disjunction of two conditional events. We recall
that such lower and upper bounds are particular Frank t-norms and t-conorms: for the conjunction they are
the Lukasiewicz and Minimum t-norms, respectively; for the disjunction they are the dual t-conorms. In
this paper we generalize this result to the conjunction C;..., and the disjunction D;...,, of n conditional events
E||Hy,...,E,|H,. To obtain this result we study the solvability of suitable linear systems associated with
prevision assessments M on the family {E|H},..., E,|H,, C}...,}. We provide some explicit solutions for
the linear systems and we show that the set of coherent assessments M is convex. To better illustrate our
results, we examine more details in the case of three conditional events.

We discuss the case where the prevision of conjunctions is assessed by Lukasiewicz t-norms and we
give explicit solutions for the linear systems; then, we analyze a selected example. We give a probabilis-
tic interpretation of Frank t-norms and t-conorms as prevision of conjunction and disjunction of condi-
tional events, respectively. Then, we characterize the sets of coherent prevision assessments on the families
{E\|Hy,...,Ey|H,, Cy..n} and {E||H),...,Ey|Hy, Dy..n} in terms of Frank t-norms and Frank t-conorms,
respectively. In addition, by assuming logical independence, we show that any Frank t-norm of two condi-
tional events A|H and B|K, T,(A|H, B|K), is the conjunction (A|H) A (B|K) associated with the assessment
P[(A|H) A (BIK)] = Ta(P(A|H),P(B|K)). A dual result is given for the disjunction in terms of dual
t-conorm.

We analyze the case of logical dependence where A = B and we determine the set of all coherent assess-
ments (x,y,z) on {A|H,A|K, (A|H) ~ (A|K)}, by also showing that T, (A|H, A|K) represents a conjunction
(A|H) A (A|K), only for A € [0, 1]. In particular, when HK = (¥, we obtain that (A|H) A (A|K) coincides
with the Product t-norm T (A|H,A|K) = (A|H) - (A|K).

Given three conditional events, we consider all possible conjunctions among them and we show that to
make prevision assignments on conjunctions by means of the Product t-norm, or the Minimum t-norm, is co-
herent. Moreover, the conjoined conditionals can be represented as Product t-norms, or Minimum t-norms,
of the involved conditional events. This representation may not hold for the Lukasiewicz t-norm. Indeed, we
show by a counterexample that prevision assignments on conjunctions by means of the Lukasiewicz t-norm
may be not coherent and we examine some sufficient conditions for coherence and incoherence. Finally, we
give two sufficient conditions for coherence and incoherence when using the Lukasiewicz t-norm.

A relevant aspect which would deserve investigation is the application of our results on compound
conditionals and t-norms in statistical matching, misclassified data, data fusion, aggregation operators, fuzzy
logic, belief and plausibility functions, and description logic ([EL,, @, ,@,ﬁ%, @,, E%,@, @, ]).
This paper originated from [@] and the large part of the material is new. In particular all the results given
in Section 3] Section @ and Subsection [5.1] are new. Revised and extended material from [@] is given in
Subsections [3.2] and [5.3] and Section [@

The paper is organized as follows: In Section [2] we recall some preliminary notions and theoretical
results on conditional random quantities and coherence. We give some examples and we examine an ex-
tended notion of conditional random quantity X|H. We recall compound conditionals and Frank t-norms.
In Section 3] by studying the solvability of suitable linear systems, we show under logical independence the
sharpness of Fréchet-Hoeffding bounds for the prevision of the conjunction Cj..., of n conditional events;
we illustrate more details in the case n = 3. We also give a geometrical characterization of the set I1 of all
coherent prevision assessments on ¥ = {E|H}, ..., E,|Hy, Cj...,}, by showing that I is convex. In Section
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Ml we examine in detail the case where the prevision of the conjunction is assessed by means of Lukasiewicz
t-norm and we analyze a selected example. In Section [3 we study the representation of the prevision, for
the conjunction C;..,, and the disjunction D..,, of n conditional events, as a Frank t-norm 7'; and a Frank
t-conorm Sy, respectively. Then, by exploiting Frank t-norms and t-conorms, we characterize the sets of
coherent prevision assessments on {E;|Hj,...,E,|H,,C;...,} and on {E|Hy, ..., E,|H,, Dy...,}. We show
that, under logical independence, T,(A|H, B|K) = (A|H) A (B|K) and S ,(A|H, B|K) = (A|H) v (B|K) for
every A € [0, +o0]. We also examine the case of logical dependence where A = B and the particular case
where HK = (. In Section [f] we give some particular results on Frank t-norms and coherence of prevision
assessments on the famlly F = {E] ‘H], Ez‘Hz, E3‘H3, (E] |H1) A (Ez‘Hz), (E] |H1) A (Eg‘H3), (E2|H2) A
(E3|H3), (E1|Hy) A (E2|Hz) A (E3|H3)}. In particular, we show that, under logical independence, the
assessment M = (x1,x2, x3, Ta(x1, x2), Ta(x1, x3), Ta(x2, x3), Ta(x1, X2, x3)) on ¥ is coherent for every
(x1,x2,x3) € [0,1]® when T, is the minimum t-norm, or the product t-norm. Moreover, when T, is the
Lukasiewicz t-norm, the coherence of M is not assured and hence it may happen that the Frank t-norm
of three conditional events is not a conjunction. Finally, we give some sufficient conditions for coher-
ence/incoherence of M when using the Lukasiewicz t-norm. In Section [Z] we give some conclusions.

2. Preliminary notions and results

In this section we recall some basic notions and results which concern conditional events, conditional
random quantities, coherence (see, e.%g [E , EI EL , , , , ]), and logical operations among
conditional events (see [@, , @, @, ,@]).

2.1. Conditional events, conditional random quantities, and coherent prevision assessments

Uncertainty about unknown facts is formalized by events. In formal terms, an event E is a two-valued
logical entity which can be true, or false. The indicator of E, denoted by the same symbol, is 1, or 0,
according to whether E is true, or false. Thus, a symbol like xE represents the product of the quantity x and
the indicator of the event E. The sure event and impossible event are denoted by € and (7§, respectively.
Given two events E; and E;, we denote by E; A Ej, or simply by EE;, (resp., E; v E3) the logical
conjunction (resp., the logical disjunction). The negation of E is denoted E. We simply write E; < E,
to denote that £ logically implies E, that is E 1E> = . We recall that n events Ey, ..., E, are logically
independent when the number m of constituents, or possible worlds, generated by them is 2".

Given two events E, H, with H # ¢, the conditional event E|H is defined as a three-valued logical entity
which is true, or false, or void, according to whether EH is true, or EH is true, or H is true, respectively.

Given a (real) random quantity X and an event H # (J, we denote by P(X|H) the prevision of X
conditional on H, with P(X|H) = P(E|H) when X is (the indicator of) an event E. In what follows, for any
given conditional random quantity X|H, we assume that, when H is true, the set of possible values of X is a
finite subset of the set of real numbers R. In this case we say that X|H is a finite conditional random quantity.
In the framework of coherence, to assess P(X|H) = p means that, for every real number s, you are willing to
pay an amount sy and to receive s(XH + ,uI-_I), that is to receive sX, or su, according to whether H is true, or
H is true (bet called off), respectively. The random gainis G = s(XH +uH)—su = sH(X—p). In particular,
given any conditional event E|H, if we assess P(E|H) = x, then the random gain is G = sH(E — x).

Given a prevision function [P defined on an arbitrary family K of finite conditional random quantities,
consider a finite subfamily ¥ = {X;|H,,...,Xy|H,} < K and the vector M = (uj,...,u,), where y; =
P(X;|H;) is the assessed prevision for the conditional random quantity X;|H;, i € {1,...,n}. With the pair
(F, M) we associate the random gain G = ", s;H;(X; — p;) and we denote by Gy, the set of values of G
restricted to H,, = Hy v --- v H,,. Then, by the betting scheme of de Finetti, coherence is defined as:
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Definition 1. The function P defined on /K is coherent if and only if, Vn > 1, Vsi,...,s,, VF =
{Xi|Hi,...,X,|H,} < K, it holds that: min G¢;, <0 < max Gg,.

As it is well known, in Definition [Il the condition min G¢, < 0 < max Gy, can be equivalently
replaced by min G¢;, < 0, or by max Gg;, = 0.

A conditional prevision assessment P on K is not coherent, or incoherent, if and only if there exists a
finite combination of n bets such that min G4, - max Gg;, > 0, that is such that the values in Gg¢,, are all
positive, or all negative (Dutch Book). In other words, PP is incoherent if and only if there exists a finite
combination of n bets such that, after discarding the case where all the bets are called off, the values of the
random gain are all positive or all negative. In the particular case where K is a family of conditional events,
then Definition [Il becomes the well known definition of coherence for a probability function, denoted as P,
defined on K.

By Definition [I} given any (finite) conditional random quantity X|H and denoting by xi,..., x, the
possible values of X when H is true, a prevision assessment u on X|H is coherent if and only if
min{x,...,x} < g < max{xy,...,x}. When X is (the indicator of) an event E, with P(E|H) = x,
the coherence of x amounts to 0 < x < 1, or x = 0, or x = 1, according to whether (J # EH # H, or
EH = (J, or EH = H, respectively.

Given a family ¥ = {X||H\,...,Xy|H,}, for each i = 1,...,n, we denote by {xi,...,x;,} the set
of possible values for the restriction of X; to H;; then, for each i = 1,...,n,and j = 1,...,r;, we set
Aij = (Xi = x;j). Of course, for each i, the family {H;, A;;H;, j=1,...,r;} is a partition of the sure event
Q, WithA,'jH,' =A,'j and \/;izlAij = H;, thatis Ay v - - - \/Alrl \/I‘_Il = -=A, V- VAnr,l \/I‘_In =Q,
or more explicitly (X; = xj)) v v (X; =x;, ) VH ==Xy =x1) v v (Xy = Xpp,) v Hy = Q.
Then,

Q=Anuv- VA, VH)A - AAn V- VA v H,). (1)

By expanding the expression in () and by discarding the logical conjunctions which coincide with &, we
obtain a disjunctive representation of Q. The elements of this disjunction form a partition of 1 and are
called the constituents generated by the family ¥. We denote by Cy,..., C,, the constituents contained in
H, = H, v --- v H,. Moreover, when H,, # Q, weset Co = H, = H,--- H,. Hence Q = o Cn - In
particular, the constituents generated by a family of n conditional events {E;|H},..., E,|H,} are obtained
by expanding the expression (E1H, v E{Hy v H{) A --- A (E,H, v E, H, v H,), and by discarding
the logical conjunctions which are impossible. If Ey,...,E,, Hy,...,H, are logically independent, then
the number of constituents for the family {E;|Hy, ..., E,|H,} is 3" (in which case the conditional events
E||Hy,...,E,|H, are said logically independent). Given a prevision assessment M = (uj,...,4,) on
¥ = {Xi|H\,...,X,|H,}, with each constituent Cj, h = 1,...,m, we associate a vector

Xijs if Cy, gA,’j, j=1,...,r,

On = (qnts-- - qmn), With g = {

With Cy it is associated Qp = M = (uy,...,u,). As, for each i, j, the quantities x; j» Mi are real numbers, it
holds that O, € R", h = 0,1,...,m. Denoting by 7 the convex hull of Q,..., O, the condition M € I
amounts to the existence of a vector (41, ..., 4,) such that: > ;" | A,0n = M, D} Ay =1, 4, =0, Vh;
in other words, M € I is equivalent to the solvability of the system (X) given below.

Dot AnGni = pis i=1,...,n,
(2){ Z;L]/ihzl, A, =20, h=1,...,m. 3)

We say that (X) is the system associated to the pair (¥, M). By a suitable alternative theorem, it can be
shown that the solvability of (X) is equivalent to the condition: min G¢;, < 0 < max Gy, .
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Let x = (X1,...5X%m), ¥ = (V1,-..,yn)" and A = (ap;) be, respectively, a row m—vector, a col-
umn n—vector and a m x n—matrix. The vector x is said semipositive if x, > 0,h = 1,...,m, and
X1 + -+ + x,, > 0. Then, we have (cf. [Iﬂ], Theorem 2.9)

Theorem 1. Exactly one of the following alternatives holds: (i) the equation XA = 0 has a semipositive
solution; (ii) the inequality Ay > 0 has a solution.

We observe that, choosing aj; = gp — i, h = 1,...,m, i = 1,...,n, the solvability of xA = 0
means that M € 7, while the solvability of Ay > 0 means that, choosing s; = y;, i = 1,...,n, one has
min G¢;, > 0 (and hence M would be incoherent). Therefore, by applying Theorem [lwith A = (g5 — ),
we obtain that M € 7 if and only if min Gg;, < 0, that is, (X) is solvable if and only if min G4, < 0.

Given a nonempty subset J < {1,...,n}, weset ¥y = {X;|H; : j€ J} and M; = (u; : j € J), then
we denote by (X;) the system associated to the pair (¥, M;). Of course, when J = {1,...,n} it holds that
(F1,. My) = (F, M) and (X;) = (X). Then, by Definition [l and Theorem [I} for the prevision assessment
Mon F it holds that

M s coherent <= (X;) is solvable , V J < {1,...,n}. 4)

In other words M on F is coherent if and only if, for every nonempty subset J < {1,...,n}, the sub-vector
M belongs to the convex hull 7 ; associated to the pair (¥, M;).

Given the assessment M = (u1,...,u,) on & = {Xi|Hi,...,Xn|Hyn}, let S be the set of solutions
A = (A,...,4,) of system () defined in (3). We point out that the solvability of system () (i.e., the
condition M € 1) is a necessary (but not sufficient) condition for coherence of M on . We introduce,
foreachi = 1,...,n, the function Zh:chg #, An of the vector A = (A1, ..., 4y). Moreover, by assuming the
system (X) solvable, thatis S # (J, we compute the maximum M; of the function ;. . A with respect
to A € §. Then, we define:

Iy = {iZM,'IO;iI 1,...,11}, %I {X,-‘H,-,iel()}, M()Z (/.l,',iel()). (5)

We observe that i € I if and only if the (unique) coherent extension of M to H;|H,, is zero.

Of course, the previous notions can be used in the case of conditional events. We observe that, given a prob-
ability assessment P = (py, ..., p,) on a family of n conditional events ¥ = {E;|H\,..., E,|H,}, we can
determine the constituents Cy, C4, ..., C,,, where Co = H; - - - H,, and the associated points Qg, Q1, ..., O,
where Qyp = P. We observe that O, = (qn1,- .. qm), With gp; € {1,0,p;}, i = 1,...,n. We also observe
that given a subset J — {1,...,n}, we can determine the constituents Cj;’s and the corresponding points
Ops’s associated to the pair (F7, My). We set J¢ = {1,...,n}\J and if, for instance, J = {1,...,r}, with
r < n,then J = {r+1,...,n} and P = (P,;,Ps). Moreover, each point Q) can be represented, for
suitable indexes iy, ky, as Qp, = (Qi,s, Ok,s<); then, any linear convex combination ), 1,0 coincides with
(>0 A Qiyss 2 AnQiie ). A similar representation holds for J = {ij, ..., i}, after a suitable permutation of
indexes. On this basis, we recall three results (ﬂﬂ, Theorems 3.1, 3.2, 3.3]).

Theorem 2. Given a subset J < {l,...,n}, if there exist m nonnegative coefficients Ai, ..., 4,, with
221:1 A, = 1, such that P; = 221:1 /th,'hj, if Zh:Cthj Ap > 0, where H; = \/jEJ Hj, then P, e IJ.

Theorem 3. If P € 7, then for every J < {1,...,n} such that J\Iy # ¢ it holds that P; € 7.

Theorem 4. The conditional probability assessment £ = (pi,...,p,) on the family F =
{E||Hy,...,E,|H,} is coherent if and only if the following conditions are satisfied:
(i) P e I (ii) if Iy # O, then Py is coherent.



We remark that when we consider prevision assessments on conditional random quantities results sim-
ilar to Theorems [2], 3], @ can be obtained. In particular, by taking into account that M € 7 amounts to the
solvability of system (X), Theorem [ becomes

Theorem 5. The conditional prevision assessment M = (uy,...,u,) on the family ¥ =
{Xi|H\,...,X,|H,} is coherent if and only if the following conditions are satisfied:
(i) the system (%) in (@) is solvable; (ii) if Iy # ¢, then My is coherent.

We observe that, when Iy = (J, coherence of M amounts to solvability of (X). In order to illustrate the
previous results, we examine two examples.

Example 1. Let A, H, K be three events, with A, H, K logically independent. Moreover, let # = (x,y) be a
probability assessment on the family € = {A|H,A|K}, where x = P(A|H),y = P(A|K). The constituents
generated by € and contained in H v K are: C; = AHK, C, = AHK, C3 = AHK,C4 = AHK, C5 = AHK,
Cs = AHK. Then, the points Qy,’s associated with Cy,...,Cg are: Q1 = (1,1), Q> = (0,0), Q3 = (x,0),
Q4 = (0,y), Qs = (x,1), Qs = (1,y). Moreover Cy = HK and Qy = (x,y) = P. The condition P € 7,
where 7 is the convex hull of the points Qy, ..., Q¢, amounts to the solvability of the system (X) below
M+ Bx+A5x+ = x, 4+ y+As+dgy =y, i+--+2 =1, 4, =0, Vh

We observe that, for each (x,y) € [0, 1]?, the vector A = (4y,...,4s) = (0,0, T’, %x 3,3) is a solution
of (£); indeed P = ;0 + -+ + 1606 = 1%}Q3 + %Qz; + 2Q5 + 3506 = T}( ,0) + ;x(o,y) +
5(x, 1) 4+ 5(1,y) = (x,y). Moreover, for this solution it holds that 3, <y Ay = A1 + A2 + A4 + A6 = 1>0
and ZChQK A=A+ + A3+ A5 = % > 0. Then, Iy = & and by Theorem [3] the assessment (x,y)
is coherent, for every (x,y) € [0,1]*. Notice that in particular cases, like x = 0 or x = 1, the number of
distinct points Qy’s is less than 6, anyway the preV1ous analysis is still valid. For instance, when x = 0 and
0 <y < litholds that Q> = Q3, A = (4y,...,46) = (0,0, 12y’ 3.%.,0), and in geometrical terms it holds
that P = 5205 + 104 + 305 = 152(0,0) + E(o,y) 1(0,1) = (0,y).

Example 2. Let A, H,K be three events, with HK = ¢J and A logically independent from H and K.
Moreover, let # = (x,y) be a probability assessment on the family & = {A[H,A[K}. The constituents
generated by € are C; = AHK, C, = AHK, C3 = AHK, C4, = AHK, Cy = HK (which coincide
with C3, Cy, Cs, Ce, Co examined in the Example [I respectively). The associated points Q,’s are Q) =
(x,0),0, = (0,9),03 = (x,1),04 = (1,y),P = (x,y). We observe that, for each (x,y) € [0,1]?,
the vector (Ay,...,44) = (12’, %’C 5,3) is a solution of (X), with Iy = . Then, by Theorem [3 the
assessment (x,y) is coherent, for every (x,y) € [0, 1]°.

We recall the following extension theorem for conditional previsions, which is a generalization of de
Finetti’s fundamental theorem of probability to conditional random quantities (see, e. g.,[@, @, @])

Theorem 6. Let M = (uj,...,u,) be a coherent prevision assessment on a family of bounded conditional
random quantities ¥ = {X,|H},...,X,|H,}. Moreover, let X|H be a further bounded conditional random
quantity. Then, there exists a suitable closed interval [¢/, '] such that the extension u = P(X|H) is coherent
if and only if u € [u/, u”].

2.2. A deepening on conditional random quantities

The indicator of a conditional event E|H (denoted by the same symbol), with P(E|H) = x, is defined as
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1, if EH is true,
E|H=EH+ xH =EH + x(1—H) =< 0, if EH is true, (6)
x, if H is true.

Of course, the third value of the random quantity E|H (subjectively) depends on the assessed probability
P(E|H) = x. Notice that, when H < E (i.e., EH = H), by coherence P(E|H) = 1 and hence for the
indicator it holds that E|H = H + P(E|H)H = 1. Moreover, when EH = (J, by coherence P(E|H) = 0
and hence E|H = EH + P(E|H)H = 0. The negation of a conditional event E|H is defined as E|H =
E|H = 1 — E|H. We recall that, in the subjective approach to probability, if you assess P(X|H) = y, then
you agree to pay u by knowing that you will receive the amount XH + uH, which coincides with X, if H
is true, or with g, if H is false (bet called off). Usually, in literature the conditional random quantity X|H
is defined as the restriction of X to H, which coincides with X, when H is true, and it is undefined when H
is false. Under this point of view, (when H is false) X|H does not coincide with XH + uH. However, by

coherence, it holds that
P(XH + uH) = P(XH) + uP(H) = P(X|H)P(H) + uP(H) = uP(H) + uP(H) = pu. (7

Therefore, once a coherent assessment u = P(X|H) is specified, we can extend the notion of X|H, by
defining its value as equal to u when H is false (for further details see [@]). Then, denoting by x1,..., x,
the possible values of X when H is true, it holds that

X|H = XH + uH € {x1,...,x,,u}. (8)

By (@) the prevision of the extended notion of X|H, as defined in (8], coincides with the conditional prevision
u = P(X|H) where X|H is looked at as the restriction of X to H. From (8) X|H can be interpreted as the
amount that you receive when you pay its prevision g. Then, the random gain G can be also represented as
G = s(X|H — p). In particular, when X is (the indicator of) an event E, we obtain E|H = EH + P(E|H)H,
that is formula (€). Moreover, the prevision P(E|H) of (the conditional random quantity) E|H coincides
with the conditional probability P(E|H). For related discussions, see also (11, 28, l42).

Remark 1. Given a prevision assessment M = (uj, ..., u,) on a family of n conditional random quantities
{X\|H\,...,X,|H,}, based on (8] we observe that for each constituent Cj, the corresponding point Qj, rep-
resents the value assumed by the random vector (X, |Hy, ..., X,|H,) when C}, is true. In particular, when Cy
is true the value of the random vector is the prevision point M.

2.3. Conjunction and disjunction of conditional events

We recall now the notion of conjoined conditional which was introduced in the framework of conditional
random quantities ([28, 29, 30, Q]). Given a coherent probability assessment (x,y) on {A|H, B|K} we
consider the random quantity AHBK +xHBK +yKAH and we set P[(AHBK +xHBK +yKAH)|(HVv K)] = z.
Then we define the conjunction (A|H) A (B|K) as follows:

Definition 2. Given a coherent prevision assessment P(A|H) = x, P(B|K) =y, and P[(AHBK + xHBK +
yKAH)|(H v K)] = z, the conjunction (A|H) A (B|K) is the conditional random quantity defined as

(A|H) A (B|K) = (AHBK + xHBK + yKAH)|(H v K) =

1, if AHBK is true,

0, ifAH v BK is true,
= (AHBK + xHBK + yKAH)(H v K) + zH K = { x, if HBK is true,

y, if AHK is true,

z, if HK is true.
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Of course, by recalling (7)), it holds that P[(A|H) A (B|K)] = z. Notice that in (@) the conjunction is
represented as X |H is in (8) and, once the (coherent) assessment (x, y,z) is given, the conjunction (A|H) A
(B|K) is (subjectively) determined. Conversely, each given conjunction uniquely determines a coherent
assessment (x,y,z). We recall that, in betting terms, z represents the amount you agree to pay, with the
proviso that you will receive the quantity (A|H) A (B|K) = AHBK + xHBK +yKAH + zHK, which assumes
one of the following values: 1, if both conditional events are true; 0, if at least one of the conditional events
is false; the probability of the conditional event that is void, if one conditional event is void and the other
one is true; the payed amount z, if both conditional events are void. We recall that A|H = B|K amounts
to AH = BK and H = K. Thus, when A|H = B|K it holds that (AHBK + xH BK + yAHK)|(H v
K) = AH|H = A|H, that is (A|H) ~ (A|H) = A|H. Moreover the conjunction is commutative, that is
(A|H) A (BIK) = (B|K) A (A|H). The next result shows that the Fréchet-Hoeffding bounds still hold for
the conjunction of two conditional events (|30, Theorem 7]).

Theorem 7. Given any coherent assessment (x,y) on {A|H, B|K}, with A, H, B, K logically independent,
and with H # §,K # (J, the extension z = P[(A|H) A (B|K)] is coherent if and only if the following
Fréchet-Hoeffding bounds are satisfied:

max{x+y— 1,0} = 7 < z < 7/ = min{x,y}. (10)
From Definition 2] and Theorem [7] it holds that
max{A|H + B|K — 1,0} < (A|H) A (B|K) < min{A|H, B|K}. (11)

Remark 2. We observe that, by logical independence, the assessment (x,y) on {A|H, B|K} is coherent for
every (x,y) € [0, 1]*. Then, from Theorems [6and [7] the set IT of coherent prevision assessments (x, y, z) on
{A|H,B|K, (A|H) A (B|K)} is

1= {(x,y,2) : (x,y) € [0,1]?, max{x +y— 1,0} < z < min{x,y}}. (12)

The set IT is the tetrahedron with vertices the points (1,1,1),(1,0,0),(0,1,0),(0,0,0). Notice that, the
assumption of logical independence plays a key role for the validity of Theorem[7l Indeed, in case of some
logical dependencies, for the interval [7/,7”] of coherent extensions z it holds that max{x +y — 1,0} <
7 < 7" < min{x,y}. For instance, when H = K and AB = (J, the coherence of the assessment (x,y) on
{A|H, B|H} is equivalent to the condition x + y — 1 < 0. In this case, it holds that (A|H) A (B|H) = AB|H
with P(AB|H) = 0; then, the unique coherent extension on AB|H is z = 0. As another example, in the case
A = B, with A, H, K logically independent, it holds that the assessment (x,y) on {A|H,A|K} is coherent
for every (x,y) € [0, 1]2. Moreover, as it will be shown by Theorem [[7 the extension z is coherent if and
only if xy < z < min{x, y} . Finally, we remark that in all cases, for each coherent extension z, it holds that
ze[Z,7"] € [0,1]; thus (A|H) A (B|K) € [0, 1].

Other approaches to compounded conditionals, which are not based on coherence, can be found in
[IE, , , ]. A study of the lower and upper bounds for other definitions of conjunction, where the
conjunction is a conditional event like Adams’ quasi conjunction, has been given in ].

We recall now the notion of disjoined conditional. Given a coherent probability assessment (x,y) on
{A|H, B|K} we consider the random quantity (AH v BK) + xHBK + yKAH and we set P[((AH v BK) +

xHBK + yKAH)|(H v K)] = w. Then we define the disjunction (A|H) v (B|K) as follows:



Definition 3. Given a coherent prevision assessment P(A|H) = x, P(B|K) = y, and P[((AH v BK) +
xHBK + yKAH)|(H v K)]| = w, the disjunction (A|H) v (B|K) is the conditional random quantity

(A|H) v (BIK) = ((AH v BK) + xHBK + yKAH)|(H v K) =

1, if AH v BK is true,

0, 1fz§l-{EK is true, (13)
x, if HBK is true,

y, if AHK is true,

w, if HK is true.

= ((AH v BK) + xHBK + yKAH)(H v K) + wHK =

We recall the notion of conjunction of n conditional events ([@]).

Definition 4. Let n conditional events E;|Hy, ..., E,|H, be given. For each non-empty strict subset S of
{1,...,n}, let xg be a prevision assessment on /\ . (E;|H;). Then, the conjunction (E;|H}) A--- A (En|H,)
is the conditional random quantity C;..., defined as

Cron = [N EiHi + Y25 c12.my X (Aies Hi) A (ANigs EH)]I(ViZ) H) =

1, if A\l E;H; is true,

0, if \/i_, EiH; is true, (14)
XS, if(/\ieS[_—Ii)/\(/\i¢SEiHi) iStrue, @iSC{l,Z,l’l},

Xims if AP, H; is true,

Xen = X{1,..n} = P(Cr..n) = P(Aiy EiH; + ZQ;&SC{],Z...,n} xs(Nies H i) A (N igs Eifli DIViz) Hi)l-

Of course, we obtain C; = E||Hj, when n = 1. In Definition ] each possible value xg of Cy..,, &J # S <
{1,...,n}, is evaluated when defining (in a previous step) the conjunction Cg = /\,.s (Ei|H;). Then, after
the conditional prevision xj..., is evaluated, C..., is completely specified. Of course, we require coherence
for the prevision assessment (x5, & # S < {1,...,n}), so that C;..,, € [0, 1]. In the framework of the
betting scheme, x;..., is the amount that you agree to pay with the proviso that you will receive:

e 1, if all conditional events are true;

e 0, if at least one of the conditional events is false;

e the prevision of the conjunction of that conditional events which are void, otherwise. In particular

you receive back x;...,, when all conditional events are void.

The operation of conjunction is associative and commutative ([@ Proposition 1]). We recall below a
necessary condition of coherence related with the Fréchet-Hoeffding bounds ([@ Theorem 13]).

Theorem 8. Let (xi,...,Xx;x5..,) be a coherent prevision assessment on the family
{E\|H\,...,Eq|Hy, Cy..p}. Then, max{> ", x; — (n —1),0} < xp..,, < min{xy,...,x,}.

2.4. Frank t-norms
We recall below the notion of t-norm (see [@, m, @]).

Definition 5. A r-norm is a function T : [0,1]> — [0, 1] which satisfies, for all x,y,z € [0,1], the
following four axioms: 7(x,y) = T(y,x) (commutativity); T(x,T(y,z)) = T(T(x,y),z) (associativity);
T(x,y) < T(x,z) whenever y < z (monotonicity); T(x, 1) = x (boundary condition).
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Some basic t-norms are the minimum Ty (which is the greatest t-norm), the product 7'p, the Lukasiewicz
t-norm 7', given below:

Ty(x,y) = min(x,y), Tp(x,y) =xy, Tr(x,y)=max(x+y—1,0).

Frank t-norms are a relevant class of t-norms to which the previous basic ones belong. The Frank t-norm
T, : [0,1]> — [0, 1], with parameter A € [0, +c0], is defined as

Tw(x,y) = min{x,y}, ifA1=0,
Tp(x,y) = xy, ifa=1,

Ta(x,y) = Tr(x,y) = max{x +y— 1,0}, ifd=+oo, (15)
log, (1 + (/V—;)#), otherwise.

We recall that 7, is continuous with respect to A; moreover, it is decreasing with respect to the parameter
A. Then, for each given (x,y) € [0, 1]?, it holds that T (x,y) < Ta(x,y) < Tu(x,y), for every A € [0, +o0]
(see, e.g., ],). Frank t-norms provide a gradual transition between Lukasiewicz t-norm (1 = +0)
and minimum t-norm (4 = 0). Frank t-norms have been exploited in [E] (see also [B]) with the aim of
obtaining the coherent values for the membership function of the intersection of two fuzzy subsets. Since
t-norms are associative they can be extended in a unique way to an n-ary operation for arbitrary integer
n =2 (see [@, @]).

3. Sharpness of the Fréchet-Hoeffding bounds for the conjunction of n conditional events

In this section we show, under logical independence, the sharpness of Fréchet-Hoeffding bounds for the
prevision of the conjunction Cj..., and we illustrate some details by considering the case n = 3. We also
show that the set of all coherent prevision assessments on ¥ = {E||Hy, ..., E,|H,, C...,} is convex.

Let M = (xj,...,%;,X1..,,) be a prevision assessment on ¥ = {E||H|,...,E,|H,,C}..,}, with
E\, ...,E,,Hy,...,H,logically independent. In order to determine the constituents generated by the fam-
ily ¥ it is enough to consider the constituents Co, Cy, ..., C,, generated by the family {E||H, ..., E,|H,},
where by logical independence m + 1 = 3". Indeed, each Cj uniquely determines the value of Cj...,
that is for each h there exists a unique xs such that Cj, logically implies the event (C.., = xg) and
hence C, A (Cy..., = x5) = Cj. Then, Cy,Cy,...,C, also represent the constituents generated by the
family . By Remark [I] for each Cj the associated point Q) represents the value of the random vector
(E\|Hy, ..., Ey|Hy, Cy...;) when Cj, is true. The last component of Qj is the value of Cj..,, when Cj, is
true. By Definition [ we observe that, when the conditioning events Hy, ..., H, are all true, it holds that
Cy.., € {1,0}. In this section we only need to consider the constituents Cj’s such that C, = A, H;.
For these constituents the associated Q}s have binary components, where the last component is 1, or 0,
according to whether C, = A, E;H;, or C,, = (\/'_, E;) A (/\'_, H;). Given any subset {iy, ..., i} of

{1,...,n}, we set
{ik+1,...,in} = {1,...,1’1}\{i1,...,ik}.

Then, we denote by

where
Kiiicoin = /N EH)A( /\  EH)=EyH, - EHE;, H,., - EH,

ie{in,....ix} 1€ {ik4 1500l }
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the set of 2" constituents Cj,’s contained in /\?:1 H;, that is K = {Kj..., Ki..n—17> ..., K7..;; }. Of course,
there are 3" — 2" constituents C,’s which logically imply \/"_, H; and hence do not belong to K. For

each subset {i|,..., i} < {l,...,n}, we denote by Q; ..;;,...;, the point associated with the constituent
K .iyicry i, € K. Bach point Q; . ;- .;. is a (n + 1)-vector, say (q1, - .., qn+1), Where
1, if j € {it,... it} 1, ifk = n,
q;j = e . Gn+1 = : a7
0, if j € {ixt1s---»in}> 0, if k < n.

Then, from (I7), the set of points {Q;,...;.;..ip» {i1s-- - i} S {1,...,n}}, which we also denote by {Q...n,
Oln—tiis - Q7. b is {(1,...,1,1), (1,...1,0,0), ..., (0,...,0)}. We denote by 7* the convex hull of
these 2" points, that is

I* = {M M= /l]...nQ]...n —+ -4 /ﬁmﬁQI___,—l;/h...n + -+ /ﬁ,,,ﬁ =141.,=20,...,4 = 0}. (18)

1--n

Moreover, we denote by () the following system, with 2" unknowns A;,...;,; - ...i, »

.....

(Z0) 4 i} Lo} i = Ly (19)
>0, Vin,....i} < {1,....n}.

i1 ikl 41 +in

which is solvable if and only if M € 7*. In more explicit terms the system (X¥) becomes

X1 = Z{l}g{il in}s{1,...n} /lil---iki;l---i,,a

X2 = 20 {in i {1, n}/lil---iki;l---i,,’

(ZZ) y = Z{n}g{h ir}<{1,...n} /lil---iki;l--'i;’ (20)

.....

Z{il ..... ik}<{1,...n} /lil---iki;l---i:, =1,
A =0, V{il,...,ik}g{l,...,n}.

S SERR /2 /N R

Remark 3. Let 7 be the convex hull of all the points Qj’s associated with all the constituents Cj’s in
Hy v -+ v H,. Of course, for each C; € K, it holds that C, = A!_; H; < \/}_, H;. Then, the convex hull
I* is a subset of 7.

Theorem 9. Let Ey,...,E,,Hy,...,H, be logically independent events, with H; # &, ..., H, # U,
n = 2. Moreover, let M = (xj,...,x,, x1..,) be a prevision assessment on ¥ = {E||Hy, ..., Ey,|Hy,, Ci..n}.
If M e I'*, thatis (X¥) is solvable, then M is coherent.

Proof. Letbe M e I'*,thatis (X)) solvable, with a solution A*. From Remark[3] as 7* < 7, where 7 is the
convex hull of all the points Q’s, h = 1,...,m, it holds that M € 7. Then, the system () in (3) is solvable
with a solution A = (A,h = 1,...,m) = (A*,0), that is 4, = 0 for each C,, & A\}_, H;. Moreover, as
2ncicH A = 2ncyenom, A = 1,1 = 1,...,n, itholds that I = ¢J. Thus, as (Z) is solvable and Iy is
empty, by Theorem[3] the assessment M is coherent. U

We recall that a t-norm 7', introduced as a binary operator, can be extended as an n-ary operator. For
any integer n > 2 the extension of 7 is defined as ([41])

) T(T(X1y-wesXn—1)sXn), ifn>2,
»Fn) = T(X],XQ), ifn=2.
11
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The Fréchet-Hoeffding bounds are

n
Tr(xys... xy) = max{Zx,- —n+ 1,0}, Ty(xi,...,x,) = min{x,...,x,}.
i=1
In the next result (Theorem we show that, when propagating the probability assessment £ =
(X1,...,X,), defined on the family of n conditional events {E||H, ..., E,|H,}, to their conjunction Cj...,,
under logical independence the prevision assessment P(C;...,) = p is a coherent extension of # if and only
ifue @ (xr,....x0), 1" (x1,...,x,)], where

Wi(xt,oonxn) =To(xr, .o x0), W' (X1 xn) = Ta(x1,. .0, X)

For the convenience of the reader we sketch the proof.
1. We first observe that in general it holds that

Tr(xt,..o %) < (X1 x0) <" (x15. 000 %0) < Tag(x1,..., %) .

2. We show that y'(x1,...,x,) = Tr(x1,...,x,), by verifying the coherence of the assessment
(x1,.os X0 Tr(x1,5. .., X)) on {E{|Hy,...,E,|H,,Cy..,}. Based on Theorem [0 we verify the coherence
of (x1,..., %s Tr(x1,...,x,)) by showing that the associated system () is solvable, for each n. We pro-
ceed by induction. We assume (Z) solvable and then we verify the solvability of (X7, ), by separately
examining two cases: (i) Tr(x1,...,x,) = 0, (ii) Tr(x1,...,x,) > 0. In the case (i) for the assessment
P(E,+1|Hy+1) = xp41 we distinguish three sub-cases: x,41 = 0,x,41 = 1,0 < x,11 < 1. In the case (if)
we give an explicit solution of (X;) and a related solution for (X*, ), by distinguishing two sub-cases which
concern x,11: (ii.a) 0 < x,41 <n— Y, (with three further sub-cases); (ii.b) n— > < x,41 < L.

3. We show that u”(xi,...,x,) = Ty(xi,...,x,). We verify the coherence of the assessment
(X1 vy Xy Tag(x1, ..., X)) o0 {E{|Hy,...,E;|Hy, Cy...}, by providing an explicit solution of (X)) and
by applying Theorem [0l

Theorem 10. Let Ey,...,E,, Hy,...,H, be logically independents events, with H, # &, ..., H, # U,

n > 2. The set IT of all prevision coherent assessments M = (xi,..., X, X]..,,) on the family ¥ =
{E1|H1, ey En|Hn, Gln} is
IT = {(x1, s Xy X)) 2 (X5 e s Xn) € [0, 1) X000 € [TL(X15 e s Xn)s Trr (X145 - -5 X0) ]} 20
Proof. Given any integer n > 2, by logical independence of Ey, ..., E,, Hy, ..., H, each point (xi, ..., x,) €
[0,1]" is a coherent assessment on {E||H,..., E,|H,} (123, Proposition 11]). Moreover, by Theorem [6]
for each (xy,...,x,) € [0,1]" there exist two values u'(xy,...,x,) and ¢ (x1,..., x,) such that xj..., is a
coherent extension of (xi,. .., x,) if and only if xy..., € [/ (x1,..., %), " (x1, ..., X,)]. Then,
I = {(xX1s ey X X1on) = (X1 ey X0) € [0, 1], X100 € [ (31, - ooy X)s (7 (X1, - -0, %) ]}
By Theorem [§] coherence requires that x;..., € [Tp(x1, ..., Xx,), Tsm(x1,. .., x,)] and hence
Tr(xt,..., %) < (xp,...,x0) <" (x1,.0 00 %0) < Tag(x1,. 00 Xn).

Thus, T < {(x1,. s X, X10m) & (X1,ev0sx0) € [0,1)" x10y € [Tr(x1yenos %) Taa(x1,. .5 x0)]}. In

order to complete the proof it is enough to show that the two assessments (xi,..., X, Tr(x1,..., %))
and (x1,..., %, Tp(x1,...,x,)) are coherent, for every (xi,...,x,) € [0,1]", that is ¢/(x1,...,x,) =
Tr(xi,...,x,) and p’(x1,...,x,) = Tay(x1,...,x,), which amounts to the sharpness of the Fréchet-
Hoeffding bounds.
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Coherence of (x1,..., %y, Tr(x1,...,x,)). We will proceed by induction on the solvability of the system
(X*) associated to the assessment (xi, ..., X, TL(X1,. .., X,)).

(n = 2). In this case, by Remark Pl the assessment M = (xj, x5, T1(x1,x2)) is coherent because M
belongs to the set of coherent prevision assessments, given by the tetrahedron with vertices the points
(1,1,1),(1,0,0),(0, 1,0), (0,0,0). Moreover, by recalling (I6), for n = 2 the constituents which logically
imply H{H; are

Ki1 = E\H\E;Hy, K5 = E\H\ExHy, Kiy = E\H\E;Hy, Ky; = E1H\ExHs.
The associated points are
On = (LL1), Q5 =(1,0,0), @1, =(0.1,0), Q3 =(0,0,0);

Thus, the convex hull 7* of Qi2, Q;5, O1,, Q5 coincides with the tetrahedron and hence M € I'*, that is
(X3) is solvable. Indeed, (X5 ) is the following system

x1 = A2 + 443,
X2 = A2 + Ay,
(Z3) 4 Tr(xi,x) = Ao, (22)

i+ A5 + A, + A3 =71, B
/1i]i2 > 09 V(i],iz) € {1’]} X {2’2}’

with a solution
Ar = (12, A7 A3, A73) = (Tr(x1,x2), x2 — Tr(x1, x2), x1 — Tr(x1,x2), 1 — x1 — x2 + Tr(x1,x2)).

In particular
As = (0, x2, x1, 1 —x1 — x2), if x; +x, — 1 <0,
2Tl i+ =11 —x,1—x,0), ifx;+x—1>0.

We now assume the system (X;}) associated with the assessment (xi, ..., x,, T(x1,. .., X)) is solvable and
we show that the system (Z* le) associated with the assessment (x1, ..., X1, TL(X],...,X,+1)) is solvable
too. Then, (X}) is solvable for every n > 2 and by Theorem [9]it follows the coherence of the assessment
(X15-esXn, Tr(x1,5- .., X)), for every n.

Let the vector A, = (A;.iiryi,  {its--»ik} S {1,...,n}) be a solution of (¥). Then, by @0,

Al = X1y = Tp(x1, ..., x,). When necessary we assume that the components of A,, are suitably ordered.
Given a further conditional event E,1|H, ., with P(E,;1|H,11) = X,41, the system (Z* le) associated
with the assessment ()C], e Xntds TL()C1, e ,X,H_])) on {E] |H1, R |Hn+1, 61...n+1} is

Xj = 2 livmic} {1} A igicrringrs J = Leosn+ 1
) Tr(Xts. .oy Xn41) = Alont1s (23)
Z{il ..... ik}g{l,...,nJrl}/lil---ikikT_]mi;_] =1
— i =0, Yi,....,ixt < {l,....,n+ 1}

i1 ik 1 Il

(T

Based on A, we will find a solution A, of (£}, ) such that

iy evigivs iy = Aiyigivnteipnt 1 T Aoy oiyngis 4015+ iky S {100 nk (24)
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Then, the system (X7 ) becomes

-

iy civir iy = Aiyeeivizos —ignt1 T iy eciicgy iyt 10 {in,....0} = {1,...,n},
X = Z Ay i i1 T Z iy iy igng1s J=1,...m,
{clit it <{L,...n} {1l i} {1,...n}
] Kne1 = iy iy 1 (25)
{l| ..... ik}g{l ..... n}
Tr(xt,. s Xn41) = Aleent 1,
it nt 1} iy eigicrr i = Lo
N il V{ip,....,i} < {1,...,n+ 1}.

We distinguish two cases: (i) Tr(xy,...,x,) = 0, thatis x; + -+ +x, —n+ 1 <0; (if) Tr(x1,...,x,) >0,
thatisx; +---+x,—n+1>0.
Case (i). As Tp(xy,...,x,) = 0, it holds that Tp(xy,...,x4r1) = To(To(xp,. s Xn)s Xnt1) =
T1(0,x,+1) = 0. Moreover, for the component A;..., of the vector A, it holds that A;..,, = 0; hence, in
@3D, Ay...nsi = 0and Aj..;py1 = O, which satisfies the equation Ty (X1, ..., Xy41) = Aj.py1. We first
examine the particular cases where x,,;; = 0, or x,4; = 1; then, we consider the case 0 < x4 < 1.

If x,, .1 = 0, the system (23]) becomes

/llllklxlljl = /llllkla l;m > {ll’ MR lk} g {1’ e ’n}a
A1 = 0,

Xj= /lil---iki;l---i:,rm’ j=1,...,n,
{itclin.i}<{L,...n}

JEETTE Ay iy ignr1 = 0, (26)

Tr(xi,. ., Xn41) = Aleng1 = 0,

D0 i =1 X = 1,
{itsir S {1,.m}

L /lil"'ikik+l"'in+l

>0, V{i],...,ik} c {1,...,l’l+ 1},
with a solution A, given by
Any10 = (ﬂil---ikiﬁl---i’,ln+1a/1i1~~ikif+]---z';ma{ila iy {10,
where A i et = 0a0d i st = iy iy 105 -0 ik} S {1, n}, with in particular

Ayyzi = At = 0. Thus (2:+1) is solvable when T (xj,...,x,) = 0 and x,+; = 0. We also observe
that A, 1,0 has the following structure

(Aleontts- - AT dine 1 Ao -+ ,/lfmﬁm) =(0,...,0, A1cny o, A7) = (04, Ap), 27

where 0, is the subvector (0, ..., 0) of length 2" and A,, is a solution of (¥).
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If x,,1 = 1, the system (23]) becomes

( . .
/1,'1...,'1{,';1...,'; = /lil...iki;l...i:’n+l’ {ll, R lk} < {1, R ,I’l}

xj - Z Alllkl;l;"n{»la ]: 1,...,n,
{<{it it} ={L....n}
Antl = Ay iy i1 = 1
< {itenit}S{1,..n} (28)

TL(xl, e ,an) = /11...n+1 = 0,

Z /li|~~~ikiﬁ---i7,m =1-x,41=0,
AT S

L /11'1 7%/ SRR A

>0, V{il,...,ik} c {1,...,n+ ]},
with a solution A, 11 given by

An+1,1 = (/lil"'iki;l"'fnn+1’/li]"'ikik7-H l:,m ’ {lla LR} lk} g {la e ’n})’

Whel‘e /llllklm z?,n+1 = /llllklm l; and /llllkl;1 l:,lm = 0, {l] e e ey lk} o= {1, ceey n}, Wlth in particular
Aoymz1 = A = 0. Thus (X ) is solvable when Tr(xi,...,x,) = 0 and x,+1 = 1. We also observe
that A, 1,1 has the following structure

A1t = (At ts oo Aingts Aengis - - o> Aeiingl) = (29)
= (/11}19 e 9/11...ﬁa 09 Tt 0) = (AI’DOH)'

If 0 < x,41 < 1, by observing that (xy, ..., X1, T0(x1,. ..y Xng1)) = (X1, ., X441,0), as
(X150 X011,0) = (1 = x51) - (X150, %2, 0,0) + X041 - (X1, ..., 2, 1,0),

the vector Ay = (1 —Xp1)Aut1.0+ Xur1An+1,1 is a solution of system (23)); thus (Z:H) is solvable when
TL(xl, e ,x,,) =0and 0 < Xng1 < 1.

Therefore, by exploiting the solution A, of (£%), when T (xi,. .., x,) = 0 the system (X
for every x,4; € [0, 1], with a solution given by

n.1) is solvable

Ani1 = (Menttseeos Aeging 1o Ao - o Aeeaingi) = (L= Xt 1) At 10 + X1 Apgr1 =
= (1 = Xu1) (0, An) + X1 (An, 00) = (X1 Ans (1 = Xng1)Ay) = (30)
= (X,H_]/l]...n, e ,X,H_]/ljmﬁ, (1 — X,H_])/l]...n, ey (1 — X,H_])/lj___ﬁ).

Case (if). In this case Tp(x,...,%) = X + ... + x, — (n — 1) > 0 and by the inductive hy-
pothesis the system (X¥) is solvable. Actually, an explicit solution of (X¥) is the nonnegative vector
A, = (ﬂil---ikiﬁ---ﬁ,,{il’---aik} < {1,...,n}) given by

Ap=x1+-+x,—n+1,
Ay =1 —x1,
A3 = 1 = X2,

I 31)




Indeed, A, is a solution of (X}*) as shown below

Xj = Ao + 20t Akt 1oon — e jm1Fjp e J = 1L,20005m,
Tr(xt,.... %) = Aops
TR 0, V{i},...,ik} - {1,...,1’1}, k<n-—1,

Z{h iy S{1,...n} ’li.~~~ikiﬁu---i; =Aj.n + ZZ:] A= 1Tk 10 = -

..........

(32)

Based on (BI) the system (23) becomes

([ Atensr = TL(X1, 0 Xng1),

Mt Y4 i = =x1 + -+ x, —n+ 1,

Aor—1Fr41-n+1 + /ll---rflfrJrl---nnTl =y irraten=1—x, r=1,...,n,

$ At + Aot T A3t T T A2 tant 1 = Xag s (33)
Azt T Aot Y 4231 T+ Ae—tinsn = 1 — Xnt1

i1 T /lir--iki:r"i;m = /lil"'iki;l"'ljl = O,V{il, .. .,ik} < {1, .. .,n}, k<n-—1,

>0, V{i],...,ik} c {1,...,l’l+ 1}.

i gk

L4

e lelk+ 1 It 1

Based on the solution of (£*) given in (3I)) we find a solution of (33)), which of course is also a solution of
(Z¥, ). We observe that, as Tr(x1,...,x,) > 0, it holds that n — S xi=1=Tr(x1,...,x,) < 1; then,
we distinguish two sub-cases which concern x4 1:

(ii.a) 0 < xpp1 < n—Dxi < 1 (iib)n— >0 xi < Xpp1 < 1.

Sub-case (ii.a). In this case T (x1,..., x,+1) = 0. We analyze separately three cases:

(ii.al) x,01 = 0; (il.a2) Xy =n—x; — -+ — xp; (11.a3) 0 < xpy) <H— X — -+ — Xy

In case (ii.a.1), as x,4+1 = 0, the system (33) becomes

/11~~~n+1 =0,

ANpi =X+ +x,—n+1,

Artrritomnyt = =X, T=1....n,

3 A1 = A23ep1 = 0 = A2en—tan+1 = Xny1 = 0, (34)
it T A2t T A3 o At = 1= X = 1,

/ll'l"'iki;l"'i;,n“rl = /lir"ikiﬁ---i;m =0,Y{i1,....0x} S {l,....n}, k<n—1,

A =0, V{i],...,ik}E{],...,l’l-ﬁ-]},

NI R SR R

with a solution A, 41 given by

Ani1,0 = (Aent s> Aeding 1> Aeoomng s - -0 Al eoiingd )

where
Alenp1 =0,

/ll---r—lfr-l-l---n—i-l :0’ r= 1,...,”,
) lllklxlljln“rl =O,V{l1,,lk}§{1,,n}, k<n*1,
AN =X+ +x,—n+1,

/ll---rfl?rJrl---nnTl =1—-x, r=1,...,n,
A =0,Y{i1,....0k} = {l,....,n}, k<n—1.

(35)

it i1 il

Thus, (¥, ) is solvable when T (xi,...,X,) > 0 and x,1 = 0. We observe that, from (33) and B3, it
holds that
Api10=1(0,...,0, ., ..., /lj___ﬁ) = (0,,Ay). (36)
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In case (ii.a.2), we preliminarily observe that, if n — (x; + -+ 4+ x,) = >r_;(1 — x,) = 0, thatis x, = 1,
r=1,...,nand hence Ty (xj,...,x,) = 1, then x,41 =n— (x; + - + x,) = 0, which is the case (ii.a.1)
considered before. In this case a solution A,,; | of (Z: 4 1) is the vector A, 11 given in (33), which becomes

Along1 = 0,
/ll---I‘*l?r“rl---nJrl = Oa r= la---an’
Ay iy i1 = 0,V{it,....ix} = {1,...,n}, k<n—1,

YA (37)
/ll---nnTI =1
/ll---r—lfr-i-l---nm = 0’ r= 1,-..,”,

L /lil---iki;l---i;njl = 0,V{i1,...,ik} c {1,...,1’1}, k<n-—1.

If0 < xp41 =n— (x1 + -+ x,) < 1, then the system (33) becomes

( A.np1 =0,
MNpr =X1+- -+ x,—n+1,
Aer—17r4 Lol T At rratomng1 = L= X%, r=1,...,m,
4 /112---n+1 + /1153---n+1 + o+ A=A+l = Xpp1 =N — (xl +oee 4+ )Cn), (38)
At Y A2t Y W33 o A = L =X =01+ + X —n+ 1,
iy cvigiyinnt 1 T Ay dpn 1 = 0,v{ir,....ix} = {1,....n}, k<n—1,
>0, Vi,...,ix} S {1,....n+ 1},

i ikl 1 i1

which, by setting s = n — (x; + - - - + x,), is solvable with a solution given by

Apiis = (Aongts-- - A g e e /IT---ﬁnTl)’

where
( /ll...n+1 = O,
ll---r—17r+1~~~n+1 = 1 — Xy, I''= 17"'9’1’
< /llllkl;]l:,nJrl :O,V{ll,,lk}g{l,,n}, k<n*1, (39)
ﬂl___nm =x1+--+x,—n+1,
Afer 1 Fr gl = 0, r=1,...,n,
L /11111\11:1!;?;1 = O,V{ll,...,lk} c {1,...,”}, k <n-— 1.
Thus, (Z;’;H) is solvable when T (x1,...,x,) > 0and x,11 =n— (x; + -+ + x,).
In case (ii.a.3), as the vector (xp,. .., X,+1,0) coincides with the linear convex combination
Xn+1 Xn+1
(] - m) . ()C],...,Xn,o,()) + P g, (xl,...,x,,,n— (X] + - +Xn),0),
the vector
Xn+1 Xn+1
N1 =1(1-— ANpi1o+ Anii 40
n+ ( n(xl++x’1)> n+,0 n*(X1++xn) n+1,s ( )

is a solution of system (23); thus (X, ) is solvable when Ty (x1,...,x,) > 0and 0 < x,41 <n— (x1 +
-+ + x,). We observe that, from (33) and (39), in explicit terms the components of the solution A, in

(@0 are
/11...n+1 = 0,

Aler—1Frflontl = ,,,(xfi—“ﬂ")(l —x), r=1....n,
/1,']...,',(,',:]...,';”4_1 =0, V{il,...,ik} - {1,...,1’1}, k<n-—1,
ANpi =X+ +x,—n+1,
Xn
er—trrptemsl = (L= smimmy) (L= 2, r=1L..m,
P =0, Y{ir,....ix} < {1,....n}, k<n—1.
17
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Therefore, by exploiting the solution A, of (X)), when T (x1,...,x,) > O the system (X7 ) is solvable
for every x,4+1 € [0,n — (x; + - -+ + x,,)], with a solution given by the vector A, in @0) when n — (x; +
-+ +x,) > 0, that is when Ty (x1, ..., x,) < 1, or by the vector given in (37) whenn — (x; + - -+ x,) = 0,
that is when T (xy,...,x,) = 1.

Sub-case (ii.b). We recall that n — (x; + -+ + x,) = 1 — Tp(x1,...,x,) < las Tr(xy,...,x,) > 0.
Moreover, T (x1,..., Xp41) = X1 + -+ X1 —n>0,a8n— x; — -+ — X, < Xpy1 < 1. Similarly to the
solution A, of () given in (3I), the system (X ) has a solution A, ;| given below.

Alnt1 = X1+ + X1 — 1
A1 = 1 =21,
331 = 1 = x2,

S Ar—1F et = 1 — X, (42)

N /lil"'ikik+l"'in+l -

Therefore, based on the solvability of (Xj), we showed that in both cases (i) and (ii) system (X}, )
is solvable. In conclusion, (X¥) is solvable for every n > 2 and by Theorem [ the assessment
(X1, .y Xus Tr(X1, ..., X)) On the family ¥ = {E||H,..., E,|H,,C}...,} is coherent for every n. Then,
Wty xn) =Tr(xg, ..., X,).

Coherence of (x1,...,%p, Tpr(x1,...,x,)). Without loss of generality we can assume that x; < xp < -+ <
X,. We show that the assessment (xi,. .., X,, X1...,,), With xj.., = Tp(x1,...,X,) = x, is coherent. We
simply observe that system (X¥) in (20) is solvable with a solution A, = (A;,...i,; (i1, ..., in) € {1, 1} x -+ - x
{n,n}) given by

( /11...,, = X1,

Al = X2 — X1,
A33..0 = X3 — X2,

3 /lfil ven = Xr — Xr—1, (43)

n
N.;=1—x,,
L 4i....;, = 0, otherwise.
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Indeed, based on (@3)), it holds that

( X1 = /11...,1,

X2 = Alen + A0 s
X3 = Al + A0, + 133000

(44)

_ n71/17 _
An = 2up=0 T --h(h+1)--n>
Xiop = X1 = AL.ops
— — n — — j—
2} AL} A miiigs iy = 20h=0 ATehi(h 1) = 1

.....

U iy iy iy = 05 Vi, ....i} < {1,...,n},
that is the system (Z¥) in 20) is solvable. Therefore, by Theorem O] the assessment (xi,. .., X, X1...n),
with x1.., = Ty(x1,....x,), on F = {E||Hy,...,E;|H,,Cy..,} is coherent. Then, y"(x,...,x,) =

TM(xl, N ,x,,).
Finally, the statement in 1)) is valid. O

3.1. On the relationship between the sets Tl and I*

In this section we show that the set IT defined in (ZI) is convex and coincides with the set 7* defined
in (I8). We first recall the properties of convexity and concavity of T, and T, respectively. Given two
vectors V| = (a1, ...,a,) € [0,1]", V2 = (B1,...,B,) € [0, 1]", and any quantity a € [0, 1], we set

V=aVi+(1—a)Vas= y1,--.s¥n)
Then, the following properties are satisfied:
(convexity) — Tp(V)=Tr(aVy+ (1 —a)V2) <aTp(V1)+ (1 —a)TL(Va), (45)
(concavity)  aTy (Vi) + (1 —a)Tu(V2) < Ty (aVi + (1 —a)Va) = Ty (V). (46)
Convexity of T1. We observe that

n

Z[aai—i—(l—a) ] —(n—1) —a[Za/, n—l] (1 —a) [Zﬂ, n—]]

i=1
Then, we distinguish the following cases: (i) (V1) = 0,T.(V2) = 0, 0r Tr(V1) < 0,T.(V2) < 0; (ii)
TL((V1) >0, TL<(V2) <0, or TL((V1) <0, TL((Vz) =0
In case (i) it holds that T1(V) = aTr(V1) + (1 —a)TL(V2). In case (i) it holds that T1.(V) < aTr(V1) +
(1 —a)TL(V3). Therefore, Ty, is convex.
Concavity of Ty. We observe that Ty (V) = min{ay,...,a,} and Ty (V2) = min{By,...,B,} = B*. We
set Ty (V1) = @* and Ty (V2) = B*; moreover, we observe that

ac* + (1 —a)f* <aa;+ (1 —a)p;i, i=1,...,n,
that is
ac® + (1 —a)B* < minfaa; + (1 —a)Bi,...,ax, + (1 —a)By} = Ty (V).
Then
aTM((Vl) + (1 — a) + (1 — a)TM((Vg) < TM((V),

that is T, is concave.
In the next result we show that IT is convex and coincide with 7*.
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Theorem 11. Let Ey,...,E,, Hy,...,H, be logically independents events, with H, # &, ..., H, # U,
n > 2. The set IT of all prevision coherent assessments M = (xi,..., X, X]..,,) on the family ¥ =
{E\|Hy,...,Ey|Hy, Cy..n} is convex and coincides with the set 7*.

Proof. Let My = (ay,...,ay,ay..,) and My = (Bi,...,Bu,B1..n) be two coherent assessments on F .
Given any a € [0, 1] we show that the assessment

M=aM;+ (1 —a)My = (Y1, sVns V1)

on ¥ is coherent. From (ZI) it holds that (ay,...,a,) € [0,1]" and (Bi,...,8,) € [0,1]". Then,
(Y1 ---,vn) € [0, 1]". Moreover,

Tr(ar,...,an) < apg < Tylar,...,an), ToB1s---20n) <Bron < Tyu(Bis- .. Bn)-
Then, by taking into account that y;..., = aaj.., + (1 — a)By...,,, it follows
alp(ay,....,ay) + (1 —a)TL(B1s-- . Pn) < V1w < aTy(ay,....ay) + (1 —a)TyB1,-..,Bn)-
By recalling (#3) and @8), it holds that
Tr(y1s.-syn) <aTp(ay,...,an) + (1 —a)TL(Bi1,---3Bn) < Vi

and
Yien < alTy(ar,...;an) + (1 —=a)Tyu(Bi, ... Bn) < Tru(Yis-.s¥n)-

Finally, by observing that

(71,---,')%) € [09 ]]nv TL(')’la---,'Yn) < Vln < TM(yla"'ayn)a

it follows that M is coherent, that is M € II; thus II is convex.

We now show that [T = 7*. For each assessment M on #, by Theorem 0] if M € I*, then M is
coherent. Thus 7* < II. Then, in order to complete the proof we need to show that [T = 7*. Given any
M = (x1,...,Xp, X1..,) € I1, by Theorem [0l it holds that x;...,, € [Tr(x1,..., %), Tas(x1,-..,x,)]. Then,
there exists « € [0, 1] such that

Xiew = @T (X1, .y x0) + (1 — @) Ty (1,025 X)),
and hence
M= (X1, s Xy X)) = @(X1, o X, T (X150 o X)) + (1 — @) (X1, -y X Tag (X152, X))

We denote by Ay, or Ay, a solution of the system (X)) associated with the assessment

(x1, ..y Xus Tr(X1,. .., X)), or the assessment (xi,..., Xy, Tar(x1,...,x,)), respectively. Then, the vec-
tor A = aArp + (1 — @)Ay is a solution of the system (X)) associated with the assessment M =
(X1, ens Xy X1.); thus M€ T*, so that IT < 7*. Therefore 7* = II. O
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3.2. An illustration of sharpness of the Fréchet-Hoeffding bounds in the case of three conditional events

In this section, to better understand the previous general results, we illustrate some details which concern
the case of three conditional events. Given any logically independent events E1, E,, E3, Hy, Hy, H3, let
M = (x1,x2,x3, X123) be a prevision assessment on ¥ = {E||H,, E»|H», E3|H3, C123}. The constituents
Cy’s which imply HyH,H3 are

K13 = E\E2E3sH\HyH3, K53 = E\E2E3sH HaHs, Kipy = E1E2E3HiHaHs, Kipy = E1E2EsHiHaH,
Ki»3 = E\E2EsH\HyH3, K33 = E\E2E3H\HyHs, Kiy3 = E\E2E3H\HyHs, K35 = E\E2E3H HyH.

The associated points Q123, ..., Q133 are
Oz = (LLL1), Q33 = (1,0,1,0), Op3 = (0,1,1,0), Q133 = (0,0, 1,0),
Q12§ = (1’ 15090)’ Ql§§ = (1’05 0’0)’ Q123 - (0’ 1’0’ 0)’ Qiii = (0’0’ 0’0)

In this case system (£¥) in (20l becomes

X123 = A123,
x1 = A2z + Ay33 + Aoz + 4433,
(Z3){ x2 = diz3 + Aoz + A3 + 4103,
x3 = 123 + Ay33 + Ajpz + Aq33,
A+ -+ Az =1, li3=0,...,2735 = 0.

By recalling the proof of Theorem (I0), we illustrate below the structure of the vector Az =
(1123, 123> 41235 4123 A123> A123> 41235 4123 ) solution of (X} ), in the different cases.

Assessment (x1, x2, X3, X123), with x123 = Tr(x1, X2, X3).
We have two cases: (i) Tr(x1,x2) = 0, thatis x; + xp — 1 < 0; (it) Tp(x1,x2) > 0, thatis x; + x, — 1 > 0.
In case (i) Tr(x1,x2) = Tp(x1, X2, x3) = 0 and we have three sub-cases: x3 = 0,0r x3 = 1,0r0 < x3 < 1.
If x3 = 0 the system (Z7) has a solution

A3,0 = (0’ Oa 0’ Oa 0’ X1, X2, I - X1 — x2)
If x3 = 1 the system (X}) has a solution

A3,1 = (09 X1, X2, 1 - X1 — X2, 07 0’ 07 0)

If 0 < x3 < 1 the system (X3) has a solution

Az = (] — X3)A3,() + X3A3’1 =

47
= (0, x1x3, x2x3, (1 — x1 — x2)x3,0, 21 (1 — x3), x2(1 — x3), (1 — x1 — x2)(1 — x3)). “7
In case (ii), where T (x1,x2) > 0, we have two sub-cases:
(la)0<Sx3<2—x1—x0 < 1;(ii.h)2 —x; —xy < x3 < 1.
Sub-case (ii.a). We have three cases:
(il.al) x3 = 0; (il.a2) x3 =2 —x; —xp; (il.a3) 0 < x3 <2 — x; — x3.
If x3 = 0 the system (X} ) has a solution
A3’0=(0,0,0,0,X1+X2—1,]—X2,1—X1,0). (48)
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If x3 =2 — x; — x2 = 0, a solution of (X¥) is the vector in (&8).
If x3 =2—x; —x; >0, by setting s = 2 — x; — X, the system (E;‘) has a solution

A3’S = (0,1 —x2, 1 — x1,0,x1 + xp — 1,0,0,0).

If 0 < x3 <2 — x; — x2 the system (X3) has a solution

Az = (1 — 5= )As0 + Z,;Cﬁ/\&s =

2—x1—xp

=(omw,o,xl+xz—1,(1 5 ) (] =), (1 — s )(1—x1),o>.

P 2—x1—x2° 2—X1—Xx2 2—x|1—x2 2—x|1—x2

(49)

Sub-case (ii.b). The system (X3) has a solution
Az = (X] +x0+x3—2,1 —x,1 —x1,0,1 — X3,0,0,0).

Assessment (x1, X2, X3, X123), With x123 = Tp(x1, x2, x3). We assume that 0 < x; < xp < x3 < 1, so that
x123 = Tpr(x1, X2, x3) = x1. The system (Z3) has a solution

Az = (123, 4123, Ai23, 41335 A123> 423 41235 A4133) = (01,0, 02 = x1,03 — 12,0,0,0, 1 — x3).
We give below two examples.

Example 3. Let (x1,x2,x3, T(x1,x2,x3)) = (0.4,0.4,0.4,0) be a prevision assessment on F =
{E\|H\, E2|H>, E5|H3, C123}. We observe that x; + x, — 1 = —0.2 < 0; then, based on @7), the sys-
tem (XF) has a solution

Example 4. Let (x1,x2,x3, T (x1,x2,x3)) = (0.5,0.6,0.7,0) be a prevision assessment on F =
{E\|H\, E2|Ha, E3|H3, C123}. As x; + x2 — 1 = 0.1 > 0, based on (#9)), the system (X ) has a solution

Gle

0).

Nelle

_ o N 14 T d
Az = (123, 133, 41235 133> 1235 4123 4123 A123) = (05 355 755 05 195

’

4. On the computation of A, ; when x1..,,11 = Tr(X1,.0.5Xn41)

In this section we examine further aspects which concern the prevision assessment
(X1, .5 Xnt1, Tr(X1, ..., Xy11)). We observe that in the proof of Theorem [T0] the explicit solution A, of

the system (E:+1) is given for the assessment (X1, ..., Xp+1, TL(X15 - -+ s Xpt1), When Tp(xq,...,x,) > 0. In
the case where Ty (xi,...,x,) = 0, for the vector A, ; we only have the representation given in (30) in
terms of the solution A,. In what follows we give an explicit formula for A, when T (xy, ..., x,) = 0.

Given any integer n > 1, we distinguish two cases: (i) Tp(xy,...,x;) = 0, forall h = 1,...,n; (ii)
Tr(x1) > 0,...,Tp(x1,...oxp) >0, Tp(x1,..yxpyr1) = -+ = Tr(xyg,...,x,) = 0, for some & such that
1<h<n.

Case (i). If n = 1, the assessment is (x1,x2, (x5, x2)) and Tr(x;) = x; = 0. Moreover, the (unique)
solution of (X¥)is A; = (11,47) = (x1, 1 —x1) = (0, 1). Then, by applying (30) with n = 1, we obtain the
solution

Ay = (A2, A9, 4153, A73) = (A1, (1 — x2)A1) = (x2(0,1), (1 — x2)(0,1)) = (0,x2,0,1 — xp).  (50)
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If n = 2, the assessment is (xi, x2, x3, T1(x1, X2, x3)) and Tp(x;) = x; = Tr(x1,x) = 0. Moreover, as
x; = 0, it holds that A, is the vector given in (3Q) and by applying (3Q) with n = 2, a solution for (X3)is
given by

Az = (123, A2z, 23, A3, A3, A23s A123s A133) = (032, (1 — x3)A2) =

= (0, x2x3,0, (1 — x2)x3,0, x2(1 — x3),0, (1 — x2)(1 — x3)).

More in general, by iterating (30) we obtain

Apy1 = (/11--%4-19"'9/1T---ﬁn+1’/ll---nrmV"’AT---EM) =
= (X1 XX tse s (L= 2x1) o (1= X)) Xg 15 %1 X (1= x1)y ooy (L= x1) -+ (1 = x) (1 = Xp41)),

where x; = 0. Alternatively, by setting

Anit = pseugryes (15, (n+ D) e {1, T} x - x fn+ Ln+ 1),

and
L Xj, lfJ* = j,
x]*—{ x; =1 —xp,if j* =, D
it holds that
n+1 B _
Aoy = | 2. (5. (4 D)%) e (L1} x - x {n+ Ln+ 1}, (52)
j=1
where 1—[7:11 xj = 0,if 1" = 1, because x; = 0, and H;’i} Xjx = ;’221 xje, if 1* = 1, because

xp=1—-x1 =1
Case (ii). Fort = h+ 1,...,n, it holds that T (xy, ..., x;+1) = 0 and, from (30), it holds that

App1 = </11~~~t+1’---’AT---ftJrl’/ll---ttJTl""’/ﬁ---?m) =
= (xt+1/11---t, s X1 AT (1 - xt+l)/ll---ta cees (1 - xt+1)/li...f)-
Then, based on the representations
A = (/11*...;*; (1*,...,l*) € {I,T} X oo X {l,ﬂ),
and -
A1 = (g (15 (0 1D)F) e {11 <o x {t+ 1t + 1)),

based on (5I), for the components Ax...(;4 1)+ and A=.... it holds that
Ay ey = Asops - X 1)%, (53)

that is
Apsopegpr = Apseope - Xepd,
Ay = Akt - (1 — xep1),

forevery (1*,...,t*) e {1,1} x --- x {t,t}, t =h+1,...,n.
By iterating (33)) backward from 7 = n until # = h + 1, it follows that

n+1
/ll*...(n+l)* = /l]*...n* . x(nJrl)* = /11*...(”,1)* c Xpx ot x(nJrl)* == /ll*,,,(h+1)>k H Xpk . (54)
t=h+2
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Thus, in order to determine the vector A, we need to compute the vector Aj4 ;. We examine below this
aspect.

IfO < Tp(xi,...,xp) < 1,as Tr(xy,...,xp41) = Ot holds that 0 < xj41 < h — x; — -+ — xp; then
from (@I)) we obtain

Aoopr1 =0,

X
/11---}’7171‘4‘1’1--']14*1 = m(l *xr), r=1,...,h,
/1,']...,',(,',:]...,';}14_1 =0, V{il,...,ik} - {1,...,h}, k<h-—1, ss
) /11...hm=x1+---+xh—h+1, (55)
Afcr— 1 r bl = (1 - h—(x]x}-li-—-H-l-xh)) (1—=x), r=1,...,h,
L /1,']...,',(,',:]...,7,};1 =0, V{il,...,ik} - {1,...,]’[}, k<h-—1.

Then, concerning the components of A, , for every
(h+2)*....,n+1)*)e{h+2,h+2} x - x{n+2,n+2},
from (34) and (33) it follows that

A1 (hr2)* (e 1) = 0,
_ Xn+1 n+1 -
e =1 r Lo | (h42)% oo ()% = (1 — xr)m impan Xee, T =1,....h,

/1,']...,-,(,-@...,';,h+1(h+2)*...(n+1)* =0, V{i,....,ix} < {1,....h}, k<h-—1,

. _ Xh+1 n+1 o
Ay 1P r Lo 1 (h42) (1) = (1 — %) (1 - m) mpgo Xk, T=1,..,h,

n+1
AL B (4 2) % (e )* = (xr + o — b+ 1) [T X,

L Ail---ikiﬁl---ﬁlfm(h+2)*---(n+l)* =0, V{ij,...,ix} S {1,....,h}, k<h—1.

(56)

Of course the sum of all the components of A, is equal to 1, indeed

Xh+1 n+1 Xp+1 n+1 o . n+1
(11— x’)h—(x1+---+xh) 1=h+2 X% T (1—x) (1 - h—(X|+---+xh)> t=h+2 (1 —x) Ht:h+2 Xp,

h n+1 n+1
Z(lfxr) H Xpe = (h— (%1 + -+ x)) H Xp
r=1 t=h+2 t=h+2
n+1 n+1 n+1
(X1+"'+Xh—h+1)th*—i-(h—()q-i- +xh))th*= th*,
1=h+2 t=h+2 t=h+2

finally

.....

IfTr(x1,...,xp) = 1,as Tp(x1,. .., xp41) = O itholds that x;,4; = 0; then, concerning the vector Ay 1,
from (37)) we obtain that

Aleny1 = 0,

/11~~~r—17r+1~~~h+1 = 0, r = 1,...,h,

/lil---iki;l---i;,thl =0, V{il,...,ik} - {1,...,]1}, k<h—1,
Ay = L

Aertrrtoirn =0, 7=1...h,

\ Ail"'ikil:l"'i;lm =0, V{il,...,ik} < {1,...,]1}, k<h-—1,
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that is the vector Ay has the component A,.. ;7 equal to 1 and all the other components equal to zero.
Then, concerning the components of A, , for every

(h+2)*....(n+1)")e{h+2,h+2} x--- x {n+2,n+ 2},
from (34) and (37) it follows that

A1 (he2)* - (nr1)x =0,

/11---r—17r+1---h+1(h+2)*---(n+1)* =0, r=1,...,h,

Ail---ikikT_]~~~ﬁ,h+l(h+2)*~~~(n+l)* =0, V{il, cees ik} - {1, . ,h}, k<h-—1
I n+1

Al---hh+1(h+2)*---(n+1)* = Hz=h+2 Xk

Al ecr =1 r Lehiid 1 (h2)% () = 05 F =1, A,

/lil___iki;l,,,ﬁlmUlJrz)*_,(nJrl)* =0, V{il, cees ik} < {1, R ,h}, k<h-—1.

(58)

Remark 4. In summary, concerning the problem of giving an explicit solution A, of the system (X7 )
for the assessment (x1, ..., X1, TL(X1,. .., Xs11), we distinguish the following cases:
(a) Tp(xi,...,xy) = 1and Tp(xi,...,X,+1) = O (in which case x,+1 = n — >, x; = 0); the solution
is given in (37).
(b) 0 < Tr(x1,...,x,) < 1and Tp(x1,...,X,41) = O (in which case 0 < x,11 < n — Y| x;, with
0 <n—>_,x; < 1); the solution is given in @T).
(¢) Tr(xts...,x,) > 0and Tp(xy,...,x, + 1) > 0 (in which case n — | x; < x,41 < 1); the solution
is given in @2).
(d) Tr(xi,...,x;) =0,h=1,...,n+ 1 (in which case x; = 0); the solution is given in (32)).
(8) 0 < TL(xl,...,xh) < 1, TL(xl,...,th) = ... = TL(xl,...,an) = 0, with 1 < h < n; the
solution is given in (36).
(f) To(xis.oosxn) = L, To(xp, ..oy xpy1) =+ = Tr(x1,...,x,41) = 0, with 1 < h < n; the solution is
given in (38)).

We illustrate below the cases (e) and (f) by an example where n + 1 = 5.

Example 5. Given any logically independent events. Let Ej,...,Es5, Hy,...,Hs be logically Let
(X], e, X5, X]...5), with x;..5 = TL()C1, S ,X5), be a prevision assessment on {E] ‘H], RN E5|H5, 61...5},
where C;..5 = /\is=1 E;|H;. We examine below all the cases of Remark [l

(@) Tr(x1,...,x4) =land Ty (xy,...,x5) = 0 (in whichcase x; = -+ = x4 = l and x5 = 4—2?:1 X; =
0); the solution obtained from (37) is such that ,,3,5 = 1, with all the other components of As equal
to zero.

(b) 0 < Tr(xy,...,x4) < 1 and Tp(xy,...,x5) = O (in which case 0 < x5 < 4 — Z?lei, with

0<4-— Z?:l x; < 1); the solution obtained from (41)) is

7 (1= x) A = (1 - o

A33as = T e~ 2)s dizas = (- s
= YUk T ) 5= (

) 5= (

9
)
X3 1 - ))(
)

- - X
2345 = o et (L — X
X5

345 = O (1 T A (it trnta

B S . X 00
/112345 - 4*(x1+x2+x3+x4)(1 ’ /11234 = 4—(x1+x2+x3+x4

Aozas = X1 + X2 + X3 + x4 — 3, Apxgxzxgxsx = 0, otherwise.
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(¢) Tr(xi,...,x4) > 0 and Tr(xy,...,x5) > 0 (in which case 4 — Z?:l x; < x5 < 1); the solution
obtained from (@2)) is
A12345 = X1 + X0 + x3 + x4 + x5 — 4,
Afazgs = 1 — X1, Apzzes = 1 — x2,
Aozgs = 1 —x3, Ajpags = 1 — x4,
o5 = 1 — x5, Ayxoszsgxsx = 0, otherwise.
(d) Tp(xy) = -+ = Tr(x1,x2, X3, X4, x5) = 0 (in which case x; = 0); the solution obtained from (32)) is
Ai2345 = 0, Apaas = 0,
/112345 = X2X3X4X5, /112343 = X2X3X4(1 — Xs),
3345 = 0, A3345 = 0,
A334s = (1 — x2) X345, Aizzgs = (1 = x2)x324(1 — x5),
Az = 0, Ap345 =0,
Aizas = x2(1 — x3) 45, 72345 = X2(1 — x3)x4(1 — x5),
13345 = 0, 13345 = 0,
2345 = (1 — x2)(1 — x3) X425, Ai3345 = (1 — x2) (1 — x3)x4(1 — x5),
Ai2335 = 0, A1p335 = 0,
Ainsgs = xax3(1 — xa)xs, Aazas = x2x3(1 — xa)(1 — xs), :
A12335 = 0, A13335 = 0,
Aaszs = (1 — x2)x3(1 — x4)xs, 3335 = (1 — x2)x3(1 — x4)(1 — x5),
12335 = 0, A12335 = 0,
Atozzs = x2(1 — x3) (1 — x4)xs, At2335 = x2(1 — x3)(1 — xa)(1 — x5),
13335 = 0, A13335 =0,
A3335 = (1 —x2)(1 — x3)(1 — xa)xs, Ajazas = (1 — x2)(1 — x3)(1 — xa) (1 — x5).
() 0 < Tp(xiy..oyxn) < L, Tr(xiy...,xp41) =+ = Tr(x1,...,xs5) = 0, with | < h < 4; the solution
is given in (36)). If for instance & = 3, the components of the vector As are
A12345 = 0, Ayogs = 0,
Arpgs = (1 = x1) 32— %s, Aozgs = (1 — x1) 32— (1 — x5),
Aizzas = (1 = x0) s = %, Aizzgs = (1 = x2) 57— (1 = x5),
Aia345 = 0, Ai3345 = 0,
Aiozas = (1 - )@)#xs, Aiazas = (1 — x3)3,xlfﬁ(1 — X5),
Ain345 = 0, Aiz4s = 0,
13345 = 0, 13345 = 0,
Aiz34s = 0, Ai2345 = 0,
Ajpzzs = (X1 + X2 + x3 — 2)xs, Ayp3as = (x1 + x2 + x3 —2)(1 — xs),
Aozas = (1 = xi)(1 — 5===)%s, Apoags = (1 —x1)(1 — 3255 (1 — xs5),
Anzas = (1 =) (1 — 525—=)xs, Apaas = (1 —x0)(1 — 32575 )(1 — xs5),
Ai3335 = 0, Ai3335 = 0,
Amzzs = (1= x3)(1 — 525 —)xs, Apozas = (1 —x)(1 — 3255 ) (1 — xs5),
Ainas = 0, i35 =0,
13335 = 0, 3335 = 0,
A13335 = 0, Aiz3a5 = 0.



(f) To(xis.oosxn) = 1, Tr(x1y.eosXpp1) = -+ = Tp(xy,...,x5) = 0, with 1 < h < 4; the solution is
given in (3R). If for instance 4 = 2, the components of the vector As are

Ai23as = Xaxs, Aypzas = Xa(l — x5), Aypza5 = (1 — x4)xs,
A3as = (1 — x4)(1 — x5), Ap#ox3sqxs+ = 0, otherwise.

5. Probabilistic interpretation of Frank t-norms and t-conorms

In this section we show that the previsions of the conjunction and the disjunction of n conditional events
can be represented as a Frank t-norm 7 and a Frank t-conorm S ,, respectively. Then, we characterize
the set of coherent assessments by Frank t-norms and t-conorms. Moreover, when n = 2, we show that,
under logical independence, T,(A|H, B|[K) = (A|H) A~ (B|K) and S 1(A|H, B|K) = (A|H) v (B|K) for every
A € [0, +00]. We also examine cases where there are logical dependencies.

5.1. Set of coherent assessments, Frank t-norms and t-conorms

We recall that the n-ary Frank t-norm, with parameter A € [0, +00], is

Ty(xts...,x,) = min{xy,..., x,}, if4=0,
Tp(xty...oxy) = [y xis iftl=1,
Ta(x, ..., %) = Tr(x1,... %) =max{>, ,x; —n+ 1,0}, ifd=+c0, (59
log, (1 + H(’j%/l)":l)), otherwise.
The next result shows that, under logical independence, given any coherent assessment
(X1, vy Xy X1oo) ON{E |Hy, ..., Eq|Hy, C1...p }, it holds that x;...,, = Ty(x1,- -+ , x,) for some A € [0, +0o0];
conversely, for every A € [0, +0o0] the extension x;..., = Ty(xy,- -, x,) is coherent.

Theorem 12. Let Ey,...,E,, Hy,...,H, be logically independents events, with H| # &, ..., H, # U,
n > 2. The set IT of all prevision coherent assessments M = (xi,..., X, x]..,,) on the family ¥ =
{E\|Hy,...,Ey|Hy, Cy...,} coincides with the set

Iy = {(X1, s X X1on) = (X15e oo X)) € [0, 1), X1y = Ta(x1, -+, x), A € [0, +00]}. (60)

Proof. We show that I < IIy and Iy < II. For each given M = (x1,...,%,X1..,) € I,
by Theorem it holds that (xi,...,x,) € [0,1]" and xj..., € [Tr(x1,...,%0), Taia(x1,...,x0)] =
[Tioo(x1y..sXn), To(x1,-..,x,)]. Then, by the continuity property of 7T, with respect to A, there exists
A € [0, +o0] such that xy..,, = Ty(xy,...,x,). Thus, IT < II7.

Conversely, for every A € [0, +00] and for every (xi,...,x,) € [0, 1]", by Theorem [I0] the assessment
M = (x1,..., % Ta(x1,..., X)) is coherent because Ty(x1,...,x,) € [Tr(x1,.-s%0), Tag(x1,. .. x0)].
Thus I17 < IT and hence I1 = Il7. O

Remark 5. We observe that in case of some logical dependencies, for each given coherent assessment
(x1,...,x,), the set of coherent extensions xj..., is an interval

"

[ (s ey ) (1 2x0)] S [Troo (X155 Xn)s To(x1s - -5 X))

By Theorem [I2] there exist A’ and A” such that u/(x,...,x,) = Ty (x1,...,%,) and g’ (x1,...,x,) =
Ty (x1s...5X,), with +00 = A’ > 2" > 0 because T, is decreasing with respect to the parameter A. Then,

[ Ceryevs )it (er - x0)] = [T (X150 %), Tar (X152 X))
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Moreover, for each xj.., € [p/(x1,..., %), 14" (x1 - x,)], there exists 1 € [1”,2] such that x;.., =

Ta(x1,...,x,). However, the set of all coherent assessments (xj,. .., X, X]...,) is in general a subset of the
set [T7 given in (60). Then, it may happen that, given any coherent assessment (xp, ..., x,), the extension
X1..n = Ta(x1, ..., x,) is not coherent, for some A € [0, +0].

We now show that a result dual of Theorem (I2)) holds for the disjunction of conditional events, where
the Frank t-norm is replaced by the dual Frank t-conorm. The notion of disjunction given in Definition 3]
can be extended to the case of n conditional events E;|Hy, ..., E,|H, ([@]). Moreover, the conjunction
Cy..., and the disjunction D...,, satisfy De Morgan’s Laws; in particular

n n
Dy = \/(EilHy) = 1 = \(EilH) =1 - €, (61)
i=1 i=1
where C;. ; = /\?:1(Ei|H,~). We set P(Dj...,) = y1.., and P(Cq..;;) = xj...;. Of course, yj.., = 1 — xq..5.
By Theorem [I0] x7..; is a coherent extension of the assessment (xy,...,x,) on {E||Hi,..., E,|H,} if and
only if
Tr(l—xp,ees l—x) <xjoy ST (1—xp,...,1 — xp).
that is
1 —=Ty(1—xp,ees =) <y <1 —=Tp(1 —xp,..., 1 — xp).

Moreover, denoting by S, and S j; the Lukasiewicz and Minimum t-conorms, respectively, it holds that
n
St x) =min{) xi, 1} = 1= To(l = xp,... 1= x,),
i=1
and

Sm(xrs.oosxy) =max{xy,...,x,} =1 —Ty(l —xp,...,1 — x,).

Then, from (&I), we obtain the result below which establishes the Fréchet-Hoeffding bounds for the dis-
junction of n conditional events.

Theorem 13. LetEy,...,E,, Hy,..., H, belogically independents events, with H, # J, ..., H, # J,n >

2. The set of all prevision coherent assessments (xj, ..., X;, y1...,) on the family {E|Hy, ..., E,|H,, Di..,}
is the set
= {(x1, s X, Y1oom) 2 (X15ee s Xn) € [0, 1) 10 €[S (15 oy X0)s SL(X15 - X)) (62)

Based on Theorems [12] and [13] we have

Theorem 14. Let Ey,...,E,, Hy,..., H, be logically independents events, with H, # J, ..., H, # O,
n > 2. The set I of all prevision coherent assessments M = (xi,..., X, y1..,) on the family ¥ =
{E\|Hi,...,Ey|Hy,, Dj...,} coincides with the set

Ts = {(X15- s Xns V1om) = (X155 %) € [0, 1], y100m = Sa(x1, -+, %), A € [0, +00]}. (63)
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5.2. Representation of conjunction and disjunction of two conditional events

In this section we examine the representation of conjunction and disjunction of two conditional events
in terms of Frank t-norms and Frank t-conorms, respectively.

Theorem 15. For each coherent prevision assessment (x,y,z) on {A|H, B|K, (A|H) ~ (B|K)}, it holds that
(A|H) A (B|K) = T)(A|H, B|K), for some A € [0, +0]. (64)

Proof. From Definition it holds that 7(1,1) = 1, Ty(x,0) = T,(0,y) = 0, Ty(x,1) = x, Ty(1,y) = y.
Then,

1, if AHBK is true,
0, if AH is true or BK is true,

T:(A|H,B|K) =3 x, if HBK is true, (65)
v, if KAH is true,

Ti(x,y), if HK is true.

By Remark [3] there exists A € [0, +00] such that z = T,(x,y). Then, from (9) and (3}, for each coherent
assessment (x,y,z) on {A|H, B|K, (A|H) n (B|K)} there exists A € [0, +00] such that (A|H) A (B|K) =
T\(A|H, B|K). O

Remark 6. We observe that to define the conjunction (A|H) A (B|K) amounts to specify a coherent as-
sessment (x,y,z) on {A|H,B|K, (A|H) ~ (B|K)}. Moreover, we recall that, by Theorem [12] (see also
formula (I2)), in the particular case of logical independence of A, B, H, K, for each 1 € [0, +0o0] the
extension z = T,(x,y) on (A|H) A (B|K) of the assessment (x,y) on {A|H, B|K} is coherent, for ev-
ery (x,y) € [0,1]?. Then, for any given assessment (x,y, T1(x,y)) on {A|H, B|K, (A|H) A (B|K)}, with
(x,y) € [0,1]%, 2 € [0, +c0] it holds that

(A|H) A (B|K) = T\(A|H, B|K).

In other words, for every 4 € [0, +0], it is possible to define the conjunction as (A|H) A (B|K) =
T (A|H, B|K), for every (x,y) € [0, 1]?. Of course, in case of some logical dependencies, given a coherent
assessment (x,y), it may happen that 7,(A|H, B|K) is not a conjunction for some A € [0, +o0] because,
by Remark [3] the extension z = T,(x,y) is not coherent. In Section [5] we will give an example where
T (A|H,A|K), with 2 > 1, does not represent the conjunction (A|H) A (A|K) for some coherent (x,y).

We recall that the dual Frank t-conorm S (x,y) = 1 — T;(1 — x, 1 —y) is defined as

Sm(x,y) = max{x,y}, if 1 =0,
Sp(x,y) =x+y— xy, ifda=1,
Salxy) = Si(x,y) = min{x +y, 1}, if 1 = +o0, (66)
(A1) (A1) .
1 —log,(1 + =———-7—), otherwise.

Moreover, for every A € [0, + 0], the pair (T, S ) satisfies the functional equation ([IH, Theorem 5.14])
Sa(xy) =x+y—Tixy), (xy)e[0,1]. (67)
Theorem 16. For each coherent prevision assessment (x,y, w) on {A|H, B|K, (A|H) v (B|K)}, it holds that

(A|H) v (B|K) = S 1(A|H, B|K), for some A € [0, +o0]. (68)
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Proof. From (66)) it holds that S ,(1,1) = 1, Sa(x, 1) = Sa(1,y) = 1, Sa(x,0) = x, S ,(0,y) = y. Then,

1, if AH v BK is true,
0, if AHBH is true,

Si(A|H,B|IK) =< x, if HBK is true, (69)
v, if KAH is true,

Sa(x,y), if HK is true.
By recalling the prevision sum rule ([@, Section 6]), it holds that
P[(AlH) v (B|K)] = P(A|H) + P(B|K) — P[(A[H) ~ (B|K)],

thatisw = x+y—z, where z = P[(A|H) A (B|K)]. Moreover, by Theorem [[3there exists A € [0, +o0] such
that z = T(x,y). Then, w = x + y — T (x, y) and hence, from (67), there exists A € [0, +0] such that w =
S 1(x,y). Finally, from (I3) and (69), for each coherent assessment (x,y,z) on {A|H, B|K, (A|H) v (B|K)}
there exists A € [0, +-00] such that (A|H) v (B|K) = S(A|H, B|K). O

As a further comment, we also observe that, for each coherent assessment (x,y,z,w) on the family
{A|H,B|K, (A|H) A (B|K), (A|H) v (B|K)}, there exists A € [0, +c0] such that

(A|H) v (BIK) = (A|H) + (B|K) — T1(A|H, BIK) = S(A|H, B|K).

We remark that in the case of some logical dependencies among the basic events A, B, H, K, the Frank
t-norm may represent the conjunction only for the values of A in a subset of [0, +00]. In the next section we
examine a case where the subset is the interval [0, 1].

5.3. The conjunction (A|H) A (B|K), when A = B
In this section we examine a case of logical dependencies by considering the conjunction (A|H) A (B|K)
when A = B, that is (A|H) A (A|K). By setting P(A|H) = x, P(A|K) = y and P[(A|H) A (A|K)] = z, it
holds that
1, if AHK is true,
0, ifAH v AK is true,
x, if HAK is true,
y, if AHK is true,
z, if HK is true,

(A|H) A (A[K) =

that is
(A|H) A (A|K) = AHK + xHAK + yKAH + zH K.

In the next result we show that, for each coherent assessment (x,y), the lower bound on z is, not T (x,y),
but Tp(x,y); the upper bound is still Ty (x,y).

Theorem 17. Let A, H, K be three logically independent events, with H # (J, K # (. The set II of all
coherent assessments (x,y,z) on the family 7 = {A|H,A|K, (A|H) A (A|K)} is given by

IT = {(x,y,2) : (x,y) €0, 1]2,Tp(x,y) = xy < z < min{x,y} = Ty (x,y)}. (70)
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Proof. We recall that, by Example [T} the assessment (x,y) is coherent for every (x,y) € [0,1]%. Given
any coherent assessment (x,y), by Theorem [@] there exists an interval [7/,7”] of coherent extensions z to
(A|H) A (A|K). We will show that 7/ = xy and 7’ = min{x, y}. Let M = (x,y,z) be a prevision assessment
on 7, with (x,y) € [0, 1]%. The constituents associated with the pair (¥, M) and contained in H v K are:
C) = AHK,C, = AHK, C3 = AHK, C4 = AHK, Cs = AHK, C¢ = AHK. The associated points Q;’s are
01 =(1,1,1),0, = (0,0,0), 03 = (x,0,0), 04 = (0,y,0),0s5 = (x,1,x), Q¢ = (1,y,y). With the further
constituent Cop = HK it is associated the point Qy = M = (x,y,z). Considering the convex hull I (see
Figure[I) of Qy, ..., Qs, a necessary condition for the coherence of the prevision assessment M = (x,y,z)
on ¥ is that M € 7, that is the following system must be solvable

(%) A+ X3+ xAs +dg =X, Ay +yl+As +yde =y, A +xds +yde =2,
22:11h=1, A, =0, h=1,...,6.

First of all, we observe that solvability of (X) requires that z < x and z < y, that is z < min{x, y}; thus
7" < min{x, y}. We now verify that (x,y,z), with (x,y) € [0, 1]> and z = min{x, y}, is coherent, from which
it follows that 7 = min{x, y}. We distinguish two cases: (i) x < y and (ii) x > y.

Case (i). In this case z = min{x, y} = x. If y = 0 the system (X) becomes

+1=0 41+A5=0, 1 =0, L+B3+4=1, 4,20, h=1,...,6.

which is clearly solvable. In particular there exist solutions with 1, > 0,43 > 0,14 > 0, by Theorem 3
as the set I is empty the solvability of (X) is sufficient for coherence of the assessment (0,0,0). If y > 0

the system (X) is solvable and a solution is A = (11,...,4s) = (x, @, 0, y;—,x, 0,0). We observe that, if
x> 0,then 4; > 0and Iy = & because C; = HK < H v K, so that M = (x,y, x) is coherent. If x = 0
(and hence z = 0), then 44 = 1 and Iy < {2}. Then, as the sub-assessment P(A|K) = y is coherent, it

follows that the assessment M = (0, y, 0) is coherent too.
Case (ii). The system is solvable and a solution is A = (1y,...,4¢) = (, W= xy 0, 0). We observe

that, if y > 0, then 4; > 0 and I = & because C; = HK < H v K, so thatxM =x(x,y,y) is coherent. If
y = 0 (and hence z = 0), then 43 = 1 and Iy < {1}. Then, as the sub-assessment P(A|H) = x is coherent,
it follows that the assessment M = (x,0, 0) is coherent too. Thus, for every (x,y) € [0, 1]?, the assessment
(x,y, min{x, y}) is coherent and hence the upper bound on z is 7/ = min{x,y} = Ty (x,y).

We now verify that (x,y, xy), with (x,y) € [0, 1]? is coherent; moreover we show that (x, y, z), with z < xy,
is not coherent and the lower bound for z is 7 = xy. First of all, we observe that M = (1 — x)Q4 + xQg, SO
that a solution of (X) is A; = (0,0,0,1—x,0, x). Moreover, M = (1 —y)Q3 + yQs, so that another solution
is Az = (0,0,1 —,0,y,0). Then A = 2322 = (0,0, 152, 1= 2 £ js a solution of (Z) such that Iy = (.
Thus the assessment (x, y, xy) is coherent for every (x,y) € [0, 1]%>. In order to verify that xy is the lower
bound on z we observe that the points O3, Q4, Os, Q¢ belong to a plane & of equation: yX + xY — Z = xy,
where X, Y, Z are the axis’ coordinates. Now, by considering the function f(X,Y,Z) = yX + x¥ — Z, we
observe that for each constant k the equation f(X,Y,Z) = k represents a plane which is parallel to 7 and
coincides with 7 when k = xy. We also observe that f(Q;) = f(1,1,1) = x+y—1 = Tr(x,y) <
xy = Tp(x,y), f(Q2) = f(0,0,0) = 0 < xy = Tp(x,y), and f(Q3) = f(Q4) = f(Qs) = f(Qs) =
xy = Tp(x,y). Then, for every P = 22:1 ApOp, with 2, > 0 and 22:1 Ay = 1, that is P € 7, it holds
that £(P) = f(30_, 40n) = So_, 4uf(Qx) < xy. On the other hand, given any a > 0, by considering
P = (x,y,xy—a) itholds that f(P) = f(x,y,xy—a) = xy+xy—xy+a = xy+a > xy. Therefore, for any
given a > 0 the assessment (x,y, xy — a) is not coherent because (x,y, xy — a) ¢ I. Then, the lower bound
onzis 7 = xy = Tp(x,y). Thus, the set of all coherent assessments (x,y,z) on F is the set [Tin (ZO). O
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¥ 00 0.2

Figure 1: Convex hull I of the points Qy, 02, Q3, Q4, Q5. Q5. M’ = (x,3,7), M" = (x,y,7"), where (x,y) € [0,1]*, 7 = xy,
Z” = min{x, y}. In the figure the numerical values are: x = 0.35, y = 0.45, 7/ = 0.1575, and z” = 0.35.

Based on Theorem [I7} we can give a result which is similar to Theorem [[2] with n = 2; but in this case
A belongs to the interval [0, 1].

Theorem 18. Let A, H, K be logically independents events, with H # ¢, K # . The set of all prevision
coherent assessments M = (x,y, z) on the family ¥ = {A|H,A|K, (A|H) A (A|K)} is the set

{(x.3,2): (x) € [0,1],z = Ta(x,y), 4 € [0, 1]} (71
Proof. By exploiting Theorem [I7] the proof is the same as in Theorem O

We observe that for every 4 € [0, 1], it is possible to define the conjunction as (A|H) A (A|K) =
Ti(A|H,A|K), for every (x,y) € [0,1]%. Moreover, for some coherent (x,y), it may happen that
T,(A|H,A|K) is not a conjunction when A € (1 + o], as shown by the example below.

Example 6. Let A, H, K be logically independents events, with H # ¢J, K # . If, for instance, (x,y) =
(%,3). Then, by Theorem [[7] the extension z is coherent if and only if z € [T1(3,3), To(3.3)] = [1.3]-
Moreover, as T,l(%, %) is decreasing with respect to A, it holds that

11 11 1
— =) <Ti(=,=)=-, Vae(l .
2,2)< 1(2,2) T VAe (1+ o]

T(
Then, the extension z = Tﬂ(%, %) with A € (1 + o0], is not coherent; thus, T (A|H, A|K), with 2 € (1 + o0]
and (x,y) = (%, 1), is not a conjunction.
We also observe that, in particular cases, T,(A|H, A|K) is a conjunction when A € (1+o0]. For instance,
if x = 0, or y = 0, it holds that, for every A € [0, +0], z = T(x,y) = 0 is the unique coherent extension of
the assessment (x,y). Then, T,(A|H,A|K), with x = 0, or y = 0, is a conjunction for every A € [0, +0o0].

The next result consider the particular case where H and K are incompatible.
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Theorem 19. Let A, H, K be three events, with A logically independent from both H and K, with H # (J,
K # &, HK = . The set of all coherent assessments (x,y,z) on the family ¥ = {A|H,A|K, (A|H) A

(A|K)} is given by {(x,y,2) : (x,y) € [0,1]*,z = xy = Tp(x,)}.

Proof. Let M = (x,y,z) be a prevision assessment on . We recall that, by Example[2] the coherence of
(x,y) amounts to (x,y) € [0, 1]2. Moreover, we observe that HK = K and HK = H and

(A|H) A (AIK) = (xAHK + yAHK)|(H v K) = xAK|(H v K) + yAH|(H v K).
Then,
z=xP(AK|(H v K)) + yP(AH|(H v K)) = xyP(K|(H v K)) + xyP(H|(H v K)) = xy = Tp(x,y).

Thus, the set of all coherent assessments (x,y, z) on the family ¥ = {A|H, A|K, (A|H) A (A|K)} is given by
{(r.y.2) : (x.y) € [0.1]%, 2 = xy = Tp(x.y)}. O

Remark 7. We remark that, when HK = (J, T, (A|H, A|K) represents the conjunction (A|H) A (A|K) only
if 1 = 1. Indeed, from Theorems [[3 and [19] it holds that

(A|H) A (A|K) = (A|H) - (A|K) = Tp(A|H,A|K) = T1(A|H,A|K), when HK = .

We point out again that, as shown by Theorem[I8land by Remark[7] in case of some logical dependencies
to assign conditional previsions and to represent conjunctions by means of a Frank t-norm 7' is consistent
only for some values of 1. For instance, given any assessment (x,y) on {A|H, B|K}, with 0 < x < 1,
0 <y < 1, the assessment P[(A|H) A (B|K)] = Tr(x,y) is not coherent, because max{x +y — 1,0} < xy.
Moreover, T (A|H,A|K) = T4+ (A|H,A|K) is not a conjunction.

6. Some further results on Frank t-norms

In this section we give some particular results on Frank t-norms and coherence of prevision assessments
on the family 7 = {Cy, €5, C3, C12, C13, €23, C123}, where C; = E;|H;, C;; = (E;i|H;) A (Ej|Hj), and Cjo3 =
(E]‘H]) A (Ez‘Hz) A (Eg‘H3). We set IP’((‘B,) = X, i = 1,2,3, P(GU) = Xij, {l,]} = {1,2,3}, and
P(C123) = x123. In particular, we show that, under logical independence, the assessment

M = (x1,x2, X3, X12, X13, X23, X123) = (X1, X2, %3, Ta(x1, x2), Ta(x1, x3), Ta(x2, x3), Ta(x1, X2, X3))

on F is coherent for every (x1,x2,x3) € [0,1]® when T is the minimum t-norm Ty, = Ty, or T, is the
product t-norm, Tp = T|. Moreover, when T is the Lukasiewicz t-norm 7 = T, the coherence of M is
not assured. We first observe that, by Definition @] the conjunction €123 = (E1|H1) A (E2|H2) A (E3|H3) is

1, if EyH\E,HyE3H3 is true

0, ifE]H] szHQVE3H3 is true,

X1, if I‘_11E2H2E3H3 is true,

X2, if H2E1H1E3H3 is true,

Ci3 =< x3, if H3E{HE>H, is true, (72)
X12, ifH1H2E3H3 is true,

X13, if]‘_lll'_I3E2H2 is true,

X723, if[‘_lzl'_lgE]H] is true,

\ X123, 1if H{H,Hj is true.

The next result characterizes the set of all coherent assessments on ¥ ([@, Theorem 15]).
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Theorem 20. Assume that the events Ey, E», E3, H|, Hy, H3 are logically independent, with H; # &, Hy #
O, Hs # . Then, the set IT of all coherent assessments M = (xj, x2, X3, X12, X13, X23, X123) on F =
{€C1, Gy, C3, Cy2, C13, Ca3, C23} is the set of points (xy, x2, X3, X12, X13, X23, X123) Which satisfy the following
conditions

(x1, %2, x3) € [0,1]3,

max{xl +x0 — 1, x13 + X3 — X3,0} <X < min{xl,xz},

max{xl +x3—1,x10 + x03 — x2,0} < x;3 < min{xl,x3},

max{x2 +x3—1,x10 + x13 — X],O} < X3 < min{xz,x3}, (73)
I —x1 —x2 —x3 4+ x12 + x13 + x23 = 0,

X123 = max{0, x;2 + X3 — X1, X12 + X23 — X2, X13 + X23 — X3},

X123 < min{xy2, X13, X23, 1 — X1 — X2 — x3 + X124+ x13 + X3},

Remark 8. As it can be verified, the last two inequalities in (Z3)), that is

max{0, x12 + X3 — X1, X12 + X23 — X2, X13 + 13 — x3} < X123 <

i (74)
< min{xjo, x13, %23, 1 — X1 — X2 — X3 + X120 + X13 + X23},

imply all the other inequalities in (Z3). For instance, in order to prove that x; < 1, we observe that from
(Z34) it holds that
X2+ x3 — X2 < 1 — X1 —xp — X3+ x12 + X13 + X3,

from which it follows
X2+ X3 — X2+ X2+ x3— X2 — X3 —x3 < 1 —xq,

that is x3 — x13 < 1 — x;. Moreover, still from (74)), it holds that x13 + x23 — x3 < x23, that is x3 — x13 >
0. Thus x; < 1. Then, as (73) and (74) are equivalent, the set IT in Theorem 20l is the set of points
()C] , X2, X3, X12, X13, X23, X123) which satisfy 3.

Then, by Theorem 20 it follows [@, Corollary 1]

Corollary 1. For any coherent assessment (x1, X2, X3, X12, X13, X23) on {Cy, C2, C3, C12, Cy3, C23} the exten-
sion x23 on Cjp3 is coherent if and only if x123 € [¥},5, x],;], where

/
X5y = max{0, x12 + x13 — X1, X12 + X23 — X2, X13 + X23 — X3},

7 . (75)
Xz = mln{X12,X13,X23,1 —X] — X2 — X3+ X192 + x13 + )C23}.

We recall that in case of logical dependencies, the set of all coherent assessments may be a strict subset
of the set IT associated with the case of logical independence. However, the next result shows that the set of
coherent assessments is still IT in the case where H; = H, = H3z = H (with possibly H = Q, see also [@
p- 232]).

Theorem 21. Let be given any logically independent events E, E,, E3, H, with H # . Then, the set I of
all coherent assessments M = (X] , X2, X3, X12, X13, X23, X123) on F = {(‘31, Cs, C3, C12, C13, Ca3, (‘3123} is the
set of points (x1, X, X3, X12, X13, X23, X123) Which satisfy the conditions in formula (Z3).

A corollary similar to Corollary [Il could be associated to Theorem 211 For a similar result based on
copulas see [21].

In the next subsection we examine the coherence of the prevision assessment M =
(x15x2, x3, Ta(x1, x2), Ta(x1, x3), Ta(x2, x3), Ta(x1, X2, x3)) on F = {Cy, Cy, C3, Cy2, C13, C23, C123} in the
cases where T is the minimum t-norm, or the product t-norm, or the Lukasiewicz t-norm.
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6.1. On the minimum t-norm

We recall that the Frank t-norm 7y is the minimum t-norm 7'y;.

Theorem 22. Assume that the events Ey, E», E3, Hi, Hy, H3 are logically independent, with H; #
O, Hy # J, Hs # . The assessment M = (x1, x2, x3, Tar(x1, X2), Tag (x1, x3), Tag (%2, x3), Tar(x1, X2, X3))
on F = {€1,C,C3 C,C13,Co3,Cr23}, with (x1,x2,x3) € [0,1], is coherent. Moreover, when
M = (xl,X2,X3,TM(xl,XQ),TM(xl,X3),TM(X2,X3),TM(X1,X2,X3)), it holds that G,’j = TM(GI', G]) =
min{@i, Cj}, i # j,and Cip3 = TM(61,62,63) = min{€1,€2,€3}.

Proof. From Remark 8] the coherence of M amounts to the inequalities in (Z4). Without loss of generality,
we assume that 0 < x; < xp < x3 < 1. Then x;p = Ty(x1,x) = x5, x13 = Ty(x,x3) = xp,
x23 = Tpr(x2,x3) = x2, and x123 = Ty (xy, X2, x3) = x1. The inequalities ([Z4) become

max{0,x;,x; + x2 — x3} = x; < x; < x; = min{xy,xp, | —x3 + x1}. (76)

Thus, the inequalities are satisfied and hence M is coherent. By Remark [@] it holds that €;; = Ty(C;, C;j) =
min{C;, C;}, i # j. Moreover, based on (Z2)), it can be easily verified that Cio3 = Ty (€, €, C3) =
min{€1,€2,€3}. Ol

Remark 9. As we can see from (Z6]) and Corollary [I, the assessment xjp3 = min{xj, xp, x3} is the
unique coherent extension on Cjp3 of the assessment (xj, X2, x3, min{xy, x, }, min{x;, x3}, min{x,, x3}) on

{C1,Ca, C3,Cy2, €3, Co3}.

6.2. On the Product t-norm

We recall that the Frank t-norm 77 is the product t-norm 7p.

Theorem 23. Assume that the events Ey, E», E3, H|, Hy, H3 are logically independent, with H; # &, Hy #
O,Hy # . The assessment M = (xy,x2,x3, Tp(x1,x2), Tp(x1,x3), Tp(x2, x3), Tp(x1, X2, x3)) on
F = {C1,C,C3,C12,Cy3,Ca3,C1p3}, with (x1,x2,x3) € [0,1]3, is coherent. Moreover, when M =
(x1, 22, x3, Tp(x1, x2), Tp(x1, x3), Tp(x2, x3), Tp(X1, X2, x3)), it holds that C;; = Tp(C;, C;) = C;Cj, i # J,
and Cp3 = Tp(Cy, Cp, C3) = C1C,C5.

Proof. From Remark 8] the coherence of M amounts to the inequalities in (Z4). As x;; = Tp(x;, xj) = XiXj,
i # j,and x123 = Tp(x1, X2, X3) = X1 X2X3, the inequalities (74]) become

max{0, x;(xy +x3 — 1), x2(x; + x3 — 1), x3(x; + x2 — 1)} < xjx0x03 <

. 77
< min{x;x, x1x3, x2x3, (1 — x1)(1 — x2) (1 — x3) + x1x2x3}. 7

As (x1,x2,x3) € [0,1]% it holds that x; + x; — 1 < x;x; because x;(1 — x;) < 1 — x;. Then, the first
inequality in (Z7)) is satisfied. Moreover, the second inequality is trivial. Thus, M is coherent. By Remark
[6l it holds that C;; = Tp(C;, €j) = min{C;, C;}, i # j. Finally, based on (Z2)), it can be easily verified that
Cixz = Tp(@], (‘32,@3) = G;16,C;5. Ol

6.3. On Lukasiewicz t-norm

We recall that the Frank t-norm 7., is the Lukasiewicz t-norm 7;. We show that the assessment
M = (xl’ X2, X3, TL(Xl, x2)a TL(Xl, x3)a TL(XZ’ x3)a TL(Xl, X2, x3)) on T == {Gl’ G2a 63, 612’ 613a 623’ 6123}
may be not coherent for some (x1, x2, x3) € [0, 1], as shown in the example below.
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Example 7. Given any logically independent events Ei,E,, E3, Hi,H>, H3, the assessment
(x1,x2,x3) = (0.5,0.6,0.7) on {C;,C,,C3} is coherent. =~ However, the prevision assessment
(x1,x0, %3, Tp.(x1, x2), Tr.(x1,x3), Tr(x2, x3), Tr(x1,x2,x3)) = (0.5,0.6,0.7,0.1,0.2,0.3,0) on the
family ¥ = {€y, C2, €3, Cj2, €13, C23, €123} is not coherent. Indeed, formula (Z4) becomes

max{0,0.1+0.2—0.5,0.1+0.3—0.6,0.24+0.3—0.7} < 0 < min{0.1,0.2,0.3, 1—-0.5—0.6—0.7+0.1+0.2+0.3},

that is:
max{0,—0.2} =0 < 0 < —0.2 = min{0.1,0.2,0.3,—0.2};

thus, the inequalities in (74) are not satisfied and by Remark [§] the assessment (0.5, 0.6,0.7,0.1,0.2,0.3,0)
is not coherent. Then, the results of Theorems [22]and 23] do not hold for the Lukasiewicz t-norm.

In the next result we illustrate further details on coherence of the prevision assessment
(x1, %2, x3, T(x1, %2), To(x1, x3), Tr.(x2, X3), Tr(x1, X2, X3)).

Theorem 24. Assume that the events E, E», E3, H|, Hy, H3 are logically independent, with H; # J, H, #
T, Hy # . Let M = (x1, x2, x3, Tr(x1, x2), Tr.(x1, x3), Tr.(x2, x3), T (X1, X2, x3)) be a prevision assess-
ment on the family ¥ = {(‘31, 7, C3, C12, C13, Ca3, 6123}. If (X], XQ,X3) S [0, ]]3 and x| +x +x3—2>=0
then M is coherent. If (x1,x2,x3) € [0,1]3, x1 + 2 — 1 > 0, x; +x3 —1 > 0, xo + x3 — | > 0, and
X1 + xp + x3 — 2 < 0, then M is not coherent.

Proof. We observe that the set of points (x,x2, x3) € [0, 1]* such that x; + x; 4+ x3 — 2 > 0 is the convex
hull 7~ of the points (1,1,0),(1,0,1),(0,1,1),(1,1,1), which is a tetrahedron. If (x, x2,x3) € 7, then
X1 + x + x3 — 2 > 0, and it holds that

X1+x—120, xj+x3—120, o +x3—1=0,

with

0<x1+x+x—2< min{x1 +xy—Lx;i+x3—1, x4+ x3 — 1}. (78)
Thus, the assessment becomes M = (x1, X2, x3,x1 + X2 — Lx; +x3 — L, xa + x3 — L, x; + xp + x3 — 2).
Moreover, from (Z8)), the conditions of coherence on M given in (74) become

max{0, x; + xp + x3 =2} < x;+xp+x3—2 < min{x; +x— Lx; +x3— L, 0o+ x3 — 1, x1 + xp + x3 — 2},

that is
Xi+x+x3—2 < xj+x+x3—2 < xp+x+x3-—2,

which are trivially satisfied. Then, by Remark 8] M is coherent.
If (x1, %0, x3) € [0, 1, x1 + 20 —1>0,x +x3—1>0,x0+x3 — 1 >0,and x; +x, + x3 —2 < 0,
then

l—x1—x—x3+xp+x3+x3=1—x—x3—x3+Tr(x;,x)+ Tr(x1,x3) + Tr(x2, x3);
moreover
l—x;—xp—x34+ Tr(x1,x2) + Tr(x1,x3) + Tr(x2,x3) = x1 + x2 + x3 —2 < O0.

Then the inequality 1 — x; — x, — x3 + x12 + x13 + x23 = 0 in (Z4) is not satisfied. Therefore, by Remark
[8l M is not coherent. This is the case, for instance, in Example [Z1 U
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Remark 10. Notice that, if we consider the assessment (xj, x2, x3, T1(x1, x2), T1(x1, x3), Tr.(x2, X3), X123)
on the family {C, G2, C3, Cj2, €13, C23, €123}, under the condition x; + x + x3 — 2 = 0, the conditions of
coherence given in (Z4]) become

max{O,xl + X2 + x3 — 2} < X123 < min{x1 +x—Lxi+x3s—Lxx+x3—1,x1+x+x3 — 2},
that is the conditions of coherence on M given in (Z4]) become
X1+ x+x3—2<x123 <x1+x+x3 -2

Thus, the unique coherent extension on Cjo3 is X123 = x; + x2 + x3 — 2 = Ty (x1, x2, x3). In this case, it
holds that eij = TL(G,', G]) =G+ Gj —1,i# j,and Cip3 = TL(Gl, G, 63) =C +Cy+C3—2.

Finally, we point out again that when T, is the Lukasiewicz t-norm T; = T, it may happen that
the assessment M = (xy, x2, x3, T(x1, X2), Tr.(x1, x3), Tr.(x2, x3), T (X1, X2, X3)) is not coherent, that is for
some values xj, x, and x3, the assessment M, with x;p = Tr(x1, x2), x13 = Tr(x1,x3), x23 = T1(x2, x3),
and x123 = T (x1, x2, x3), is not coherent. Then, to assign conditional previsions by means of Lukasiewicz
t-norm may be inconsistent. In Theorem [24] we gave some sufficient conditions for coherence/incoherence
of M when using 7.

7. Conclusions

In this paper we studied conjoined and disjoined conditionals, Frank t-norms and t-conorms, and
the sharpness of Fréchet-Hoeffding bounds. By studying the solvability of suitable linear systems, we
showed that, under logical independence, the Fréchet-Hoeffding bounds for the prevision of the con-
junction and the disjunction of n conditional events are sharp. In particular we illustrated some de-
tails in the case n = 3. We gave a geometrical characterization of the set Il of all coherent previ-
sion assessments on {E||Hj,...,E,|H,,C}..,}, by verifying that IT is convex. We discussed the case
where previsions of conjunctions are assessed by Lukasiewicz t-norms and we found explicit solutions
for the relevant linear systems; then, we analyzed a selected example. We studied the representa-
tion of the prevision of C;..,, and D;..,, by a Frank t-norm T, and a Frank t-conorm S ,, respectively.
Then, we characterized the sets of coherent prevision assessments on {E;|H},..., E,|H,,C;..,} and on
{E\|Hi,...,Ey|Hy, Dy...,} by using T, and S 5. We showed that, under logical independence, T,(A|H, B|K)
is a conjunction (A|H) A (B|K) and S ,(A|H, B|K) is a disjunction (A|H) v (B|K), for every A € [0, +0].
We also examined the case of logical dependence where A = B, by obtaining the set of coherent as-
sessments on A|H,A|K, (A|H) A (A|K) and its representation in terms of 7, with 4 € [0,1]. We ob-
tained some particular results on Frank t-norms and coherence of prevision assessments on the family
F = {€1,C2,C3,C12,C13,C03,Ci23}. In particular, we verified that, under logical independence, the
assessment M = (x1,x2, x3, Tq(x1, x2), Ta(x1, x3), Ta(x2, x3), Ta(x1, X2, x3)) on ¥ is coherent for every
(x1,x2,x3) € [0,1]® when T, is the minimum t-norm T}, or the product t-norm Tp. We showed that in
these cases the conjunction Cjp3 coincides with Ty, (Cy, 2, C3), or Tp(Cy, Ca, C3), respectively. Based on
a counterexample, we verified that, when 7T, is the Lukasiewicz t-norm 7, the coherence of M is not as-
sured. Then, we remarked that the Lukasiewicz t-norm of three conditional events may not be a conjunction.
Finally, we gave two sufficient conditions for coherence and incoherence of M, respectively, when using
the Lukasiewicz t-norm. Future work could concern possible applications to fuzzy logic in the setting of
coherence (see, e.g., [E , ]) by interpreting multidimensional membership functions as previsions of
conjunctions of conditional events.
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