
Citation: Amato, D.; Calderaro, S.; Lo

Bosco, G.; Rizzo, R.; Vella, F. Metric

Learning in Histopathological Image

Classification: Opening the Black Box.

Sensors 2023, 23, 6003. https://

doi.org/10.3390/s23136003

Academic Editors: Sergiu Nedevschi

and Mitrea Delia-Alexandrina

Received: 9 May 2023

Revised: 15 June 2023

Accepted: 22 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Metric Learning in Histopathological Image Classification:
Opening the Black Box
Domenico Amato 1 , Salvatore Calderaro 1 , Giosué Lo Bosco 1 , Riccardo Rizzo 2,* and Filippo Vella 2

1 Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy;
domenico.amato01@unipa.it (D.A.); salvatore.calderaro01@unipa.it (S.C.); giosue.lobosco@unipa.it (G.L.B.)

2 Institute for High-Performance Computing and Networking, National Research Council of Italy,
90146 Palermo, Italy; filippo.vella@icar.cnr.it

* Correspondence: riccardo.rizzo@icar.cnr.it; Tel.: +39-091-680-9714

Abstract: The application of machine learning techniques to histopathology images enables advances
in the field, providing valuable tools that can speed up and facilitate the diagnosis process. The
classification of these images is a relevant aid for physicians who have to process a large number of
images in long and repetitive tasks. This work proposes the adoption of metric learning that, beyond
the task of classifying images, can provide additional information able to support the decision of the
classification system. In particular, triplet networks have been employed to create a representation
in the embedding space that gathers together images of the same class while tending to separate
images with different labels. The obtained representation shows an evident separation of the classes
with the possibility of evaluating the similarity and the dissimilarity among input images according
to distance criteria. The model has been tested on the BreakHis dataset, a reference and largely
used dataset that collects breast cancer images with eight pathology labels and four magnification
levels. Our proposed classification model achieves relevant performance on the patient level, with
the advantage of providing interpretable information for the obtained results, which represent a
specific feature missed by the all the recent methodologies proposed for the same purpose.

Keywords: metric learning; triplet networks; embedding; BreakHis; patient level accuracy; breast
cancer imaging; WSI; classification interpretability; visualization

1. Introduction

Van der Laak et al. in [1] point out that the digitisation of patient tissue samples,
usually called Whole Slide Images (WSI), enabled the development of a set of techniques in
the field of biomedical image analysis under the name of computational pathology. In the
histopathology field, deep learning algorithms perform similarly to trained pathologists,
but only very few of these have reached a clinical implementation.

The resolution of the WSI image can reach 10, 000× 10, 000 pixels and may present
high morphological variance and various artifacts [2]. Due to the general complexity of
such kinds of images, the analysis of WSI requires a high degree of expertise and can
be very time-consuming. In addition, the complexity of this task is further increased by
the need to explore the samples at different magnification scales. As a consequence, a
complete diagnosis is often obtained through a discussion among specialised physicians
that compare the outcomes of different medical analyses (not only images).

Due to their dimensions, WSI images are challenging to process as a whole. For this
reason, they are broken into patches or tiles and given as input to the machine learning
(ML) algorithms for classification purposes. The attribution of the class to the WSI images is
then obtained by combining the labels predicted for the related patches [3]. This task is not
simple due to the morphological variance inside the WSI; however, patch analysis remains
the most-used technique for WSI processing, and the development of patch processing and
classification systems is an active research field.
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To measure and compare the contribution of such approaches, some datasets have
been proposed in the literature. One of them, considered as a standard, is the BreakHis
dataset (BH) [4]. This dataset comprises 7909 histopathological images of eight different
kinds of breast cancer collected from 82 patients. For a fair comparison among the proposed
approaches, the authors provided a specific split into a 5-fold structure. A deeper descrip-
tion of BH is reported in Section 3. Many deep neural networks (DNN) have been proposed
for histopathological image classification [1], due to their state-of-the-art performances in
the generic problem of image classification. In many cases, the architecture used to classify
BH images is very close to the ones proposed for other classification tasks, such as the case
of ImageNet Large Scale Visual Recognition Challenge [5], that are based on convolutional
layers [6]. These kinds of networks have a common architecture constituted by two parts:
a first one devoted to features extraction and a second combining the extracted features
for classification.

Despite the relevant performance that deep neural networks (DNNs) can achieve in
the image classification task, their adoption in the medical domain is not straightforward
because they are black-box methods, making it difficult to understand the logic behind
specific decisions.

Today explainability and interpretability are an important part of the discussion as
well as research work about deep neural systems and their performances [7]. What we need
are systems that make consistent decisions using an explainable mechanism and provide
information that users can understand and find meaningful, particularly in the medical
domain. An example of an interpretability mechanism giving information that is not fully
significant is CAM or Grad-CAM [8], which can highlight an image region crucial for the
classification result; however, this mechanism can not explain what, in that region, is truly
important or whether it fits with the shared medical knowledge [9].

The paper is structured as follows: the following section reports the related works in
the field of classification of the BreakHis dataset, and in the interpretable deep ANN, the
Section 3 reports the details on the BreakHis dataset, the proposed architecture and the
training method; the obtained results and the discussions are reported in Sections 4 and 5;
finally, in Section 6 some conclusions are drawn.

2. Related Works

We already proposed some studies on image classification supporting tools based on
metric learning with fuzzy techniques [10] or convolutional deep networks [11,12], or X-ray
image classification [13]. The issues related to the classification of histological images are
due to the variability of the different image acquisition equipment. For example, authors
in [14] indicate stain variability as one of the challenges in classification; stain normalisation
was also addressed in [15].

In this paper, we focus on the BreakHis dataset [4], which is widely adopted as a
workbench and used in all the papers discussed in this section. The structure of the dataset
will be discussed in the Section 3.1, but it is necessary to highlight here some characteristics
related to the image classes, the magnification level, and the train/test split. The dataset
has a hierarchical organisation with two super-classes (Benign and Malignant) and eight
sub-classes (four for each super-class). The images in the dataset have four different
magnification levels 40×, 100×, 200×, and 400×, which are hierarchically related. For
example, images at 200× will contain details of images at 100× and 40×.

The availability of images at different magnification levels leads to two possible set-
ups: the first is the study of magnification-specific (MS) classification when a classifier
is trained and tested for each magnification level and the second is the magnification-
independent (MI) classification when the classifier is trained and tested using all the images
regardless of their magnification level.

The developers of the BreakHis dataset released a 5-fold train/test split that can
be used to facilitate the comparison of the results among different approaches [4]. The



Sensors 2023, 23, 6003 3 of 20

proposed split is created at patient level so that images of the same patient are never in the
training and testing set of the same fold run.

This split is often overridden by many authors for various reasons, but in order to
make fair and reliable comparisons, its use is highly recommended, as in the case of
this manuscript.

The availability of patient information means that the assessment of the results can be
performed considering the images related to a single patient (patient-level assessment or
PLA) or the single images (image-level assessment or ILA). In this work, we have decided
to adopt only the PLA paradigm since it is undoubtedly the most reliable in terms of
closeness to the real case of histopathological image classification. The specific formulas of
PLA will be discussed in Section 3.

In the following subsections, we survey most of the methodologies proposed so far
for the histopathology image classification problem that use the BH dataset, differentiating
them in terms of image magnification, whether specific or independent. Special attention
will be devoted to the contributions that follow the folds separation suggested by the
BreakHis dataset developers, whose results can be directly compared with the methodology
we present in this manuscript.

2.1. Magnification Independent Methods

Magnification Independent Binary (MIB) classifiers are trained to separate benign from
malignant images using all the available images, regardless of magnification factors. Only
a few works fall into this category, and only two use the 5-fold split suggested by Spanhol
et al. in [4]. In the following, we will first introduce the two works that use this split, while
the latter uses a different split.For each examined work, the PLA value is reported. PLA
is an interesting comparison measure since it summarizes the accuracy for a patient and
is the most realistic measure of the system performance when a new patient is examined.
Other metrics, even if not present in the literature works, are computed for the proposed
approach and are shown in Section 4.

Bayramoglu et al. [16] propose two convolutional neural networks to classify breast
cancer histopathology images for the MIB case. These models are used to predict the malig-
nancy of the input sample (single-task fashion) or both the malignancy and magnification
factor of the input (multi-task fashion). For the single task, a PLA of 82% is obtained.

Another model, proposed by Sun et al. [17], uses an approach similar to the one
presented in this paper with both MIB and MSB tasks. Authors adopt a siamese and a
triplet network to create a new representation of the images, and they use a different
loss function that also considers the samples’ imbalance. The images, without any pre-
processing, are fed to the network that implements the classification, and the obtained PLA
accuracy is about 88%, which is slightly lower than ours.

The last work, proposed by Gupta et al. [18], adopts selected colour and texture de-
scriptors, baseline classifiers such as SVM, kNN, Decision Trees and Discriminant Analysis,
fused together with majority voting. For the model validation, a different train/test split
was used. A total of 58 patients (70%) were randomly chosen for the training set and the
remaining 24 (30%) for the test set and the process was repeated for five trials. For the
magnification-independent classification, the model achieves an average PLA of 87.53%.

2.2. Magnification Specific Methods

Several methodologies have been proposed for the case of Magnification Specific
Binary classification (MSB). We have decided to filter them on the basis of the adoption of
the training-test split proposed in [4] since this choice provides a solid comparison process.
As a consequence, all the accuracy values of the methodology reported in the following
works use the same training-test split. This is the case for the methodology proposed by
Sun et al. [17] described in the previous paragraph, which has also been used for the MSB
case. The results show an average PLA ranging from ∼87% (400×) to ∼91% (200×) (see
Table 1 for details).
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Apart from the provided split, the proposers Spanhol et al. have also investigated two
approaches based on patches extraction [19].

The patches for training were obtained by two strategies: using a sliding window with
50% overlap or a random extraction of 1000 patches with no overlap check. These strategies
were repeated twice to obtain patches of 32× 32 pixels and patches of 64× 64 pixels. For
the classification task, the authors proposed a variant of the AlexNet architecture. The
images of the test set were obtained by using patches extracted with a sliding window
and no overlap. The final classification of an image was the result of a combination of
classification results, each one computed on a single patch. The best results were obtained
with the training of 1000 patches of the largest dimension and using the Max Fusion Rule
as a combination paradigm. The patient accuracy values for each magnification level range
from 84% (200×) to 90% (200×) for PLA (see Table 1 for details).

Spanhol et al. have proposed another solution [20] exploiting the adoption of specific
image features, named DeCAF. They are obtained by extracting the outputs of the top
3 layers of a pre-trained AlexNet-like network and using them as the input of a CNN
classifier. The experiments were organised considering a patch-based recognition, using a
different number of patches ranging from 1 to 16. The achieved accuracy ranges from 82%
(400×) to 86% (200×) for PLA (see Table 1 for details).

The idea of DeCAF features has also been investigated by Benhammou et al. [21] using
a pre-trained Inception v3 [22]. To obtain the features, during the fine-tuning step, only the
weights of the last fully connected layer (situated before the softmax layer) are retrained,
while the other net layers are frozen. A pre-processing step on the images based on the
mean-pixel subtraction is used. The achieved accuracy ranges from ∼80% (400×) to 87%
(40×) for PLA (see Table 1 for details).

Another couple of studies that use pre-defined features was proposed by Song et al. [23].
The two approaches exploit Fisher Vectors encoding [24] as feature representation. In their
first approach [23], the authors used the descriptors together with a linear support vector
machine. First, the features of VGG-D network, pre-trained on the ImageNet dataset, were
extracted and then represented with Fisher vector encoding. Next, an adaptation layer
formed by two locally connected layers was adopted, and an additional classification layer
was also added. The descriptors obtained from the adaptation layer were used to train
linear-kernel support vector machines. The obtained average PLA is bounded by ∼86%
(400×) and∼90% (40×) (see Table 1). The second approach [25] provides a supervised intra-
embedding algorithm that uses a neural network to transform the Fisher Vector encoding
into more discriminating feature representations. The input images are re-scaled to multiple
sizes, and for each re-scaled image, the VGG-VD ConvNet pre-trained on ImageNet is
applied so that the last layer produces a feature vector of size 512. The features collected
from all the re-scaled images are pooled together to generate the so-called ConvNet-based
Fisher Vectors (CVF) encoding of the image. To perform the classification, a Support Vector
Machine is used. The average PLA values are bounded by ∼87% (400×) and ∼90% (40×)
(see Table 1 for details).

Sudharshan et al. adopted a Multiple Instance Learning (MIL) framework for convo-
lutional neural networks [26]. MIL is concerned with learning from sets (bags) of objects
(instances), where the classification label is assigned to the bag, not to the single instance.
For the training phase, 1000 patches of size 64× 64, are randomly extracted from each
image, while for the testing phase, a grid of non-overlapping patches is extracted, yielding
around 100 patches per image. Each patch is represented by a specific 162-long feature vec-
tor of Parametric-Free Threshold Adjacency Statistics (PFTAS) features. The work presents
an evaluation of twelve different MIL variants, both parametric and non-parametric.

The results are provided for two different settings: one where each patient is consid-
ered as a bag, considering multiple images for each of them and the second where each
image is a bag composed of patches. The best results are obtained at Patient Level using
a non-parametric MIL. They range from ∼87% (200×) to ∼92% (40×) and are listed in
Table 1 for details.
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Table 1. Triplet net embedding: MSB classification (PLA) results and comparison with the
other methods.

Method 40× 100× 200× 400×
Sun et al. [17] 87.51± 4.07 89.12± 2.86 90.82± 3.31 87.10± 3.80

Spanhol et al. [19] 90.0± 6.7 88.4± 4.8 84.6± 4.2 86.1± 6.2
Spanhol et al. [20] 84.0± 6.9 83.9± 5.9 86.3± 3.5 82.1± 2.4

Benhammou et al. [21] 87.6± 3.9 82.4± 2.7 86.1± 0.7 79.7± 3.2
Song et al. [23] 90.0± 3.2 88.9± 5.0 86.9± 5.2 86.3± 7.0
Song et al. [25] 90.2± 3.2 91.2± 4.4 87.8± 5.3 87.4± 7.2

Sudharshan et al. [26] 92.1± 5.9 89.1± 5.2 87.2± 4.3 87.8± 5.6
Proposed method (k-NN) 87.60± 3.92 88.17± 3.86 89.37± 3.26 85.98± 2.78

The papers reported and discussed so far are the ones that can be directly compared
with our proposal since all of them share the same dataset split for computing classifier
performances. Other train-test splits at the patient level are available, such as the one
proposed by Kumar and Rao [27], but it is not actually considered a benchmark dataset.
Interested readers could decide to adopt it in their benchmark studies.

As said before, it is very important that the train and test sets must not contain im-
ages from the same patients; otherwise, the samples from the same patient could occur
in both train and test sets at different magnification levels. This point makes the accu-
racy artificially higher than the other approaches. Several methodologies overlooking this
issue have been proposed. An example is the work in Wei et al. [28], which proposes a
CNN architecture trained from scratch with ImageNet first and fine-tuned with the BH
dataset, or in Bardou et al. [29], which compared the use of two sets of features, hand-
crafted and automatically extracted. Other works use GoogleNet [30], different versions of
VGG networks [31] and Restricted Boltzmann Machine [32]. Finally, some contributions
restrict the study to images at specific magnification sizes, such as [33,34], which used only
40× images.

3. Materials and Methods
3.1. The BreakHis Dataset

The BreakHis dataset comprises 7909 images at a resolution of 700× 460 pixels ob-
tained from tissue samples of 82 breast cancer patients. These samples are divided into
two classes, Benign and Malignant, and each of them is separated into four sub-classes,
according to the structure in Table 2. The images were acquired at different magnification
levels (40×, 100×, 200×, 400×); Figure 1 reports sample images from the dataset.

In this paper, we are only interested in the dichotomy of Benign vs. Malignant, and
Table 2 shows that the number of images in the malignant class is double that of the number
of benign images.

Although many authors used pre-processing techniques on images, such as stain-
normalisation or whitening, we do not consider any of these techniques because our
preliminary experiments show that they provide no performance increase. Moreover, these
pre-processing techniques require an additional processing time, sometimes very long, and
add a new set of parameters: for example, in stain normalisation a reference image must be
selected from the training dataset; or in a whitening procedure, color mean and variance
must be calculated on available training images.

As said before, the original paper presenting the dataset [4] also proposes a train/test
split for the training of a classifier. This split is based on a 70–30% proportion that also
considers the patient set to avoid the presence of images of the same patient both in the
training and test set.
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Table 2. The BreakHis dataset: for each patient the set of images is divided in magnifications 40×,
100×, 200×, 400×.

Benign Cancer Types No. of Images No. of Patients

Adenosis 444 4
Fibroadenoma 1014 10
Tubular Adenoma 453 7
Phyllodes Tumour 569 3

Total 2480 24

Malignant Cancer Types No. of Images No. of Patients

Ductal Carcinoma 3451 38
Lobular Carcinoma 626 5
Mucinous Carcinoma 792 9
Papillary Carcinoma 560 6

Total 5429 58

Figure 1. Some images from BreakHis dataset. There is a column for each magnification factor and a
row for each subclass: A (Adenosis), F (Fibroadenoma), TA (Tubular Adenoma) and PT (Phillodes
Tumor) are benign, DC (Ductal Carcinoma), LC (Lobular Carcinoma), MC (Mucinous Carcinoma)
and PC (Papillary Carcinoma) are malignant.
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The availability of this specific partitioning is of great advantage for the assessment of
the overall quality and potential limitations of the results, which, in the general case, must
be carefully performed by the adoption of specific statistical tools [35].

Using this method, five training/test splits were generated and can be downloaded
with the dataset allowing a complete comparison of the classification results.

The classification results will be reported using the so-called PLA [4], i.e., a perfor-
mance index that takes into account the results on a patient level in the following way:

Patient Score =
Nrec

NP
(1)

where NP is the number of images available of the patient P, and Nrec is the fraction of NP
images correctly classified. The Patient Level Accuracy (PLA) is defined as follows:

PLA =
∑ Patient Score

Total Number o f patients
. (2)

Considering the images of the benign class as positive and the images of the malignant
class as negative, the Patient Score is defined as the accuracy for a single patient. PLA is an
average of the Patient Scores, evaluated as anaverage among the patients.

3.2. The Proposed Neural Network Architecture

The general architecture of a deep neural network image classifier can be viewed as a
stack comprising a feature extraction part, typically composed of pre-trained convolutional
layers, followed by a set of fully connected (FC) layers that implement a Multi-Layer
Perceptron (MLP) architecture and serve as a classifier. Among all the layers, only the final
layer is trained specifically for network specialisation.

Sometimes in these deep architectures, the last convolutional layer is followed by
a “squeeze” operation that precedes the fully connected part of the architecture. The
MLP layers have decreasing dimensions from thousands of units to the number of classes.
Connecting a layer with dimension H to a layer with dimension D units in a fully connected
architecture generates an H × D weight matrix. As explained in [36], introducing a linear
layer K, with K << D and K << H, results in two matrices H × K and K × D and in a
number of weights K× (H + D). The reduced number of weights result in a faster training
and can beneficial.

In our architecture, we used a linear layer as a filter for the “signals” generated by
the feature extraction lower layers. The training of this linear layer is aimed at separating
the input of different classes and can significantly improve the classification results. We
perform this training using the metric learning technique implemented with the triplet
network learning paradigm; separating the two classes allowed us to remove the MLP
layers and use a simpler classifier.

The network proposed in this work uses a ResNet152 network [37], pre-trained on the
ImageNet dataset [5] as feature extractor (indicated in Figure 2). These features are linearly
projected onto a lower-dimensional space embedding layer (see the Embedding block in
Figure 2a). The number of features generated by the ResNet152 is 2048, and the size of the
embedding layer is 512. The resulting embedding provides a data representation that is so
effective that the MLP layers can be substituted by a simpler k-NN classifier, as shown in
Figure 2a. In the ablation study (see Figure 2b), we will demonstrate that without the linear
embedding, the results are noticeably worse.
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(a) (b)

Figure 2. A representation of the classification network proposed in this work: (a) The architec-
ture with the embedding layer. (b) The architecture without the embedding layer used in the
ablation study.

The feature extraction of the proposed model is not interpretable or explainable, since
ResNet is a very complex model and is already trained via transfer learning.

The training procedure of the linear layer is aimed to transform the feature space,
obtained from the feature extraction layer, in a lower dimension space where images of
the same class are near each other and images of different classes are taken apart. In this
training mechanism, we are trying to confirm underlying information in the training set:
images of the same class should have similar characteristics and they should not share
features with images of another class.

3.3. Metric Learning

Deep metric learning aims to derive effective embeddings from the input data using
one or more neural networks and an optimisation strategy based on a chosen distance.
In this field, the most-used architectures are the siamese networks [38] and the triplet
networks [39]. Both models are constituted by neural networks with shared weights:
siamese networks use two neural networks while the triplet network, which we used in
this work, has three neural networks.

Figure 3 reports a representation of the training phase; in this figure three deep net-
works ResNet152 produce the representations xa, xp, xn of the three inputs: xa corresponds
to the anchor example, xp is the representation of the positive example, an input of the same
class of xa, and xn is the negative example, an input of a different class. The embedding
layer will transform the representations x∗ ∈ <n to the embeddings r∗ ∈ <n′ .

Figure 3. A representation of the network; the vertical double arrow indicates the weights sharing.



Sensors 2023, 23, 6003 9 of 20

Given a distance metric d, during training the shared weights of the embedding
layer are adjusted so that the value d(ra, rn) is greater than a prefixed margin m w.r.t. the
distance d(ra, rp). The distance d and the margin m are parameters of the model. The
most-used distances are defined using the cosine function or euclidean distance. The
representation with three networks and shared weights, like the one in Figure 3, is a
common way to indicate the training procedure; however, it is important to point out
that the implementation uses a single network receiving the three inputs organised into
a sequence, then collecting and storing the values to calculate the global result. The loss
function used for training the model is the so-called triplet margin loss [40], defined as:

ltriplet = max
{

0, d(ra, rp)− d(ra, rn) + m
}

. (3)

During the training phase a mining strategy searches—inside the input mini batch—
the most effective triplets to update the model. There are different mining strategies [40];
here we adopt the so-called semi-hard mining strategy, defined as:

d(ra, rp) < d(ra, rn) < d(ra, rp) + m. (4)

This strategy chooses the negative sample to be farther away from the anchor, with
respect to the positive, but always bounded by the margin m. As a consequence, the
network’s loss is bounded by the margin m.

3.4. Interpretability of the Proposed Model

The interpretability that distinguishes our proposed paradigm belongs to the category
of interpretable methodology based on visual analytics [41].

The deep metric learning network finds a proper embedding, where the mappings of
all the items to classify can be visualised in two or three dimensions using a dimension-
ality reduction algorithm. One possibility that we have adopted in this paper is the use
of Uniform Manifold Approximation and Projection (UMAP) [42], which accomplishes
dimensionality reduction using Riemannian geometry and algebraic topology. Metric
learning and UMAP introduce a first level of interpretability to the model since they enable
the visualisation of the training images that are close to the test ones, and consequently
perform neighbour detection (see Figure 4a for an example).

(a) (b)

Figure 4. Classification MIB: (a) Bi-dimensional representation of the input dataset both training
(upper part of Figure 4a) and test set (bottom part of Figure 4b); (b) Number of neighbours vs. average
accuracy.

The visualisation of the embedding could also be beneficial to study the distribution
of the images related to a specific chosen patient (see Figure 5).
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Figure 5. Position of the embedded images of the test patient 15687B in the embedding space w.r.t.
the training set embedded images. Our system does not correctly classify most images relating to
this patient.

The second level of interpretability is introduced by a classifier that clearly maps the
input to the output, such as a linear classifier, a Support Vector Machine, or a simple k-NN,
like the one we adopted here. Unlike the others, with k-NN, the nearest neighbors can
be used to visually estimate the support for a prediction, providing human-interpretable
explanations of predictions. Furthermore, it is always possible for each classified image to
display the training images that led to the class labeling (see Figure 6). We find this option
very useful as part of a decision support system, where analysts can have interpretable
information about the suggested output.

Figure 6. An example of correct classification of a benign image. The test image is on the (left); its
nearest neighbours with the associated distance are on the (right).

The performances of the proposed model are similar, if not better, to those of other
classification systems of the same kind, confirming that the interpretability can be obtained
without compromising the performances [7].

3.5. Experimental Setup

Experiments have been performed using a workstation equipped with a 12th Gen
Intel® Core™ i9-12900KS and an Nvidia 3090 Ti GPU. The total amount of system memory
is 32 Gbyte of DDR5. The GPU is also supplied with 24 Gbyte of DDR5 memory and adopts
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a CUDA parallel computing platform. The operating system is Ubuntu 22.10. We used the
TensorFlow Python library [43] to carry out the experiments. The training time for the MIB
configuration is about 11 min, while for the MSB configuration about 12 min (3 min for
each magnification). We have trained the network for 20 epochs with a mini-batch size of
32 and using the Adam optimisation algorithm [44] with a learning rate of 1× 10−5 and
weight decay factor of 1× 10−4. All the images were resized to 224× 224.

4. Results

The classification performances obtained with the proposed architecture in both MIB
and MSB tasks are reported using the PLA approach. In order to justify the Embedding
Layer, an ablation study was carried out, which is described in Section 4.2, using the same
classification tasks with the architecture in Figure 2b. Finally, an example of the efficacy of
the projection is reported in Section 4.3.

4.1. Results with the Proposed Architecture: Triplet Net Embedding

The proposed architecture has been used to classify the BH images in the Magnification
Independent (MIB) and Magnification Specific (MSB) fashion. The train/test split used is
the 5-fold split proposed by the authors of the dataset.

The training with the MIB procedure uses all the available images in the training
set regardless of the magnification factor. After the training of the embedding system,
the UMAP procedure was used to visualise the images as points in the embedding space.
Then a set of trials was carried out to optimise the k-nearest neighbourhood value. The
UMAP visualisation and the plot of the accuracy vs. k-values are in Figure 4; the lower
section of Figure 4a shows the embedding of the test images. The upper part of Figure 4a
shows that the two clusters of the embedding points obtained from the training images are
well-separated. The left cluster collects all the malignant training image projections, and
the right cluster collects the benign ones. The same configuration can be observed at the
bottom of the sub-figure that reports the test image embeddings. It can be noticed that both
sets present two well-separated clusters, and no image is mapped outside these specific
areas. Even the misclassified test images are represented as dots in the wrong cluster; there
is only a small detached cluster of images on the upper part of the figure.

The plot in Figure 4b shows that the value of k has very little influence on the accuracy
results: the accuracy change from k = 3 to k = 21 is less than 1/100.

The PLA accuracy values are in Table 3, compared with the results obtained by
Bayramoglu et al. [16] and Sun et al. [17]. The proposed method shows a better performance
while requiring a simpler network.

Table 3. Triplet net embedding: MIB classification results and comparison with the other methods.

Method PLA

Bayramoglu et al. [16] 82.13
Sun et al. [17] 88.40± 4.10

Proposed method (k-NN) 88.90± 2.41

The confusion matrix is averaged over five folds and is reported in Figure 7. It shows
that the number of malignant images misclassified as benign is less than that of benign
images misclassified as malignant. This point is crucial in the medical domain since a
malignant tumor will receive more attention and probably require more exams than a
benign one, and the error has a significant probability of being corrected.
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Figure 7. MIB Classification, average confusion matrix.

Figure 8 reports the classification results for each patient of the five folds. Using a blue
scale, the ratio between the images labelled as malignant (benign) and the total number of
images for that patient is presented. The second level of interpretability is introduced by
a classifier that clearly maps the input to the output, such as a linear classifier, a Support
Vector Machine, or a simple k-NN, like the one we adopted here. Unlike the others, with
k-NN, the nearest neighbors can be used to visually estimate the support for a prediction,
providing human-interpretable explanations of predictions. Furthermore, it is always
possible for each classified image to display the training images that led to the class labeling
(see Figure 6). We find this option very useful as part of a decision support system, where
analysts can have interpretable information about the suggested output.

The assigned class is represented with a cross. The ground truth is presented according
to the rows. The first nine rows are from the benign class and the remaining are from the
malignant class. In the figure, we can see that 3 patients, 19854C, 9146, and 15687B, are
classified differently in the five folds. These samples show that the correct or incorrect
classification is heavily influenced by the composition of the network’s training set, which
requires further investigation. The images of these patients are distributed in both clus-
ters (for example, see Figure 5 for patient 15687B), and the patient classification changes
according to the fraction of images correctly classified.

Finally, we notice that each fold has a different error rate: Fold 5 has no errors, while
Fold 2 and 3 have one error, Fold 1 has two errors and Fold 4 has 4 errors.

MSB classification is obtained by training four classifiers, one for each magnification
factor. Also, in this case, we obtained two well-separated clusters for each training, and the
k value has little influence (less than 2/100) on the accuracy values, figures are not reported
in this case; we selected k = 3 for classification.
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Figure 8. Classification results for each test fold. The colour inside each cell represents the ratio
between the image labelled as malignant (benign) and the total number of images of the relative
patient. The assigned label is presented as a cross. The ground truth is represented according to
the rows.

The PLA is reported in Table 1, and compared with the other methods cited in Section 2.2.
Note that to evaluate the performance of an image classification system, the widely

used metrics are accuracy and F1-Score. According to us, in histopathological image clas-
sification, the metric that best simulates reality is patient-based accuracy (PLA); indeed,
the pathologist makes the diagnosis by evaluating images of different patients. For com-
pleteness, we have reported in Tables 4 and 5 the values of the other metrics we calculated
for the proposed approach: precision, recall, F1-score and the area under the ROC curve
(AUC).

Table 4. Triplet net embedding: MIB classification metrics.

Accuracy Precision Recall F1-Score AUC

88.71± 2.10 88.24± 2.78 85.87± 2.02 86.84± 2.28 85.87± 2.02

Table 5. Triplet net embedding: MSB classification metrics.

Metric 40 × 100 × 200 × 400 ×
Accuracy 84.60± 3.53 86.34± 3.13 88.70± 3.22 84.98± 3.17
Precision 85.48± 4.45 87.16± 3.40 88.36± 3.20 84.86± 2.78

Recall 94.42± 2.36 95.24± 3.13 94.79± 4.42 94.04± 4.50
F1-Score 89.15± 2.51 90.31± 2.25 91.90± 2.34 89.23± 2.36

AUC 82.36± 3.67 83.14± 3.70 87.68± 4.12 81.67± 2.94
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4.2. Ablation Study: ResNet152 Embedding

The ablation study was conducted to motivate the use of the embedding layer. The new
considered model is depicted in Figure 2b. Cancelling the linear layer after the ResNet152
model was used as a feature extractor, embeddings in the metric space were not generated,
and the extracted features were used to train the k-NN classifier. The visual representation
of the images in the 2048-dimensions space is obtained using the UMAP method [42].

Figure 9 reports the visualisation of the embeddings in the MIB case, together with the
plot of accuracy vs. k value. We can notice that the embedded training or test points are not
separated into two clusters, and the k value still has little influence on the accuracy value.
The same results can be observed for the MSB classification (results not shown), but in
order to obtain the best performance, the k value must be varied for each magnification; the
chosen values were 3, 7, 5 and 9 for the magnification values 40×, 100×, 200× and 400×,
respectively. The obtained PLA results are reported in Table 6 for MIB and MSB cases.

(a) (b)

Figure 9. Ablation study with classification MIB: (a) Bi-dimensional representation of the input
dataset; (b) number of neighbours vs. average accuracy.

Table 6. Ablation study: Magnification Independent (MIB) and Magnification Specific (MSB) classifi-
cation with k-NN.

PLA-k-NN

MIB 75%

MSB

40× 79%
100× 78%
200× 86%
400× 80%

4.3. Mapping Other Set Images in the Embedded Space

The purpose of the embedding layer is to map the input information into a space that
makes simple and effective the classification process and, to support this point, we used a
very simple classifier, still obtaining a very good classification accuracy. If we input a new
histopathology image, we expect that the system will correctly classify it as malignant or
benign, using, at its best, the image features obtained from the lower layers.

The embedding layer was trained with breast cancer histopathology images, and the
whole system has knowledge about this kind of images. According to this consideration,
the system should not recognise any other kind of image.

Of course, any image can be mapped in the embedding space and the k-NN will
always provide an output according to the k neighbourhoods. At the same time, we can
check the cluster, learned from the training process, where the image is placed.

If we input a random image into the system, it would be desirable that the system
answer that the features were not appropriate to classify it meaningfully. We expect that a
random image should be in an area of the embedding space far from the embedding of the
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BH images. In order to test this hypothesis, we visualise the position where the system,
trained with BreakHis dataset, maps the images of two different histological image datasets:
the MHIST dataset [45] (Minimalist HISTopathology contains images of colon-rectal polyps)
and the Epistroma dataset [46,47] (that contains histopathology images belonging to two
tissue types: epithelium and stroma). These image sets were selected because they are of
the same kind (histology images) but from a different origin. Figure 10a,b show the results:
the embedding point clouds are far away from the BH image projection.

(a) (b)

Figure 10. UMAP representation of the embeddings of the BreakHis with other histology image
datasets; (a) The embedding of the MHIST dataset obtained using the triplet net trained on the
BreakHis dataset; (b) The embedding of the Epistroma dataset obtained using the triplet net trained
on the BreakHis dataset.

5. Discussion

There is a common idea that interpretability should be paid with a substantial loss
of performance. This claim can be found in [48]; however, C. Rudin argued in [7] that
there is not evidence supporting this statement. In the last section, we show that this is
not necessarily true; it is possible to support interpretability without a significant loss of
performance. In the following, we will discuss the result comparison with the state of the
art and the interpretability of the proposed framework.

5.1. The Performances of the System

There are many works on the classification of BH dataset, those reported in Section 2
are only the one that contains enough information for a comparison using the PLA metrics,
the only metrics that make sense in this kind of studies. According to these premises, the
presented work can be compared with very few works on the MIB classification, while there
are more works for the MSB classification. Our results for MIB are better than the state-of-
the-art results, as reported in Table 3, and we notice that the accuracy values in the MSB task
are somewhat lower than the ones in the state-of-the-art works. In Table 1, we report the
results from seven different works; the comparison shows that only in 40×magnification
our results are less than 5% below the work of Sudharshan et al. [26]; for other magnification
values, the accuracy values are just 2 or 3% below. In the MSB classification, it is necessary
to train one neural network for each magnification value, and separating the training
images into the different magnification sub-classes results in a smaller number of training
images for each neural network. However, in our experiments, this effect is not recovered
using augmentation, and this requires more investigations. All the methods that perform
better than our proposal involve complex learning paradigms such as classifier combination
(for the case of Spanhol et al. [20] or Multiple Instance Learning (Sudharshan et al. [26])
or some kind of specific pre-processing (re-scaling for the case of Song et al. [23]). While
benefits can be observed from the performances, they remain not very interpretable.

The proposed method is based on a clear and simple mechanism, the ablation study
shows that the cluster separation is only due to the presence of the linear layer and the
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metric learning training, and this is clear comparing Figures 4a and 9a. Table 6 also shows
a significant performance drop both in MIB and MSB classification.

5.2. The Interpretability Aspects

The interpretability of the proposed method is based on the set of information that
can be obtained at the end of the embedding layer and from the k-NN classification
module. The metric learning layer rearranges the embedding space while reducing the
number of dimensions. In the new embedding space, the training images are meaningfully
clustered, and the visualisation allows the user to understand the system response. This
visualisation constitutes the first set of information that can help the user to understand the
first processing steps. Test images are clustered in the same areas of the training ones; this
happens for both classification methods MIB and MSB. The visualization of the training
image in the embedding space in Figure 4a shows that metric learning creates a sort of
“areas” where input images should be projected. The visualisation of the embedding space
is also useful during the classification of a new input. Observing the position of the images
of a new patient in the embedding space, such as the ones reported in Figure 5, the user
can check if this input is near the embeddings of the training images set, meaning that the
new input came from the same distribution of the training images.

Finally, the same visualisation can spot when the network is not able to process an
input image. Figure 10 shows what happens if the input is an out-of-distribution image set.
In this case, the images are embedded in points outside the two clusters obtained from the
BH training images. In cases like this, the k-NN classifier will assign a class to the input
based on the nearest images, but the visualisation shows that the features of the inputs are
different from the ones of the training images. This consideration allows an examiner to
say that the system classification output will have no meaning since the images are outside
what the system “knows”.

Focusing on the classification algorithm, notice that k-NN is considered one of the
naturally interpretable classification algorithm. For each classification result is always
possible to visualise the train images that produce the result and, thanks to the application
of metric learning, the number of neighbourhoods is very low, less than the one obtained in
the ablation study.

This organisation of the embedding space allows using a k-NN classifier with a very
low k, so that an user can visualise the neighbourhood of a test image and easily spot the
similarity and the differences with its neighbourhood. An example of classification in MIB
is reported in Figure 6, with the neighbour images. This figure shows the three nearest
neighbourhood images used to label the test image (left image). As pointed out in the
book [49], the interpretation of the classification results is translated to the interpretation of
the neighbourhood images, and a domain expert can give the right meaning to the images
similarity.

6. Conclusions

The high performances obtained with the DNN in the medical domain are confirmed
by many studies and applications, and histopathology image classification is one of these
applications. However, there are two main problems connected with many of these studies:
the first is connected with the train and test set; not all the works consider that the focus
is on the patient, not on the images, and the patient should be completely unknown for
the system undergoing testing. The second problem is related to the interpretability of
the supporting systems; in the medical domain the answer of a supporting system should
always be followed with an explanation of the decisions steps.

In this paper, we have presented a classification model based on a deep neural network
and an interpretable classifier, which take into account the above-mentioned considerations.
In particular, we used a triplet network based on a ResNet152 as a deep network, which
allows us to map the input samples into an embedding space learned to represent images
of different classes as separate clusters. The representation in this embedding space is
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viable for the comparison of a test image with its neighbourhood, providing an explanation
of the classification as compared with images of the same kind. The final classification
is performed with a simple classifier (k-NN) since the input information is represented
through the neural network. Interestingly, only a few layers of the model are trained, while
the majority of the network is pre-trained and does not need to be updated.

The results obtained with this technique are better than those obtained with the ad-hoc
full-trained deep neural networks and allow the user to visualise the representation of the
input image together with the most similar training image. The proposed technique can be
used in many classifier architectures based on representation/classification schema. Future
research will be focused on the analysis of the neighbourhood images in order to find the
details that can be considered characteristic of a specific class.
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