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Abstract

In this paper we consider compound conditionals, Fréchet-Hoeffding bounds and the probabilistic inter-

pretation of Frank t-norms. By studying the solvability of suitable linear systems, we show under logical

independence the sharpness of the Fréchet-Hoeffding bounds for the prevision of conjunctions and disjunc-

tions of n conditional events. In addition, we illustrate some details in the case of three conditional events.

We study the set of all coherent prevision assessments on a family containing n conditional events and their

conjunction, by verifying that it is convex. We discuss the case where the prevision of conjunctions is as-

sessed by Lukasiewicz t-norms and we give explicit solutions for the linear systems; then, we analyze a

selected example. We obtain a probabilistic interpretation of Frank t-norms and t-conorms as prevision of

conjunctions and disjunctions of conditional events, respectively. Then, we characterize the sets of coherent

prevision assessments on a family containing n conditional events and their conjunction, or their disjunction,

by using Frank t-norms, or Frank t-conorms. By assuming logical independence, we show that any Frank

t-norm (resp., t-conorm) of two conditional events A|H and B|K, TλpA|H, B|Kq (resp., S λpA|H, B|Kq), is

a conjunction pA|Hq ^ pB|Kq (resp., a disjunction pA|Hq _ pB|Kq). Then, we analyze the case of logi-

cal dependence where A “ B and we obtain the set of coherent assessments on A|H, A|K, pA|Hq ^ pA|Kq;

moreover we represent it in terms of the class of Frank t-norms Tλ, with λ P r0, 1s. By considering a family

F containing three conditional events, their conjunction, and all pairwise conjunctions, we give some results

on Frank t-norms and coherence of the prevision assessments on F . By assuming logical independence, we

show that it is coherent to assess the previsions of all the conjunctions by means of Minimum and Product

t-norms. In this case all the conjunctions coincide with the t-norms of the corresponding conditional events.

We verify by a counterexample that, when the previsions of conjunctions are assessed by the Lukasiewicz t-

norm, coherence is not assured. Then, the Lukasiewicz t-norm of conditional events may not be interpreted

as their conjunction. Finally, we give two sufficient conditions for coherence and incoherence when using

the Lukasiewicz t-norm.
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1. Introduction

In this paper we consider conjunctions and disjunctions of conditional events. These compound condi-

tionals are defined in the setting of coherence as suitable conditional random quantities, with values in the

unit interval (see, e.g. [27, 28, 29, 30, 33, 34, 52, 53]). In [30] we proved the sharpness of the Fréchet-

Hoeffding bounds for the prevision of the conjunction and disjunction of two conditional events. We recall

that such lower and upper bounds are particular Frank t-norms and t-conorms: for the conjunction they are

the Lukasiewicz and Minimum t-norms, respectively; for the disjunction they are the dual t-conorms. In

this paper we generalize this result to the conjunction C1¨¨¨n and the disjunction D1¨¨¨n of n conditional events

E1|H1, . . . , En|Hn. To obtain this result we study the solvability of suitable linear systems associated with

prevision assessmentsM on the family tE1|H1, . . . , En|Hn,C1¨¨¨nu. We provide some explicit solutions for

the linear systems and we show that the set of coherent assessments M is convex. To better illustrate our

results, we examine more details in the case of three conditional events.

We discuss the case where the prevision of conjunctions is assessed by Lukasiewicz t-norms and we

give explicit solutions for the linear systems; then, we analyze a selected example. We give a probabilis-

tic interpretation of Frank t-norms and t-conorms as prevision of conjunction and disjunction of condi-

tional events, respectively. Then, we characterize the sets of coherent prevision assessments on the families

tE1|H1, . . . , En|Hn,C1¨¨¨nu and tE1|H1, . . . , En|Hn,D1¨¨¨nu in terms of Frank t-norms and Frank t-conorms,

respectively. In addition, by assuming logical independence, we show that any Frank t-norm of two condi-

tional events A|H and B|K, TλpA|H, B|Kq, is the conjunction pA|Hq ^ pB|Kq associated with the assessment

PrpA|Hq ^ pB|Kqs “ TλpPpA|Hq, PpB|Kqq. A dual result is given for the disjunction in terms of dual

t-conorm.

We analyze the case of logical dependence where A “ B and we determine the set of all coherent assess-

ments px, y, zq on tA|H, A|K, pA|Hq ^ pA|Kqu, by also showing that TλpA|H, A|Kq represents a conjunction

pA|Hq ^ pA|Kq, only for λ P r0, 1s. In particular, when HK “ H, we obtain that pA|Hq ^ pA|Kq coincides

with the Product t-norm T1pA|H, A|Kq “ pA|Hq ¨ pA|Kq.

Given three conditional events, we consider all possible conjunctions among them and we show that to

make prevision assignments on conjunctions by means of the Product t-norm, or the Minimum t-norm, is co-

herent. Moreover, the conjoined conditionals can be represented as Product t-norms, or Minimum t-norms,

of the involved conditional events. This representation may not hold for the Lukasiewicz t-norm. Indeed, we

show by a counterexample that prevision assignments on conjunctions by means of the Lukasiewicz t-norm

may be not coherent and we examine some sufficient conditions for coherence and incoherence. Finally, we

give two sufficient conditions for coherence and incoherence when using the Lukasiewicz t-norm.

A relevant aspect which would deserve investigation is the application of our results on compound

conditionals and t-norms in statistical matching, misclassified data, data fusion, aggregation operators, fuzzy

logic, belief and plausibility functions, and description logic ([1, 5, 9, 10, 15, 16, 17, 18, 19, 20, 36, 47, 49]).

This paper originated from [32] and the large part of the material is new. In particular all the results given

in Section 3, Section 4, and Subsection 5.1 are new. Revised and extended material from [32] is given in

Subsections 5.2 and 5.3, and Section 6.

The paper is organized as follows: In Section 2 we recall some preliminary notions and theoretical

results on conditional random quantities and coherence. We give some examples and we examine an ex-

tended notion of conditional random quantity X|H. We recall compound conditionals and Frank t-norms.

In Section 3, by studying the solvability of suitable linear systems, we show under logical independence the

sharpness of Fréchet-Hoeffding bounds for the prevision of the conjunction C1¨¨¨n of n conditional events;

we illustrate more details in the case n “ 3. We also give a geometrical characterization of the set Π of all

coherent prevision assessments on F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu, by showing that Π is convex. In Section
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4 we examine in detail the case where the prevision of the conjunction is assessed by means of Lukasiewicz

t-norm and we analyze a selected example. In Section 5 we study the representation of the prevision, for

the conjunction C1¨¨¨n and the disjunction D1¨¨¨n of n conditional events, as a Frank t-norm Tλ and a Frank

t-conorm S λ, respectively. Then, by exploiting Frank t-norms and t-conorms, we characterize the sets of

coherent prevision assessments on tE1|H1, . . . , En|Hn,C1¨¨¨nu and on tE1|H1, . . . , En|Hn,D1¨¨¨nu. We show

that, under logical independence, TλpA|H, B|Kq “ pA|Hq ^ pB|Kq and S λpA|H, B|Kq “ pA|Hq _ pB|Kq for

every λ P r0,`8s. We also examine the case of logical dependence where A “ B and the particular case

where HK “ H. In Section 6 we give some particular results on Frank t-norms and coherence of prevision

assessments on the family F “ tE1|H1, E2|H2, E3|H3, pE1|H1q ^ pE2|H2q, pE1|H1q ^ pE3|H3q, pE2|H2q ^
pE3|H3q, pE1|H1q ^ pE2|H2q ^ pE3|H3qu. In particular, we show that, under logical independence, the

assessment M “ px1, x2, x3, Tλpx1, x2q, Tλpx1, x3q, Tλpx2, x3q, Tλpx1, x2, x3qq on F is coherent for every

px1, x2, x3q P r0, 1s3 when Tλ is the minimum t-norm, or the product t-norm. Moreover, when Tλ is the

Lukasiewicz t-norm, the coherence of M is not assured and hence it may happen that the Frank t-norm

of three conditional events is not a conjunction. Finally, we give some sufficient conditions for coher-

ence/incoherence ofM when using the Lukasiewicz t-norm. In Section 7 we give some conclusions.

2. Preliminary notions and results

In this section we recall some basic notions and results which concern conditional events, conditional

random quantities, coherence (see, e.g., [2, 3, 4, 7, 12, 26, 43, 46, 48]), and logical operations among

conditional events (see [28, 29, 30, 31, 33, 35]).

2.1. Conditional events, conditional random quantities, and coherent prevision assessments

Uncertainty about unknown facts is formalized by events. In formal terms, an event E is a two-valued

logical entity which can be true, or false. The indicator of E, denoted by the same symbol, is 1, or 0,

according to whether E is true, or false. Thus, a symbol like xE represents the product of the quantity x and

the indicator of the event E. The sure event and impossible event are denoted by Ω and H, respectively.

Given two events E1 and E2, we denote by E1 ^ E2, or simply by E1E2, (resp., E1 _ E2) the logical

conjunction (resp., the logical disjunction). The negation of E is denoted sE . We simply write E1 Ď E2

to denote that E1 logically implies E2, that is E1
sE 2 “ H. We recall that n events E1, . . . , En are logically

independent when the number m of constituents, or possible worlds, generated by them is 2n.

Given two events E,H, with H ‰ H, the conditional event E|H is defined as a three-valued logical entity

which is true, or false, or void, according to whether EH is true, or sE H is true, or sH is true, respectively.

Given a (real) random quantity X and an event H ‰ H, we denote by PpX|Hq the prevision of X

conditional on H, with PpX|Hq “ PpE|Hq when X is (the indicator of) an event E. In what follows, for any

given conditional random quantity X|H, we assume that, when H is true, the set of possible values of X is a

finite subset of the set of real numbers R. In this case we say that X|H is a finite conditional random quantity.

In the framework of coherence, to assess PpX|Hq “ µmeans that, for every real number s, you are willing to

pay an amount sµ and to receive spXH `µ sHq, that is to receive sX, or sµ, according to whether H is true, or
sH is true (bet called off), respectively. The random gain is G “ spXH`µ sHq´sµ “ sHpX´µq. In particular,

given any conditional event E|H, if we assess PpE|Hq “ x, then the random gain is G “ sHpE ´ xq.

Given a prevision function P defined on an arbitrary family K of finite conditional random quantities,

consider a finite subfamily F “ tX1|H1, . . . , Xn|Hnu Ď K and the vector M “ pµ1, . . . , µnq, where µi “
PpXi|Hiq is the assessed prevision for the conditional random quantity Xi|Hi, i P t1, . . . , nu. With the pair

pF ,Mq we associate the random gain G “
řn

i“1 siHipXi ´ µiq and we denote by GHn
the set of values of G

restricted toHn “ H1 _ ¨ ¨ ¨ _ Hn. Then, by the betting scheme of de Finetti, coherence is defined as:
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Definition 1. The function P defined on K is coherent if and only if, @n ě 1, @ s1, . . . , sn, @F “
tX1|H1, . . . , Xn|Hnu Ď K , it holds that: min GHn

ď 0 ď max GHn
.

As it is well known, in Definition 1, the condition min GHn
ď 0 ď max GHn

can be equivalently

replaced by min GHn
ď 0, or by max GHn

ě 0.

A conditional prevision assessment P on K is not coherent, or incoherent, if and only if there exists a

finite combination of n bets such that minGHn
¨ maxGHn

ą 0, that is such that the values in GHn
are all

positive, or all negative (Dutch Book). In other words, P is incoherent if and only if there exists a finite

combination of n bets such that, after discarding the case where all the bets are called off, the values of the

random gain are all positive or all negative. In the particular case whereK is a family of conditional events,

then Definition 1 becomes the well known definition of coherence for a probability function, denoted as P,

defined on K .

By Definition 1, given any (finite) conditional random quantity X|H and denoting by x1, . . . , xr the

possible values of X when H is true, a prevision assessment µ on X|H is coherent if and only if

mintx1, . . . , xru ď µ ď maxtx1, . . . , xru. When X is (the indicator of) an event E, with PpE|Hq “ x,

the coherence of x amounts to 0 ď x ď 1, or x “ 0, or x “ 1, according to whether H ‰ EH ‰ H, or

EH “ H, or EH “ H, respectively.

Given a family F “ tX1|H1, . . . , Xn|Hnu, for each i “ 1, . . . , n, we denote by txi1, . . . , xiri
u the set

of possible values for the restriction of Xi to Hi; then, for each i “ 1, . . . , n, and j “ 1, . . . , ri, we set

Ai j “ pXi “ xi jq. Of course, for each i, the family t sH i, Ai jHi , j “ 1, . . . , riu is a partition of the sure event

Ω, with Ai jHi “ Ai j and
Žri

j“1
Ai j “ Hi, that is A11 _ ¨ ¨ ¨ _ A1r1

_ sH1 “ ¨ ¨ ¨ “ An1 _ ¨ ¨ ¨ _ Anrn
_ sHn “ Ω,

or more explicitly pX1 “ x11q _ ¨ ¨ ¨ _ pX1 “ x1r1
q _ sH1 “ ¨ ¨ ¨ “ pXn “ xn1q _ ¨ ¨ ¨ _ pXn “ xnrn

q _ sHn “ Ω.
Then,

Ω “ pA11 _ ¨ ¨ ¨ _ A1r1
_ sH 1q ^ ¨ ¨ ¨ ^ pAn1 _ ¨ ¨ ¨ _ Anrn

_ sHnq. (1)

By expanding the expression in (1) and by discarding the logical conjunctions which coincide with H, we

obtain a disjunctive representation of Ω. The elements of this disjunction form a partition of Ω and are

called the constituents generated by the family F . We denote by C1, . . . ,Cm the constituents contained in

Hn “ H1 _ ¨ ¨ ¨ _ Hn. Moreover, when Hn ‰ Ω, we set C0 “ sH n “ sH 1 ¨ ¨ ¨ sH n. Hence Ω “
Žm

h“0 Ch . In

particular, the constituents generated by a family of n conditional events tE1|H1, . . . , En|Hnu are obtained

by expanding the expression pE1H1 _ sE 1H1 _ sH 1q ^ ¨ ¨ ¨ ^ pEnHn _ sE nHn _ sH nq, and by discarding

the logical conjunctions which are impossible. If E1, . . . , En,H1, . . . ,Hn are logically independent, then

the number of constituents for the family tE1|H1, . . . , En|Hnu is 3n (in which case the conditional events

E1|H1, . . . , En|Hn are said logically independent). Given a prevision assessment M “ pµ1, . . . , µnq on

F “ tX1|H1, . . . , Xn|Hnu, with each constituent Ch, h “ 1, . . . ,m, we associate a vector

Qh “ pqh1, . . . , qhnq, with qhi “

"
xi j, if Ch Ď Ai j, j “ 1, . . . , ri,

µi, if Ch Ď sH i.
(2)

With C0 it is associated Q0 “M “ pµ1, . . . , µnq. As, for each i, j, the quantities xi j, µi are real numbers, it

holds that Qh P R
n, h “ 0, 1, . . . ,m. Denoting by I the convex hull of Q1, . . . ,Qm, the condition M P I

amounts to the existence of a vector pλ1, . . . , λmq such that:
řm

h“1 λhQh “M ,
řm

h“1 λh “ 1 , λh ě 0 , @ h;

in other words,M P I is equivalent to the solvability of the system pΣq given below.

pΣq

" řm
h“1 λhqhi “ µi , i “ 1, . . . , n,řm
h“1 λh “ 1, λh ě 0 , h “ 1, . . . ,m.

(3)

We say that pΣq is the system associated to the pair pF ,Mq. By a suitable alternative theorem, it can be

shown that the solvability of pΣq is equivalent to the condition: minGHn
ď 0 ď maxGHn

.
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Let x “ px1, . . . , xmq, y “ py1, . . . , ynqt and A “ pahiq be, respectively, a row m´vector, a col-

umn n´vector and a m ˆ n´matrix. The vector x is said semipositive if xh ě 0, h “ 1, . . . ,m, and

x1 ` ¨ ¨ ¨ ` xm ą 0. Then, we have (cf. [23], Theorem 2.9)

Theorem 1. Exactly one of the following alternatives holds: (i) the equation xA “ 0 has a semipositive

solution; (ii) the inequality Ay ą 0 has a solution.

We observe that, choosing ahi “ qhi ´ µi, h “ 1, . . . ,m , i “ 1, . . . , n, the solvability of xA “ 0

means that M P I, while the solvability of Ay ą 0 means that, choosing si “ yi, i “ 1, . . . , n, one has

min GHn
ą 0 (and henceM would be incoherent). Therefore, by applying Theorem 1 with A “ pqhi ´µiq,

we obtain thatM P I if and only if minGHn
ď 0, that is, pΣq is solvable if and only if minGHn

ď 0.

Given a nonempty subset J Ď t1, . . . , nu, we set FJ “ tX j|H j : j P Ju andMJ “ pµ j : j P Jq, then

we denote by pΣJq the system associated to the pair pFJ ,MJq. Of course, when J “ t1, . . . , nu it holds that

pFJ ,MJq “ pF ,Mq and pΣJq “ pΣq. Then, by Definition 1 and Theorem 1, for the prevision assessment

M on F it holds that

M is coherent ðñ pΣJq is solvable , @ J Ď t1, . . . , nu. (4)

In other wordsM on F is coherent if and only if, for every nonempty subset J Ď t1, . . . , nu, the sub-vector

MJ belongs to the convex hull IJ associated to the pair pFJ ,MJq.

Given the assessment M “ pµ1, . . . , µnq on F “ tX1|H1, . . . , Xn|Hnu, let S be the set of solutions

Λ “ pλ1, . . . , λmq of system pΣq defined in (3). We point out that the solvability of system pΣq (i.e., the

condition M P I) is a necessary (but not sufficient) condition for coherence of M on F . We introduce,

for each i “ 1, . . . , n, the function
ř

h:ChĎHi
λh of the vector Λ “ pλ1, . . . , λmq. Moreover, by assuming the

system pΣq solvable, that is S ‰ H, we compute the maximum Mi of the function
ř

h:ChĎHi
λh with respect

to Λ P S . Then, we define:

I0 “ ti : Mi “ 0; i “ 1, . . . , nu, F0 “ tXi|Hi , i P I0u, M0 “ pµi, i P I0q . (5)

We observe that i P I0 if and only if the (unique) coherent extension ofM to Hi|Hn is zero.

Of course, the previous notions can be used in the case of conditional events. We observe that, given a prob-

ability assessment P “ pp1, . . . , pnq on a family of n conditional events F “ tE1|H1, . . . , En|Hnu, we can

determine the constituents C0,C1, . . . ,Cm, where C0 “ sH1 ¨ ¨ ¨ sHn, and the associated points Q0,Q1, . . . ,Qm,

where Q0 “ P. We observe that Qh “ pqh1, . . . , qhnq, with qhi P t1, 0, piu, i “ 1, . . . , n. We also observe

that given a subset J Ă t1, . . . , nu, we can determine the constituents ChJ’s and the corresponding points

QhJ’s associated to the pair pFJ ,MJq. We set Jc “ t1, . . . , nuzJ and if, for instance, J “ t1, . . . , ru, with

r ă n, then Jc “ tr ` 1, . . . , nu and P “ pPJ ,PJc q. Moreover, each point Qh can be represented, for

suitable indexes ih, kh, as Qh “ pQih J ,QkhJc q; then, any linear convex combination
ř

h λhQh coincides with

p
ř

h λhQihJ ,
ř

h λhQkh Jc q. A similar representation holds for J “ ti1, . . . , iru, after a suitable permutation of

indexes. On this basis, we recall three results ([24, Theorems 3.1, 3.2, 3.3]).

Theorem 2. Given a subset J Ă t1, . . . , nu, if there exist m nonnegative coefficients λ1, . . . , λm, withřm
h“1 λh “ 1, such that PJ “

řm
h“1 λhQihJ , if

ř
h:ChĎHJ

λh ą 0, where HJ “
Ž

jPJ H j, then PJ P IJ .

Theorem 3. If P P I, then for every J Ă t1, . . . , nu such that JzI0 ‰ H it holds that PJ P IJ .

Theorem 4. The conditional probability assessment P “ pp1, . . . , pnq on the family F “
tE1|H1, . . . , En|Hnu is coherent if and only if the following conditions are satisfied:

piq P P I; piiq if I0 ‰ H, then P0 is coherent.
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We remark that when we consider prevision assessments on conditional random quantities results sim-

ilar to Theorems 2 , 3 , 4 can be obtained. In particular, by taking into account thatM P I amounts to the

solvability of system pΣq, Theorem 4 becomes

Theorem 5. The conditional prevision assessment M “ pµ1, . . . , µnq on the family F “
tX1|H1, . . . , Xn|Hnu is coherent if and only if the following conditions are satisfied:

piq the system pΣq in (3) is solvable; piiq if I0 ‰ H, thenM0 is coherent.

We observe that, when I0 “ H, coherence ofM amounts to solvability of pΣq. In order to illustrate the

previous results, we examine two examples.

Example 1. Let A,H,K be three events, with A,H,K logically independent. Moreover, let P “ px, yq be a

probability assessment on the family E “ tA|H, A|Ku, where x “ PpA|Hq, y “ PpA|Kq. The constituents

generated by E and contained in H _ K are: C1 “ AHK, C2 “ sAHK, C3 “ sA sHK, C4 “ sAH sK, C5 “ A sHK,

C6 “ AH sK. Then, the points Qh’s associated with C1, . . . ,C6 are: Q1 “ p1, 1q, Q2 “ p0, 0q, Q3 “ px, 0q,

Q4 “ p0, yq, Q5 “ px, 1q, Q6 “ p1, yq. Moreover C0 “ sH sK and Q0 “ px, yq “ P. The condition P P I,

where I is the convex hull of the points Q1, . . . ,Q6, amounts to the solvability of the system pΣq below

λ1 ` λ3 x ` λ5 x ` λ6 “ x, λ1 ` λ4 y ` λ5 ` λ6 y “ y, λ1 ` ¨ ¨ ¨ ` λ6 “ 1, λh ě 0, @h.

We observe that, for each px, yq P r0, 1s2, the vector Λ “ pλ1, . . . , λ6q “ p0, 0,
1´y

2
, 1´x

2
,

y

2
, x

2
q is a solution

of pΣq; indeed P “ λ1Q1 ` ¨ ¨ ¨ ` λ6Q6 “ 1´y

2
Q3 ` 1´x

2
Q4 ` y

2
Q5 ` x

2
Q6 “ 1´y

2
px, 0q ` 1´x

2
p0, yq `

y

2
px, 1q ` x

2
p1, yq “ px, yq.Moreover, for this solution it holds that

ř
ChĎH λh “ λ1 ` λ2 ` λ4 ` λ6 “ 1

2
ą 0

and
ř

ChĎK λh “ λ1 ` λ2 ` λ3 ` λ5 “ 1
2

ą 0. Then, I0 “ H and by Theorem 5 the assessment px, yq

is coherent, for every px, yq P r0, 1s2. Notice that in particular cases, like x “ 0 or x “ 1, the number of

distinct points Qh’s is less than 6, anyway the previous analysis is still valid. For instance, when x “ 0 and

0 ă y ă 1 it holds that Q2 “ Q3, Λ “ pλ1, . . . , λ6q “ p0, 0,
1´y

2
, 1

2
,

y

2
, 0q, and in geometrical terms it holds

that P “ 1´y

2
Q3 ` 1

2
Q4 ` y

2
Q5 “ 1´y

2
p0, 0q ` 1

2
p0, yq ` y

2
p0, 1q “ p0, yq.

Example 2. Let A,H,K be three events, with HK “ H and A logically independent from H and K.

Moreover, let P “ px, yq be a probability assessment on the family E “ tA|H, A|Ku. The constituents

generated by E are C1 “ sA sHK, C2 “ sAH sK, C3 “ A sHK, C4 “ AH sK, C0 “ sH sK (which coincide

with C3,C4,C5,C6,C0 examined in the Example 1, respectively). The associated points Qh’s are Q1 “
px, 0q,Q2 “ p0, yq,Q3 “ px, 1q,Q4 “ p1, yq,P “ px, yq. We observe that, for each px, yq P r0, 1s2,

the vector pλ1, . . . , λ4q “ p1´y

2
, 1´x

2
,

y

2
, x

2
q is a solution of pΣq, with I0 “ H. Then, by Theorem 5 the

assessment px, yq is coherent, for every px, yq P r0, 1s2.

We recall the following extension theorem for conditional previsions, which is a generalization of de

Finetti’s fundamental theorem of probability to conditional random quantities (see, e.g.,[37, 50, 54])

Theorem 6. LetM “ pµ1, . . . , µnq be a coherent prevision assessment on a family of bounded conditional

random quantities F “ tX1|H1, . . . , Xn|Hnu. Moreover, let X|H be a further bounded conditional random

quantity. Then, there exists a suitable closed interval rµ1, µ2s such that the extension µ “ PpX|Hq is coherent

if and only if µ P rµ1, µ2s.

2.2. A deepening on conditional random quantities

The indicator of a conditional event E|H (denoted by the same symbol), with PpE|Hq “ x, is defined as

6



E|H “ EH ` x sH “ EH ` xp1 ´ Hq “

$
&

%

1, if EH is true,

0, if sE H is true,

x, if sH is true.

(6)

Of course, the third value of the random quantity E|H (subjectively) depends on the assessed probability

PpE|Hq “ x. Notice that, when H Ď E (i.e., EH “ H), by coherence PpE|Hq “ 1 and hence for the

indicator it holds that E|H “ H ` PpE|Hq sH “ 1. Moreover, when EH “ H, by coherence PpE|Hq “ 0

and hence E|H “ EH ` PpE|Hq sH “ 0. The negation of a conditional event E|H is defined as ĚE|H “
sE |H “ 1 ´ E|H. We recall that, in the subjective approach to probability, if you assess PpX|Hq “ µ, then

you agree to pay µ by knowing that you will receive the amount XH ` µ sH , which coincides with X, if H

is true, or with µ, if H is false (bet called off). Usually, in literature the conditional random quantity X|H
is defined as the restriction of X to H, which coincides with X, when H is true, and it is undefined when H

is false. Under this point of view, (when H is false) X|H does not coincide with XH ` µ sH . However, by

coherence, it holds that

PpXH ` µ sHq “ PpXHq ` µPp sHq “ PpX|HqPpHq ` µPp sHq “ µPpHq ` µPp sHq “ µ. (7)

Therefore, once a coherent assessment µ “ PpX|Hq is specified, we can extend the notion of X|H, by

defining its value as equal to µ when H is false (for further details see [30]). Then, denoting by x1, . . . , xr

the possible values of X when H is true, it holds that

X|H “ XH ` µ sH P tx1, . . . , xr, µu. (8)

By (7) the prevision of the extended notion of X|H, as defined in (8), coincides with the conditional prevision

µ “ PpX|Hq where X|H is looked at as the restriction of X to H. From (8) X|H can be interpreted as the

amount that you receive when you pay its prevision µ. Then, the random gain G can be also represented as

G “ spX|H ´ µq. In particular, when X is (the indicator of) an event E, we obtain E|H “ EH ` PpE|Hq sH ,

that is formula (6). Moreover, the prevision PpE|Hq of (the conditional random quantity) E|H coincides

with the conditional probability PpE|Hq. For related discussions, see also [11, 28, 42].

Remark 1. Given a prevision assessmentM “ pµ1, . . . , µnq on a family of n conditional random quantities

tX1|H1, . . . , Xn|Hnu, based on (8) we observe that for each constituent Ch the corresponding point Qh rep-

resents the value assumed by the random vector pX1|H1, . . . , Xn|Hnq when Ch is true. In particular, when C0

is true the value of the random vector is the prevision pointM.

2.3. Conjunction and disjunction of conditional events

We recall now the notion of conjoined conditional which was introduced in the framework of conditional

random quantities ([28, 29, 30, 33]). Given a coherent probability assessment px, yq on tA|H, B|Ku we

consider the random quantity AHBK`x sHBK`y sKAH and we set PrpAHBK`x sHBK`y sKAHq|pH_Kqs “ z.

Then we define the conjunction pA|Hq ^ pB|Kq as follows:

Definition 2. Given a coherent prevision assessment PpA|Hq “ x, PpB|Kq “ y, and PrpAHBK ` x sHBK `
y sK AHq|pH _ Kqs “ z, the conjunction pA|Hq ^ pB|Kq is the conditional random quantity defined as

pA|Hq ^ pB|Kq “ pAHBK ` x sH BK ` y sK AHq|pH _ Kq “

“ pAHBK ` x sH BK ` y sK AHqpH _ Kq ` z sH sK “

$
’’’’&

’’’’%

1, if AHBK is true,

0, if sAH _ sBK is true,

x, if sH BK is true,

y, if AH sK is true,

z, if sH sK is true.

(9)
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Of course, by recalling (7), it holds that PrpA|Hq ^ pB|Kqs “ z. Notice that in (9) the conjunction is

represented as X|H is in (8) and, once the (coherent) assessment px, y, zq is given, the conjunction pA|Hq ^
pB|Kq is (subjectively) determined. Conversely, each given conjunction uniquely determines a coherent

assessment px, y, zq. We recall that, in betting terms, z represents the amount you agree to pay, with the

proviso that you will receive the quantity pA|Hq^pB|Kq “ AHBK ` x sHBK `y sKAH `z sH sK,which assumes

one of the following values: 1, if both conditional events are true; 0, if at least one of the conditional events

is false; the probability of the conditional event that is void, if one conditional event is void and the other

one is true; the payed amount z, if both conditional events are void. We recall that A|H “ B|K amounts

to AH “ BK and H “ K. Thus, when A|H “ B|K it holds that pAHBK ` x sH BK ` yAH sK q|pH _
Kq “ AH|H “ A|H, that is pA|Hq ^ pA|Hq “ A|H. Moreover the conjunction is commutative, that is

pA|Hq ^ pB|Kq “ pB|Kq ^ pA|Hq. The next result shows that the Fréchet-Hoeffding bounds still hold for

the conjunction of two conditional events ([30, Theorem 7]).

Theorem 7. Given any coherent assessment px, yq on tA|H, B|Ku, with A,H, B,K logically independent,

and with H ‰ H,K ‰ H, the extension z “ PrpA|Hq ^ pB|Kqs is coherent if and only if the following

Fréchet-Hoeffding bounds are satisfied:

maxtx ` y ´ 1, 0u “ z1 ď z ď z2 “ mintx, yu . (10)

From Definition 2 and Theorem 7, it holds that

maxtA|H ` B|K ´ 1, 0u ď pA|Hq ^ pB|Kq ď mintA|H, B|Ku. (11)

Remark 2. We observe that, by logical independence, the assessment px, yq on tA|H, B|Ku is coherent for

every px, yq P r0, 1s2. Then, from Theorems 6 and 7 the set Π of coherent prevision assessments px, y, zq on

tA|H, B|K, pA|Hq ^ pB|Kqu is

Π “ tpx, y, zq : px, yq P r0, 1s2, maxtx ` y ´ 1, 0u ď z ď mintx, yuu. (12)

The set Π is the tetrahedron with vertices the points p1, 1, 1q, p1, 0, 0q, p0, 1, 0q, p0, 0, 0q. Notice that, the

assumption of logical independence plays a key role for the validity of Theorem 7. Indeed, in case of some

logical dependencies, for the interval rz1, z2s of coherent extensions z it holds that maxtx ` y ´ 1, 0u ď
z1 ď z2 ď mintx, yu. For instance, when H “ K and AB “ H, the coherence of the assessment px, yq on

tA|H, B|Hu is equivalent to the condition x ` y ´ 1 ď 0. In this case, it holds that pA|Hq ^ pB|Hq “ AB|H
with PpAB|Hq “ 0; then, the unique coherent extension on AB|H is z “ 0. As another example, in the case

A “ B, with A,H,K logically independent, it holds that the assessment px, yq on tA|H, A|Ku is coherent

for every px, yq P r0, 1s2. Moreover, as it will be shown by Theorem 17, the extension z is coherent if and

only if xy ď z ď mintx, yu . Finally, we remark that in all cases, for each coherent extension z, it holds that

z P rz1, z2s Ď r0, 1s; thus pA|Hq ^ pB|Kq P r0, 1s.

Other approaches to compounded conditionals, which are not based on coherence, can be found in

[6, 22, 39, 44]. A study of the lower and upper bounds for other definitions of conjunction, where the

conjunction is a conditional event like Adams’ quasi conjunction, has been given in [51].

We recall now the notion of disjoined conditional. Given a coherent probability assessment px, yq on

tA|H, B|Ku we consider the random quantity pAH _ BKq ` x sH sBK ` y sK sAH and we set PrppAH _ BKq `
x sH sBK ` y sK sAHq|pH _ Kqs “ w. Then we define the disjunction pA|Hq _ pB|Kq as follows:
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Definition 3. Given a coherent prevision assessment PpA|Hq “ x, PpB|Kq “ y, and PrppAH _ BKq `
x sH sBK ` y sK sAHq|pH _ Kqs “ w, the disjunction pA|Hq _ pB|Kq is the conditional random quantity

pA|Hq _ pB|Kq “ ppAH _ BKq ` x sH sBK ` y sK sAHq|pH _ Kq “

“ ppAH _ BKq ` x sH sBK ` y sK sAHqpH _ Kq ` w sH sK “

$
’’’’&

’’’’%

1, if AH _ BK is true,

0, if sAH sBK is true,

x, if sH sBK is true,

y, if sAH sK is true,

w, if sH sK is true.

(13)

We recall the notion of conjunction of n conditional events ([33]).

Definition 4. Let n conditional events E1|H1, . . . , En|Hn be given. For each non-empty strict subset S of

t1, . . . , nu, let xS be a prevision assessment on
Ź

iPS pEi|Hiq. Then, the conjunction pE1|H1q^¨ ¨ ¨^pEn|Hnq
is the conditional random quantity C1¨¨¨n defined as

C1¨¨¨n “ r
Źn

i“1 EiHi `
ř

H‰S Ăt1,2...,nu xS p
Ź

iPS
sH iq ^ p

Ź
iRS EiHiqs|p

Žn
i“1 Hiq “

“

$
’’&

’’%

1, if
Źn

i“1 EiHi is true,

0, if
Žn

i“1
sE iHi is true,

xS , if p
Ź

iPS
sH iq ^ p

Ź
iRS EiHiq is true, H ‰ S Ă t1, 2 . . . , nu,

x1¨¨¨n, if
Źn

i“1
sH i is true,

(14)

where

x1¨¨¨n “ xt1,...,nu “ PpC1¨¨¨nq “ Prp
Źn

i“1 EiHi `
ř

H‰S Ăt1,2...,nu xS p
Ź

iPS
sH iq ^ p

Ź
iRS EiHiqq|p

Žn
i“1 Hiqs.

Of course, we obtain C1 “ E1|H1, when n “ 1. In Definition 4 each possible value xS of C1¨¨¨n, H ‰ S Ă
t1, . . . , nu, is evaluated when defining (in a previous step) the conjunction CS “

Ź
iPS pEi|Hiq. Then, after

the conditional prevision x1¨¨¨n is evaluated, C1¨¨¨n is completely specified. Of course, we require coherence

for the prevision assessment pxS ,H ‰ S Ď t1, . . . , nuq, so that C1¨¨¨n P r0, 1s. In the framework of the

betting scheme, x1¨¨¨n is the amount that you agree to pay with the proviso that you will receive:

• 1, if all conditional events are true;

• 0, if at least one of the conditional events is false;

• the prevision of the conjunction of that conditional events which are void, otherwise. In particular

you receive back x1¨¨¨n when all conditional events are void.

The operation of conjunction is associative and commutative ([33, Proposition 1]). We recall below a

necessary condition of coherence related with the Fréchet-Hoeffding bounds ([33, Theorem 13]).

Theorem 8. Let px1, . . . , xn, x1¨¨¨nq be a coherent prevision assessment on the family

tE1|H1, . . . , En|Hn,C1¨¨¨nu. Then, maxt
řn

i“1 xi ´ pn ´ 1q, 0u ď x1¨¨¨n ď mintx1, . . . , xnu.

2.4. Frank t-norms

We recall below the notion of t-norm (see [36, 41, 40]).

Definition 5. A t-norm is a function T : r0, 1s2 ÝÑ r0, 1s which satisfies, for all x, y, z P r0, 1s, the

following four axioms: Tpx, yq “ Tpy, xq (commutativity); Tpx, Tpy, zqq “ TpTpx, yq, zq (associativity);

Tpx, yq ď Tpx, zq whenever y ď z (monotonicity); Tpx, 1q “ x (boundary condition).
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Some basic t-norms are the minimum TM (which is the greatest t-norm), the product TP, the Łukasiewicz

t-norm TL, given below:

TMpx, yq “ minpx, yq, TPpx, yq “ xy , TLpx, yq “ maxpx ` y ´ 1, 0q.

Frank t-norms are a relevant class of t-norms to which the previous basic ones belong. The Frank t-norm

Tλ : r0, 1s2 Ñ r0, 1s, with parameter λ P r0,`8s, is defined as

Tλpx, yq “

$
’’&

’’%

TMpx, yq “ mintx, yu, if λ “ 0,

TPpx, yq “ xy, if λ “ 1,

TLpx, yq “ maxtx ` y ´ 1, 0u, if λ “ `8,

logλp1 `
pλx´1qpλy´1q

λ´1
q, otherwise.

(15)

We recall that Tλ is continuous with respect to λ; moreover, it is decreasing with respect to the parameter

λ. Then, for each given px, yq P r0, 1s2, it holds that TLpx, yq ď Tλpx, yq ď TMpx, yq, for every λ P r0,`8s
(see, e.g., [41],[40]). Frank t-norms provide a gradual transition between Lukasiewicz t-norm (λ “ `8)

and minimum t-norm (λ “ 0). Frank t-norms have been exploited in [8] (see also [13]) with the aim of

obtaining the coherent values for the membership function of the intersection of two fuzzy subsets. Since

t-norms are associative they can be extended in a unique way to an n-ary operation for arbitrary integer

n ě 2 (see [36, 40]).

3. Sharpness of the Fréchet-Hoeffding bounds for the conjunction of n conditional events

In this section we show, under logical independence, the sharpness of Fréchet-Hoeffding bounds for the

prevision of the conjunction C1¨¨¨n and we illustrate some details by considering the case n “ 3. We also

show that the set of all coherent prevision assessments on F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu is convex.

Let M “ px1, . . . , xn, x1¨¨¨nq be a prevision assessment on F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu, with

E1, . . . , En,H1, . . . ,Hn logically independent. In order to determine the constituents generated by the fam-

ily F it is enough to consider the constituents C0,C1, . . . ,Cm generated by the family tE1|H1, . . . , En|Hnu,

where by logical independence m ` 1 “ 3n. Indeed, each Ch uniquely determines the value of C1¨¨¨n,

that is for each h there exists a unique xS such that Ch logically implies the event pC1¨¨¨n “ xS q and

hence Ch ^ pC1¨¨¨n “ xS q “ Ch. Then, C0,C1, . . . ,Cm also represent the constituents generated by the

family F . By Remark 1, for each Ch the associated point Qh represents the value of the random vector

pE1|H1, . . . , En|Hn,C1¨¨¨nq when Ch is true. The last component of Qh is the value of C1¨¨¨n when Ch is

true. By Definition 4, we observe that, when the conditioning events H1, . . . ,Hn are all true, it holds that

C1¨¨¨n P t1, 0u. In this section we only need to consider the constituents Ch’s such that Ch Ď
Źn

i“1 Hi.

For these constituents the associated Q1
h
s have binary components, where the last component is 1, or 0,

according to whether Ch “
Źn

i“1 EiHi, or Ch Ď p
Žn

i“1
sE iq ^ p

Źn
i“1 Hiq. Given any subset ti1, . . . , iku of

t1, . . . , nu, we set

tik`1, . . . , inu “ t1, . . . , nuzti1, . . . , iku.

Then, we denote by

K “ tKi1¨¨¨ik Ěik`1 ¨¨¨sin , ti1, . . . , iku Ď t1, . . . , nuu, (16)

where

Ki1¨¨¨ik Ěik`1 ¨¨¨sin “ p
ľ

iPti1 ,...,iku

EiHiq ^ p
ľ

iPtik`1 ,...,inu

sE iHiq “ Ei1 Hi1 ¨ ¨ ¨ Eik Hik
sE ik`1

Hik`1
¨ ¨ ¨ sE in Hin ,
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the set of 2n constituents Ch’s contained in
Źn

i“1 Hi, that is K “ tK1¨¨¨n,K1¨¨¨n´1sn , . . . ,Ks1¨¨¨snu. Of course,

there are 3n ´ 2n constituents Ch’s which logically imply
Žn

i“1
sH i and hence do not belong to K . For

each subset ti1, . . . , iku Ď t1, . . . , nu, we denote by Qi1¨¨¨ik Ěik`1 ¨¨¨sin the point associated with the constituent

Ki1¨¨¨ik Ěik`1 ¨¨¨sin P K . Each point Qi1¨¨¨ik Ěik`1 ¨¨¨sin is a pn ` 1q-vector, say pq1, . . . , qn`1q, where

q j “

#
1, if j P ti1, . . . , iku,

0, if j P tik`1, . . . , inu,
qn`1 “

#
1, if k “ n,

0, if k ă n.
(17)

Then, from (17), the set of points tQi1¨¨¨ik Ěik`1 ¨¨¨sin , ti1, . . . , iku Ď t1, . . . , nuu, which we also denote by tQ1¨¨¨n,

Q1¨¨¨n´1sn , . . ., Qs1¨¨¨snu, is tp1, . . . , 1, 1q, p1, . . . 1, 0, 0q, . . ., p0, . . . , 0qu. We denote by I˚ the convex hull of

these 2n points, that is

I˚ “ tM :M “ λ1¨¨¨nQ1¨¨¨n ` ¨ ¨ ¨ ` λs1¨¨¨snQs1¨¨¨sn ; λ1¨¨¨n ` ¨ ¨ ¨ ` λs1¨¨¨sn “ 1; λ1¨¨¨n ě 0, . . . , λs1¨¨¨sn ě 0u. (18)

Moreover, we denote by pΣ˚
n q the following system, with 2n unknowns λi1¨¨¨ik Ěik`1 ¨¨¨sin ,

pΣ˚
n q

$
&

%

M “
ř

ti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin Qi1¨¨¨ik Ěik`1 ¨¨¨sin ,ř
ti1 ,...,ikuĎt1,...,nu λi1¨¨¨iksik`1¨¨ s̈in

“ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin ě 0, @ti1, . . . , iku Ď t1, . . . , nu.

(19)

which is solvable if and only ifM P I˚. In more explicit terms the system pΣ˚
n q becomes

pΣ˚
n q

$
’’’’’’’’’&

’’’’’’’’’%

x1 “
ř

t1uĎti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin ,

x2 “
ř

t2uĎti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn “
ř

tnuĎti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin ,

x1¨¨¨n “ λ1¨¨¨n,ř
ti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin “ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin ě 0, @ti1, . . . , iku Ď t1, . . . , nu.

(20)

Remark 3. Let I be the convex hull of all the points Qh’s associated with all the constituents Ch’s in

H1 _ ¨ ¨ ¨ _ Hn. Of course, for each Ch P K , it holds that Ch Ď
Źn

i“1 Hi Ď
Žn

i“1 Hi. Then, the convex hull

I˚ is a subset of I.

Theorem 9. Let E1, . . . , En,H1, . . . ,Hn be logically independent events, with H1 ‰ H, . . . , Hn ‰ H,

n ě 2. Moreover, letM “ px1, . . . , xn, x1¨¨¨nq be a prevision assessment on F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu.

IfM P I˚, that is pΣ˚
n q is solvable, thenM is coherent.

Proof. Let beM P I˚, that is pΣ˚
n q solvable, with a solution Λ˚. From Remark 3, as I˚ Ď I, where I is the

convex hull of all the points Qh’s, h “ 1, . . . ,m, it holds thatM P I. Then, the system pΣq in (3) is solvable

with a solution Λ “ pλh, h “ 1, . . . ,mq “ pΛ˚, 0q, that is λh “ 0 for each Ch Ę
Źn

i“1 Hi. Moreover, asř
h:ChĎHi

λh “
ř

h:ChĎH1¨¨¨Hn
λh “ 1, i “ 1, . . . , n, it holds that I0 “ H. Thus, as pΣq is solvable and I0 is

empty, by Theorem 5, the assessmentM is coherent.

We recall that a t-norm T , introduced as a binary operator, can be extended as an n-ary operator. For

any integer n ě 2 the extension of T is defined as ([41])

Tpx1, . . . , xnq “

"
TpTpx1, . . . , xn´1q, xnq, if n ą 2,

Tpx1, x2q, if n “ 2.
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The Fréchet-Hoeffding bounds are

TLpx1, . . . , xnq “ maxt
nÿ

i“1

xi ´ n ` 1, 0u, TMpx1, . . . , xnq “ mintx1, . . . , xnu.

In the next result (Theorem 10) we show that, when propagating the probability assessment P “
px1, . . . , xnq, defined on the family of n conditional events tE1|H1, . . . , En|Hnu, to their conjunction C1¨¨¨n,

under logical independence the prevision assessment PpC1¨¨¨nq “ µ is a coherent extension of P if and only

if µ P rµ1px1, . . . , xnq, µ2px1, . . . , xnqs, where

µ1px1, . . . , xnq “ TLpx1, . . . , xnq , µ2px1, . . . , xnq “ TMpx1, . . . , xnq .

For the convenience of the reader we sketch the proof.

1. We first observe that in general it holds that

TLpx1, . . . , xnq ď µ1px1, . . . , xnq ď µ2px1, . . . , xnq ď TMpx1, . . . , xnq .

2. We show that µ1px1, . . . , xnq “ TLpx1, . . . , xnq, by verifying the coherence of the assessment

px1, . . . , xn, TLpx1, . . . , xnqq on tE1|H1, . . . , En|Hn,C1¨¨¨nu. Based on Theorem 9, we verify the coherence

of px1, . . . , xn, TLpx1, . . . , xnqq by showing that the associated system pΣ˚
n q is solvable, for each n. We pro-

ceed by induction. We assume pΣ˚
n q solvable and then we verify the solvability of pΣ˚

n`1
q, by separately

examining two cases: piq TLpx1, . . . , xnq “ 0, piiq TLpx1, . . . , xnq ą 0. In the case piq for the assessment

PpEn`1|Hn`1q “ xn`1 we distinguish three sub-cases: xn`1 “ 0, xn`1 “ 1, 0 ă xn`1 ă 1. In the case piiq
we give an explicit solution of pΣ˚

n q and a related solution for pΣ˚
n`1

q, by distinguishing two sub-cases which

concern xn`1: pii.aq 0 ď xn`1 ď n ´
řn

i“1 (with three further sub-cases); pii.bq n ´
řn

i“1 ă xn`1 ď 1.

3. We show that µ2px1, . . . , xnq “ TMpx1, . . . , xnq. We verify the coherence of the assessment

px1, . . . , xn, TMpx1, . . . , xnqq on tE1|H1, . . . , En|Hn,C1¨¨¨nu, by providing an explicit solution of pΣ˚
n q and

by applying Theorem 9.

Theorem 10. Let E1, . . . , En,H1, . . . ,Hn be logically independents events, with H1 ‰ H, . . . , Hn ‰ H,

n ě 2. The set Π of all prevision coherent assessments M “ px1, . . . , xn, x1¨¨¨nq on the family F “
tE1|H1, . . . , En|Hn,C1¨¨¨nu is

Π “ tpx1, . . . , xn, x1¨¨¨nq : px1, . . . , xnq P r0, 1sn, x1¨¨¨n P rTLpx1, . . . , xnq, TMpx1, . . . , xnqsu. (21)

Proof. Given any integer n ě 2, by logical independence of E1, . . . , En,H1, . . . ,Hn each point px1, . . . , xnq P
r0, 1sn is a coherent assessment on tE1|H1, . . . , En|Hnu ([25, Proposition 11]). Moreover, by Theorem 6,

for each px1, . . . , xnq P r0, 1sn there exist two values µ1px1, . . . , xnq and µ2px1, . . . , xnq such that x1¨¨¨n is a

coherent extension of px1, . . . , xnq if and only if x1¨¨¨n P rµ1px1, . . . , xnq, µ2px1, . . . , xnqs. Then,

Π “ tpx1, . . . , xn, x1¨¨¨nq : px1, . . . , xnq P r0, 1sn, x1¨¨¨n P rµ1px1, . . . , xnq, µ2px1, . . . , xnqsu.

By Theorem 8, coherence requires that x1¨¨¨n P rTLpx1, . . . , xnq, TMpx1, . . . , xnqs and hence

TLpx1, . . . , xnq ď µ1px1, . . . , xnq ď µ2px1, . . . , xnq ď TMpx1, . . . , xnq.

Thus, Π Ď tpx1, . . . , xn, x1¨¨¨nq : px1, . . . , xnq P r0, 1sn, x1¨¨¨n P rTLpx1, . . . , xnq, TMpx1, . . . , xnqsu. In

order to complete the proof it is enough to show that the two assessments px1, . . . , xn, TLpx1, . . . , xnqq
and px1, . . . , xn, TMpx1, . . . , xnqq are coherent, for every px1, . . . , xnq P r0, 1sn, that is µ1px1, . . . , xnq “
TLpx1, . . . , xnq and µ2px1, . . . , xnq “ TMpx1, . . . , xnq, which amounts to the sharpness of the Fréchet-

Hoeffding bounds.
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Coherence of px1, . . . , xn, TLpx1, . . . , xnqq. We will proceed by induction on the solvability of the system

pΣ˚
n q associated to the assessment px1, . . . , xn, TLpx1, . . . , xnqq.

(n “ 2). In this case, by Remark 2, the assessment M “ px1, x2, TLpx1, x2qq is coherent because M

belongs to the set of coherent prevision assessments, given by the tetrahedron with vertices the points

p1, 1, 1q, p1, 0, 0q, p0, 1, 0q, p0, 0, 0q. Moreover, by recalling (16), for n “ 2 the constituents which logically

imply H1H2 are

K11 “ E1H1E2H2, K1s2 “ E1H1
sE2H2, Ks12 “ sE1H1E2H2, Ks1s2 “ sE1H1

sE2H2.

The associated points are

Q11 “ p1, 1, 1q, Q1s2 “ p1, 0, 0q, Qs12 “ p0, 1, 0q, Qs1s2 “ p0, 0, 0q;

Thus, the convex hull I˚ of Q12,Q1s2 ,Qs12,Qs1s2 coincides with the tetrahedron and hence M P I˚, that is

pΣ˚
2
q is solvable. Indeed, pΣ˚

2
q is the following system

pΣ˚
2 q

$
’’’’&

’’’’%

x1 “ λ12 ` λ1s2 ,

x2 “ λ12 ` λs12,

TLpx1, x2q “ λ12,

λ12 ` λ1s2 ` λs12 ` λs1s2 “ 1,

λi1i2 ě 0, @pi1, i2q P t1,s1u ˆ t2,s2u,

(22)

with a solution

Λ2 “ pλ12, λs12, λ1s2 , λs1s2q “ pTLpx1, x2q, x2 ´ TLpx1, x2q, x1 ´ TLpx1, x2q, 1 ´ x1 ´ x2 ` TLpx1, x2qq.

In particular

Λ2 “

"
p0, x2, x1, 1 ´ x1 ´ x2q, if x1 ` x2 ´ 1 ď 0,

px1 ` x2 ´ 1, 1 ´ x1, 1 ´ x2, 0q, if x1 ` x2 ´ 1 ą 0.

We now assume the system pΣ˚
n q associated with the assessment px1, . . . , xn, TLpx1, . . . , xnqq is solvable and

we show that the system pΣ˚
n`1

q associated with the assessment px1, . . . , xn`1, TLpx1, . . . , xn`1qq is solvable

too. Then, pΣ˚
n q is solvable for every n ě 2 and by Theorem 9 it follows the coherence of the assessment

px1, . . . , xn, TLpx1, . . . , xnqq, for every n.

Let the vector Λn “ pλi1¨¨¨ik Ěik`1 ¨¨¨sin : ti1, . . . , iku Ď t1, . . . , nuq be a solution of pΣ˚
n q. Then, by (20),

λ1¨¨¨n “ x1¨¨¨n “ TLpx1, . . . , xnq. When necessary we assume that the components of Λn are suitably ordered.

Given a further conditional event En`1|Hn`1, with PpEn`1|Hn`1q “ xn`1, the system pΣ˚
n`1

q associated

with the assessment px1, . . . , xn`1, TLpx1, . . . , xn`1qq on tE1|H1, . . . , En`1|Hn`1,C1¨¨¨n`1u is

pΣ˚
n`1q

$
’’&

’’%

x j “
ř

t juĎti1 ,...,ikuĎt1,...,n`1u λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
, j “ 1, . . . , n ` 1,

TLpx1, . . . , xn`1q “ λ1¨¨¨n`1,ř
ti1 ,...,ikuĎt1,...,n`1u λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1

“ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u.

(23)

Based on Λn we will find a solution Λn`1 of pΣ˚
n`1

q such that

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 ` λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , ti1, . . . , iku Ď t1, . . . , nu. (24)
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Then, the system pΣ˚
n`1

q becomes

$
’’’’’’’’’’’&

’’’’’’’’’’’%

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 ` λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , ti1, . . . , iku Ď t1, . . . , nu,

x j “
ÿ

t juĎti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 `
ÿ

t juĎti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , j “ 1, . . . , n,

xn`1 “
ÿ

ti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1,

TLpx1, . . . , xn`1q “ λ1¨¨¨n`1,ř
ti1,...,ikuĎt1,...,n`1u λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1

“ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u.

(25)

We distinguish two cases: piq TLpx1, . . . , xnq “ 0, that is x1 ` ¨ ¨ ¨ ` xn ´ n ` 1 ď 0; piiq TLpx1, . . . , xnq ą 0,

that is x1 ` ¨ ¨ ¨ ` xn ´ n ` 1 ą 0.

Case piq. As TLpx1, . . . , xnq “ 0, it holds that TLpx1, . . . , xn`1q “ TLpTLpx1, . . . , xnq, xn`1q “
TLp0, xn`1q “ 0. Moreover, for the component λ1¨¨¨n of the vector Λn it holds that λ1¨¨¨n “ 0; hence, in

(25), λ1¨¨¨n Ěn`1 “ 0 and λ1¨¨¨nn`1 “ 0, which satisfies the equation TLpx1, . . . , xn`1q “ λ1¨¨¨n`1. We first

examine the particular cases where xn`1 “ 0, or xn`1 “ 1; then, we consider the case 0 ă xn`1 ă 1.

If xn`1 “ 0, the system (25) becomes

$
’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’%

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , ti1, . . . , iku Ď t1, . . . , nu,

λ1¨¨¨n Ěn`1 “ 0,

x j “
ÿ

t juĎti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , j “ 1, . . . , n,

xn`1 “
ÿ

ti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0,

TLpx1, . . . , xn`1q “ λ1¨¨¨n`1 “ 0,ÿ

ti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 1 ´ xn`1 “ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u,

(26)

with a solution Λn`1,0 given by

Λn`1,0 “ pλi1¨¨¨ik Ěik`1 ¨¨¨sin n`1, λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , ti1, . . . , iku Ď t1, . . . , nuq,

where λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0 and λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ λi1¨¨¨ik Ěik`1 ¨¨¨sin , ti1, . . . , iku Ď t1, . . . , nu, with in particular

λ1¨¨¨n Ěn`1 “ λ1¨¨¨n “ 0. Thus pΣ˚
n`1

q is solvable when TLpx1, . . . , xnq “ 0 and xn`1 “ 0. We also observe

that Λn`1,0 has the following structure

pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q “ p0, . . . , 0, λ1¨¨¨n, . . . , λs1¨¨¨snq “ p0n,Λnq, (27)

where 0n is the subvector p0, . . . , 0q of length 2n and Λn is a solution of pΣ˚
n q.
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If xn`1 “ 1, the system (25) becomes

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1, ti1, . . . , iku Ď t1, . . . , nu

x j “
ÿ

t juĎti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1, j “ 1, . . . , n,

xn`1 “
ÿ

ti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 1,

TLpx1, . . . , xn`1q “ λ1¨¨¨n`1 “ 0,ÿ

ti1 ,...,ikuĎt1,...,nu

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 1 ´ xn`1 “ 0,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u,

(28)

with a solution Λn`1,1 given by

Λn`1,1 “ pλi1¨¨¨ik Ěik`1 ¨¨¨sin n`1, λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 , ti1, . . . , iku Ď t1, . . . , nuq,

where λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ λi1¨¨¨ik Ěik`1 ¨¨¨sin and λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0, ti1, . . . , iku Ď t1, . . . , nu, with in particular

λ1¨¨¨n Ěn`1 “ λ1¨¨¨n “ 0. Thus pΣ˚
n`1

q is solvable when TLpx1, . . . , xnq “ 0 and xn`1 “ 1. We also observe

that Λn`1,1 has the following structure

Λn`1,1 “ pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q “
“ pλ1¨¨¨n, . . . , λs1¨¨¨sn , 0, . . . , 0q “ pΛn, 0nq.

(29)

If 0 ă xn`1 ă 1, by observing that px1, . . . , xn`1, TLpx1, . . . , xn`1qq “ px1, . . . , xn`1, 0q, as

px1, . . . , xn`1, 0q “ p1 ´ xn`1q ¨ px1, . . . , xn, 0, 0q ` xn`1 ¨ px1, . . . , xn, 1, 0q,

the vector Λn`1 “ p1´ xn`1qΛn`1,0 ` xn`1Λn`1,1 is a solution of system (25); thus pΣ˚
n`1

q is solvable when

TLpx1, . . . , xnq “ 0 and 0 ă xn`1 ă 1.

Therefore, by exploiting the solution Λn of pΣ˚
n q, when TLpx1, . . . , xnq “ 0 the system pΣ˚

n`1
q is solvable

for every xn`1 P r0, 1s, with a solution given by

Λn`1 “ pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q “ p1 ´ xn`1qΛn`1,0 ` xn`1Λn`1,1 “
“ p1 ´ xn`1qp0n,Λnq ` xn`1pΛn, 0nq “ pxn`1Λn, p1 ´ xn`1qΛnq “
“ pxn`1λ1¨¨¨n, . . . , xn`1λs1¨¨¨sn , p1 ´ xn`1qλ1¨¨¨n, . . . , p1 ´ xn`1qλs1¨¨¨snq.

(30)

Case piiq. In this case TLpx1, . . . , xnq “ x1 ` . . . ` xn ´ pn ´ 1q ą 0 and by the inductive hy-

pothesis the system pΣ˚
n q is solvable. Actually, an explicit solution of pΣ˚

n q is the nonnegative vector

Λn “ pλi1¨¨¨ik Ěik`1 ¨¨¨sin , ti1, . . . , iku Ď t1, . . . , nuq given by

$
’’’’’’’’’’&

’’’’’’’’’’%

λ1¨¨¨n “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λs12¨¨¨n “ 1 ´ x1,

λ1s23¨¨¨n “ 1 ´ x2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1¨¨¨r´1sr r`1¨¨¨n “ 1 ´ xr,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1¨¨¨n´1sn “ 1 ´ xn,

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ 0, @ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1.

(31)
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Indeed, Λn is a solution of pΣ˚
n q as shown below

$
’’&

’’%

x j “ λ1¨¨¨n `
řn

k“1 λ1¨¨¨k´1skk`1¨¨¨n ´ λ1¨¨¨ j´1sj j`1¨¨¨n, j “ 1, 2 . . . , n,

TLpx1, . . . , xnq “ λ1¨¨¨n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin “ 0, @ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,ř
ti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin “ λ1¨¨¨n `

řn
k“1 λ1¨¨¨k´1skk`1¨¨¨n “ 1.

(32)

Based on (31) the system (25) becomes

$
’’’’’’’’&

’’’’’’’’%

λ1¨¨¨n`1 “ TLpx1, . . . , xn`1q,
λ1¨¨¨n`1 ` λ1¨¨¨n Ěn`1 “ λ1¨¨¨n “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n`1 ` λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ λ1¨¨¨r´1sr r`1¨¨¨n “ 1 ´ xr, r “ 1, . . . , n,

λ1¨¨¨n`1 ` λs12¨¨¨n`1 ` λ1s23¨¨¨n`1 ` ¨ ¨ ¨ ` λ12¨¨¨n´1snn`1 “ xn`1,

λ1¨¨¨n Ěn`1 ` λs12¨¨¨n Ěn`1 ` λ1s23¨¨¨n Ěn`1 ` ¨ ¨ ¨ ` λ12¨¨¨n´1sn Ěn`1 “ 1 ´ xn`1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 ` λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ λi1¨¨¨ik Ěik`1 ¨¨¨sin “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u.

(33)

Based on the solution of pΣ˚
n q given in (31) we find a solution of (33), which of course is also a solution of

pΣ˚
n`1

q. We observe that, as TLpx1, . . . , xnq ą 0, it holds that n ´
řn

i“1 xi “ 1 ´ TLpx1, . . . , xnq ă 1; then,

we distinguish two sub-cases which concern xn`1:

pii.aq 0 ď xn`1 ď n ´
řn

i“1 xi ă 1; pii.bq n ´
řn

i“1 xi ă xn`1 ď 1.

Sub-case pii.aq. In this case TLpx1, . . . , xn`1q “ 0. We analyze separately three cases:

pii.a.1q xn`1 “ 0; pii.a.2q xn`1 “ n ´ x1 ´ ¨ ¨ ¨ ´ xn; pii.a.3q 0 ă xn`1 ă n ´ x1 ´ ¨ ¨ ¨ ´ xn.

In case pii.a.1q, as xn`1 “ 0, the system (33) becomes

$
’’’’’’’’&

’’’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨n Ěn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ 1 ´ xr, r “ 1, . . . , n,

λs12¨¨¨n`1 “ λ1s23¨¨¨n`1 “ ¨ ¨ ¨ “ λ12¨¨¨n´1snn`1 “ xn`1 “ 0,

λ1¨¨¨n Ěn`1 ` λs12¨¨¨n Ěn`1 ` λ1s23¨¨¨n Ěn`1 ` ¨ ¨ ¨ ` λ12¨¨¨n´1sn Ěn`1 “ 1 ´ xn`1 “ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u,

(34)

with a solution Λn`1,0 given by

Λn`1,0 “ pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q,

where $
’’’’’’&

’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨n`1 “ 0, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λ1¨¨¨n Ěn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ 1 ´ xr, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1.

(35)

Thus, pΣ˚
n`1

q is solvable when TLpx1, . . . , xnq ą 0 and xn`1 “ 0. We observe that, from (33) and (35), it

holds that

Λn`1,0 “ p0, . . . , 0, λ1¨¨¨n, . . . , λs1¨¨¨snq “ p0n,Λnq. (36)
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In case pii.a.2q, we preliminarily observe that, if n ´ px1 ` ¨ ¨ ¨ ` xnq “
řn

r“1p1 ´ xrq “ 0, that is xr “ 1,

r “ 1, . . . , n and hence TLpx1, . . . , xnq “ 1, then xn`1 “ n ´ px1 ` ¨ ¨ ¨ ` xnq “ 0, which is the case pii.a.1q
considered before. In this case a solution Λn`1 of pΣ˚

n`1
q is the vector Λn`1,0 given in (35), which becomes

$
’’’’’’&

’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨n`1 “ 0, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λ1¨¨¨n Ěn`1 “ 1,

λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ 0, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1.

(37)

If 0 ă xn`1 “ n ´ px1 ` ¨ ¨ ¨ ` xnq ă 1, then the system (33) becomes

$
’’’’’’’’&

’’’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨n Ěn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n`1 ` λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ 1 ´ xr, r “ 1, . . . , n,

λs12¨¨¨n`1 ` λ1s23¨¨¨n`1 ` ¨ ¨ ¨ ` λ12¨¨¨n´1snn`1 “ xn`1 “ n ´ px1 ` ¨ ¨ ¨ ` xnq,
λ1¨¨¨n Ěn`1 ` λs12¨¨¨n Ěn`1 ` λ1s23¨¨¨n Ěn`1 ` ¨ ¨ ¨ ` λ12¨¨¨n´1sn Ěn`1 “ 1 ´ xn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 ` λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
ě 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u,

(38)

which, by setting s “ n ´ px1 ` ¨ ¨ ¨ ` xnq, is solvable with a solution given by

Λn`1,s “ pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q,

where $
’’’’’’&

’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨n`1 “ 1 ´ xr, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λ1¨¨¨n Ěn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “ 0, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0,@ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1.

(39)

Thus, pΣ˚
n`1

q is solvable when TLpx1, . . . , xnq ą 0 and xn`1 “ n ´ px1 ` ¨ ¨ ¨ ` xnq.

In case pii.a.3q, as the vector px1, . . . , xn`1, 0q coincides with the linear convex combination
´

1 ´
xn`1

n´px1`¨¨¨`xnq

¯
¨ px1, . . . , xn, 0, 0q `

xn`1

n´px1`¨¨¨`xnq
¨ px1, . . . , xn, n ´ px1 ` ¨ ¨ ¨ ` xnq, 0q,

the vector

Λn`1 “

ˆ
1 ´

xn`1

n ´ px1 ` ¨ ¨ ¨ ` xnq

˙
Λn`1,0 `

xn`1

n ´ px1 ` ¨ ¨ ¨ ` xnq
Λn`1,s (40)

is a solution of system (25); thus pΣ˚
n`1

q is solvable when TLpx1, . . . , xnq ą 0 and 0 ă xn`1 ă n ´ px1 `
¨ ¨ ¨ ` xnq. We observe that, from (35) and (39), in explicit terms the components of the solution Λn`1 in

(40) are $
’’’’’’’&

’’’’’’’%

λ1¨¨¨n`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨n`1 “
xn`1

n´px1`¨¨¨`xnq
p1 ´ xrq, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin n`1 “ 0, @ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1,

λ1¨¨¨n Ěn`1 “ x1 ` ¨ ¨ ¨ ` xn ´ n ` 1,

λ1¨¨¨r´1sr r`1¨¨¨n Ěn`1 “
`
1 ´

xn`1

n´px1`¨¨¨`xnq

˘
p1 ´ xrq, r “ 1, . . . , n,

λi1¨¨¨ik Ěik`1 ¨¨¨sin Ěn`1 “ 0, @ti1, . . . , iku Ď t1, . . . , nu, k ă n ´ 1.

(41)
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Therefore, by exploiting the solution Λn of pΣ˚
n q, when TLpx1, . . . , xnq ą 0 the system pΣ˚

n`1
q is solvable

for every xn`1 P r0, n ´ px1 ` ¨ ¨ ¨ ` xnqs, with a solution given by the vector Λn`1 in (40) when n ´ px1 `
¨ ¨ ¨ ` xnq ą 0, that is when TLpx1, . . . , xnq ă 1, or by the vector given in (37) when n ´ px1 ` ¨ ¨ ¨ ` xnq “ 0,

that is when TLpx1, . . . , xnq “ 1.

Sub-case pii.bq. We recall that n ´ px1 ` ¨ ¨ ¨ ` xnq “ 1 ´ TLpx1, . . . , xnq ă 1 as TLpx1, . . . , xnq ą 0.

Moreover, TLpx1, . . . , xn`1q “ x1 ` ¨ ¨ ¨ ` xn`1 ´ n ą 0, as n ´ x1 ´ ¨ ¨ ¨ ´ xn ă xn`1 ď 1. Similarly to the

solution Λn of pΣ˚
n q given in (31), the system pΣ˚

n`1
q has a solution Λn`1 given below.

$
’’’’’’’’’’’’&

’’’’’’’’’’’’%

λ1¨¨¨n`1 “ x1 ` ¨ ¨ ¨ ` xn`1 ´ n,

λs12¨¨¨n`1 “ 1 ´ x1,

λ1s23¨¨¨n`1 “ 1 ´ x2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1¨¨¨r´1sr r`1¨¨¨n`1 “ 1 ´ xr,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ1¨¨¨snn`1 “ 1 ´ xn,

λ1¨¨¨n Ěn`1 “ 1 ´ xn`1,

λi1¨¨¨ik Ěik`1 ¨¨¨ Ěin`1
“ 0, @ti1, . . . , iku Ď t1, . . . , n ` 1u, k ă n.

(42)

Therefore, based on the solvability of pΣ˚
n q, we showed that in both cases piq and piiq system pΣ˚

n`1
q

is solvable. In conclusion, pΣ˚
n q is solvable for every n ě 2 and by Theorem 9 the assessment

px1, . . . , xn, TLpx1, . . . , xnqq on the family F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu is coherent for every n. Then,

µ1px1, . . . , xnq “ TLpx1, . . . , xnq.

Coherence of px1, . . . , xn, TMpx1, . . . , xnqq. Without loss of generality we can assume that x1 ď x2 ď ¨ ¨ ¨ ď
xn. We show that the assessment px1, . . . , xn, x1¨¨¨nq, with x1¨¨¨n “ TMpx1, . . . , xnq “ x1, is coherent. We

simply observe that system pΣ˚
n q in (20) is solvable with a solution Λn “ pλi1¨¨¨in ; pi1, . . . , inq P t1,s1uˆ¨ ¨ ¨ ˆ

tn,snuq given by $
’’’’’’’’’’’’&

’’’’’’’’’’’’%

λ1¨¨¨n “ x1,

λs12¨¨¨n “ x2 ´ x1,

λs1s23¨¨¨n “ x3 ´ x2,

. . . . . . . . . . . . . . . . . . . . . .

λs1¨¨¨ Ěr´1r¨¨¨n “ xr ´ xr´1,

. . . . . . . . . . . . . . . . . . . . . .

λs1¨¨¨ Ěn´1n “ xn ´ xn´1,

λs1¨¨¨sn “ 1 ´ xn,

λi1¨¨¨in “ 0, otherwise.

(43)
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Indeed, based on (43), it holds that
$
’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’%

x1 “ λ1¨¨¨n,

x2 “ λ1¨¨¨n ` λs12¨¨¨n,

x3 “ λ1¨¨¨n ` λs12¨¨¨n ` λs1s23¨¨¨n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xr “
řr´1

h“0 λs1¨¨¨shph`1q¨¨¨n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn “
řn´1

h“0 λs1¨¨¨shph`1q¨¨¨n,

x1¨¨¨n “ x1 “ λ1¨¨¨n,ř
ti1 ,...,ikuĎt1,...,nu λi1¨¨¨ik Ěik`1 ¨¨¨sin “

řn
h“0 λs1¨¨¨shph`1q¨¨¨n “ 1,

λi1¨¨¨ik Ěik`1 ¨¨¨sin ě 0, @ti1, . . . , iku Ď t1, . . . , nu,

(44)

that is the system pΣ˚
n q in (20) is solvable. Therefore, by Theorem 9, the assessment px1, . . . , xn, x1¨¨¨nq,

with x1¨¨¨n “ TMpx1, . . . , xnq, on F “ tE1|H1, . . . , En|Hn,C1¨¨¨nu is coherent. Then, µ2px1, . . . , xnq “
TMpx1, . . . , xnq.

Finally, the statement in (21) is valid.

3.1. On the relationship between the sets Π and I˚

In this section we show that the set Π defined in (21) is convex and coincides with the set I˚ defined

in (18). We first recall the properties of convexity and concavity of TL and TM , respectively. Given two

vectors V1 “ pα1, . . . , αnq P r0, 1sn,V2 “ pβ1, . . . , βnq P r0, 1sn, and any quantity a P r0, 1s, we set

V “ aV1 ` p1 ´ aqV2 “ pγ1, . . . , γnq.

Then, the following properties are satisfied:

pconvexityq TLpVq “ TLpaV1 ` p1 ´ aqV2q ď aTLpV1q ` p1 ´ aqTLpV2q, (45)

pconcavityq aTMpV1q ` p1 ´ aqTMpV2q ď TMpaV1 ` p1 ´ aqV2q “ TMpVq. (46)

Convexity of TL. We observe that

nÿ

i“1

raαi ` p1 ´ aqβis ´ pn ´ 1q “ a

«
nÿ

i“1

αi ´ pn ´ 1q

ff

` p1 ´ aq

«
nÿ

i“1

βi ´ pn ´ 1q

ff

.

Then, we distinguish the following cases: piq TLpV1q ě 0, TLpV2q ě 0, or TLpV1q ă 0, TLpV2q ă 0; piiq
TLpV1q ě 0, TLpV2q ă 0, or TLpV1q ă 0, TLpV2q ě 0.

In case piq it holds that TLpVq “ aTLpV1q ` p1 ´ aqTLpV2q. In case piiq it holds that TLpVq ď aTLpV1q `
p1 ´ aqTLpV2q. Therefore, TL is convex.

Concavity of TM . We observe that TMpV1q “ mintα1, . . . , αnu and TMpV2q “ mintβ1, . . . , βnu “ β˚. We

set TMpV1q “ α˚ and TMpV2q “ β˚; moreover, we observe that

aα˚ ` p1 ´ aqβ˚ ď aαi ` p1 ´ aqβi , i “ 1, . . . , n,

that is

aα˚ ` p1 ´ aqβ˚ ď mintaα1 ` p1 ´ aqβ1, . . . , aαn ` p1 ´ aqβnu “ TMpVq.

Then

aTMpV1q ` p1 ´ aq ` p1 ´ aqTMpV2q ď TMpVq,

that is TM is concave.

In the next result we show that Π is convex and coincide with I˚.
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Theorem 11. Let E1, . . . , En,H1, . . . ,Hn be logically independents events, with H1 ‰ H, . . . , Hn ‰ H,

n ě 2. The set Π of all prevision coherent assessments M “ px1, . . . , xn, x1¨¨¨nq on the family F “
tE1|H1, . . . , En|Hn,C1¨¨¨nu is convex and coincides with the set I˚.

Proof. Let M1 “ pα1, . . . , αn, α1¨¨¨nq and M2 “ pβ1, . . . , βn, β1¨¨¨nq be two coherent assessments on F .

Given any a P r0, 1s we show that the assessment

M “ aM1 ` p1 ´ aqM2 “ pγ1, . . . , γn, γ1¨¨¨nq

on F is coherent. From (21) it holds that pα1, . . . , αnq P r0, 1sn and pβ1, . . . , βnq P r0, 1sn. Then,

pγ1, . . . , γnq P r0, 1sn. Moreover,

TLpα1, . . . , αnq ď α1¨¨¨n ď TMpα1, . . . , αnq, TLpβ1, . . . , βnq ď β1¨¨¨n ď TMpβ1, . . . , βnq.

Then, by taking into account that γ1¨¨¨n “ aα1¨¨¨n ` p1 ´ aqβ1¨¨¨n, it follows

aTLpα1, . . . , αnq ` p1 ´ aqTLpβ1, . . . , βnq ď γ1¨¨¨n ď aTMpα1, . . . , αnq ` p1 ´ aqTMpβ1, . . . , βnq.

By recalling (45) and (46), it holds that

TLpγ1, . . . , γnq ď aTLpα1, . . . , αnq ` p1 ´ aqTLpβ1, . . . , βnq ď γ1¨¨¨n.

and

γ1¨¨¨n ď aTMpα1, . . . , αnq ` p1 ´ aqTMpβ1, . . . , βnq ď TMpγ1, . . . , γnq.

Finally, by observing that

pγ1, . . . , γnq P r0, 1sn , TLpγ1, . . . , γnq ď γ1¨¨¨n ď TMpγ1, . . . , γnq,

it follows thatM is coherent, that isM P Π; thus Π is convex.

We now show that Π “ I˚. For each assessment M on F , by Theorem 9, if M P I˚, then M is

coherent. Thus I˚ Ď Π. Then, in order to complete the proof we need to show that Π Ď I˚. Given any

M “ px1, . . . , xn, x1¨¨¨nq P Π, by Theorem 10 it holds that x1¨¨¨n P rTLpx1, . . . , xnq, TMpx1, . . . , xnqs. Then,

there exists α P r0, 1s such that

x1¨¨¨n “ αTLpx1, . . . , xnq ` p1 ´ αqTMpx1, . . . , xnq,

and hence

M “ px1, . . . , xn, x1¨¨¨nq “ αpx1, . . . , xn, TLpx1, . . . , xnqq ` p1 ´ αqpx1, . . . , xn, TMpx1, . . . , xnqq.

We denote by ΛL, or ΛM, a solution of the system pΣ˚
n q associated with the assessment

px1, . . . , xn, TLpx1, . . . , xnqq, or the assessment px1, . . . , xn, TMpx1, . . . , xnqq, respectively. Then, the vec-

tor Λ “ αΛL ` p1 ´ αqΛM is a solution of the system pΣ˚
n q associated with the assessment M “

px1, . . . , xn, x1¨¨¨nq; thusM P I˚, so that Π Ď I˚. Therefore I˚ “ Π.
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3.2. An illustration of sharpness of the Fréchet-Hoeffding bounds in the case of three conditional events

In this section, to better understand the previous general results, we illustrate some details which concern

the case of three conditional events. Given any logically independent events E1, E2, E3,H1,H2,H3, let

M “ px1, x2, x3, x123q be a prevision assessment on F “ tE1|H1, E2|H2, E3|H3,C123u. The constituents

Ch’s which imply H1H2H3 are

K123 “ E1E2E3H1H2H3,K1s23 “ E1
sE2E3H1H2H3,Ks123 “ sE 1E2E3H1H2H3,Ks1s23 “ sE1

sE 2E3H1H2H3,

K12s3 “ E1E2
sE3H1H2H3,K1s2s3 “ E1

sE2
sE3H1H2H3,Ks12s3 “ sE1E2

sE3H1H2H3,Ks1s2s3 “ sE1
sE2

sE3H1H2H3.

The associated points Q123, . . . ,Qs1s2s3 are

Q123 “ p1, 1, 1, 1q, Q1s23 “ p1, 0, 1, 0q, Qs123 “ p0, 1, 1, 0q, Qs1s23 “ p0, 0, 1, 0q,
Q12s3 “ p1, 1, 0, 0q, Q1s2s3 “ p1, 0, 0, 0q, Qs12s3 “ p0, 1, 0, 0q, Qs1s2s3 “ p0, 0, 0, 0q.

In this case system pΣ˚
n q in (20 becomes

pΣ˚
3 q

$
’’’’&

’’’’%

x123 “ λ123,

x1 “ λ123 ` λ1s23 ` λ12s3 ` λ1s2s3 ,

x2 “ λ123 ` λs123 ` λ12s3 ` λs12s3 ,

x3 “ λ123 ` λ1s23 ` λs123 ` λs1s23,

λ123 ` ¨ ¨ ¨ ` λs1s2s3 “ 1, λ123 ě 0, . . . , λs1s2s3 ě 0.

By recalling the proof of Theorem (10), we illustrate below the structure of the vector Λ3 “
pλ123, λ1s23, λs123, λs1s23, λ12s3 , λ1s2s3 , λs12s3 , λs1s2s3q, solution of pΣ˚

3
q, in the different cases.

Assessment px1, x2, x3, x123q, with x123 “ TLpx1, x2, x3q.

We have two cases: piq TLpx1, x2q “ 0, that is x1 ` x2 ´ 1 ď 0; piiq TLpx1, x2q ą 0, that is x1 ` x2 ´ 1 ą 0.

In case piq TLpx1, x2q “ TLpx1, x2, x3q “ 0 and we have three sub-cases: x3 “ 0, or x3 “ 1, or 0 ă x3 ă 1.

If x3 “ 0 the system pΣ˚
3
q has a solution

Λ3,0 “ p0, 0, 0, 0, 0, x1, x2, 1 ´ x1 ´ x2q.

If x3 “ 1 the system pΣ˚
3
q has a solution

Λ3,1 “ p0, x1, x2, 1 ´ x1 ´ x2, 0, 0, 0, 0q.

If 0 ă x3 ă 1 the system pΣ˚
3
q has a solution

Λ3 “ p1 ´ x3qΛ3,0 ` x3Λ3,1 “
“ p0, x1x3, x2x3, p1 ´ x1 ´ x2qx3, 0, x1p1 ´ x3q, x2p1 ´ x3q, p1 ´ x1 ´ x2qp1 ´ x3qq.

(47)

In case piiq, where TLpx1, x2q ą 0, we have two sub-cases:

pii.aq 0 ď x3 ď 2 ´ x1 ´ x2 ă 1; pii.bq 2 ´ x1 ´ x2 ă x3 ď 1.

Sub-case pii.aq. We have three cases:

pii.a.1q x3 “ 0; pii.a.2q x3 “ 2 ´ x1 ´ x2; pii.a.3q 0 ă x3 ă 2 ´ x1 ´ x2.

If x3 “ 0 the system pΣ˚
3
q has a solution

Λ3,0 “ p0, 0, 0, 0, x1 ` x2 ´ 1, 1 ´ x2, 1 ´ x1, 0q. (48)
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If x3 “ 2 ´ x1 ´ x2 “ 0, a solution of pΣ˚
3
q is the vector in (48).

If x3 “ 2 ´ x1 ´ x2 ą 0, by setting s “ 2 ´ x1 ´ x2, the system pΣ˚
3
q has a solution

Λ3,s “ p0, 1 ´ x2, 1 ´ x1, 0, x1 ` x2 ´ 1, 0, 0, 0q.

If 0 ă x3 ă 2 ´ x1 ´ x2 the system pΣ˚
3
q has a solution

Λ3 “ p1 ´ x3

2´x1´x2
qΛ3,0 ` x3

2´x1´x2
Λ3,s “

“
´

0,
p1´x2qx3

2´x1´x2
,

p1´x1qx3

2´x1´x2
, 0, x1 ` x2 ´ 1, p1 ´ x3

2´x1´x2
qp1 ´ x2q, p1 ´ x3

2´x1´x2
qp1 ´ x1q, 0

¯
.

(49)

Sub-case pii.bq. The system pΣ˚
3
q has a solution

Λ3 “ px1 ` x2 ` x3 ´ 2, 1 ´ x2, 1 ´ x1, 0, 1 ´ x3, 0, 0, 0q.

Assessment px1, x2, x3, x123q, with x123 “ TMpx1, x2, x3q. We assume that 0 ď x1 ď x2 ď x3 ď 1, so that

x123 “ TMpx1, x2, x3q “ x1. The system pΣ˚
3
q has a solution

Λ3 “ pλ123, λ1s23, λs123, λs1s23, λ12s3 , λ1s2s3 , λs12s3 , λs1s2s3q “ px1, 0, x2 ´ x1, x3 ´ x2, 0, 0, 0, 1 ´ x3q.

We give below two examples.

Example 3. Let px1, x2, x3, TLpx1, x2, x3qq “ p0.4, 0.4, 0.4, 0q be a prevision assessment on F “
tE1|H1, E2|H2, E3|H3,C123u. We observe that x1 ` x2 ´ 1 “ ´0.2 ă 0; then, based on (47), the sys-

tem pΣ˚
3
q has a solution

Λ3 “ pλ123, λ1s23, λs123, λs1s23, λ12s3 , λ1s2s3 , λs12s3 , λs1s2s3q “ p0, 0.16, 0.16, 0.08, 0, 0.24, 0.24, 0.12q.

Example 4. Let px1, x2, x3, TLpx1, x2, x3qq “ p0.5, 0.6, 0.7, 0q be a prevision assessment on F “
tE1|H1, E2|H2, E3|H3,C123u. As x1 ` x2 ´ 1 “ 0.1 ą 0, based on (49), the system pΣ˚

3
q has a solution

Λ3 “ pλ123, λ1s23, λs123, λs1s23, λ12s3 , λ1s2s3 , λs12s3 , λs1s2s3q “ p0, 14
45
, 7

18
, 0, 1

10
, 4

45
, 1

9
, 0q.

4. On the computation of Λn`1 when x1¨¨¨n`1 “ TLpx1, . . . , xn`1q

In this section we examine further aspects which concern the prevision assessment

px1, . . . , xn`1, TLpx1, . . . , xn`1qq. We observe that in the proof of Theorem 10 the explicit solution Λn`1 of

the system pΣ˚
n`1

q is given for the assessment px1, . . . , xn`1, TLpx1, . . . , xn`1q, when TLpx1, . . . , xnq ą 0. In

the case where TLpx1, . . . , xnq “ 0, for the vector Λn`1 we only have the representation given in (30) in

terms of the solution Λn. In what follows we give an explicit formula for Λn`1 when TLpx1, . . . , xnq “ 0.

Given any integer n ě 1, we distinguish two cases: piq TLpx1, . . . , xhq “ 0, for all h “ 1, . . . , n; piiq
TLpx1q ą 0, . . . , TLpx1, . . . , xhq ą 0, TLpx1, . . . , xh`1q “ ¨ ¨ ¨ “ TLpx1, . . . , xnq “ 0, for some h such that

1 ď h ă n.

Case piq. If n “ 1, the assessment is px1, x2, TLpx1, x2qq and TLpx1q “ x1 “ 0. Moreover, the (unique)

solution of pΣ˚
1
q is Λ1 “ pλ1, λs1q “ px1, 1 ´ x1q “ p0, 1q. Then, by applying (30) with n “ 1, we obtain the

solution

Λ2 “ pλ12, λs12, λ1s2 , λs1s2q “ px2Λ1, p1 ´ x2qΛ1q “ px2p0, 1q, p1 ´ x2qp0, 1qq “ p0, x2, 0, 1 ´ x2q. (50)
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If n “ 2, the assessment is px1, x2, x3, TLpx1, x2, x3qq and TLpx1q “ x1 “ TLpx1, x2q “ 0. Moreover, as

x1 “ 0, it holds that Λ2 is the vector given in (50) and by applying (30) with n “ 2, a solution for pΣ˚
3
q is

given by

Λ3 “ pλ123, λs123, λ1s23, λs1s23, λ12s3 , λs12s3 , λ1s2s3 , λs1s2s3q “ px3Λ2, p1 ´ x3qΛ2q “
“ p0, x2x3, 0, p1 ´ x2qx3, 0, x2p1 ´ x3q, 0, p1 ´ x2qp1 ´ x3qq.

More in general, by iterating (30) we obtain

Λn`1 “ pλ1¨¨¨n`1, . . . , λs1¨¨¨snn`1, λ1¨¨¨n Ěn`1 , . . . , λs1¨¨¨sn Ěn`1q “
“ px1 ¨ ¨ ¨ xnxn`1, . . . , p1 ´ x1q ¨ ¨ ¨ p1 ´ xnqxn`1, x1 ¨ ¨ ¨ xnp1 ´ xn`1q, . . . , p1 ´ x1q ¨ ¨ ¨ p1 ´ xnqp1 ´ xn`1qq,

where x1 “ 0. Alternatively, by setting

Λn`1 “ pλ1˚¨¨¨pn`1q˚ ; p1˚, . . . , pn ` 1q˚q P t1,s1u ˆ ¨ ¨ ¨ ˆ tn ` 1, Ęn ` 1uq,

and

x j˚ “

"
x j, if j˚ “ j,

xsj “ 1 ´ x j, if j˚ “ sj, (51)

it holds that

λ1˚¨¨¨pn`1q˚ “
n`1ź

j“1

x j˚ , p1˚, . . . , pn ` 1q˚q P t1,s1u ˆ ¨ ¨ ¨ ˆ tn ` 1, Ęn ` 1u, (52)

where
śn`1

j“1 x j˚ “ 0, if 1˚ “ 1, because x1 “ 0, and
śn`1

j“1 x j˚ “
śn`1

j“2 x j˚ , if 1˚ “ s1 , because

xs1 “ 1 ´ x1 “ 1.

Case piiq. For t “ h ` 1, . . . , n, it holds that TLpx1, . . . , xt`1q “ 0 and, from (30), it holds that

Λt`1 “ pλ1¨¨¨t`1, . . . , λs1¨¨¨stt`1, λ1¨¨¨tĚt`1 , . . . , λs1¨¨¨st Ět`1q “
“ pxt`1λ1¨¨¨t, . . . , xt`1λs1¨¨¨st , p1 ´ xt`1qλ1¨¨¨t, . . . , p1 ´ xt`1qλs1¨¨¨stq.

Then, based on the representations

Λt “ pλ1˚¨¨¨t˚ ; p1˚, . . . , t˚q P t1,s1u ˆ ¨ ¨ ¨ ˆ tt,stuq,

and

Λt`1 “ pλ1˚¨¨¨pt`1q˚ ; p1˚, . . . , pt ` 1q˚q P t1,s1u ˆ ¨ ¨ ¨ ˆ tt ` 1,Ęt ` 1uq,

based on (51), for the components λ1˚¨¨¨pt`1q˚ and λ1˚¨¨¨t˚ it holds that

λ1˚¨¨¨pt`1q˚ “ λ1˚¨¨¨t˚ ¨ xpt`1q˚ , (53)

that is "
λ1˚¨¨¨t˚t`1 “ λ1˚¨¨¨t˚ ¨ xt`1,

λ1˚¨¨¨t˚ Ět`1 “ λ1˚¨¨¨t˚ ¨ p1 ´ xt`1q,

for every p1˚, . . . , t˚q P t1,s1u ˆ ¨ ¨ ¨ ˆ tt,stu, t “ h ` 1, . . . , n.

By iterating (53) backward from t “ n until t “ h ` 1, it follows that

λ1˚¨¨¨pn`1q˚ “ λ1˚¨¨¨n˚ ¨ xpn`1q˚ “ λ1˚¨¨¨pn´1q˚ ¨ xn˚ ¨ xpn`1q˚ “ ¨ ¨ ¨ “ λ1˚¨¨¨ph`1q˚

n`1ź

t“h`2

xt˚ . (54)
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Thus, in order to determine the vector Λn`1 we need to compute the vector Λh`1. We examine below this

aspect.

If 0 ă TLpx1, . . . , xhq ă 1, as TLpx1, . . . , xh`1q “ 0 it holds that 0 ď xh`1 ď h ´ x1 ´ ¨ ¨ ¨ ´ xh; then

from (41) we obtain
$
’’’’’’’’&

’’’’’’’’%

λ1¨¨¨h`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨h`1 “
xh`1

h´px1`¨¨¨`xhq
p1 ´ xrq, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih h`1 “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1,

λ1¨¨¨h Ěh`1 “ x1 ` ¨ ¨ ¨ ` xh ´ h ` 1,

λ1¨¨¨r´1sr r`1¨¨¨h Ěh`1 “
´

1 ´
xh`1

h´px1`¨¨¨`xhq

¯
p1 ´ xrq, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih Ěh`1 “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1.

(55)

Then, concerning the components of Λn`1, for every

pph ` 2q˚, . . . , pn ` 1q˚q P th ` 2, Ęh ` 2u ˆ ¨ ¨ ¨ ˆ tn ` 2, Ęn ` 2u,

from (54) and (55) it follows that

$
’’’’’’’’&

’’’’’’’’%

λ1¨¨¨h`1ph`2q˚ ¨¨¨pn`1q˚ “ 0,

λ1¨¨¨r´1sr r`1¨¨¨h`1ph`2q˚ ¨¨¨pn`1q˚ “ p1 ´ xrq
xh`1

h´px1`¨¨¨`xhq

śn`1
t“h`2 xt˚ , r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih h`1ph`2q˚¨¨¨pn`1q˚ “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1,

λ1¨¨¨r´1sr r`1¨¨¨h Ěh`1ph`2q˚¨¨¨pn`1q˚ “ p1 ´ xrq
´

1 ´
xh`1

h´px1`¨¨¨`xhq

¯ śn`1
t“h`2 xt˚ , r “ 1, . . . , h,

λ1¨¨¨h Ěh`1ph`2q˚ ¨¨¨pn`1q˚ “ px1 ` ¨ ¨ ¨ ` xh ´ h ` 1q
śn`1

t“h`2 xt˚ ,

λi1¨¨¨ik Ěik`1 ¨¨¨sih Ěh`1ph`2q˚¨¨¨pn`1q˚ “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1.

(56)

Of course the sum of all the components of Λn`1 is equal to 1, indeed

p1 ´ xrq
xh`1

h´px1`¨¨¨`xhq

śn`1
t“h`2 xt˚ ` p1 ´ xrq

´
1 ´

xh`1

h´px1`¨¨¨`xhq

¯ śn`1
t“h`2 “ p1 ´ xrq

śn`1
t“h`2 xt˚ ,

hÿ

r“1

p1 ´ xrq
n`1ź

t“h`2

xt˚ “ ph ´ px1 ` ¨ ¨ ¨ ` xhqq
n`1ź

t“h`2

xt˚ ,

px1 ` ¨ ¨ ¨ ` xh ´ h ` 1q
n`1ź

t“h`2

xt˚ ` ph ´ px1 ` ¨ ¨ ¨ ` xhqq
n`1ź

t“h`2

xt˚ “
n`1ź

t“h`2

xt˚ ;

finally ř
pph`2q˚ ,...,pn`1q˚q

śn`1
t“h`2 xt˚ “

ř
pph`2q˚ ,...,n˚q

śn
t“h`2 xt˚ pxn`1 ` 1 ´ xn`1q “

“
ř

pph`2q˚,...,n˚q

śn
t“h`2 xt˚ “ . . . “ xh`2 ` p1 ´ xh`2q “ 1.

If TLpx1, . . . , xhq “ 1, as TLpx1, . . . , xh`1q “ 0 it holds that xh`1 “ 0; then, concerning the vector Λh`1,

from (37) we obtain that

$
’’’’’’&

’’’’’’%

λ1¨¨¨h`1 “ 0,

λ1¨¨¨r´1sr r`1¨¨¨h`1 “ 0, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih h`1 “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1,

λ1¨¨¨h Ěh`1 “ 1,

λ1¨¨¨r´1sr r`1¨¨¨h Ěh`1 “ 0, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih Ěh`1 “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1,

(57)
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that is the vector Λh`1 has the component λ1¨¨¨h Ěh`1 equal to 1 and all the other components equal to zero.

Then, concerning the components of Λn`1, for every

pph ` 2q˚, . . . , pn ` 1q˚q P th ` 2, Ęh ` 2u ˆ ¨ ¨ ¨ ˆ tn ` 2, Ęn ` 2u,

from (54) and (57) it follows that

$
’’’’’’’&

’’’’’’’%

λ1¨¨¨h`1ph`2q˚ ¨¨¨pn`1q˚ “ 0,

λ1¨¨¨r´1sr r`1¨¨¨h`1ph`2q˚ ¨¨¨pn`1q˚ “ 0, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih h`1ph`2q˚ ¨¨¨pn`1q˚ “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1

λ1¨¨¨h Ěh`1ph`2q˚¨¨¨pn`1q˚ “
śn`1

t“h`2 xt˚ ,

λ1¨¨¨r´1sr r`1¨¨¨h Ěh`1ph`2q˚ ¨¨¨pn`1q˚ “ 0, r “ 1, . . . , h,

λi1¨¨¨ik Ěik`1 ¨¨¨sih Ěh`1ph`2q˚¨¨¨pn`1q˚ “ 0, @ti1, . . . , iku Ď t1, . . . , hu, k ă h ´ 1.

(58)

Remark 4. In summary, concerning the problem of giving an explicit solution Λn`1 of the system pΣ˚
n`1

q
for the assessment px1, . . . , xn`1, TLpx1, . . . , xn`1q, we distinguish the following cases:

paq TLpx1, . . . , xnq “ 1 and TLpx1, . . . , xn`1q “ 0 (in which case xn`1 “ n ´
řn

i“1 xi “ 0); the solution

is given in (37).

pbq 0 ă TLpx1, . . . , xnq ă 1 and TLpx1, . . . , xn`1q “ 0 (in which case 0 ď xn`1 ď n ´
řn

i“1 xi, with

0 ă n ´
řn

i“1 xi ă 1); the solution is given in (41).

pcq TLpx1, . . . , xnq ą 0 and TLpx1, . . . , xn ` 1q ą 0 (in which case n ´
řn

i“1 xi ă xn`1 ď 1); the solution

is given in (42).

pdq TLpx1, . . . , xhq “ 0, h “ 1, . . . , n ` 1 (in which case x1 “ 0); the solution is given in (52).

peq 0 ă TLpx1, . . . , xhq ă 1, TLpx1, . . . , xh`1q “ ¨ ¨ ¨ “ TLpx1, . . . , xn`1q “ 0, with 1 ď h ă n; the

solution is given in (56).

p f q TLpx1, . . . , xhq “ 1, TLpx1, . . . , xh`1q “ ¨ ¨ ¨ “ TLpx1, . . . , xn`1q “ 0, with 1 ď h ă n; the solution is

given in (58).

We illustrate below the cases peq and p f q by an example where n ` 1 “ 5.

Example 5. Given any logically independent events. Let E1, . . . , E5,H1, . . . ,H5 be logically Let

px1, . . . , x5, x1¨¨¨5q, with x1¨¨¨5 “ TLpx1, . . . , x5q, be a prevision assessment on tE1|H1, . . . , E5|H5,C1¨¨¨5u,

where C1¨¨¨5 “
Ź5

i“1 Ei|Hi. We examine below all the cases of Remark 4.

paq TLpx1, . . . , x4q “ 1 and TLpx1, . . . , x5q “ 0 (in which case x1 “ ¨ ¨ ¨ “ x4 “ 1 and x5 “ 4´
ř4

i“1 xi “
0); the solution obtained from (37) is such that λ1234s5 “ 1, with all the other components of Λ5 equal

to zero.

pbq 0 ă TLpx1, . . . , x4q ă 1 and TLpx1, . . . , x5q “ 0 (in which case 0 ď x5 ď 4 ´
ř4

i“1 xi, with

0 ă 4 ´
ř4

i“1 xi ă 1); the solution obtained from (41) is

$
’’’’’&

’’’’’%

λs12345 “ x5

4´px1`x2`x3`x4q
p1 ´ x1q, λs1234s5 “ p1 ´ x5

4´px1`x2`x3`x4q
qp1 ´ x1q,

λ1s2345 “ x5

4´px1`x2`x3`x4q
p1 ´ x2q, λ1s234s5 “ p1 ´ x5

4´px1`x2`x3`x4q
qp1 ´ x2q,

λ12s345 “ x5

4´px1`x2`x3`x4q
p1 ´ x3q, λ12s34s5 “ p1 ´ x5

4´px1`x2`x3`x4q
qp1 ´ x3q,

λ123s45 “ x5

4´px1`x2`x3`x4q
p1 ´ x4q, λ123s4s5 “ p1 ´ x5

4´px1`x2`x3`x4q
qp1 ´ x4q,

λ1234s5 “ x1 ` x2 ` x3 ` x4 ´ 3, λ1˚2˚3˚4˚5˚ “ 0, otherwise.
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pcq TLpx1, . . . , x4q ą 0 and TLpx1, . . . , x5q ą 0 (in which case 4 ´
ř4

i“1 xi ă x5 ď 1); the solution

obtained from (42) is

$
’’&

’’%

λ12345 “ x1 ` x2 ` x3 ` x4 ` x5 ´ 4,

λs12345 “ 1 ´ x1, λ1s2345 “ 1 ´ x2,

λ12s345 “ 1 ´ x3, λ123s45 “ 1 ´ x4,

λ1234s5 “ 1 ´ x5, λ1˚2˚3˚4˚5˚ “ 0, otherwise.

pdq TLpx1q “ ¨ ¨ ¨ “ TLpx1, x2, x3, x4, x5q “ 0 (in which case x1 “ 0); the solution obtained from (52) is

λ12345 “ 0, λ1234s5 “ 0,

λs12345 “ x2x3x4x5, λs1234s5 “ x2x3x4p1 ´ x5q,
λ1s2345 “ 0, λ1s234s5 “ 0,

λs1s2345 “ p1 ´ x2qx3x4x5, λs1s234s5 “ p1 ´ x2qx3x4p1 ´ x5q,
λ12s345 “ 0, λ12s34s5 “ 0,

λs12s345 “ x2p1 ´ x3qx4x5, λs12s34s5 “ x2p1 ´ x3qx4p1 ´ x5q,
λ1s2s345 “ 0, λ1s2s34s5 “ 0,

λs1s2s345 “ p1 ´ x2qp1 ´ x3qx4x5, , λs1s2s34s5 “ p1 ´ x2qp1 ´ x3qx4p1 ´ x5q,
λ123s45 “ 0, λ123s4s5 “ 0,

λs123s45 “ x2x3p1 ´ x4qx5, λs123s4s5 “ x2x3p1 ´ x4qp1 ´ x5q, ,

λ1s23s45 “ 0, λ1s23s4s5 “ 0,

λs1s23s45 “ p1 ´ x2qx3p1 ´ x4qx5, λs1s23s4s5 “ p1 ´ x2qx3p1 ´ x4qp1 ´ x5q,
λ12s3s45 “ 0, λ12s3s4s5 “ 0,

λs12s3s45 “ x2p1 ´ x3qp1 ´ x4qx5, λs12s3s4s5 “ x2p1 ´ x3qp1 ´ x4qp1 ´ x5q,
λ1s2s3s45 “ 0, λ1s2s3s4s5 “ 0,

λs1s2s3s45 “ p1 ´ x2qp1 ´ x3qp1 ´ x4qx5, λs1s2s3s4s5 “ p1 ´ x2qp1 ´ x3qp1 ´ x4qp1 ´ x5q.

peq 0 ă TLpx1, . . . , xhq ă 1, TLpx1, . . . , xh`1q “ ¨ ¨ ¨ “ TLpx1, . . . , x5q “ 0, with 1 ď h ă 4; the solution

is given in (56). If for instance h “ 3, the components of the vector Λ5 are

λ12345 “ 0, λ1234s5 “ 0,

λs12345 “ p1 ´ x1q x4

3´x1´x2´x3
x5, λs1234s5 “ p1 ´ x1q x4

3´x1´x2´x3
p1 ´ x5q,

λ1s2345 “ p1 ´ x2q x4

3´x1´x2´x3
x5, λ1s234s5 “ p1 ´ x2q x4

3´x1´x2´x3
p1 ´ x5q,

λs1s2345 “ 0, λs1s234s5 “ 0,

λ12s345 “ p1 ´ x3q x4

3´x1´x2´x3
x5, λ12s34s5 “ p1 ´ x3q x4

3´x1´x2´x3
p1 ´ x5q,

λs12s345 “ 0, λs12s34s5 “ 0,

λ1s2s345 “ 0, λ1s2s34s5 “ 0,

λs1s2s345 “ 0, λs1s2s34s5 “ 0,

λ123s45 “ px1 ` x2 ` x3 ´ 2qx5, λ123s4s5 “ px1 ` x2 ` x3 ´ 2qp1 ´ x5q,
λs123s45 “ p1 ´ x1qp1 ´ x4

3´x1´x2´x3
qx5, λs123s4s5 “ p1 ´ x1qp1 ´ x4

3´x1´x2´x3
qp1 ´ x5q,

λ1s23s45 “ p1 ´ x2qp1 ´ x4

3´x1´x2´x3
qx5, λ1s23s4s5 “ p1 ´ x2qp1 ´ x4

3´x1´x2´x3
qp1 ´ x5q,

λs1s23s45 “ 0, λs1s23s4s5 “ 0,

λ12s3s45 “ p1 ´ x3qp1 ´ x4

3´x1´x2´x3
qx5, λ12s3s4s5 “ p1 ´ x3qp1 ´ x4

3´x1´x2´x3
qp1 ´ x5q,

λs12s3s45 “ 0, λs12s3s4s5 “ 0,

λ1s2s3s45 “ 0, λ1s2s3s4s5 “ 0,

λs1s2s3s45 “ 0, λs1s2s3s4s5 “ 0.
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p f q TLpx1, . . . , xhq “ 1, TLpx1, . . . , xh`1q “ ¨ ¨ ¨ “ TLpx1, . . . , x5q “ 0, with 1 ď h ă 4; the solution is

given in (58). If for instance h “ 2, the components of the vector Λ5 are

"
λ12s345 “ x4x5, λ12s34s5 “ x4p1 ´ x5q, λ12s3s45 “ p1 ´ x4qx5,

λ12s3s4s5 “ p1 ´ x4qp1 ´ x5q, λ1˚2˚3˚4˚5˚ “ 0, otherwise.

5. Probabilistic interpretation of Frank t-norms and t-conorms

In this section we show that the previsions of the conjunction and the disjunction of n conditional events

can be represented as a Frank t-norm Tλ and a Frank t-conorm S λ, respectively. Then, we characterize

the set of coherent assessments by Frank t-norms and t-conorms. Moreover, when n “ 2, we show that,

under logical independence, TλpA|H, B|Kq “ pA|Hq^pB|Kq and S λpA|H, B|Kq “ pA|Hq_pB|Kq for every

λ P r0,`8s. We also examine cases where there are logical dependencies.

5.1. Set of coherent assessments, Frank t-norms and t-conorms

We recall that the n-ary Frank t-norm, with parameter λ P r0,`8s, is

Tλpx1, . . . , xnq “

$
’’’&

’’’%

TMpx1, . . . , xnq “ mintx1, . . . , xnu, if λ “ 0,

TPpx1, . . . , xnq “
śn

i“1 xi, if λ “ 1,

TLpx1, . . . , xnq “ maxt
řn

i“1 xi ´ n ` 1, 0u, if λ “ `8,

logλp1 `
śn

i“1pλxi ´1q

pλ´1qn´1 q, otherwise.

(59)

The next result shows that, under logical independence, given any coherent assessment

px1, . . . , xn, x1¨¨¨nq on tE1|H1, . . . , En|Hn,C1¨¨¨nu, it holds that x1¨¨¨n “ Tλpx1, ¨ ¨ ¨ , xnq for some λ P r0,`8s;
conversely, for every λ P r0,`8s the extension x1¨¨¨n “ Tλpx1, ¨ ¨ ¨ , xnq is coherent.

Theorem 12. Let E1, . . . , En,H1, . . . ,Hn be logically independents events, with H1 ‰ H, . . . , Hn ‰ H,

n ě 2. The set Π of all prevision coherent assessments M “ px1, . . . , xn, x1¨¨¨nq on the family F “
tE1|H1, . . . , En|Hn,C1¨¨¨nu coincides with the set

ΠT “ tpx1, . . . , xn, x1¨¨¨nq : px1, . . . , xnq P r0, 1sn, x1¨¨¨n “ Tλpx1, ¨ ¨ ¨ , xnq, λ P r0,`8su. (60)

Proof. We show that Π Ď ΠT and ΠT Ď Π. For each given M “ px1, . . . , xn, x1¨¨¨nq P Π,

by Theorem 10, it holds that px1, . . . , xnq P r0, 1sn and x1¨¨¨n P rTLpx1, . . . , xnq, TMpx1, . . . , xnqs “
rT`8px1, . . . , xnq, T0px1, . . . , xnqs. Then, by the continuity property of Tλ with respect to λ, there exists

λ P r0,`8s such that x1¨¨¨n “ Tλpx1, . . . , xnq. Thus, Π Ď ΠT .

Conversely, for every λ P r0,`8s and for every px1, . . . , xnq P r0, 1sn, by Theorem 10 the assessment

M “ px1, . . . , xn, Tλpx1, . . . , xnqq is coherent because Tλpx1, . . . , xnq P rTLpx1, . . . , xnq, TMpx1, . . . , xnqs.
Thus ΠT Ď Π and hence Π “ ΠT .

Remark 5. We observe that in case of some logical dependencies, for each given coherent assessment

px1, . . . , xnq, the set of coherent extensions x1¨¨¨n is an interval

rµ1px1, . . . , xnq, µ2px1 ¨ ¨ ¨ xnqs Ď rT`8px1, . . . , xnq, T0px1, . . . , xnqs.

By Theorem 12, there exist λ1 and λ2 such that µ1px1, . . . , xnq “ Tλ1 px1, . . . , xnq and µ2px1, . . . , xnq “
Tλ2px1, . . . , xnq, with `8 ě λ1 ě λ2 ě 0 because Tλ is decreasing with respect to the parameter λ. Then,

rµ1px1, . . . , xnq, µ2px1 ¨ ¨ ¨ xnqs “ rTλ1 px1, . . . , xnq, Tλ2px1, . . . , xnqs.
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Moreover, for each x1¨¨¨n P rµ1px1, . . . , xnq, µ2px1 ¨ ¨ ¨ xnqs, there exists λ P rλ2, λ1s such that x1¨¨¨n “
Tλpx1, . . . , xnq. However, the set of all coherent assessments px1, . . . , xn, x1¨¨¨nq is in general a subset of the

set ΠT given in (60). Then, it may happen that, given any coherent assessment px1, . . . , xnq, the extension

x1¨¨¨n “ Tλpx1, . . . , xnq is not coherent, for some λ P r0,`8s.

We now show that a result dual of Theorem (12) holds for the disjunction of conditional events, where

the Frank t-norm is replaced by the dual Frank t-conorm. The notion of disjunction given in Definition 3

can be extended to the case of n conditional events E1|H1, . . . , En|Hn ([33]). Moreover, the conjunction

C1¨¨¨n and the disjunction D1¨¨¨n satisfy De Morgan’s Laws; in particular

D1¨¨¨n “
nł

i“1

pEi|Hiq “ 1 ´
nľ

i“1

p sEi |Hiq “ 1 ´ Cs1¨¨¨sn , (61)

where Cs1¨¨¨sn “
Źn

i“1p sEi |Hiq. We set PpD1¨¨¨nq “ y1¨¨¨n and PpCs1¨¨¨snq “ xs1¨¨¨sn . Of course, y1¨¨¨n “ 1 ´ xs1¨¨¨sn .

By Theorem 10, xs1¨¨¨sn is a coherent extension of the assessment px1, . . . , xnq on tE1|H1, . . . , En|Hnu if and

only if

TLp1 ´ x1, . . . , 1 ´ xnq ď xs1¨¨¨sn ď TMp1 ´ x1, . . . , 1 ´ xnq.

that is

1 ´ TMp1 ´ x1, . . . , 1 ´ xnq ď y1¨¨¨n ď 1 ´ TLp1 ´ x1, . . . , 1 ´ xnq.

Moreover, denoting by S L and S M the Lukasiewicz and Minimum t-conorms, respectively, it holds that

S Lpx1, . . . , xnq “ mint
nÿ

i“1

xi, 1u “ 1 ´ TLp1 ´ x1, . . . , 1 ´ xnq,

and

S Mpx1, . . . , xnq “ maxtx1, . . . , xnu “ 1 ´ TMp1 ´ x1, . . . , 1 ´ xnq.

Then, from (61), we obtain the result below which establishes the Fréchet-Hoeffding bounds for the dis-

junction of n conditional events.

Theorem 13. Let E1, . . . , En,H1, . . . ,Hn be logically independents events, with H1 ‰ H, . . . , Hn ‰ H, n ě
2. The set of all prevision coherent assessments px1, . . . , xn, y1¨¨¨nq on the family tE1|H1, . . . , En|Hn,D1¨¨¨nu
is the set

Γ “ tpx1, . . . , xn, y1¨¨¨nq : px1, . . . , xnq P r0, 1sn, y1¨¨¨n P rS Mpx1, . . . , xnq, S Lpx1, . . . , xnqsu. (62)

Based on Theorems 12 and 13, we have

Theorem 14. Let E1, . . . , En,H1, . . . ,Hn be logically independents events, with H1 ‰ H, . . . , Hn ‰ H,

n ě 2. The set Γ of all prevision coherent assessments M “ px1, . . . , xn, y1¨¨¨nq on the family F “
tE1|H1, . . . , En|Hn,D1¨¨¨nu coincides with the set

ΓS “ tpx1, . . . , xn, y1¨¨¨nq : px1, . . . , xnq P r0, 1sn, y1¨¨¨n “ S λpx1, ¨ ¨ ¨ , xnq, λ P r0,`8su. (63)
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5.2. Representation of conjunction and disjunction of two conditional events

In this section we examine the representation of conjunction and disjunction of two conditional events

in terms of Frank t-norms and Frank t-conorms, respectively.

Theorem 15. For each coherent prevision assessment px, y, zq on tA|H, B|K, pA|Hq ^ pB|Kqu, it holds that

pA|Hq ^ pB|Kq “ TλpA|H, B|Kq, for some λ P r0,`8s. (64)

Proof. From Definition 5 it holds that Tλp1, 1q “ 1, Tλpx, 0q “ Tλp0, yq “ 0, Tλpx, 1q “ x, Tλp1, yq “ y.

Then,

TλpA|H, B|Kq “

$
’’’’&

’’’’%

1, if AHBK is true,

0, if sAH is true or sBK is true,

x, if sHBK is true,

y, if sKAH is true,

Tλpx, yq, if sH sK is true.

(65)

By Remark 5, there exists λ P r0,`8s such that z “ Tλpx, yq. Then, from (9) and (65), for each coherent

assessment px, y, zq on tA|H, B|K, pA|Hq ^ pB|Kqu there exists λ P r0,`8s such that pA|Hq ^ pB|Kq “
TλpA|H, B|Kq.

Remark 6. We observe that to define the conjunction pA|Hq ^ pB|Kq amounts to specify a coherent as-

sessment px, y, zq on tA|H, B|K, pA|Hq ^ pB|Kqu. Moreover, we recall that, by Theorem 12 (see also

formula (12)), in the particular case of logical independence of A, B,H,K, for each λ P r0,`8s the

extension z “ Tλpx, yq on pA|Hq ^ pB|Kq of the assessment px, yq on tA|H, B|Ku is coherent, for ev-

ery px, yq P r0, 1s2. Then, for any given assessment px, y, Tλpx, yqq on tA|H, B|K, pA|Hq ^ pB|Kqu, with

px, yq P r0, 1s2, λ P r0,`8s it holds that

pA|Hq ^ pB|Kq “ TλpA|H, B|Kq.

In other words, for every λ P r0,`8s, it is possible to define the conjunction as pA|Hq ^ pB|Kq “
TλpA|H, B|Kq, for every px, yq P r0, 1s2. Of course, in case of some logical dependencies, given a coherent

assessment px, yq, it may happen that TλpA|H, B|Kq is not a conjunction for some λ P r0,`8s because,

by Remark 5, the extension z “ Tλpx, yq is not coherent. In Section 5 we will give an example where

TλpA|H, A|Kq, with λ ą 1, does not represent the conjunction pA|Hq ^ pA|Kq for some coherent px, yq.

We recall that the dual Frank t-conorm S λpx, yq “ 1 ´ Tλp1 ´ x, 1 ´ yq is defined as

S λpx, yq “

$
’’’&

’’’%

S Mpx, yq “ maxtx, yu, if λ “ 0,

S Ppx, yq “ x ` y ´ xy, if λ “ 1,

S Lpx, yq “ mintx ` y, 1u, if λ “ `8,

1 ´ logλp1 `
pλ1´x´1qpλ1´y´1q

λ´1
q, otherwise.

(66)

Moreover, for every λ P r0,`8s, the pair pTλ, S λq satisfies the functional equation ([41, Theorem 5.14])

S λpx, yq “ x ` y ´ Tλpx, yq, px, yq P r0, 1s2. (67)

Theorem 16. For each coherent prevision assessment px, y,wq on tA|H, B|K, pA|Hq _ pB|Kqu, it holds that

pA|Hq _ pB|Kq “ S λpA|H, B|Kq, for some λ P r0,`8s. (68)
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Proof. From (66) it holds that S λp1, 1q “ 1, S λpx, 1q “ S λp1, yq “ 1, S λpx, 0q “ x, S λp0, yq “ y. Then,

S λpA|H, B|Kq “

$
’’’’&

’’’’%

1, if AH _ BK is true,

0, if sAH sBH is true,

x, if sH sBK is true,

y, if sK sAH is true,

S λpx, yq, if sH sK is true.

(69)

By recalling the prevision sum rule ([30, Section 6]), it holds that

PrpA|Hq _ pB|Kqs “ PpA|Hq ` PpB|Kq ´ PrpA|Hq ^ pB|Kqs,

that is w “ x`y´z, where z “ PrpA|Hq^pB|Kqs. Moreover, by Theorem 15 there exists λ P r0,`8s such

that z “ Tλpx, yq. Then, w “ x ` y ´ Tλpx, yq and hence, from (67), there exists λ P r0,`8s such that w “
S λpx, yq. Finally, from (13) and (69), for each coherent assessment px, y, zq on tA|H, B|K, pA|Hq _ pB|Kqu
there exists λ P r0,`8s such that pA|Hq _ pB|Kq “ S λpA|H, B|Kq.

As a further comment, we also observe that, for each coherent assessment px, y, z,wq on the family

tA|H, B|K, pA|Hq ^ pB|Kq, pA|Hq _ pB|Kqu, there exists λ P r0,`8s such that

pA|Hq _ pB|Kq “ pA|Hq ` pB|Kq ´ TλpA|H, B|Kq “ S λpA|H, B|Kq.

We remark that in the case of some logical dependencies among the basic events A, B,H,K, the Frank

t-norm may represent the conjunction only for the values of λ in a subset of r0,`8s. In the next section we

examine a case where the subset is the interval r0, 1s.

5.3. The conjunction pA|Hq ^ pB|Kq, when A “ B

In this section we examine a case of logical dependencies by considering the conjunction pA|Hq^pB|Kq
when A “ B, that is pA|Hq ^ pA|Kq. By setting PpA|Hq “ x, PpA|Kq “ y and PrpA|Hq ^ pA|Kqs “ z, it

holds that

pA|Hq ^ pA|Kq “

$
’’’’&

’’’’%

1, if AHK is true,

0, if sAH _ sAK is true,

x, if sHAK is true,

y, if AH sK is true,

z, if sH sK is true,

that is

pA|Hq ^ pA|Kq “ AHK ` x sHAK ` y sKAH ` z sH sK.

In the next result we show that, for each coherent assessment px, yq, the lower bound on z is, not TLpx, yq,

but TPpx, yq; the upper bound is still TMpx, yq.

Theorem 17. Let A,H,K be three logically independent events, with H ‰ H, K ‰ H. The set Π of all

coherent assessments px, y, zq on the family F “ tA|H, A|K, pA|Hq ^ pA|Kqu is given by

Π “ tpx, y, zq : px, yq P r0, 1s2, TPpx, yq “ xy ď z ď mintx, yu “ TMpx, yqu. (70)
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Proof. We recall that, by Example 1, the assessment px, yq is coherent for every px, yq P r0, 1s2. Given

any coherent assessment px, yq, by Theorem 6 there exists an interval rz1, z2s of coherent extensions z to

pA|Hq ^ pA|Kq. We will show that z1 “ xy and z2 “ mintx, yu. LetM “ px, y, zq be a prevision assessment

on F , with px, yq P r0, 1s2. The constituents associated with the pair pF ,Mq and contained in H _ K are:

C1 “ AHK, C2 “ sAHK, C3 “ sA sHK, C4 “ sAH sK, C5 “ A sHK, C6 “ AH sK. The associated points Qh’s are

Q1 “ p1, 1, 1q,Q2 “ p0, 0, 0q,Q3 “ px, 0, 0q,Q4 “ p0, y, 0q,Q5 “ px, 1, xq,Q6 “ p1, y, yq. With the further

constituent C0 “ sH sK it is associated the point Q0 “ M “ px, y, zq. Considering the convex hull I (see

Figure 1) of Q1, . . . ,Q6, a necessary condition for the coherence of the prevision assessmentM “ px, y, zq
on F is thatM P I, that is the following system must be solvable

pΣq

"
λ1 ` xλ3 ` xλ5 ` λ6 “ x, λ1 ` yλ4 ` λ5 ` yλ6 “ y, λ1 ` xλ5 ` yλ6 “ z,ř6

h“1 λh “ 1, λh ě 0, h “ 1, . . . , 6.

First of all, we observe that solvability of pΣq requires that z ď x and z ď y, that is z ď mintx, yu; thus

z2 ď mintx, yu. We now verify that px, y, zq, with px, yq P r0, 1s2 and z “ mintx, yu, is coherent, from which

it follows that z2 “ mintx, yu. We distinguish two cases: piq x ď y and piiq x ą y.

Case piq. In this case z “ mintx, yu “ x. If y “ 0 the system pΣq becomes

λ1 ` λ6 “ 0, λ1 ` λ5 “ 0, λ1 “ 0, λ2 ` λ3 ` λ4 “ 1, λh ě 0, h “ 1, . . . , 6.

which is clearly solvable. In particular there exist solutions with λ2 ą 0, λ3 ą 0, λ4 ą 0, by Theorem 5,

as the set I0 is empty the solvability of pΣq is sufficient for coherence of the assessment p0, 0, 0q. If y ą 0

the system pΣq is solvable and a solution is Λ “ pλ1, . . . , λ6q “ px,
xp1´yq

y
, 0,

y´x

y
, 0, 0q. We observe that, if

x ą 0, then λ1 ą 0 and I0 “ H because C1 “ HK Ď H _ K, so thatM “ px, y, xq is coherent. If x “ 0

(and hence z “ 0), then λ4 “ 1 and I0 Ď t2u. Then, as the sub-assessment PpA|Kq “ y is coherent, it

follows that the assessmentM “ p0, y, 0q is coherent too.

Case piiq. The system is solvable and a solution is Λ “ pλ1, . . . , λ6q “ py,
yp1´xq

x
,

x´y

x
, 0, 0, 0q. We observe

that, if y ą 0, then λ1 ą 0 and I0 “ H because C1 “ HK Ď H _ K, so thatM “ px, y, yq is coherent. If

y “ 0 (and hence z “ 0), then λ3 “ 1 and I0 Ď t1u. Then, as the sub-assessment PpA|Hq “ x is coherent,

it follows that the assessmentM “ px, 0, 0q is coherent too. Thus, for every px, yq P r0, 1s2, the assessment

px, y,mintx, yuq is coherent and hence the upper bound on z is z2 “ mintx, yu “ TMpx, yq.

We now verify that px, y, xyq, with px, yq P r0, 1s2 is coherent; moreover we show that px, y, zq, with z ă xy,

is not coherent and the lower bound for z is z1 “ xy. First of all, we observe thatM “ p1 ´ xqQ4 ` xQ6, so

that a solution of pΣq is Λ1 “ p0, 0, 0, 1´ x, 0, xq. Moreover,M “ p1´yqQ3 `yQ5, so that another solution

is Λ2 “ p0, 0, 1 ´ y, 0, y, 0q. Then Λ “ Λ1`Λ2

2
“ p0, 0,

1´y

2
, 1´x

2
,

y

2
, x

2
q is a solution of pΣq such that I0 “ H.

Thus the assessment px, y, xyq is coherent for every px, yq P r0, 1s2. In order to verify that xy is the lower

bound on z we observe that the points Q3,Q4,Q5,Q6 belong to a plane π of equation: yX ` xY ´ Z “ xy,

where X, Y, Z are the axis’ coordinates. Now, by considering the function f pX, Y, Zq “ yX ` xY ´ Z, we

observe that for each constant k the equation f pX, Y, Zq “ k represents a plane which is parallel to π and

coincides with π when k “ xy. We also observe that f pQ1q “ f p1, 1, 1q “ x ` y ´ 1 “ TLpx, yq ď
xy “ TPpx, yq, f pQ2q “ f p0, 0, 0q “ 0 ď xy “ TPpx, yq, and f pQ3q “ f pQ4q “ f pQ5q “ f pQ6q “
xy “ TPpx, yq. Then, for every P “

ř6
h“1 λhQh, with λh ě 0 and

ř6
h“1 λh “ 1, that is P P I, it holds

that f pPq “ f
` ř6

h“1 λhQh

˘
“

ř6
h“1 λh f pQhq ď xy. On the other hand, given any a ą 0, by considering

P “ px, y, xy ´ aq it holds that f pPq “ f px, y, xy ´ aq “ xy ` xy ´ xy ` a “ xy ` a ą xy. Therefore, for any

given a ą 0 the assessment px, y, xy ´ aq is not coherent because px, y, xy ´ aq R I. Then, the lower bound

on z is z1 “ xy “ TPpx, yq. Thus, the set of all coherent assessments px, y, zq on F is the set Π in (70).
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Figure 1: Convex hull I of the points Q1,Q2,Q3,Q4,Q5,Q6. M1 “ px, y, z1q,M2 “ px, y, z2q, where px, yq P r0, 1s2, z1 “ xy,

z2 “ mintx, yu. In the figure the numerical values are: x “ 0.35, y “ 0.45, z1 “ 0.1575, and z2 “ 0.35.

Based on Theorem 17, we can give a result which is similar to Theorem 12, with n “ 2; but in this case

λ belongs to the interval r0, 1s.

Theorem 18. Let A,H,K be logically independents events, with H ‰ H, K ‰ H. The set of all prevision

coherent assessmentsM “ px, y, zq on the family F “ tA|H, A|K, pA|Hq ^ pA|Kqu is the set

tpx, y, zq : px, yq P r0, 1s2, z “ Tλpx, yq, λ P r0, 1su. (71)

Proof. By exploiting Theorem 17, the proof is the same as in Theorem 12.

We observe that for every λ P r0, 1s, it is possible to define the conjunction as pA|Hq ^ pA|Kq “
TλpA|H, A|Kq, for every px, yq P r0, 1s2. Moreover, for some coherent px, yq, it may happen that

TλpA|H, A|Kq is not a conjunction when λ P p1 ` 8s, as shown by the example below.

Example 6. Let A,H,K be logically independents events, with H ‰ H, K ‰ H. If, for instance, px, yq “
p1

2
, 1

2
q. Then, by Theorem 17, the extension z is coherent if and only if z P rT1p1

2
, 1

2
q, T0p1

2
, 1

2
qs “ r1

4
, 1

2
s.

Moreover, as Tλp
1
2
, 1

2
q is decreasing with respect to λ, it holds that

Tλp
1

2
,

1

2
q ă T1p

1

2
,

1

2
q “

1

4
, @ λ P p1 ` 8s.

Then, the extension z “ Tλp
1
2
, 1

2
q, with λ P p1 ` 8s, is not coherent; thus, TλpA|H, A|Kq, with λ P p1 ` 8s

and px, yq “ p1
2
, 1

2
q, is not a conjunction.

We also observe that, in particular cases, TλpA|H, A|Kq is a conjunction when λ P p1`8s. For instance,

if x “ 0, or y “ 0, it holds that, for every λ P r0,`8s, z “ Tλpx, yq “ 0 is the unique coherent extension of

the assessment px, yq. Then, TλpA|H, A|Kq, with x “ 0, or y “ 0, is a conjunction for every λ P r0,`8s.

The next result consider the particular case where H and K are incompatible.
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Theorem 19. Let A,H,K be three events, with A logically independent from both H and K, with H ‰ H,

K ‰ H, HK “ H. The set of all coherent assessments px, y, zq on the family F “ tA|H, A|K, pA|Hq ^
pA|Kqu is given by tpx, y, zq : px, yq P r0, 1s2, z “ xy “ TPpx, yqu.

Proof. LetM “ px, y, zq be a prevision assessment on F . We recall that, by Example 2, the coherence of

px, yq amounts to px, yq P r0, 1s2. Moreover, we observe that sHK “ K and H sK “ H and

pA|Hq ^ pA|Kq “ pxA sHK ` yAH sKq|pH _ Kq “ xAK|pH _ Kq ` yAH|pH _ Kq.

Then,

z “ xPpAK|pH _ Kqq ` yPpAH|pH _ Kqq “ xyPpK|pH _ Kqq ` xyPpH|pH _ Kqq “ xy “ TPpx, yq.

Thus, the set of all coherent assessments px, y, zq on the family F “ tA|H, A|K, pA|Hq ^ pA|Kqu is given by

tpx, y, zq : px, yq P r0, 1s2, z “ xy “ TPpx, yqu.

Remark 7. We remark that, when HK “ H, TλpA|H, A|Kq represents the conjunction pA|Hq ^ pA|Kq only

if λ “ 1. Indeed, from Theorems 15 and 19, it holds that

pA|Hq ^ pA|Kq “ pA|Hq ¨ pA|Kq “ TPpA|H, A|Kq “ T1pA|H, A|Kq, when HK “ H.

We point out again that, as shown by Theorem 18 and by Remark 7, in case of some logical dependencies

to assign conditional previsions and to represent conjunctions by means of a Frank t-norm Tλ is consistent

only for some values of λ. For instance, given any assessment px, yq on tA|H, B|Ku, with 0 ă x ă 1,

0 ă y ă 1, the assessment PrpA|Hq ^ pB|Kqs “ TLpx, yq is not coherent, because maxtx ` y ´ 1, 0u ă xy.

Moreover, TLpA|H, A|Kq “ T`8pA|H, A|Kq is not a conjunction.

6. Some further results on Frank t-norms

In this section we give some particular results on Frank t-norms and coherence of prevision assessments

on the family F “ tC1,C2,C3,C12,C13,C23,C123u, where Ci “ Ei|Hi,Ci j “ pEi|Hiq ^ pE j|H jq, and C123 “
pE1|H1q ^ pE2|H2q ^ pE3|H3q. We set PpCiq “ xi, i “ 1, 2, 3, PpCi jq “ xi j, ti, ju Ă t1, 2, 3u, and

PpC123q “ x123. In particular, we show that, under logical independence, the assessment

M “ px1, x2, x3, x12, x13, x23, x123q “ px1, x2, x3, Tλpx1, x2q, Tλpx1, x3q, Tλpx2, x3q, Tλpx1, x2, x3qq

on F is coherent for every px1, x2, x3q P r0, 1s3 when Tλ is the minimum t-norm TM “ T0, or Tλ is the

product t-norm, TP “ T1. Moreover, when Tλ is the Lukasiewicz t-norm TL “ T`8, the coherence ofM is

not assured. We first observe that, by Definition 4, the conjunction C123 “ pE1|H1q ^ pE2|H2q ^ pE3|H3q is

C123 “

$
’’’’’’’’’’’’&

’’’’’’’’’’’’%

1, if E1H1E2H2E3H3 is true

0, if sE 1H1 _ sE 2H2 _ sE3H3 is true,

x1, if sH1E2H2E3H3 is true,

x2, if sH2E1H1E3H3 is true,

x3, if sH3E1H1E2H2 is true,

x12, if sH1
sH2E3H3 is true,

x13, if sH1
sH3E2H2 is true,

x23, if sH2
sH3E1H1 is true,

x123, if sH1
sH2

sH3 is true.

(72)

The next result characterizes the set of all coherent assessments on F ([33, Theorem 15]).
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Theorem 20. Assume that the events E1, E2, E3,H1,H2,H3 are logically independent, with H1 ‰ H,H2 ‰
H,H3 ‰ H. Then, the set Π of all coherent assessments M “ px1, x2, x3, x12, x13, x23, x123q on F “
tC1,C2,C3,C12,C13,C23,C123u is the set of points px1, x2, x3, x12, x13, x23, x123q which satisfy the following

conditions $
’’’’’’’’&

’’’’’’’’%

px1, x2, x3q P r0, 1s3,

maxtx1 ` x2 ´ 1, x13 ` x23 ´ x3, 0u ď x12 ď mintx1, x2u,
maxtx1 ` x3 ´ 1, x12 ` x23 ´ x2, 0u ď x13 ď mintx1, x3u,
maxtx2 ` x3 ´ 1, x12 ` x13 ´ x1, 0u ď x23 ď mintx2, x3u,
1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 ě 0,

x123 ě maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,
x123 ď mintx12, x13, x23, 1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

(73)

Remark 8. As it can be verified, the last two inequalities in (73), that is

maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u ď x123 ď
ď mintx12, x13, x23, 1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u,

(74)

imply all the other inequalities in (73). For instance, in order to prove that x1 ď 1, we observe that from

(74) it holds that

x12 ` x23 ´ x2 ď 1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23,

from which it follows

x12 ` x23 ´ x2 ` x2 ` x3 ´ x12 ´ x13 ´ x23 ď 1 ´ x1,

that is x3 ´ x13 ď 1 ´ x1. Moreover, still from (74), it holds that x13 ` x23 ´ x3 ď x23, that is x3 ´ x13 ě
0. Thus x1 ď 1. Then, as (73) and (74) are equivalent, the set Π in Theorem 20 is the set of points

px1, x2, x3, x12, x13, x23, x123q which satisfy (74).

Then, by Theorem 20 it follows [33, Corollary 1]

Corollary 1. For any coherent assessment px1, x2, x3, x12, x13, x23q on tC1,C2,C3,C12,C13,C23u the exten-

sion x123 on C123 is coherent if and only if x123 P rx1
123
, x2

123
s, where

x1
123

“ maxt0, x12 ` x13 ´ x1, x12 ` x23 ´ x2, x13 ` x23 ´ x3u,
x2

123
“ mintx12, x13, x23, 1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23u.

(75)

We recall that in case of logical dependencies, the set of all coherent assessments may be a strict subset

of the set Π associated with the case of logical independence. However, the next result shows that the set of

coherent assessments is still Π in the case where H1 “ H2 “ H3 “ H (with possibly H “ Ω, see also [38,

p. 232]).

Theorem 21. Let be given any logically independent events E1, E2, E3,H, with H ‰ H. Then, the set Π of

all coherent assessments M “ px1, x2, x3, x12, x13, x23, x123q on F “ tC1,C2,C3,C12,C13,C23,C123u is the

set of points px1, x2, x3, x12, x13, x23, x123q which satisfy the conditions in formula (73).

A corollary similar to Corollary 1 could be associated to Theorem 21. For a similar result based on

copulas see [21].

In the next subsection we examine the coherence of the prevision assessment M “
px1, x2, x3, Tλpx1, x2q, Tλpx1, x3q, Tλpx2, x3q, Tλpx1, x2, x3qq on F “ tC1,C2,C3,C12,C13,C23,C123u in the

cases where Tλ is the minimum t-norm, or the product t-norm, or the Lukasiewicz t-norm.
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6.1. On the minimum t-norm

We recall that the Frank t-norm T0 is the minimum t-norm TM .

Theorem 22. Assume that the events E1, E2, E3,H1,H2,H3 are logically independent, with H1 ‰
H,H2 ‰ H,H3 ‰ H. The assessmentM “ px1, x2, x3, TMpx1, x2q, TMpx1, x3q, TMpx2, x3q, TMpx1, x2, x3qq
on F “ tC1,C2,C3,C12,C13,C23,C123u, with px1, x2, x3q P r0, 1s3, is coherent. Moreover, when

M “ px1, x2, x3, TMpx1, x2q, TMpx1, x3q, TMpx2, x3q, TMpx1, x2, x3qq, it holds that Ci j “ TMpCi,C jq “
mintCi,C ju, i ‰ j, and C123 “ TMpC1,C2,C3q “ mintC1,C2,C3u.

Proof. From Remark 8, the coherence ofM amounts to the inequalities in (74). Without loss of generality,

we assume that 0 ď x1 ď x2 ď x3 ď 1. Then x12 “ TMpx1, x2q “ x1, x13 “ TMpx1, x3q “ x1,

x23 “ TMpx2, x3q “ x2, and x123 “ TMpx1, x2, x3q “ x1. The inequalities (74) become

maxt0, x1, x1 ` x2 ´ x3u “ x1 ď x1 ď x1 “ mintx1, x2, 1 ´ x3 ` x1u. (76)

Thus, the inequalities are satisfied and henceM is coherent. By Remark 6, it holds that Ci j “ TMpCi,C jq “
mintCi,C ju, i ‰ j. Moreover, based on (72), it can be easily verified that C123 “ TMpC1,C2,C3q “
mintC1,C2,C3u.

Remark 9. As we can see from p76q and Corollary 1, the assessment x123 “ mintx1, x2, x3u is the

unique coherent extension on C123 of the assessment px1, x2, x3,mintx1, x2u,mintx1, x3u,mintx2, x3uq on

tC1,C2,C3,C12,C13,C23u.

6.2. On the Product t-norm

We recall that the Frank t-norm T1 is the product t-norm TP.

Theorem 23. Assume that the events E1, E2, E3,H1,H2,H3 are logically independent, with H1 ‰ H,H2 ‰
H,H3 ‰ H. The assessment M “ px1, x2, x3, TPpx1, x2q, TPpx1, x3q, TPpx2, x3q, TPpx1, x2, x3qq on

F “ tC1,C2,C3,C12,C13,C23,C123u, with px1, x2, x3q P r0, 1s3, is coherent. Moreover, when M “
px1, x2, x3, TPpx1, x2q, TPpx1, x3q, TPpx2, x3q, TPpx1, x2, x3qq, it holds that Ci j “ TPpCi,C jq “ CiC j, i ‰ j,

and C123 “ TPpC1,C2,C3q “ C1C2C3.

Proof. From Remark 8, the coherence ofM amounts to the inequalities in (74). As xi j “ TPpxi, x jq “ xix j,

i ‰ j, and x123 “ TPpx1, x2, x3q “ x1x2x3, the inequalities (74) become

maxt0, x1px2 ` x3 ´ 1q, x2px1 ` x3 ´ 1q, x3px1 ` x2 ´ 1qu ď x1x2x3 ď
ď mintx1x2, x1x3, x2x3, p1 ´ x1qp1 ´ x2qp1 ´ x3q ` x1x2x3u.

(77)

As px1, x2, x3q P r0, 1s3 it holds that xi ` x j ´ 1 ď xix j because xip1 ´ x jq ď 1 ´ x j. Then, the first

inequality in (77) is satisfied. Moreover, the second inequality is trivial. Thus,M is coherent. By Remark

6, it holds that Ci j “ TPpCi,C jq “ mintCi,C ju, i ‰ j. Finally, based on (72), it can be easily verified that

C123 “ TPpC1,C2,C3q “ C1C2C3.

6.3. On Lukasiewicz t-norm

We recall that the Frank t-norm T`8 is the Lukasiewicz t-norm TL. We show that the assessment

M “ px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, TLpx1, x2, x3qq on F “ tC1,C2,C3,C12,C13,C23,C123u
may be not coherent for some px1, x2, x3q P r0, 1s3, as shown in the example below.
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Example 7. Given any logically independent events E1, E2, E3,H1,H2,H3, the assessment

px1, x2, x3q “ p0.5, 0.6, 0.7q on tC1,C2,C3u is coherent. However, the prevision assessment

px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, TLpx1, x2, x3qq “ p0.5, 0.6, 0.7, 0.1, 0.2, 0.3, 0q on the

family F “ tC1,C2,C3,C12,C13,C23,C123u is not coherent. Indeed, formula (74) becomes

maxt0, 0.1`0.2´0.5, 0.1`0.3´0.6, 0.2`0.3´0.7u ď 0 ď mint0.1, 0.2, 0.3, 1´0.5´0.6´0.7`0.1`0.2`0.3u,

that is:

maxt0,´0.2u “ 0 ď 0 ď ´0.2 “ mint0.1, 0.2, 0.3,´0.2u;

thus, the inequalities in (74) are not satisfied and by Remark 8 the assessment p0.5, 0.6, 0.7, 0.1, 0.2, 0.3, 0q
is not coherent. Then, the results of Theorems 22 and 23 do not hold for the Lukasiewicz t-norm.

In the next result we illustrate further details on coherence of the prevision assessment

px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, TLpx1, x2, x3qq.

Theorem 24. Assume that the events E1, E2, E3,H1,H2,H3 are logically independent, with H1 ‰ H,H2 ‰
H,H3 ‰ H. LetM “ px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, TLpx1, x2, x3qq be a prevision assess-

ment on the family F “ tC1,C2,C3,C12,C13,C23,C123u. If px1, x2, x3q P r0, 1s3 and x1 ` x2 ` x3 ´ 2 ě 0

then M is coherent. If px1, x2, x3q P r0, 1s3, x1 ` x2 ´ 1 ą 0, x1 ` x3 ´ 1 ą 0, x2 ` x3 ´ 1 ą 0, and

x1 ` x2 ` x3 ´ 2 ă 0, thenM is not coherent.

Proof. We observe that the set of points px1, x2, x3q P r0, 1s3 such that x1 ` x2 ` x3 ´ 2 ě 0 is the convex

hull T of the points p1, 1, 0q, p1, 0, 1q, p0, 1, 1q, p1, 1, 1q, which is a tetrahedron. If px1, x2, x3q P T , then

x1 ` x2 ` x3 ´ 2 ě 0, and it holds that

x1 ` x2 ´ 1 ě 0, x1 ` x3 ´ 1 ě 0, x2 ` x3 ´ 1 ě 0,

with

0 ď x1 ` x2 ` x3 ´ 2 ď mintx1 ` x2 ´ 1, x1 ` x3 ´ 1, x2 ` x3 ´ 1u. (78)

Thus, the assessment becomesM “ px1, x2, x3, x1 ` x2 ´ 1, x1 ` x3 ´ 1, x2 ` x3 ´ 1, x1 ` x2 ` x3 ´ 2q.

Moreover, from (78), the conditions of coherence onM given in (74) become

maxt0, x1 ` x2 ` x3 ´ 2u ď x1 ` x2 ` x3 ´ 2 ď mintx1 ` x2 ´ 1, x1 ` x3 ´ 1, x2 ` x3 ´ 1, x1 ` x2 ` x3 ´ 2u,

that is

x1 ` x2 ` x3 ´ 2 ď x1 ` x2 ` x3 ´ 2 ď x1 ` x2 ` x3 ´ 2,

which are trivially satisfied. Then, by Remark 8,M is coherent.

If px1, x2, x3q P r0, 1s3, x1 ` x2 ´ 1 ą 0, x1 ` x3 ´ 1 ą 0, x2 ` x3 ´ 1 ą 0, and x1 ` x2 ` x3 ´ 2 ă 0,

then

1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 “ 1 ´ x1 ´ x2 ´ x3 ` TLpx1, x2q ` TLpx1, x3q ` TLpx2, x3q;

moreover

1 ´ x1 ´ x2 ´ x3 ` TLpx1, x2q ` TLpx1, x3q ` TLpx2, x3q “ x1 ` x2 ` x3 ´ 2 ă 0.

Then the inequality 1 ´ x1 ´ x2 ´ x3 ` x12 ` x13 ` x23 ě 0 in (74) is not satisfied. Therefore, by Remark

8,M is not coherent. This is the case, for instance, in Example 7.
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Remark 10. Notice that, if we consider the assessment px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, x123q
on the family tC1,C2,C3,C12,C13,C23,C123u, under the condition x1 ` x2 ` x3 ´ 2 ě 0, the conditions of

coherence given in (74) become

maxt0, x1 ` x2 ` x3 ´ 2u ď x123 ď mintx1 ` x2 ´ 1, x1 ` x3 ´ 1, x2 ` x3 ´ 1, x1 ` x2 ` x3 ´ 2u,

that is the conditions of coherence onM given in (74) become

x1 ` x2 ` x3 ´ 2 ď x123 ď x1 ` x2 ` x3 ´ 2.

Thus, the unique coherent extension on C123 is x123 “ x1 ` x2 ` x3 ´ 2 “ TLpx1, x2, x3q. In this case, it

holds that Ci j “ TLpCi,C jq “ Ci ` C j ´ 1, i ‰ j, and C123 “ TLpC1,C2,C3q “ C1 ` C2 ` C3 ´ 2.

Finally, we point out again that when Tλ is the Lukasiewicz t-norm TL “ T`8, it may happen that

the assessmentM “ px1, x2, x3, TLpx1, x2q, TLpx1, x3q, TLpx2, x3q, TLpx1, x2, x3qq is not coherent, that is for

some values x1, x2, and x3, the assessmentM, with x12 “ TLpx1, x2q, x13 “ TLpx1, x3q, x23 “ TLpx2, x3q,

and x123 “ TLpx1, x2, x3q, is not coherent. Then, to assign conditional previsions by means of Lukasiewicz

t-norm may be inconsistent. In Theorem 24 we gave some sufficient conditions for coherence/incoherence

ofM when using TL.

7. Conclusions

In this paper we studied conjoined and disjoined conditionals, Frank t-norms and t-conorms, and

the sharpness of Fréchet-Hoeffding bounds. By studying the solvability of suitable linear systems, we

showed that, under logical independence, the Fréchet-Hoeffding bounds for the prevision of the con-

junction and the disjunction of n conditional events are sharp. In particular we illustrated some de-

tails in the case n “ 3. We gave a geometrical characterization of the set Π of all coherent previ-

sion assessments on tE1|H1, . . . , En|Hn,C1¨¨¨nu, by verifying that Π is convex. We discussed the case

where previsions of conjunctions are assessed by Lukasiewicz t-norms and we found explicit solutions

for the relevant linear systems; then, we analyzed a selected example. We studied the representa-

tion of the prevision of C1¨¨¨n and D1¨¨¨n by a Frank t-norm Tλ and a Frank t-conorm S λ, respectively.

Then, we characterized the sets of coherent prevision assessments on tE1|H1, . . . , En|Hn,C1¨¨¨nu and on

tE1|H1, . . . , En|Hn,D1¨¨¨nu by using Tλ and S λ. We showed that, under logical independence, TλpA|H, B|Kq
is a conjunction pA|Hq ^ pB|Kq and S λpA|H, B|Kq is a disjunction pA|Hq _ pB|Kq, for every λ P r0,`8s.
We also examined the case of logical dependence where A “ B, by obtaining the set of coherent as-

sessments on A|H, A|K, pA|Hq ^ pA|Kq and its representation in terms of Tλ, with λ P r0, 1s. We ob-

tained some particular results on Frank t-norms and coherence of prevision assessments on the family

F “ tC1,C2,C3,C12,C13,C23,C123u. In particular, we verified that, under logical independence, the

assessment M “ px1, x2, x3, Tλpx1, x2q, Tλpx1, x3q, Tλpx2, x3q, Tλpx1, x2, x3qq on F is coherent for every

px1, x2, x3q P r0, 1s3 when Tλ is the minimum t-norm TM , or the product t-norm TP. We showed that in

these cases the conjunction C123 coincides with TMpC1,C2,C3q, or TPpC1,C2,C3q, respectively. Based on

a counterexample, we verified that, when Tλ is the Lukasiewicz t-norm TL, the coherence ofM is not as-

sured. Then, we remarked that the Lukasiewicz t-norm of three conditional events may not be a conjunction.

Finally, we gave two sufficient conditions for coherence and incoherence of M, respectively, when using

the Lukasiewicz t-norm. Future work could concern possible applications to fuzzy logic in the setting of

coherence (see, e.g., [8, 13, 14]) by interpreting multidimensional membership functions as previsions of

conjunctions of conditional events.
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