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Abstract

INTRODUCTION: Dementia is a multifactorial disease with Alzheimer’s disease (AD)

and vascular dementia (VaD) pathologies making the largest contributions. Yet, most

genome-wide association studies (GWAS) focus on AD.

METHODS: We conducted a GWAS of all-cause dementia (ACD) and examined the

genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and

8702 cases of ACD and VaD, respectively. KnownAD loci for ACD and VaDwere repli-

cated. Bioinformatic analyses prioritized genes that are likely functionally relevant and

shared with closely related traits and risk factors.

RESULTS: For ACD, novel loci identified were associated with energy transport

(SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and

magnetic resonance imagingmarkers of small vessel disease (SVD;HBEGF). Novel VaD

loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2,

FOXA2, AJAP1, and PSMA3).

DISCUSSION: Our study identified genetic risks underlying ACD, demonstrating

overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD.

KEYWORDS

all-cause dementia, Alzheimer’s disease, cross-ancestry, genome-wide association study (GWAS),
GWASmeta-analysis, vascular dementia

Highlights

∙ We conducted the largest genome-wide association study of all-cause dementia

(ACD) and vascular dementia (VaD).

∙ Known genetic variants associated with ADwere replicated for ACD and VaD.

∙ Functional analyses identified novel loci for ACD and VaD.

∙ Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and

cerebral small vessel disease.
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1 BACKGROUND

Traditionally, Alzheimer’s disease (AD) is considered the most com-

mon dementia subtype, followed by vascular dementia (VaD). The two

conditions are considered clinically distinct. VaD is diagnosed based

on the presence of stroke or extensive cerebral vascular disease,

with atherosclerosis and arteriolosclerosis considered the underlying

pathologies.1 However, a wealth of evidence from recent years has

emphasized a broad role for brain vascular damage, beyond that of

lacunar and larger cerebral infarcts, as a major mechanism for cogni-

tive impairment.2 It is now increasingly recognized that a component

of vascular pathology is prominent in all major dementias and acts syn-

ergistically with amyloid beta (Aβ), tau, and other neurodegenerative

pathologies to affect dementia risk.3 Moreover, a new hypothetical

model of dementia dynamics suggests that damage to brain vascu-

lature is an early process in the dementia continuum that precedes

brain atrophy, neurodegeneration, and the emergence of amyloid and

tau biomarker abnormalities.4 Recent genetic studies using methods

that are relatively immune to reverse causation also suggest a putative

causal relationship between brain imaging markers of cerebral small

vessel disease (SVD) and AD.5

Hence there is a strong rationale to examine the “vascular contri-

butions to cognitive impairment and dementia” (VCID), a term that

includes a broad range of vascular mechanisms and phenotypes and

represents the multifactorial nature of dementia and related disor-

ders as a pathway for reducing dementia burden.6 In particular, genetic

exploration of VCID may highlight important mechanisms across the

wide spectrum of pathologies, including vascular pathways, which,

in turn, are considered to be a major and modifiable target for the

prevention of dementia, including the Alzheimer’s type.7

Emerging evidence suggests that VCID is highly heritable.8 Muta-

tions in the NOTCH3 gene known to cause monogenic cerebral SVD

and early cognitive impairment also influence later onset polygenic

manifestations of VCID by acting through common, less pathogenic

variations in the same genes. Other examples are several point muta-

tions in the amyloid precursor protein (APP) gene that lead to cerebral

amyloid angiopathy (CAA)9 as well as mutations in HtrA Serine Pep-

tidase 1 (HTRA1) and Collagen Type IV Alpha 1 Chain (COL4A1) or

COL4A2 genes.10 Further support for the strong genetic basis of VCID

stems from heritability and genome-wide association studies (GWASs)

of cerebral SVD endophenotypes that are closely related to VCID,

including ischemic stroke (IS),11 and white matter hyperintensities

(WMHs).12, In contrast to the over 70 loci identified as being associ-

ated with AD genetic variance, the genetic architecture of “sporadic”

VCID is largely unknown. Most genetic studies of VCID have utilized a

candidate gene approach, which did not yield consistent and replicable

findings.13

GWASs of VCID are sparse. In 2012, a GWAS of VaD conducted

among the participants of the Rotterdam Study (N = 67 cases and

5700 controls) identified a novel locus associated with VaD, located

near the androgen receptor on the X chromosome14; however, this

finding could not be replicated.15 More recently, a GWAS of dementia

and its clinical endophenotypes was conducted as part of the GR@ACE

RESEARCH INCONTEXT

1. Systematic review: While findings from genome-wide

association studies (GWASs) of Alzheimer’s disease (AD)

highlighted multiple genetic risk variants, the genetics of

all-cause dementia (ACD) and vascular dementia (VaD)

has been rarely studied. In this meta-analysis of unpub-

lished GWASs, we utilized data from 21 cohorts and

consortia for a total of 46,902 and8702 cases of ACDand

VaD, respectively.

2. Interpretation: Known genetic variants for AD were

identified as risk factors for ACD and VaD. Down-

stream bioinformatics revealed novel genetic loci func-

tionally associatedwithACDandVaD, including SEMA4D,

RBFOX1, and SPRY2.

3. Future directions: These results should be validated in

additional datasets. Particularly, studies are warranted

to explore the genetic variation of ACD and VaD in

non-European individuals.

study.16 This study demonstrated the differential biological pathways

associated with clinical AD subgroups based on the degree of vascular

burden. It identified a variant near CNTNAP2 associated with proba-

ble or possible VCID (N = 373). However, this finding did not reach

genome-wide (GW) significance.

The multifactorial nature of VaD and the heterogeneity of the clin-

icopathological criteria used to define this entity have hampered the

identification of genetic polymorphisms underlying VCID. To over-

come these limitations, large-scale studies with sufficient power to

detect genetic signals specific to VCID are needed.17 In this study,

we investigate the genetic predisposition to VCID specifically. Hence,

we explored the genetic variability associated with ACD as a broad

phenotype, as well as VaD as an extreme phenotype of the dementia

continuum characterized by increased vascular burden. Our findings

were then analyzed in light of the knowledge already gained from

previous large-scale GW and sequencing studies on the genetic deter-

minants of AD, stroke, and additional phenotypes along the VCID

spectrum.10

2 METHODS

2.1 Study population

A total of 800,597 participants from 21 cohorts and consortia con-

tributed to 46,902 and 8702 cases of ACD and VaD, respectively.

The overall sample included individuals from four different ethnicities

(European, African, Asian, and Hispanic) from North America, Europe,

and Asia. The mean age ranged between 54 and 80 years, with 54% to

68% females. The summarydemographics are described inTable 1 (also
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TABLE 1 Demographics: Data from 17CHARGE cohorts were included in our meta-analysis, as were the UKBB, ADGC, and EADB for the
replication of our VaD results in European ancestry.

Study N/Control ACD VaD

Percentage

VaD

Age

(mean)

Sex, % (percentage

female)

European ancestry

3C 6475 808 162 20.1 74.2 61.0

AGES 5656 1501 118 7.9 76.1 61.0

ARIC 3145 165 36 21.8 75.5 60.0

ASPREE 12,480 319 NA NA 75.0 55.0

CHS 2169 508 156 30.7 74.9 61.5

FVG 804 73 NA NA 58.2 58.3

FHS 4175 679 167 24.5 54.6 54.3

GRACE 12,599 7516 1953 26.0 78.8 68.2

GREAT-AGE 1504 138 7 5.1 73.7 50.3

HUNT 69,633 3982 681 17.1 67.7 57.4

MEMENTO 2050 263 36 13.7

MYHAT 865 50 NA NA 83.7 59.5

ROSMAP 1335 626 NA NA 79.8 69.7

RS (1,2,3) 11,390 1715 178 10.4 63.6 56.8

ADGC-NAJ-2011 15,675 8309 NA NA 75.4 59.5

UKBB 314,278 17,008 332 NA 66.1 63.1

Total European 466,606 44,009 3892

African ancestry

ARIC 905 101 31 30.7 75.5 60.0

CHS 514 194 65 33.5 74.9 61.5

ADGC-Reitz (2013) 5896 1968 NA NA 80.5 63.9

Total African 7315 2263 96

Asian ancestry

HKOS 2373 349 66 18.9 60.1 67.9

Harmonization 385 153 49 32.0 73.6 55.0

Total Asian 2758 502 115

Hispanic ancestry

SALSA 1271 128 35 27.3 68.9 58.6

Total Stage 1 for ACD and

VaD

477,950 46,902 4138

Replication of VaD results in EADB

EADB 275,745 NA 4,564

Total 753,695 46,902 8702

Note: Overall, 800,597 individuals were included in this study, accounting for 46,902 and 8702 cases of ACD and VaD, respectively. For UKBB, we used the

proxy-AD (familial AD) for ACD analysis and assessed VaD cases using ICD10 codes (see Methods). We also used ADGC-NAJ-201118 and ADGC-Reitz-

201319 for ACD in European and African ancestry, respectively, to avoid overlap with CHARGE samples. We subsequently replicated our VaD results in

EADB.

Abbreviations: ACD, all-cause dementia; ADGC, Alzheimer’s Disease Genetics Consortium; EADB, the European Alzheimer Disease Biobank; UKBB, the UK

Biobank.
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detailed in Table S1 of Supplementary File 1). Each study obtainedwrit-

ten informed consent from participants or, for those with substantial

cognitive impairment, from a caregiver, legal guardian, or other proxy.

Study protocols for all cohorts were reviewed and approved by the

appropriate institutional review boards.

2.2 Phenotype definition

The primary study outcomes are ACD and VaD, measured by each par-

ticipating cohort as described in Supplementary File 2. Briefly, to diag-

nose ACD and VaD, a neurological evaluation and diagnosis based on

validated criteria were required. These criteria, as shown in Table S1 of

Supplementary File 1, include the use of International Statistical Clas-

sification ofDiseases andRelatedHealth Problems (ICD) codes inmost

cohorts, as well as additional criteria such as the Diagnostic and Statis-

ticalManual ofMental Disorders, Third to Fifth editions (DSM-III to V),

National Institute of Neurological Disorders and Stroke-Alzheimer’s

Disease and Related Disorders Association, National Institute of Neu-

rological Disorders and Stroke-the Association Internationale pour

la Recherche et l’Enseignement en Neurosciences, and dementia by

proxy for United Kingdom Biobank (UKBB). Additionally, VaD cases

were included in ACD, and the proportion of ACD classified as VaD is

reported in Table S1 of Supplementary File 1. Moreover, to increase

the sensitivity, cohortswere asked to run separate association analyses

for (a) incident ACD, (b) prevalent ACD, (c) incident VaD, (d) prevalent

VaD, (e) incident probable and definite VaD, and (f) prevalent proba-

ble whenever possible. To address the overlap with AD, we included all

VCID (including persons with possible VCID) and separately analyzed

only cases of “pure” (probable and autopsy-proven definite) VCID and

requested that all cohorts provide themost accurate, detailed descrip-

tion of their diagnostic algorithm. Although VaD in UKBB was defined

based on ICD-10 codes, we used the family history of dementia GWAS

(“imputed dementia”) recently published by Marioni et al.18 for ACD.

Imputed dementia was defined as individuals at least 65 years old

reporting a history of dementia in one or both parents. As explained

in Ghosh et al.,19 the effect sizes and standard errors of the imputed

dementia GWASs were doubled to analytically correct for the use of

proxy phenotypes.

2.3 Genotyping and imputation

Genotyping was performed using cohort-specific genotyping arrays

as described in Supplementary File 2. Genetic variants were imputed

using 1000 Genomes Project (1KG), the Haplotype Reference Con-

sortium (HRC),20 and the National Heart, Lung, and Blood Institute

Trans-Omics for Precision Medicine (TOPMed). UKBB imputed the

genotypes to HRC, 1KG, and UK10K. Details on study-specific quality

control (QC) filters and software used for phasing and imputation are

provided as supplementary materials (Supplementary File 2). Briefly,

rare variants (minor allele frequency [MAF] < 1%) and poorly imputed

variants (imputation quality, Rsq < 0.3) were excluded, as were vari-

antsmapping to sex chromosomes ormitochondria. Samples with poor

genotyping call rate (<95%) and Hardy–Weinberg p values < 1 × 10−6

were removed. All genetic positions are reported in genome build 37

(GRCh37, hg19). Moreover, we used HRC version 1.2 as the main

reference panel, and only variants in this panel were subsequently

used in the association analyses. Additional details on the genotyp-

ing and imputation methods and QC are provided in Supplementary

File 2.

2.4 Genome-wide association analyses, QC, and
meta-analysis

2.4.1 Study-level association analyses

Weconducted study andethnicity-specific association analyses adjust-

ing for age, sex, sites, and population structure to test the association

of each variant with VaD and ACD. Cohorts were asked to run logis-

tic regression and Cox proportional hazard models for prevalent and

incident VaD/ACD, respectively, assuming additive allelic effects and

imputed dosages. The UKBB association analyses were performed

with linear mixed models (LMMs) using the BOLT-LMM software.21

BOLT-LMM has the advantage over other methods in that it accounts

for cryptic relatedness and population structure and, thus, allows the

inclusion of related individuals in models, which increases the overall

sample size. Details on the methods and software used for study-level

association analyses are provided in Supplementary File 2.

2.4.2 QC of study-level summary statistics

We performed a stringent QC check of the summary statistics from

each cohort using EasyQC.22 We mapped each variant from the non-

European ancestry (EA) cohort to the appropriate 1KG project phase 3

reference panel and all EA toHRC (details in Table S1). Then the follow-

ing steps were performed to ensure proper QC of each file before the

meta-analysis: (a) remove all structural variants and INDELs; (b) filter

out variants with missing or unusual values (p value < 0 or > 1, effect

size > 10, effect allele frequency < 0 or > 1, imputation quality < 0

or> 1); (c) filter out variants with effective allele count (EAC, 2×minor

allele frequency × N × imputation quality) < 10; (d) filter out variants

with low imputation quality (eg, INFO scores reported by the imputa-

tion software); (e) filter out variants with MAF < 1%; (f) align variants

to the main reference panel (HRC for EA, and ethnicity-specific 1KG

for others); remove variantswith absolute difference between its allele

frequencies in the cohort and reference panel greater than 0.2. All

variants were assigned a unique identifier as a combination of the

chromosome, position, reference, and alternative alleles separated by

semi-colons (CHR:POS:REF:ALT) to avoid issues with chromosomal

positions mapping to multiple marker IDs. The foregoing steps were

repeated until satisfactory results were obtained after visual inspec-

tion of the different diagnostic QC plots (AF, P-Z, Q-Q, and SE plots)

generated by EasyQC as explained inWinkler et al.22
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2.4.3 Meta-analysis of GWAS results

Ancestry-specific meta-analysis

The meta-analyses were conducted using the fixed-effect inverse

variance-weighted method implemented in METAL.23 Post-analysis

results were filtered to retain only variants present in more than 40%

of the overall cohorts and the effective sample size greater than 40%of

the study sample size. We evaluated the heterogeneity across cohorts

using the I2 statistic provided by METAL, which represents the per-

centage of variation across studies that is due to heterogeneity rather

than chance. We used the standard p value thresholds for GW signifi-

cance, p < 5e-8, and suggestive p < 1e-6. Since there was no evidence

of genomic inflation in the cohort summary statistics (lambda 0.98

to 1.06), no genomic control was applied during the meta-analysis.

Genomic loci were defined as the region ±500 kb around the single

nucleotide polymorphism (SNP) with the lowest p value, considered

as the index SNP. We assessed the heterogeneity across studies using

the I2 statistics of METAL (HetPVal output), which represents the

percentage of variation across cohorts that is due to genetic hetero-

geneity rather than chance. Except for the APOE region (defined as

SNPs located on chromosome 19 between positions 45,000,000 and

45,800,000basepairs according toGRCh37 [hg19]), forwhich theHet-

PVal was >1e-8, significant SNPs were selected with HetPVal > 0.01.

We conducted ancestry-specific meta-analyses of VaD and ACD for

EA, African ancestry (AA), Asian ancestry (SA), and Hispanic ancestry

(HA). In addition, we used linkage disequilibrium (LD) score regression

to quantify the contribution of true polygenicity and biases such as

cryptic relatedness and population stratification of the meta-analysis

results.

Cross-ancestry meta-analysis

We performed cross-ancestry meta-analyses to assess whether the

increase in sample size could lead to adequate power to identify

additional GW significant loci associated with ACD and VaD. To this

end, we used Meta-Regression of Multi-Ancestry Genetic Association

(MR-MEGA) software, which has proven more efficient than others

when dealing with genetic heterogeneity.24 MR-MEGA uses a matrix

of mean pairwise allele frequency differences to quantify the genetic

similarity between studies and estimate the effect of each SNP after

adjusting for ancestry principal components.Weapplied study-specific

filters, as previously described in the QC section, with EAC > 20,

for studies with small sample sizes to reduce the amount of noise in

the results-driven rare SNPs in small cohorts. We fitted three prin-

cipal components, as suggested by MR-MEGA authors, which proved

sufficient to separate the cohorts into self-reported ancestry groups

(Figure S1). As in the ancestry-specific meta-analysis, we retained

only SNPs that were present in over 40% of cohorts, with >40%

total sample size. GW significant SNPs had p < 5e-8 and showed

evidence of allelic heterogeneity across populations (MR-MEGA

P-Het> 1e-5).

2.5 Shared genetic susceptibility with complex
disease traits

A gene-based association test was conducted using MAGMA,25 with

p<2.8e−6as a genome-wide significance threshold. Gene regionswith

SNPs not reaching GW significance for ACD or VaD in the primary

GWAS analysis and additionally not in LD (r2 < 0.10) with the lead SNP

were considered novel.

We first explored the association of lead risk variants with related

vascular, neurological traits and metabolic traits, excluding the APOE

region. For each related trait, association statistics of SNPs falling in a

window of ±250 kb around each lead SNP were queried,26 and SNPs

satisfying the GW significance threshold in the original study were

retained. Leveraging the polygenicity of ACD (mean chi-squared= 1.1)

and VaD (mean chi-squared = 1.06), we systematically explored the

genetic overlap of ACD and VaD (in European-only analysis) with (i)

neurological and neurodegenerative traits (any stroke [AS], IS, small

vessel stroke [SVS], large artery stroke [LAS], cardioembolic stroke

[CES], general cognitive function [GCF], and Alzheimer-type demen-

tia [AD]); (ii) common magnetic resonance imaging (MRI) marker of

cerebral SVD (WMHs)5; and (iii) vascular risk factors (systolic blood

pressure [SBP], diastolic blood pressure [DBP], pulse pressure [PP],

high-density lipoprotein [HDL], low-density lipoprotein [LDL]).27 We

acquired summary statistics of the largest European-only GWAS for

these traits.

Using LD score regression (LDSR) analysis,28 genetic correlation

estimates between ACD/VaD and the aforementioned complex traits

were obtained. A similar and potentially powerful approach called

genetic covariance analyzer (GNOVA)29 was additionally used to study

the shared genetic covariance across the genome between a given

pair of complex traits. LDSR and GNOVA compute genetic correla-

tion and covariance, respectively, while adjusting for potential sample

overlap and accounting for the LD of genetic variants. Though LDSR

and GNOVA are substantially similar, differences in the minor allele

frequency thresholds may influence genetic correlation estimates and

significance to some extent. A p value < 8.3e-3 correcting for six

independent phenotypes was considered significant. Additionally, for

the traits with significant genetic overlap, we performed causal infer-

ence analysis in the Mendelian randomization (MR) framework with

ACD/VaD as the outcome. Using theMR-LAPmethod,30 we addressed

potential bias in the causal effects due to sample overlap between

the exposure and the outcome variables. Briefly, MR-LAP utilizes the

LDSR intercept estimates – ameasure of the degree of sample overlap,

polygenic architecture, and the heritability of the genetic instruments

of the exposures – to account for the sample overlap bias and other

biases (weak instrument and winner’s curse bias) that push the causal

estimates toward the null.

Since GW correlation estimates may miss significant correlations

at the regional level (balancing effect),31 a Bayesian pairwise GWAS

approach (GWAS-PW) was applied.32 GWAS-PW identifies trait pairs
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with high posterior probability of association (PPA) with a shared

genetic variant (Model 3, PPA3 ≥ 0.90). To ensure that PPA3 is unbi-

ased by sample overlap, fgwas version 0.3.6 was run on each pair of

traits, and the correlation estimated from regions with null association

evidence (PPA < 0.20) was used as a correction factor.32 We then cal-

culated Spearman’s rank correlation for regions showing PPA3 > 0.90,

approximating the direction of effect.

Finally, using a Bayesian method – ashR33 – we studied the effect-

size distribution for ACD and VaD and related risk factors. Briefly, ashr

tests the probability of non-zero effect conferred by SNPs as a func-

tion of LD score, measuring the true effect size that is not zero and

the underlying polygenic background. Using MTAG,34 traits falling in

similar polygenic profile to ACD or VaD are jointly analyzed in a bivari-

ate scheme leveraging the pairwise trait genetic correlation to boost

power to discover new loci. The significance threshold in the MTAG

analysis is determined based on the number of traits sharing a simi-

lar polygenic profile and was additionally restricted to SNPs that also

had nominal significance (p < 0.05) for each phenotype separately in

the pre-existing univariate GWAS.

2.6 Transcriptome-wide association study and
colocalization

We performed transcriptome-wide association studies (TWASs) using

the association statistics from the ACD and VaD (European-only) and

weights from 22 publicly available gene expression reference pan-

els from blood (Netherlands Twin Registry [NTR], Young Finns Study

[YFS]), arterial (genotype-tissue expression [GTEx]), brain (GTEx, Com-

monMind Consortium [CMC]), and peripheral nerve tissues (GTEx).

For each gene in the reference panel, precomputed SNP-expression

weights in the1-Mbwindowwereobtained, including thehighly tissue-

specific splicing quantitative trait loci (sQTLs) information on gene

isoforms in the dorsolateral prefrontal cortex (DLPFC) derived from

the CMC. TWAS-Fusion35 was used to estimate the TWAS z-score

(association statistic between predicted expression and ACD or VaD),

derived from the SNP-expression weights, SNP-trait effect estimates,

and the SNP correlation matrix. Transcriptome-wide (TW) significant

genes (eGenes) and the correspondingQTLs (expressionQTLs [eQTLs])

were determined using Bonferroni correction in each reference panel,

based on the average number of features (4235 genes) tested across

all the reference panels.35 eGene regions with eQTLs not reaching GW

significance in association with ACD or VaD and not in LD (r2 < 0.01)

with the lead SNP for GW significant risk loci were considered novel.

Finally, a colocalization analysis (COLOC)36 was carried out at each

locus to estimate the posterior probability of a shared causal vari-

ant (PP4 ≥ 0.75) between the gene expression and trait association,

using a prior probability of 1.1 × 10−5. Furthermore, functional vali-

dation of the eGenes was performed by testing for positional overlap

of the best eQTLs from TWAS with enhancer (H3K4me1, H3K27ac)

and/or promoter (H3K4me3/H3K9ac) elements across a broad cate-

gory of relevant tissue types (blood [BLD], brain/neurological [BRN])

using Haploreg version 4.1.37

2.7 Identification of independent case–case loci
with case–case GWAS

Leveraging summary statistics fromourGWASofACDandVaD, aswell

as from publicly available existing GWASs of AD38 and stroke,39 we

examined genetic uniqueness between these highly correlated though

distinct disorders using case–case GWAS (CC-GWAS), a method that

tests for differences in allele frequency between cases of two disor-

ders without individual-level data.40 By allowing for sample overlap

between the two case-control GWASs, CC-GWAS can increase the

power to detect signals otherwise missed in case-control GWASs.

We used a LD threshold of 0.2 (r2 < 0.2) to distinguish CC-GWAS-

specific loci from genome-wide significant variants identified in the

input case-control GWAS.

3 RESULTS

Ouranalysis included800,597 individuals comprising46,902and8702

cases of ACD and VaD, respectively. They were recruited from the

19 Cohorts for Heart and Aging Research in Genomic Epidemiol-

ogy (CHARGE) cohorts, the Alzheimer’s Disease Genetics Consortium

(ADGC), the European Alzheimer Disease Biobank (EADB), and the

UK Biobank (UKBB), encompassing four different reported ancestries:

European (98.5%), African (1.0%), Asian (0.4%), and Hispanics/Latino

(0.1%). Association analyseswere performed in each cohort following a

predefined analysis plan, using logistic regression andCoxproportional

hazards models for prevalent and incident cases, respectively. We per-

formed study-specific QC of the summary statistics data, followed by

ancestry-specific meta-analyses and cross-ancestry meta-analyses of

ACD and VaD, as described in the Methods section. For each cohort, a

description, association analysis method, QC parameters, and cutoffs

are provided in Supplementary File 2.

3.1 Meta-analyses of ACD and VaD GWAS in
European ancestry populations replicated known AD
loci

We conducted fixed-effects inverse variance-weighted meta-analyses

of the 14 European ancestry cohorts (N = 466,606, NACD = 44,009,

NVaD = 3892) from the CHARGE consortium, ADGC, and the UKBB.

Furthermore, we replicated significant and suggestive signals from

our VaD GWAS in the EADB consortium VCID data (N = 275,745,

NVaD = 4564). The complete list of cohorts included in this study is

provided in Table S1.

A total of 11,596,629 and 9,878,961 SNPs passed the study-level

QC criteria andwere tested for associationwith ACD andVaD, respec-

tively. After post-meta-analysis QC, we identified 10 GW significant

loci associated with ACD (GWS, p < 5 × 10−8), all of which had been

previously associated with AD (Table 2, extended results in Table S2).

Significant loci associated with ACD included signals in or around

known AD genes such as APOE, BIN1, MS4A6A, PICALM, CR1, CD2AP,
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TABLE 3 Genome-wide significant (p< 5 × 10−8) and suggestive (p< 1 × 10−6) variants associated with vascular dementia in European
populations.

rsID

Nearest

gene CHR POS

EA/

NEA EAF

BETA

CHARGE

p value
CHARGE

p value
EADB

p value
COMBINED Direction

rs429358 APOE 19q13.32 45411941 C/T 0.1549 0.8794 2.67E-86 5.66E-113 2.9E-196 ++

rs11911 SPRY2 13q31.1 80910851 C/A 0.3756 −0.1466 2.60E-06 0.0653 0.0000335 −

rs7101996 GALNT18 11 11259298 T/C 0.4198 −0.1362 3.06E-06 0.48 0.00452 −+

rs2845990 LINC02113 5 98907502 C/T 0.352 −0.1383 3.24E-06 0.872 0.00131 −+

rs117904289 FOXA2 20p11.21 22782154 G/A 0.0858 0.2516 3.35E-06 0.987 0.00112 +−

rs838941 SCARB1 12q24.31 125183316 A/G 0.4261 0.1344 3.56E-06 0.33 0.0000654 ++

rs17418160 ERBB4 2q34 213119022 C/T 0.0396 0.3341 3.58E-06 0.882 0.00171 +−

rs77542509 TRPC6 11q22.1 101415824 C/T 0.058 −0.3038 4.77E-06 0.137 0.0000213 −

rs6127311 DOK5 20q13.2 53501017 C/T 0.0532 −0.3141 4.83E-06 0.294 0.0144 +−

rs35945091 LCN1P2 9 136185411 C/T 0.2227 0.164 5.15E-06 0.855 0.00176 +−

rs17059857 ZNF236 18q23 74469493 C/T 0.0403 0.358 5.41E-06 0.417 0.00934 +−

rs143750890 AJAP1 1p36.32 4602505 C/T 0.0273 0.4283 5.56E-06 0.163 0.0000334 ++

rs9510987 SPATA13 13 24575243 G/T 0.2525 0.1466 6.28E-06 0.291 0.0000744 −

rs55709546 PHACTR3 20q13.32 58261107 C/A 0.0484 0.3044 6.53E-06 0.645 0.000496 ++

rs12667855 TMEM106B 7p21.3 12124166 T/G 0.0981 0.225 6.59E-06 0.542 0.000299 ++

rs281219 SEMA6D 15q21.1 47711652 A/G 0.1954 0.1641 6.65E-06 0.316 0.0129 +−

rs138352554 GBP1 1p22.2 89517105 G/A 0.0359 0.3761 6.95E-06 0.573 0.000406 ++

rs16967121 RASGRP1 15q14 38923007 G/A 0.0658 0.2605 7.31E-06 0.916 0.00126 ++

rs11007123 WAC 10p12.1 28763005 C/T 0.2804 0.1395 7.70E-06 0.292 0.0139 +−

rs4794009 GIP 17q21.32 47051955 A/G 0.4412 0.1274 8.17E-06 0.797 0.000746 ++

rs35448830 PRKCE 2p21 46080762 C/T 0.0368 0.3346 8.48E-06 0.631 0.000579 ++

rs2233754 PSMA3 14q23.1 58755574 C/A 0.07 0.2575 9.39E-06 0.601 0.00604 +−

Note: Themeta-analysis includes 11 cohorts from theCHARGEconsortiumand theUKBiobank (UKBB)GWAS.Direction denotes the direction of association

in CHARGE and EADB. The genome-wide significant variant is highlighted in orange.

Abbreviations: ADGC, Alzheimer’s Disease Genetics Consortium; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; EADB,

European Alzheimer Disease Biobank; UKBB, UK Biobank.

ABCA7, PILRB, SLC24A4, and ACE. For VaD, only one variant located

near the APOE gene reached GW significance (Table 3, extended

results in Table S3). The genomic inflation coefficients (lambda) were

1.05 and 1.07 for ACD and VaD, respectively. The lambda intercept

computedwith the LDSC softwarewas 1.01 for both analyses, suggest-

ing no systematic inflations of association statistics. The Manhattan

and quantile-quantile (QQ) plots for both analyses are provided in

Figures 1–3 (Forest and locusZoom plots for prominent signals are

provided in Figures S2 to S65).

For the VaD trait, we selected all variants with a p value less than

1 × 10−5 and meta-analyzed with EADB summary results using a

weighted sum of z-scores approach. Only one variant near the APOE

genewas statistically significant and had the same direction of effect in

both studies (Table 3).

The meta-analyses of ACD and VaD GWAS in African, Asian,

and Hispanic/Latino ancestries did not provide new GW significant

variants.

We replicated our VaD signals using EADB data (Table 3). Overall,

we replicated an association within the APOE region. The suggestive

variant near SPRY2 also has the lowest p value in the EADBGWASwith

the same direction of effect in both studies.

3.2 Cross-ancestry meta-analysis of ACD and
VaD GWAS

Next, we performed a cross-ancestry meta-analysis using MR-MEGA,

first to assesswhether the increased sample size could lead to the iden-

tificationof additional loci associatedwithACDandVaDand to identify

loci that are relevant in other ancestries. Most of the cross-ancestry

meta-analyses included individuals of European ancestry and smaller

samples from African, Asian, and Hispanic/Latino ancestries. The total

number of variants included was 17,054,226 and 11,595,061 for ACD

and VaD, respectively. The Manhattan plots of the SNP-wide meta-

analyses for both traits are provided in Figures S66 and S67. Significant

and suggestive signals forACDandVaDarepresented inTables4and5,

and the extended results are in Tables S4 and S5. We identified novel

signals reaching GW significance at 20q11.21 (CHD6, an oxidative
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F IGURE 1 Manhattan plot of ACDGWAS. In addition to variants in APOE region, we identified five new genetic loci associated with VaD. Blue
and red lines correspond to p value of 5e−7 and 5e−8 for genome-wide suggestive and significant SNPs, respectively. Manhattan plots for the
cross-ancestry meta-analysis. Each dot represents a SNP, the x-axis shows the chromosomes where each SNP is located, and the y-axis shows
−log10 p value of the association of each SNPwith ACD in the cross-ancestry meta-analysis. The red horizontal line shows the genome-wide
significant threshold (p value= 5e-8;−log10 p value= 7.30). The nearest gene to themost significant SNP in each locus has been labeled.

F IGURE 2 Manhattan plot of VaDGWAS. In addition to variants in the APOE region, we identified five new genetic loci associated with VaD.
Blue and red lines correspond to a p value of 5e−7 and 5e−8 for genome-wide suggestive and significant SNPs, respectively. Manhattan plots for
cross-ancestry meta-analysis. Each dot represents a SNP, the x-axis shows the chromosomes where each SNP is located, and the y-axis shows the
−log10 p value of the association of each SNPwith VaD in the cross-ancestry meta-analysis. The red horizontal line shows the genome-wide
significant threshold (p value= 5e-8;−log10 p value= 7.30). The gene closest to themost significant SNP in each locus has been labeled.
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5982 THEMEGAVASCULARCOGNITIVE IMPAIRMENT AND DEMENTIA (MEGAVCID) CONSORTIUM

F IGURE 3 Q-Q plots of ACD (left) and VaD (right) GWASs. The expected p values (x-axis) are plotted against the observed p values (y-axis).
The units of the axes are the−log10 of the p value. The red and blue curves represent the plots withMAF≥ 0.05 and 0.01, respectively. The
diagonal line of the null hypothesis and its 95% confidence interval are plotted in gray based on the p values without the previously reported SNPs.
The red dotted line represents the cutoff for genome-wide significance. MAF, minor allele frequency.

TABLE 4 Genome-wide significant (p< 5 × 10−8) variants associated with all-cause dementia in cross-ancestry meta-analysis.

rsID

Nearest

gene Chr Pos EA/NEA P value MAF Beta SE

rs10402524 BCAM 19p11 45329344 T/C 1.21E-17 0.2336 −0.168 0.045

rs744373 BIN1 2q14.3 127894615 A/G 1.90E-17 0.358 −0.139 0.031

rs2278867 MS4A6A 11q13.1 59943109 A/T 1.72E-15 0.2897 0.113 0.020

rs10792832 PICALM 11q13.1 85867875 A/G 3.77E-12 0.3135 −0.074 0.036

rs10948367 CD2AP 6q14.3 47585615 A/G 1.67E-11 0.2328 −0.042 0.017

rs1408077 CR1 1q11.1 207804141 A/C 4.75E-10 0.1412 0.088 0.055

rs4295 ACE 17q21.1 61556298 C/G 1.60E-09 0.3666 −0.066 0.018

rs2208524 CHD6 20q11.21 40423299 T/C 1.66E-09 0.1268 −0.103 0.027

rs11691153 DAW1 2q14.1 228780072 T/C 1.83E-09 0.1536 0.099 0.025

rs6853262 LPHN3 4q22.1 61221892 C/T 6.22E-09 0.06989 0.208 0.112

rs2677386 PWRN2 15q15.1 24432053 T/C 7.18E-09 0.3612 −0.083 0.017

rs7006786 ARHGEF10 8q13.2 1792639 G/A 8.81E-09 0.08986 0.097 0.045

rs35483531 DEGS2 14q21.3 100653772 C/T 1.35E-08 0.2993 −0.004 0.024

rs170084 PMFBP1 16q11.2 72178483 T/A 2.79E-08 0.107 −0.068 0.029

rs10940421 SNX18 5q14.3 54036059 A/G 3.34E-08 0.372 0.040 0.017

rs138908633 EPB41L4A 5q14.3 111649017 G/A 3.76E-08 0.03095 −0.029 0.050

rs74435987 DUSP6 12q14.1 89152253 G/T 4.20E-08 0.08766 0.078 0.130

rs11225924 DDI1 11q13.1 103493165 C/T 4.27E-08 0.1034 0.152 0.105

rs113747850 MAPK9 5q14.3 179710663 T/C 4.93E-08 0.123 0.071 0.024

Note: The meta-analysis includes European, African, Asian, and Hispanic/Latino ancestries. Three new variants at 20q11.21, 2q14.1, and 15q15.1 reached

genome-wide significance (highlighted in orange).

Abbreviation:MAF, minor allele frequency.
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TABLE 5 Genome-wide significant (p< 5 × 10−8) and suggestive (p< 1 × 10−6) variants associated with vascular dementia in cross-ancestry
meta-analysis.

rsID Nearest gene Chr Pos

EA/

NEA p value MAF Beta SE

rs10119 TOMM40 19 45406673 G/A 1.21E-17 0.2476 −0.327 0.054

rs4380108 MARCHF10 17 60893485 C/T 9.59E-09 0.3127 −0.172 0.031

rs55747619 ITSN2 2 24530447 C/G 8.05E-08 0.08706 −0.384 1.969

rs9379092 CAGE1 6 7344531 G/A 9.80E-08 0.1172 −0.336 0.077

rs3757193 RPS6KA2 6 166923463 C/T 1.09E-07 0.08347 2.151 0.636

rs3871399 CMTM7 3 32496413 C/G 2.61E-07 0.124 0.550 0.640

rs17315346 BRINP2 1 177282235 C/T 2.67E-07 0.01538 −2.412 5.17

rs1738249 DNAH8 6 38753960 C/T 2.86E-07 0.3013 −0.050 0.040

rs12095469 OSBPL9 1 52206082 G/A 3.60E-07 0.05292 3.654 3.513

rs4820650 ADRBK2 22 25925358 T/C 3.82E-07 0.2468 0.050 0.054

rs61859886 MGMT 10 131353192 T/G 4.45E-07 0.1528 −0.274 0.057

rs9857196 RYK 3 133830660 T/A 5.09E-07 0.01997 3.438 2.670

rs637924 PCDH7 4 31465610 T/C 6.77E-07 0.2564 −0.056 0.051

rs35810115 ZNF675 19 23780763 C/T 6.81E-07 0.04992 −1.169 2.339

rs115331896 CRBN 3 3204942 T/G 6.95E-07 0.01218 3.139 2.706

rs4401880 SLC18A1 8 19946066 C/T 7.20E-07 0.3249 0.019 0.051

rs4823298 FBLN1 22 45915987 T/C 7.96E-07 0.4581 0.029 0.0439

rs17335455 NXPH1 7 8853946 T/G 8.20E-07 0.1633 −0.096 0.042

rs517484 RP11-6N13.1 5 104490130 T/C 8.51E-07 0.1965 −0.120 0.046

rs12814413 RBMS2 12 56916614 T/C 8.77E-07 0.3514 0.050 0.051

rs4665372 CGREF1 2 27325837 T/A 9.19E-07 0.3948 −0.104 0.043

Note: Themeta-analysis includes European, African, Asian, and Hispanic/Latino ancestries. Genome-wide significant variants are highlighted in orange.

Abbreviation:MAF, minor allele frequency.

DNA damage response factor previously associated with neurological

phenotype),41 2q14.1 (DAW1, involved in cerebrospinal fluid circula-

tion and cilia motility during development),42 and 15q15.1 (PWRN2,

previously associated with tauopathy and Prader–Willi syndrome)43

for ACD and 17q21.1 (MARCHF10) for VaD.

3.3 Functional characterization of GW suggestive
signals for ACD and VaD meta-analyses

3.3.1 Shared genetic susceptibility with complex
disease traits

The substantial shared genetic susceptibility of ACD and VaD with

risk factors and complex disease traits is evident across different

genomic scales (single variant, regional, and the global level). ACD

exhibits genetic pleiotropy with vascular risk factors (hypertension,

WMH burden), hematological traits (neutrophil, lymphocyte count),

and blood-based biomarkers indicative of inflammation (C-reactive

protein levels), hemostasis (fibrinogen, factor-VII levels), and neu-

rodegeneration (soluble TREM2 levels) (Table S6). This shared genetic

susceptibility is primarily driven by theMS4A gene family (membrane-

spanning 4A; MS4A6A, MS4A4A). The sharing of common genetic

variation between ACD and vascular risk factors (blood pressure traits

[DBP, SBP, PP], and T2D) at the ACE and PILRB locus (Figure S68, Table

S6) is further supported by our regional Bayesian pairwise (GWAS-

PW) analysis highlighting the high probability of harboring a shared

causal variant (Table S7). Interestingly, the GWAS-PW approach addi-

tionally reveals the shared genetic susceptibility of VaD with IS and

WMH at the PRPF8 and PRDM6 locus. In support, global-level genetic

overlap analysis (excluding the APOE region) using GNOVA showed

statistically robust evidence for the association of increased levels

of WMH with increased risk of VaD (Table S26, Figure 4). Addi-

tionally, we observed an inverse association of high levels of HDL

(protective) with ACD risk and high levels of DBP and LDL with VaD

risk. As expected, a strong genetic correlation between poorer cog-

nitive performance (GCF) and ACD was also observed. Our causal

inference analysis, using MR-LAP, confirmed the putative causal asso-

ciation of increased DBP andWMH levels with VaD risk. However, the

genetic correlation between AD and related risk factors using Kun-

kle 2019 GWAS did not show this causal association (Tables S26–S27,

Figure 4).
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F IGURE 4 Shared genetic contribution between ACD/VaD and related risk factors. Contributions determined by LD score regression analysis
(LDSR) (top), and Genetic Covariation Analyzer (GNOVA) (bottom). Effect sizes (rg) and significance levels (logp) are represented by color and
symbol size. AD, Alzheimer’s disease; GCF, general cognitive function; all stroke (AS) and its subtypes (ischemic, IS; cardioembolic, CES; small
vessel, SVS; large artery, LAS);WMH, white matter hyperintensity burden; DBP, diastolic blood pressure; SBP, systolic blood pressure; PP, pulse
pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Diamond shape: non-significant. Cross-significant causal effect estimates
fromMR-LAP analysis.

3.4 Polygenicity and multi-trait analysis

To identify additional SNPs conferring susceptibility to ACD and act-

ing through related risk factors, we jointly studied the GWdistribution

of genetic effects for ACD and its closely related traits. We first

prioritized those traits that have a polygenic background similar to

ACD using a Bayesian approach (ashR). The ashR analysis showed

that certain traits (ACD, stroke and its subtypes, WMH, coronary

artery disease [CAD]) had specific, possibly overlapping, pathophysi-

ological processes compared to other ACD risk factors (SBP, smoking

[SMK], body mass index) that involved multiple biological pathways

(Figure S69, Table S9). Next, using multitrait GWAS analysis (MTAG,

see Methods) on ACD and the prioritized traits (CAD, stroke, WMH),

we identified intronic SNPs in SMG6 and ABCG8 to be GW signifi-

cant (pMTAG < 1.67E-08, for three phenotypes) for ACD (Table S10).

Interestingly, SMG6 may also have a role in tau biology.44 Finally, we

explored the genetic difference between ACD/VaD and related disor-

ders using case–case GWAS (CC-GWAS, seeMethods). Specifically, we

compared (1) ACD/VaDwith AD and (2) ACDwith stroke. VaDwas not

comparedwith stroke because the two disorders are highly correlated.

Herewe report signals that were not GWsignificant in both respective

case-control GWASs. For AD, we identified two loci associated with

ACD-AD status, including the known APOE region and the IQUB gene

(p< 2e-08) on chr7 (Table S11). NoGWsignificant loci were associated

with VaD-AD status, although we observed some suggestive associa-

tion (Table S12). For ACD-stroke, we identified 56 variants mapping to

10 genes on chromosomes 17, 8, 11, 15, 4, and 12, most of which are

located at the SREBF1/TOM1L2 locus (p< 1e-10) on chr17 (Table S13).

3.5 Functional prioritization using molecular
profile (gene expression)

To functionally characterize and prioritize individual ACD and VaD

genomic risk loci, we performed TWASs using TWAS-Fusion, ACD, and

VaD association statistics and weights from 23 gene-expression refer-

ence panels from blood, arterial, and brain tissues (see Methods). We

identified 29 trait-associated (ACD/VaD) SNPs functioning as eQTLs,

regulating the expression of 22 genes (eGenes) in disease-relevant tis-

sue types (Table S14). To explore whether the observed associations

are real or merely reflect the random overlap between eQTLs and

non-causal risk variants for the dementia traits, a colocalization anal-

ysis was performed at each significant locus estimating the posterior

probability of a shared causal variant (PP4 ≥ 75%) between the gene

expression and trait association. Overall, 30% of the eQTL-eGene sat-

isfied the colocalization threshold for a shared causal variant between

the ACD or VaD and gene expression. In addition to fine mapping

functional genes (RP11-385F7.1, CR1, MS4A6A, ACE, APOC4) in the

loci exhibiting GW association with ACD/VaD, the TWASs identified

putative novel (CLU-ACD, PIKFYVE-VaD, SH3D21-ACD) genes satis-

fying transcriptome-wide significance threshold (pTWAS < 1.18E-05)

and the colocalization probability threshold.Most (91%) of the eGenes

are supported by the positional overlap of corresponding eQTLs with

regulatory marks (enhancer and promoter binding sites) for active

transcription in relevant tissue types.

3.6 Protein–protein interaction (PPI) evidenced
SEMA4D, RBFOX1, and SPRY2 as hub genes for ACD
and VaD

To determine the functional interactome of genes near genome-wide

significant (excluding APOE region) and suggestive loci (p < 1e-6) asso-

ciated with ACD and VaD, we performed a PPI analysis using the

STRING database. The analysis comprised 82 ACD and 21 VaD GW

significant and suggestive genes that were successfully mapped to the

human genome. Evidence of interaction between proteins was based

on “experiments,” “co-occurrence,” “database,” and “co-expression,”

with a minimum score of 0.15. Non-connected proteins were removed

from the network. To further determine how suggestive genes will

fit in the network of known AD genes, we used kmeans to cluster

the proteins based on validated interaction. ACD genes formed two
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main clusters (Figure S70). The first cluster was enriched in known

AD genes, including BIN1, CLU, ABCA7, and CR1, but also suggestive

genes, including SEMA4D, CHD18, and APH1B, with more than two

types of connection evidence. RBFOX1 appears to be a major hub

gene for the second cluster, which includes other suggestive genes like

AJAP1, ANO3, and TRIB1. RBFOX1 and SEMA4D strongly (>2 evidence

of connection) interact with known AD genes, suggesting their poten-

tial role in ACD. The PPI network of VaD (Figure S71) genes highlights

the potential role of SPRY2 as it functionally connects other genes,

including ERBB4, RASGRP1, and FOXA2.

3.7 Pathway and functional enrichment analysis

We conducted several analyses (pathways, gene ontology, disease

enrichment) to obtain functional and biological contexts of genes (near

variants with p < 1e-6, excluding the APOE region) associated with

ACD and VaD.

3.7.1 Pathway analysis

Pathway analyses (Tables S15 and S16) revealed enrichment in sev-

eral pathways, including “SREBF and miR33 in cholesterol and lipid

homeostasis,” “Hypertrophymodel,” and “Cholesterolmetabolismwith

Bloch and Kandutsch-Russell pathways” for ACD.

3.7.2 Gene Ontology (GO) analysis

GO analysis for ACD (Figure S72 and Table S17) focusing on the

biological processes (GO-BP) were enriched in terms related to

amyloid-beta, “amyloid-beta metabolic process,” “amyloid precursor

protein catabolic process,” and “negative regulation of amyloid pre-

cursor protein catabolic process” for ACD. For VaD (Figure S73

and Table S18), GO-BP analysis was enriched in several terms,

including “response to glucose,” “response to hexose,” “response to

monosaccharide,” “mesenchymal cell differentiation,” and “response to

carbohydrate.”

3.7.3 Disease enrichment and association analysis

(Figures S74 and S75, Tables S19–S25) revealed that ACD genes were

previously connected to AD, tauopathy, nephritis, and central nervous

system disease. It also highlighted previous associations of SEMA4D

and RBFOX1 with diseases of the central nervous system. Besides the

AD connection, VaD geneswere previously related to cancer, diabetes,

and colorectal carcinoma. Finally, we used Framingham Heart Study

data toestimate theheritability ofVaDand thegenetic correlationwith

ACD. We found the heritability of VaD to be 6.1%, with a 95% confi-

dence interval of [3.2%, 21%]. The genetic correlation of VaD and ACD

was 0.48 (SE= 0.84).

4 DISCUSSION

Our findings expand the current knowledge base of dementia genet-

ics by focusing on both ACD and VaD. Our GWAS of ACD replicated

several genes previously associated with AD, and GWAS of VaD iden-

tified SNPs in the APOE region. Using functional PPI and TW analyses,

we identified novel genes underlying ACD that have been implicated

in recovery from vascular injury and in neurotrophin signaling. On the

basis of LD score regression analysis, we suggest that certain vascu-

lar risk factors may not have a causal role not in both ACD and VaD

pathogenesis.

In our ACD analysis of European ancestry, we identified 10 GW

significant loci, including APOE, BIN1, MS4A6A, PICALM, CR1, CD2AP,

ABCA7, PILRB, SLC24A4, andACE, all ofwhich have been linkedwithAD

risk in prior studies.45 In addition, our analyses highlighted 24 sugges-

tive risk loci, of which 13 are novel. Among them are variants located

near ANO3, a gene that encodes anoctamin-3, a transmembrane pro-

tein that belongs to a family of calcium-activated chloride channels and

is implicated in focal dystonia, particularly craniocervical.46 Another

suggestive locus was located near SEMA4D, a gene that encodes

Semaphorin 4D and is known to modulate various processes related

to neuroinflammation and neurodegeneration, including the initiation

of inflammatory microglial activation.47 Indeed, SEMA4D is critical

in regulating the transition between homeostatic and reactive states

of various types of glial cells. Antibody blockade of SEMA4D is being

explored as a potential disease-modifying strategy to slow cognitive

decline in patients with early Huntington’s disease48 and may be ben-

eficial in other ACD. We have also identified a prominent signal near

RBFOX1, a gene that encodes the RNA binding fox-1, which has been

shown to have a role in alternative splicing of the amyloid precursor

protein. Genetic variation in this gene has been associated with brain

amyloid burden in preclinical and early AD and with the risk of clin-

ical AD in African Americans.49 This gene may also impact dementia

risk through non-amyloidogenic pathways as it additionally regulates

neuron development and neuronal excitability, including brain-derived

neurotrophic factor (BDNF)-dependent long-term potentiation in the

hippocampus and has been implicated in brain development, essential

tremor, and schizophrenia.50

Other suggestive loci are located in the ZNF652 gene, a tran-

scriptional repressor involved in nucleic acid binding that has diverse

effects, including determining the risk of hypertension. Hypertension

is the most important risk factor for stroke and WMH and may be

the most important modifiable risk factor for population prevention

of dementia.51 We additionally identified a variant near Heparin Bind-

ing EGF like growth factor (HBEGF), a growth factor implicated in

the pathobiology of cerebral autosomal dominant arteriopathy with

sub-cortical infarcts and leukoencephalopathy (CADASIL),52 themajor

Mendelian prototype of VaD. HBEGF also has an effect on angio-

genesis, expression of vascular endothelial growth factor A (VEGF-

A), inflammation, and oxidative stress and has been implicated in

hydrocephalus.53

APOEwas strongly associated with both ACD and VaD in our meta-

analysis. While AD could drive the association of APOE with ACD, the
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relationship with VaD is less established but has been demonstrated in

somepopulation studies and candidate-gene analyses54 and in a recent

GWAS among the GR@ACE project participants.16 The link of APOE

with VaD is in line with recent literature suggesting that the pathogen-

esis of APOE extends beyond Aβ peptide aggregation and clearance.55

Indeed, APOE also influences microglia and the blood-brain barrier

(BBB)56 and is associated with intracranial atherosclerosis,57 WMH

burden, and the presence of cerebral microbleeds,58 as well as with

cerebral hypertensive angiopathy, which is common in individuals with

VaD.59

In addition to a significant association of APOEwith VaD in our sam-

ple, we identified several suggestive variants also associated with VaD.

These include variants near the SPPRY2 protein-coding gene as well as

GALNT8, FOXA1, ERBB4, PSMA3, and SEMA6Dwith consistency across

samples in the direction of effect and many SNPs in LD with the lead

SNP.Our downstream analyses supported a highly plausible causal link

between variants, including SEMA4D, HBEGF, PIKFYVE, and RBFOX1

with ACD and SPRY2 with VaD. These genes collectively emphasize a

possible role for novel pathological mechanisms in ACD and VaD. Our

findings highlight a crucial mechanism underlying ACD: recovery after

vascular injury. For example, SEMA4D, a member of the semaphorin

family, is upregulated in the neurovascular unit after IS, where it exerts

multiple neuroprotective effects.60 Moreover, this gene has been addi-

tionally highlighted in our PPI analysis as strongly associated with

known AD genes. Another example is SPRY2, highlighted in our study

as a suggestive gene for VaD, with strong functional associations with

known AD and related dementias genes.

In the replication analysis of VaD signals in the EADB dataset,

SPRY2 has the lowest p value and a consistent direction of associa-

tion. This gene has also been suggested as a possible pharmacological

target for stroke patients, as it promotes angiogenesis and glial scar-

ring around the ischemic injury, preventing an increase in lesion size

and secondary damage to brain tissue.61 Also, SPRY2may exert neuro-

protective effects as its expression regulates BDNF-induced signaling

pathways.62 Similarly,PIKFYVE is an essential regulator of platelet lyso-

some homeostasis, which in turn may promote recovery after IS.63

Another hub gene in our analyses is RBFOX1, which, in addition to

having a role in amyloid accumulation as discussed earlier, mediates

ischemic damage by enhancing neuronal survival and BBB integrity

after stroke.64 This gene is a neuron-specific splicing factor implicated

in intellectual disability, epilepsy, autism, and Parkinson’s disease. Its

downregulation has been associated with destabilizing mRNAs encod-

ing for synaptic transmission proteins, whichmay contribute to the loss

of synaptic function in AD.65 Furthermore, RBFOX1 upregulation was

shown to influence neuronal expression levels of the BDNF receptor,

TrkB, which in turnmay affect the risk for ACD.66

We found that the MS4A gene cluster drove genetic pleiotropy

that involves vascular risk factors, inflammation, hemostasis, and sol-

uble TREM2 levels. These findings align with preclinical studies67 and

emphasize the critical role and multifactorial contribution of this gene

cluster to ACD pathogenesis. Although previous literature pointed

to an association of ACE with AD but not VaD,68 we herein show

that this gene underlies both ACD and vascular risk factors. A recent

study supports this finding by showing that overexpression of ACE on

macrophages reduces vascular amyloid andGFAP+ astroglial reactiva-

tion, indicating its role in the protection of the neurovascular unit.69

Moreover, our pairwise analysis highlighted a locus at the PRDM6 that

explained a shared genetic susceptibility of VaD with IS and WMH.

Low levels of leukocyte DNA methylation of the PRDM6 gene have

been associated with an increased risk of IS and worse outcomes 3

months after an IS.70 Moreover, PRDM6 acts as an epigenetic regulator

of vascular smoothmuscle cell plasticity.71

Despite evidence showing an inverse relationship between plasma

HDL levels and risk of incident AD, results are conflicting, with some

studies pointing to higher dementia risk in individuals with high HDL

levels, as was also the case in our study.72 It should be acknowledged

that HDL represents a class of lipoproteins that are heterogeneous

in structure and function, which is not reflected by a simple measure-

ment of HDL plasma levels. High HDL levels can be deleterious under

certain conditions.73 Vascular risk factors and the presence of cardio-

vascular disease can alter HDL functionality by changing the structure

of HDLs and converting them into pro-inflammatory, pro-oxidant, pro-

thrombotic, and proapoptotic compounds. Our observation alignswith

recent Mendelian randomization data implicating an elevated HDL in

risk of AD.74

The following limitations should be considered when interpreting

the results of this study. First, the multifactorial nature and hetero-

geneous clinical manifestations of ACD and VaD have led to various

attempts to develop diagnostic criteria, which were differentially

applied across the participating cohorts. ACD has been ascertained

using DSM-IV in some studies. In contrast, others have used ICD-9/10

codes alone or in combination with autopsy or death certificate infor-

mation, which can result in a varying proportion of persons identified

as having dementia. The various cohorts also used different diagnostic

criteria to define VaD. In all cohorts, a key requirement for VaDdiagno-

sis remains the demonstration of a cognitive deficit and the presence

of cerebrovascular disease, consistent with the most recent consen-

sus criteria for VCID.75 Whereas these criteria differ in sensitivity

and specificity, thereby introducing statistical noise, this heterogene-

ity does not diminish the importance of the loci identified despite

the constraints. A second limitation is the limited power to identify

associations with VaD in ancestries other than European.

Our study identified several putative genetic variants and biological

pathways associated with ACD and VaD and added additional support

for the involvement of vascularmechanisms in dementia pathogenesis.
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