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A novel formulation for the linear buckling analysis of multilayered shells is presented. High-order equivalent-
single-layer shell theories based on the through-the-thickness expansion of the covariant components of the
displacement field are employed. The novelty of the formulation regards the governing equations solution
via implicit-mesh discontinuous Galerkin method. It is a high-order accurate numerical technique based on
a discontinuous representation of the solution among the mesh elements and on the use of suitably defined
boundary integrals to enforce the continuity of the solution at the inter-element interfaces as well as the boundary
conditions. Owing to its discontinuous nature, it can be naturally employed with non-conventional meshes. In
this work, it is combined with the implicitly-defined mesh technique, whereby the mesh of the shell modelling
domain is constructed by intersecting an easy-to-generate background grid and a level set function implicitly
representing the cutouts. Several numerical examples are considered for the buckling loads of plates and
cylinders modelled by different shell theories and characterized by various materials, geometry, boundary
conditions and cutouts. The obtained results are compared with literature and finite-element solutions and they
demonstrate the accuracy and the robustness of the proposed approach.

I. Nomenclature

𝑉, 𝜕𝑉 = shell volume and boundary
𝜏 = shell thickness
𝑁ℓ = shell number of layers
𝑉 ⟨ℓ ⟩ , 𝜕𝑉 ⟨ℓ ⟩ = ℓ-th layer volume and boundary
𝜏⟨ℓ ⟩ = ℓ-th layer thickness
𝜃 ⟨ℓ ⟩ = ℓ-th layer lamination angle
(𝜉1, 𝜉2, 𝜉3) = curvilinear coordinates
Ω𝜉 , 𝜕Ω𝜉 = shell modelling domain and boundary
𝐼𝜉3 , 𝐼

⟨ℓ ⟩
𝜉3

= thickness interval for the shell and for the ℓ-th layer
𝜉
⟨ℓ ⟩
3𝑏 , 𝜉

⟨ℓ ⟩
3𝑡 = values of 𝜉3 identifying the bottom and top surfaces of the ℓ-th layer

𝒙0, 𝒙 = point on the shell mean surface and in the shell volume
𝒏0 = unit vector orthogonal to the shell mean surface
𝒈𝑖 = 𝑖-th vector of the covariant basis
𝒈𝑖 = 𝑖-th vector of the contravariant basis
𝑹 𝜉 = transformation matrix
𝑔𝑖 𝑗 = 𝑖 𝑗-th covariant component of the metric tensor
𝑔𝑖 𝑗 = 𝑖 𝑗-th contravariant component of the metric tensor
𝑔 = determinant of 𝑔𝑖 𝑗
𝒖 = vector of the displacement Cartesian components
𝒖 𝜉 = vector of the displacement covariant components
𝒁 = matrix of the thickness functions
𝑼 = vector of the generalized displacements
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𝜸 = vector of the strain Cartesian components (Voigt notation)
𝑫0𝑖 , 𝑫𝛼𝑖 = auxiliary matrices linking the derivatives of the displacement vector with the generalized displacements
𝑱0, 𝑱𝛼 = auxiliary matrices linking the strain vector with the generalized displacements
𝒎 ⟨ℓ ⟩
𝑖

= 𝑖-th vector of the orthotropy reference system for the ℓ-th layer
𝝈̃⟨ℓ ⟩ = vector of the stress Cartesian components in the orthotropy reference system (Voigt notation)
𝝈⟨ℓ ⟩ = vector of the stress Cartesian components in the global reference system (Voigt notation)
𝒄̃⟨ℓ ⟩ , 𝒄⟨ℓ ⟩ = stiffness matrix in the orthotropy and in the global reference systems
𝒃, 𝒕 = prescribed volume force and boundary traction fields
𝑸𝛼𝛽 , 𝑹𝛼3, 𝑺33 = generalized stiffness matrices
𝑩,𝑻 = prescribed generalized volume and boundary loads
𝑼 = prescribed generalized displacements
𝜎𝑖 𝑗 = 𝑖 𝑗-th component of the initial stress field
𝜆 = buckling eigenvalue
𝑸𝐺𝛼𝛽 , 𝑹

𝐺
𝛼3, 𝑺

𝐺
33 = generalized geometric stiffness matrices

𝑁𝑒 = number of mesh elements
Ω𝑒
𝜉

= 𝑒-the mesh element
𝜕Ω𝑒

𝜉𝐷
, 𝜕Ω𝑒

𝜉 𝑁
= boundary of the 𝑒-th element where Dirichlet and Neumann boundary conditions are enforced

Ωℎ
𝜉

= approximated modelling domain
V𝑁
ℎ𝑝

= space of 𝑁-dimensional discontinuous vector fields
P𝑒𝑝 = space of polynomial functions of degree at most 𝑝 over the 𝑒-th element
𝜕Ωℎ

𝜉𝐷
, 𝜕Ωℎ

𝜉𝑁
= approximated modelling boundaries where Dirichlet and Neumann boundary conditions are enforced

𝜕Ω𝑖
𝜉 𝐼

= 𝑖-th interface between two mesh elements
𝜕Ωℎ

𝜉 𝐼
= set of inter-element interfaces

𝝂𝑒 = elements unit normal
𝜇 = penalty parameter
Π𝜉 , 𝜕Π𝜉 = background rectangle domain and boundary
𝜑 = level-set function
𝐸𝑖 = 𝑖-th Young’s modulus
𝜈𝑖 𝑗 = 𝑖 𝑗-th Poisson’s ratio
𝐺𝑖 𝑗 = 𝑖 𝑗-th shear modulus
𝐸𝑟 = reference Young’s modulus
𝛿0, 𝜀0, 𝜎0 = reference displacement, strain and stress
𝑁𝑐𝑟 = critical buckling load
𝑢𝑐𝑟 = critical displacement at buckling

II. Introduction

Nowadays, composite structures are widely employed in aerospace, automotive and naval engineering as high-performance structural
components. With respect to their metallic counterparts, composite multilayered structures offer the engineers a wider set of design

parameters, ranging from the stacking sequence of the whole laminate to the materials of the fibers and the matrix of the single layer. As a
result, composite structures are able to achieve strength-to-weight and stiffness-to-weight ratios superior to those of metallic structures.
However, because of the inherent heterogeneous nature, composite structures are characterized by a more complex distribution of strains
and stresses.

Among various loading configurations, loads inducing compressive stress states are of crucial importance because they can drive thin
and slender structures to sudden changes in their geometry and failure at loads level dramatically lower than those predicted by linear static
analyses. These critical loads, known as buckling loads, depend on the properties and the geometry of the structure and, in multilayered
shells, are strongly affected by the interplay between the curved geometry, the dissimilar materials and the possible presence of cutouts.
Therefore, to safely employ composite structures as load-carrying components, tools able to accurately address the buckling problem of
multilayered shells are of great engineering interest.

One approach to evaluating the buckling loads of a thin structure and thus the corresponding change in its geometry is to solve
the equations of finite-strain elasticity, whereby the load-deformation response of the structure is generally computed via an iterative-
incremental non-linear analysis, see e.g. [1–5]. Alternatively, buckling loads may be evaluated using the so-called bifurcation theory, which,
given an initial equilibrium configuration, is based on seeking at least one additional distinct equilibrium solution in the neighborhood of
the initial equilibrium state [6]. When the initial configuration is computed from a linear elastic analysis, the bifurcation approach is also
known as the Euler’s method and reduces to solving a linear eigenvalue problem, where the smallest eigenvalue denotes the multiplicative
factor to be applied to the external loads in order for the structure to buckle and the corresponding eigenvector represents the buckled
shape. The Euler’s method is based on a linearized analysis and loses the information regarding the equilibrium path of the structure in
the non-linear regime. However, it may be more efficient than solving the non-linear equations of elasticity, especially during the design
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phase of structural components.
The composite multilayered shell problem, including the buckling analysis, is typically formulated using two-dimensional shell theories,

which are based on suitable assumptions on the behavior of the involved mechanical fields through the shell thickness and reduction
of the computational complexity of three-dimensional models. The most widely employed shell theories are the Classical Laminated
Theory (CLT) and the First-order Shear Deformation Theory (FSDT), which rely on a linear through-the-thickness approximation of the
displacement field and have been successfully employed for solving the linear buckling problem of plates and shells [7–10]. However,
to obtain a more detailed resolution of the displacement, strain and stress distribution at the layers’ level, researchers have enriched
the through-the-thickness assumptions and introduced the so-called higher-order theories. These theories can broadly be classified
into Equivalent Single Layer (ESL) theories [11–13], whereby the shell is replaced by a single layer having equivalent mechanical
properties, and Layer-Wise theories [14, 15] where each layer is modelled independently and suitable interface conditions must be
enforced. Combined approaches, such the sub-laminate theory [16], have also been proposed but are less common. A unified description
of high-order theories for plates and shells has been introduced by Carrera through the Carrera Unified Formulation (CUF) [17, 18],
which provides a framework for a systematic assessment of multiple structural theories.

In general, regardless of the chosen shell theory, the solution of the buckling problem requires numerical methods, especially when
one considers the complex stress distribution that is typical of practical engineering applications. The most widely employed numerical
method is the Finite Element Method (FEM), which is at the base of many commercial software libraries featuring a buckling solver and
is still employed in current research studies focused on buckling analysis, see e.g. [19, 20].

Various numerical approaches have also been proposed as an alternative to the FEM with the aim to facilitate the use of high-order
elements, non conformal meshes and/or enriched spaces of basis functions. Recent examples include the works by Thai et al.[21] and by
Alesadi et al.[22, 23], who employed the Isogeometric Analysis (IGA) for solving the buckling problem of laminated plates modelled by
the FSDT and by high-order theories, respectively; the IGA approach was also used by Gou et al.[24] for the stability analysis of thin
shells and by Faroughi et al.[25], who investigated anisotropic solid-like composite shells. The use of an enriched approximation space
can be found in the works by Nasirmanesh et al. [26, 27], who studied the buckling problem of cracked single-layer composite plates and
functionally graded cylindrical shells via the extended finite element method (XFEM), and by Milazzo et al.[28–30], who proposed an
extended Ritz (X-Ritz) approach based on the use of high-order crack functions to augment the space of polynomial basis functions for
the buckling analysis of composite plate and plate assemblies modelled by the FSDT. The Ritz method was also employed by Sciascia
et al.[31, 32] for the free-vibration and dynamic analysis of prestressed variable stiffness shells using the FSDT and by Vescovini et al
[33, 34] for the buckling analysis of reinforced and highly anisotropic plates using higher-order kinematics. A common result in the
aforementioned studies is the benefit of using higher-order and/or enriched basis function spaces in structural analysis.

The discontinuous Galerkin (DG) method has also proved a powerful and flexible technique for high-order accurate numerical
modelling. The main features of a DG formulation are the representation of the approximate solution in a space of discontinuous basis
functions and the introduction of suitably defined boundary integrals, which ensure the continuity of the solution at the inter-element
interfaces and enforce the boundary conditions in terms of both prescribed displacement and traction fields. This allows the DG method to
naturally handle arbitrarily-shaped elements while maintaining the high-order accuracy and to be seamlessly employed in combination
with variable-order approximation spaces. The DG method has been successfully employed for the static analysis of plates and shell
structures modelled via the CLT [35–37] and the FSDT [38, 39]. More recently, it has also been used to solve the governing equations of
static elasticity and piezoelectricity associated with ESL [40–42] and LW [43–45] theories for multilayered plates and shells.

In the context of eigenvalue problems, the DG method has been used to solve the Laplace eigenproblem [46, 47], to compute the
eigenfrequencies of the Maxwell equations in a cavity [48–50] and to study the hydrodynamic stability associated with the incompressible
Navier–Stokes equations [51, 52]. However, to the best of the author knowledge, the application of the DG method to the eigenvalue
problem associated with the linear buckling analysis of laminated plates and shells has not been investigated in the literature.

In this work, a novel DG-based formulation for the buckling analysis of composite multilayered structures modelled via general
high-order theories is presented. The starting point of the formulation is the use of ESL theories for multilayered structures, whereby
the through-the-thickness expansion is assumed for the covariant components of the displacement field. The corresponding buckling
variational statement is derived using the Euler’s method under the assumption that the structure is subjected to an initial stress distribution.
The initial stress distribution is either prescribed or obtained from a linear elastic static analysis. Both the static and the buckling problems
are solved via the Interior Penalty DG formulation previously introduced for the static behavior of composite structures, see Refs.[40–43].
In particular, we verify that, by introducing the domain terms accounting for the initial stress distribution and retaining the same boundary
integrals employed in the static analyses to enforce the inter-element continuity and the boundary conditions, the present DG formulation
provides a high-order accurate solution of the buckling problem for laminated plates and shells. Additionally, to account for the presence
of cutouts, we employ the implicitly-defined mesh technique, whereby the mesh of the shell modelling domain is constructed by combining
a background grid and an implicit representation of the cutout via a level set function. This strategy simplifies the meshing phase, whilst
the flexibility of the DG method and the use of high-order quadrature rules for implicitly-defined domains and boundaries [53] ensure that
the present formulation retains its high-order accuracy also in the presence of cutouts.

The paper is organized as follows: Sec.(III) introduces the linear buckling problem for multilayered shells; the linear static problem is
also briefly recalled as it is employed to evaluate the initial stress distribution in the considered structures. Sec.(IV) presents the proposed
Interior Penalty DG formulation for the solution of the considered static and buckling problems and discusses the meshing of the shell
modelling domain via the implicitly-defined mesh technique. In Sec.(V), several numerical tests are performed for multilayered plates and
shells without cutouts and for a multilayered plate with a circular cutout. The obtained results are compared with benchmarks taken from
the literature or obtained with finite-element analyses. The final remarks to the work are given in Sec.(VI).
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III. Problem formulation
We consider a multilayered shell occupying the volume 𝑉 ⊂ R3, with boundary 𝜕𝑉 , and consisting of a stacking of 𝑁ℓ layers.

The layers are assumed homogeneous, orthotropic and perfectly-bonded at the layers’ interfaces. The layers have thickness 𝜏⟨ℓ ⟩ , with
ℓ = 1, . . . , 𝑁ℓ , such that the total thickness of the shell is 𝜏 =

∑𝑁ℓ

ℓ=1 𝜏
⟨ℓ ⟩ . The ℓ-th layer is also characterized by an orientation angle 𝜃 ⟨ℓ ⟩ ,

which affects its constitutive behavior as detailed in Sec.(III.D). Throughout the paper, all quantities associated with the ℓ-th layer are
denoted by the superscript ⟨ℓ⟩.

A. Geometry description
The shell geometry is defined starting from the definition of the shell mean surface 𝑆, which is represented by the map

𝒙0 = 𝒙0 (𝜉1, 𝜉2), for (𝜉1, 𝜉2) ∈ Ω𝜉 . (1)

In Eq.(1), 𝒙0 = (𝑥01, 𝑥02, 𝑥03)⊺ is a generic point on 𝑆 and is given as a function of the curvilinear coordinates (𝜉1, 𝜉2) that span the shell
modelling domain Ω𝜉 ⊂ R2. Associated with each point on the mean surface is the normal unit vector 𝒏0, which is obtained from Eq.(1)
as

𝒏0 ≡ 𝒂1 × 𝒂2

| |𝒂1 × 𝒂2 | |
, (2)

where
𝒂1 ≡ 𝜕𝒙0

𝜕𝜉1
and 𝒂2 ≡ 𝜕𝒙0

𝜕𝜉2
. (3)

Let us now introduce a third curvilinear variable 𝜉3 spanning the thickness interval 𝐼𝜉3 ≡ [−𝜏/2, 𝜏/2]. Then, a generic point 𝒙 of the shell
volume 𝑉 is given by the map

𝒙 = 𝒙(𝜉1, 𝜉2, 𝜉3) ≡ 𝒙0 (𝜉1, 𝜉2) + 𝜉3𝒏0 (𝜉1, 𝜉2), for (𝜉1, 𝜉2, 𝜉3) ∈ Ω𝜉 × 𝐼𝜉3 . (4)

Using Eq.(4), one introduces the local covariant basis, whose 𝑖-th vector is defined as 𝒈𝑖 ≡ 𝜕𝒙/𝜕𝜉𝑖 , and the local contravariant basis,
whose 𝑖-th vector 𝒈𝑖 is defined such that 𝒈𝑖 · 𝒈 𝑗 = 𝛿𝑖

𝑗
, being 𝛿𝑖

𝑗
the the Kronecker delta. The bases allow expressing the transformation

between the Cartesian and the curvilinear coordinates systems. In particular, let (𝑣1, 𝑣2, 𝑣3) denote the Cartesian components of a generic
vector in R3 and (𝑣 𝜉1 , 𝑣 𝜉2 , 𝑣 𝜉3 ) denote the corresponding curvilinear covariant components. Then, the two sets of coordinates are related
as follows [54]

𝒗 = 𝑹 𝜉 𝒗 𝜉 , (5)

where 𝒗 ≡ (𝑣1, 𝑣2, 𝑣3)⊺, 𝒗 𝜉 ≡ (𝑣 𝜉1 , 𝑣 𝜉2 , 𝑣 𝜉3 )⊺ and 𝑹 𝜉 is a 3×3 matrix whose columns are vectors of the contravariant basis. We also
introduce the covariant components 𝑔𝑖 𝑗 of the metric tensor as 𝑔𝑖 𝑗 ≡ 𝒈𝑖 · 𝒈 𝑗 , the determinant 𝑔 of 𝑔𝑖 𝑗 , and the contravariant components
𝑔𝑖 𝑗 of the metric tensor as 𝑔𝑖 𝑗 ≡ 𝒈𝑖 · 𝒈 𝑗 .

Finally, the map given in Eq.(4) allows defining the geometry of the layers of the shells. The volume 𝑉 ⟨ℓ ⟩ of the ℓ-th layer is identified
by Eq.(4) for 𝜉3 ∈ 𝐼

⟨ℓ ⟩
𝜉3

≡ [𝜉 ⟨ℓ ⟩3𝑏 , 𝜉
⟨ℓ ⟩
3𝑡 ], where 𝜉

⟨ℓ ⟩
3𝑏 and 𝜉

⟨ℓ ⟩
3𝑡 are the values of the curvilinear coordinate 𝜉3 that identify the ℓ-th layer’s

bottom surface and the top surface, respectively. Note that 𝜉 ⟨ℓ ⟩3𝑡 − 𝜉
⟨ℓ ⟩
3𝑏 = 𝜏⟨ℓ ⟩ and that the layers are stacked such that 𝜉 ⟨ℓ−1⟩

3𝑡 = 𝜉
⟨ℓ ⟩
3𝑏 for

ℓ = 2, . . . , 𝑁ℓ .

B. The Equivalent-Single-Layer theory for shells
Among the higher-order theories for multilayered shells, the formulation considered in this work is based on the displacement-based

Equivalent-Single-Layer theory, see e.g.[17, 55], whereby the shell is replaced by a single mechanical layer with equivalent mechanical
properties and all mechanical quantities are expressed in terms of displacement degrees of freedom. Let us introduce the vector
𝒖 ≡ (𝑢1, 𝑢2, 𝑢3)⊺ containing the Cartesian components of the displacement field and the vector 𝒖 𝜉 ≡ (𝑢 𝜉1 , 𝑢 𝜉2 , 𝑢 𝜉3 )⊺ containing the
corresponding covariant components, which are related to 𝒖 via Eq.(5). Then, following Guarino et al.[41, 42], we assume the following
through-the-thickness expansion for the covariant component 𝑢 𝜉𝑖

𝑢 𝜉𝑖 (𝜉1, 𝜉2, 𝜉3) =
𝑁𝑖∑︁
𝑘=0

𝑍 𝑖𝑘 (𝜉3)𝑈𝑖𝑘 (𝜉1, 𝜉2), (6)

where 𝑍 𝑖
𝑘
(𝜉3) is the 𝑘-th known thickness function, 𝑈𝑖

𝑘
(𝜉1, 𝜉2) is 𝑘-th unknown generalized displacement function and 𝑁𝑖 represents

the order of the expansion associated with 𝑢 𝜉𝑖 . Upon collecting the generalized displacements in the 𝑁𝑈-dimensional vector 𝑼, with
𝑁𝑈 = 𝑁1 + 𝑁2 + 𝑁3 + 3, the expression given in Eq.(6) can be written in compact form as

𝒖 𝜉 = 𝒁(𝜉3)𝑼(𝜉1, 𝜉2), (7)

where 𝒁 is a 3 × 𝑁𝑈 matrix containing the thickness functions suitably ordered to be consistent with the ordering of 𝑼. Note that the
present approach allows selecting the order of expansion independently for each displacement component. For instance, the FSDT would
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be obtained by setting 𝑁1 = 𝑁2 = 1, 𝑁3 = 0, 𝑍1
0 (𝜉3) = 𝑍2

0 (𝜉3) = 𝑍3
0 (𝜉3) = 1 and 𝑍1

1 (𝜉3) = 𝑍2
1 (𝜉3) = 𝜉3, such that the matrix 𝒁 may be

𝒁(𝜉3) =


1 0 0 𝜉3 0
0 1 0 0 𝜉3

0 0 1 0 0

 . (8)

In the next sections, the strain and the stress components will be written in terms of the generalized displacement vector 𝑼 and its
derivatives with respect to 𝜉1 and 𝜉2.

C. Strain-displacement relations
The relationship between the displacement field and the strain field considered here is based on the small-strain assumption.

Following Gulizzi et al.[40, 43] and using the Voigt notation, the vector 𝜸 containing the Cartesian engineering strain components,
i.e. 𝜸 = (𝛾11, 𝛾22, 𝛾33, 𝛾23, 𝛾13, 𝛾12)⊺, is written in terms of the displacement vector 𝒖 as

𝜸 = 𝑰𝑖
𝜕𝒖

𝜕𝑥𝑖
, (9)

where the following 6 × 3 matrices have been introduced

𝑰1 ≡



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0


, 𝑰2 ≡



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0


and 𝑰3 ≡



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0


. (10)

In Eq.(9) and in the remainder of the paper, the Einstein summation convection is employed with Latin indices spanning the set {1, 2, 3}
and Greek indices spanning the set {1, 2}.

To express the vector 𝜸 in terms of the generalized displacement vector 𝑼 and its derivatives with respect to 𝜉𝛼, with 𝛼 = 1, 2, we first
use Eqs.(5) and (7) and write the derivatives appearing in Eq.(9) as follows

𝜕𝒖

𝜕𝑥𝑖
= 𝑫0𝑖𝑼 + 𝑫𝛼𝑖

𝜕𝑼

𝜕𝜉𝛼
, (11)

where
𝑫0𝑖 ≡

𝜕𝜉 𝑗

𝜕𝑥𝑖

𝜕𝑹 𝜉

𝜕𝜉 𝑗
𝒁 + 𝜕𝜉3

𝜕𝑥𝑖
𝑹 𝜉

d𝒁
d𝜉3

, and 𝑫𝛼𝑖 ≡
𝜕𝜉𝛼

𝜕𝑥𝑖
𝑹 𝜉 𝒁. (12)

Then, upon substituting Eq.(11) into Eq.(9), one obtains

𝜸 = 𝑱0𝑼 + 𝑱𝛼
𝜕𝑼

𝜕𝜉𝛼
, (13)

where
𝑱0 ≡ 𝑰𝑖𝑫0𝑖 and 𝑱𝛼 ≡ 𝑰𝑖𝑫𝛼𝑖 . (14)

To conclude this section, it is worth noting that Eqs.(7) and (13) have been introduced without using the superscript ⟨ℓ⟩ or mentioning
the stacking sequence of the shell. In fact, Eqs.(7) and (13) are valid throughout the shell thickness and for each layer of the shell. This is
typical of ESL formulations and has the advantage that the continuity of the displacement field at the interface between consecutive layers
is automatically satisfied.

D. Constitutive behavior
The constitutive behavior of the multilayered shell is determined starting from the constitutive behavior of its layers, which are assumed

linear elastic. For a generic point 𝒙 ∈ 𝑉 ⟨ℓ ⟩ , we introduce a local reference system, identified by the unit vectors 𝒎 ⟨ℓ ⟩
1 , 𝒎 ⟨ℓ ⟩

2 and 𝒎 ⟨ℓ ⟩
3 , such

that the constitutive behavior of the ℓ-th layer may be assumed orthotropic. The vectors of the local reference system are defined as follows

𝒎 ⟨ℓ ⟩
1 ≡ 𝑹𝒏0 (𝜃 ⟨ℓ ⟩)

𝒈1
| |𝒈1 | |

, 𝒎 ⟨ℓ ⟩
3 ≡ 𝒏0, and 𝒎 ⟨ℓ ⟩

2 ≡ 𝒎 ⟨ℓ ⟩
3 × 𝒎 ⟨ℓ ⟩

1 , (15)

where 𝑹𝒏0 (𝜃 ⟨ℓ ⟩) is a 3×3 matrix that performs a rotation of the lamination angle 𝜃 ⟨ℓ ⟩ around the normal vector 𝒏0. It is worth pointing out
that this choice of the layers’ local reference system does not represent a restriction for the proposed formulation. In fact, the formulation
allows defining the vector 𝒎 ⟨ℓ ⟩

1 in different reference systems. For example, the vector 𝒎 ⟨ℓ ⟩
1 may be defined with respect to a unit vector
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in the global Cartesian reference system; this strategy has been tested in Ref.[41] and allows the modelling of multilayered plates where
the layers are characterized by parallel straight fibers but the vectors of the curvilinear basis change as functions of 𝜉1 and 𝜉2. Other
choices of the layers’ local reference systems may also be employed, such that those stemming from the intersection of the shell surface
with a given plane, see e.g. [56], but they will not be considered here. Within the linear elasticity hypothesis, the stress-strain relationship
in the local reference system is written as

𝝈̃⟨ℓ ⟩
= 𝒄̃⟨ℓ ⟩ 𝜸̃⟨ℓ ⟩

, (16)

where 𝜸̃⟨ℓ ⟩ and 𝝈̃⟨ℓ ⟩ are 6-dimensional vectors containing the strain components and stress components, respectively, in Voigt notation,
and 𝒄̃⟨ℓ ⟩ is the corresponding stiffness matrix in the local reference system, which is given in terms of the engineering constants as
described in [57]. Using standard transformation procedures, see e.g.[57, 58], Eq.(16) is written in the global reference system as

𝝈⟨ℓ ⟩ = 𝒄⟨ℓ ⟩𝜸. (17)

Note that in Eq.(17) the superscript ⟨ℓ⟩ does not appear on the vector 𝜸 containing the engineering strain components in the global
reference system because it is assumed that 𝜸 is given by Eq.(13). In fact, upon substituting Eq.(13) into Eq.(17), the vector 𝝈⟨ℓ ⟩

containing the stress components in the global reference system is expressed in terms of the generalized displacement vector 𝑼 and its
derivatives as

𝝈⟨ℓ ⟩ = 𝒄⟨ℓ ⟩
(
𝑱0𝑼 + 𝑱𝛼

𝜕𝑼

𝜕𝜉𝛼

)
, for ℓ = 1, . . . , 𝑁ℓ . (18)

As detailed in the next two sections, it is now possible to express the static and the buckling problems of multilayered shells modelled
via ESL theories in terms of the vector 𝑼.

E. Static problem
In the Cartesian global reference system, the static response of multilayered composite shells subjected to body forces 𝒃 and boundary

tractions 𝒕 is derived from the three-dimensional principle of virtual displacements, which reads
𝑁ℓ∑︁
ℓ=1

∫
𝑉 ⟨ℓ⟩

𝛿𝜸⊺𝝈⟨ℓ ⟩ d𝑉 =

∫
𝑉

𝛿𝒖⊺𝒃 d𝑉 +
∫
𝜕𝑉

𝛿𝒖⊺ 𝒕 d𝜕𝑉, (19)

where 𝛿• denotes the variation of • and, consistently with ESL theories, it was implicitly assumed that the displacement and the strain
fields do not depend on the layer ℓ. Upon substituting Eqs.(7), (13) and (18) into Eq.(19), one obtains the following variational statement
for the static analysis of a multilayered shell∫

Ω𝜉

[
𝜕𝛿𝑼⊺

𝜕𝜉𝛼

(
𝑸𝛼𝛽

𝜕𝑼

𝜕𝜉𝛽
+ 𝑹𝛼3𝑼

)
+ 𝛿𝑼⊺

(
𝑹⊺
𝛼3

𝜕𝑼

𝜕𝜉𝛼
+ 𝑺33𝑼

)]
dΩ𝜉 =

∫
Ω𝜉

𝛿𝑼⊺𝑩 dΩ𝜉 +
∫
𝜕Ω𝜉

𝛿𝑼⊺𝑻 d𝜕Ω𝜉 , (20)

which is written only in terms of the generalized displacement vector 𝑼. In Eq.(20), the matrices 𝑸𝛼𝛽 , 𝑹𝛼3, and 𝑺33 are referred to as
generalized stiffness matrices and are given as follows

𝑸𝛼𝛽 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑱⊺𝛼𝒄
⟨ℓ ⟩ 𝑱𝛽

√
𝑔 d𝜉3, (21a)

𝑹𝛼3 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑱⊺𝛼𝒄
⟨ℓ ⟩ 𝑱0

√
𝑔 d𝜉3, (21b)

𝑺33 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑱⊺0 𝒄
⟨ℓ ⟩ 𝑱0

√
𝑔 d𝜉3. (21c)

Similarly, the generalized volume loads 𝑩 and the generalized boundary loads 𝑻 are given as

𝑩 ≡
(
𝒁⊺𝑹⊺

𝜉
𝒕
√
𝑔

√︃
𝑛𝑖𝑔

𝑖 𝑗𝑛 𝑗

)
𝜉3=±𝜏/2

+
∫ 𝜏/2

−𝜏/2
𝒁⊺𝑹⊺

𝜉
𝒃
√
𝑔 d𝜉3, (22a)

and

𝑻 ≡
∫ 𝜏/2

−𝜏/2
𝒁⊺𝑹⊺

𝜉
𝒕
√
𝑔

√︃
𝑛𝑖𝑔

𝑖 𝑗𝑛 𝑗 d𝜉3. (22b)

It is worth pointing out that the integrals over 𝑉 ⟨ℓ ⟩ and 𝜕𝑉 ⟨ℓ ⟩ in Eq.(19) have been transformed into integrals over Ω𝜉 and 𝜕Ω𝜉 using the
relationships d𝑉 =

√
𝑔 dΩ d𝜉3, d𝜕𝑉 =

√
𝑔
√︁
𝑛𝑖𝑔

𝑖 𝑗𝑛 𝑗 dΩ𝜉 for the top and bottom surfaces of the shell and d𝜕𝑉 =
√
𝑔
√︁
𝑛𝑖𝑔

𝑖 𝑗𝑛 𝑗 d𝜕Ω d𝜉3 for
the lateral surface of the shell, where 𝑛𝑖 is the 𝑖-th Cartesian component of the outer unit normal at 𝒙 ∈ 𝜕𝑉 , see [54]. Additionally, we
note that the set of partial differential equations governing the statics of multilayered shells can be derived from Eq.(20) by applying
standard integration by parts and recalling that Eq.(20) must be valid for any 𝛿𝑼. However, for the sake of conciseness, the strong form of
governing equations is not reported here and may be found in Refs.[40–43].
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F. Buckling problem
A similar derivation to the one presented in the preceding section may be followed to obtain the variational statement of linear buckling

problem. We start from the three-dimensional variational statement of the Eulerian buckling [6], which is written as

𝑁ℓ∑︁
ℓ=1

∫
𝑉 ⟨ℓ⟩

𝛿𝜸⊺𝝈⟨ℓ ⟩d𝑉 + 𝜆

𝑁ℓ∑︁
ℓ=1

∫
𝑉 ⟨ℓ⟩

𝜎
⟨ℓ ⟩
𝑖 𝑗

𝜕𝛿𝒖⊺

𝜕𝑥𝑖

𝜕𝒖

𝜕𝑥 𝑗
d𝑉 = 0, (23)

where 𝜎
⟨ℓ ⟩
𝑖 𝑗

is the 𝑖 𝑗-th component of the initial stress field, the vectors 𝒖, 𝜸 and 𝝈⟨ℓ ⟩ are the displacement, strain and stress fields,
respectively, of the additional adjacent equilibrium configuration, and 𝜆 is the eigenvalue of the buckling problem. Note that the vectors 𝒖,
𝜸 and 𝝈⟨ℓ ⟩ represent the eigenfunction associated with the eigenvector 𝜆 and have a different meaning than the vectors appearing in
Eq.(19). Eventually, the smallest value of 𝜆 represents the critical multiplicative factor to be applied to the external loads in order for the
structure to buckle.

The buckling problem is then expressed only in terms of the adjacent configuration of the generalized displacement vector 𝑼 by
substituting Eqs.(7), (13) and (18) into Eq.(23) to obtain∫

Ω𝜉

[
𝜕𝛿𝑼⊺

𝜕𝜉𝛼

(
𝑸𝛼𝛽

𝜕𝑼

𝜕𝜉𝛽
+ 𝑹𝛼3𝑼

)
+ 𝛿𝑼⊺

(
𝑹⊺
𝛼3

𝜕𝑼

𝜕𝜉𝛼
+ 𝑺33𝑼

)]
dΩ𝜉+

𝜆

∫
Ω𝜉

[
𝜕𝛿𝑼⊺

𝜕𝜉𝛼

(
𝑸𝐺𝛼𝛽

𝜕𝑼

𝜕𝜉𝛽
+ 𝑹𝐺𝛼3𝑼

)
+ 𝛿𝑼⊺

(
𝑹𝐺⊺
𝛼3

𝜕𝑼

𝜕𝜉𝛼
+ 𝑺𝐺33𝑼

)]
dΩ𝜉 = 0, (24)

where the matrices 𝑸𝛼𝛽 , 𝑹𝛼3, and 𝑺33 have the same meaning of those appearing in Eq.(20) and are given in Eq.(21), while the matrices
𝑸𝐺𝛼𝛽 , 𝑹𝐺

𝛼3, and 𝑺𝐺33 represent the generalized geometric stiffness matrices and are defined as follows

𝑸𝐺𝛼𝛽 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑫⊺
𝛼𝑖
𝜎

⟨ℓ ⟩
𝑖 𝑗

𝑫𝛽 𝑗

√
𝑔 d𝜉3, (25a)

𝑹𝐺𝛼3 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑫⊺
𝛼𝑖
𝜎

⟨ℓ ⟩
𝑖 𝑗

𝑫0 𝑗
√
𝑔 d𝜉3, (25b)

𝑺𝐺33 ≡
𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝑫⊺0𝑖𝜎
⟨ℓ ⟩
𝑖 𝑗

𝑫0 𝑗
√
𝑔 d𝜉3. (25c)

IV. Interior Penalty Discontinuous Galerkin formulation
In this section, we present the Interior Penalty discontinuous Galerkin formulation for the solution of the buckling problem discussed

in Sec.(III.F). The original formulation for linear elastostatics of plates and shells [40–43] is first recalled as it may be used to compute the
initial stress appearing in the definition of the generalized geometric stiffness matrices, see Eq.(25). Then, the formulation is extended to
the buckling problem. However, prior to stating the DG formulation for Eqs.(20) and (24), it is worth introducing some of the quantities
that are typical of DG approaches.

The DG method is a numerical technique based on a partition of the domain of analysis into a collection of non-overlapping elements.
Upon noting that both Eqs.(20) and (24) are defined over the shell modelling domain Ω𝜉 , let us introduce a mesh of Ω𝜉 consisting of 𝑁𝑒
elements, i.e. Ω𝜉 ≈ Ωℎ

𝜉
≡ ⋃𝑁𝑒

𝑒=1 Ω
𝑒
𝜉
, being Ω𝑒

𝜉
the generic 𝑒-th mesh element. Let us also introduce the space Vℎ𝑝 of discontinuous basis

functions as follows
Vℎ𝑝 ≡

{
𝑣 : Ωℎ𝜉 → R | 𝑣 |Ω𝑒

𝜉
∈ P𝑒p ∀𝑒 = 1, ..., 𝑁𝑒

}
, (26)

where P𝑒𝑝 denotes the space of polynomial functions of degree at most 𝑝 defined over Ω𝑒
𝜉
. Consistently, the space of 𝑁-dimensional

discontinuous vector field is defined as V𝑁
ℎ𝑝

≡ (Vℎ𝑝)𝑁 .
The partition of Ω𝜉 induces the discretization of the boundary 𝜕Ω𝜉 of the shell modelling domain, i.e. 𝜕Ω𝜉 ≈ 𝜕Ωℎ

𝜉𝐷
∪ 𝜕Ωℎ

𝜉𝑁
, where

𝜕Ωℎ
𝜉𝐷

denotes the collection of the element boundaries where Dirichlet boundary conditions are enforced, i.e. 𝜕Ωℎ
𝜉𝐷

≡ ⋃𝑁𝑒

𝑒=1 𝜕Ω
𝑒
𝜉𝐷

, and
𝜕Ωℎ

𝜉𝑁
denotes the collection of the element boundaries where Neumann boundary conditions are enforced, i.e. 𝜕Ωℎ

𝜉𝑁
≡ ⋃𝑁𝑒

𝑒=1 𝜕Ω
𝑒
𝜉 𝑁

.
Additionally, the partition of Ω𝜉 introduces the set of inter-element interfaces 𝜕Ωℎ

𝜉 𝐼
≡ ⋃𝑁𝑖

𝑖=1 𝜕Ω
𝑖
𝜉 𝐼

, where 𝑁𝑖 is the total number of
inter-element interfaces and 𝜕Ω𝑖

𝜉 𝐼
denotes the 𝑖-th interface between two generic elements 𝑒 and 𝑒′, that is 𝜕Ω𝑖

𝜉 𝐼
≡ Ω𝑒

𝜉
∩Ω𝑒

′
𝜉

. Figure (1)
shows a sample 3×3 mesh of a square domain where a generic 𝑒-th element is highlighted in darker color; the figure also highlights the
element’s unit normal 𝝂𝑒 = (𝜈𝑒1 , 𝜈

𝑒
2 ), its outer boundary 𝜕Ω𝑒

𝜉𝐷
∪ 𝜕Ω𝑒

𝜉 𝑁
and the interface 𝜕Ω𝑖

𝜉 𝐼
shared with its neighbor Ω𝑒′

𝜉
. Finally, we

introduce the following average and jump operators at the 𝑖-th interface

{•}𝑖 ≡ 1
2

(
•𝑒 + •𝑒′

)
and [[•]]𝑖𝛼 ≡ 𝜈𝑒𝛼 •𝑒 +𝜈𝑒′𝛼 •𝑒

′
, (27)
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Fig. 1 Sample 3×3 mesh highlight a generic 𝑒-th element and its boundaries and outer unit normal.

and the so-called broken integral ∫
Ωℎ

𝜉

• ≡
𝑁𝑒∑︁
𝑒=1

∫
Ω𝑒

𝜉

•𝑒 dΩ𝜉 (28a)

and ∫
𝜕Ωℎ

𝜉 𝐼

• ≡
𝑁𝑖∑︁
𝑖=1

∫
𝜕Ω𝑖

𝜉 𝐼

•𝑖 d𝜕Ω𝜉 ,

∫
𝜕Ωℎ

𝜉𝐷

• ≡
𝑁𝑒∑︁
𝑒=1

∫
𝜕Ω𝑒

𝜉𝐷

•𝑒 d𝜕Ω𝜉 ,

∫
𝜕Ωℎ

𝜉𝑁

• ≡
𝑁𝑒∑︁
𝑒=1

∫
𝜕Ω𝑒

𝜉𝑁

•𝑒 d𝜕Ω𝜉 . (28b)

A. Discontinuous Galerkin formulation for the static problem
Following Refs.[40–43], the Interior Penalty DG formulation for solving the static problem of multilayered plates and shells given in

Eq.(20) can be stated as follows: find 𝑼ℎ ∈ V𝑁𝑈

ℎ𝑝
such that

𝐵(𝑽,𝑼ℎ) = 𝐹 (𝑽, 𝑩,𝑻,𝑼), ∀𝑽 ∈ V𝑁𝑈

ℎ𝑝
, (29)

where

𝐵(𝑽,𝑼ℎ) ≡
∫
Ωℎ

𝜉

𝜕𝑽⊺

𝜕𝜉𝛼

(
𝑸𝛼𝛽

𝜕𝑼ℎ
𝜕𝜉𝛽

+ 𝑹𝛼3𝑼ℎ

)
+ 𝑽⊺

(
𝑹⊺
𝛼3

𝜕𝑼ℎ
𝜕𝜉𝛼

+ 𝑺33𝑼ℎ

)
+

−
∫
𝜕Ωℎ

𝜉 𝐼

[[𝑽]]⊺𝛼
{
𝑸𝛼𝛽

𝜕𝑼ℎ
𝜕𝜉𝛽

+ 𝑹𝛼3𝑼ℎ

}
+
{
𝜕𝑽⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽⊺𝑹⊺

𝛽3

}
[[𝑼ℎ]]𝛽+

−
∫
𝜕Ωℎ

𝜉𝐷

𝜈𝛼𝑽
⊺

(
𝑸𝛼𝛽

𝜕𝑼ℎ
𝜕𝜉𝛽

+ 𝑹𝛼3𝑼ℎ

)
+
(
𝜕𝑽⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽⊺𝑹⊺

𝛽3

)
𝑼ℎ𝜈𝛽+

+
∫
𝜕Ωℎ

𝜉 𝐼

𝜇[[𝑽]]⊺𝛼 [[𝑼ℎ]]𝛼 +
∫
𝜕Ωℎ

𝜉𝐷

𝜇𝑽⊺𝑼ℎ, and (30)

and
𝐹 (𝑽, 𝑩,𝑻,𝑼) ≡

∫
Ωℎ

𝜉

𝑽⊺𝑩 +
∫
𝜕Ωℎ

𝜉𝑁

𝑽⊺𝑻 −
∫
𝜕Ωℎ

𝜉𝐷

(
𝜕𝑽⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽⊺𝑹⊺

𝛽3

)
𝑼𝜈𝛽 +

∫
𝜕Ωℎ

𝜉𝐷

𝜇𝑽⊺𝑼. (31)

By comparing Eq.(20) and (29), it is possible to notice the term 𝐵(𝑽,𝑼ℎ) consists of the approximate version of left hand-side of Eq.(20),
where Ωℎ

𝜉
has replaced Ω𝜉 and 𝑽 has replaced 𝛿𝑼, and some additional boundary terms, which are defined over the boundaries 𝜕Ωℎ

𝜉 𝐼
and

𝜕Ωℎ
𝜉𝐷

and are responsible for the continuity of the solution throughout the mesh elements and the enforcement of the boundary conditions.
Similarly, the term 𝐹 (𝑽, 𝑩,𝑻,𝑼) consists of the approximate version of the right hand-side of Eq.(20) and some additional boundary
terms, which are defined over the boundary 𝜕Ωℎ

𝜉𝐷
and are function of the prescribed value 𝑼 of the generalized displacements. As a

last comment, we note that Eqs.(30) and (31) contain the penalty term 𝜇, which is an additional parameter of the formulation that must
be suitably chosen. In particular, as common in Interior Penalty DG formulations, see e.g. [59], the value of 𝜇 is chosen as 𝜇 ∼ 𝑄ℎ−1,
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(a) (b)

Fig. 2 (a) Cell classification according to their volume fraction. (b) Resulting implicitly-defined mesh after the cell-merging
strategy.

where ℎ is a characteristic mesh size and 𝑄 is a sufficiently large constant proportional to some significant stiffness of the shell section,
e.g. the highest Young’s modulus. The investigation conducted by Gulizzi et al.[40, 43] shows that choosing the penalty parameter as
𝜇 = 10𝑠𝐸/ℎ, with 𝑠 ∈ [0, 4] and 𝐸 being the largest Young’s modulus of the layers’ materials, does not affect the numerical results. As
such, even for variable stiffness structures, stemming for instance from variable thickness and/or variable fiber orientation, it is reasonable
to expect that the analysis can be conducted using a unique value of the penalty parameter, as the stiffness variation within such structures
is usually limited to relatively small percentages. The use of a spatially variable penalty parameter may be beneficial to model structures
with large mismatch in the material properties; however, these aspects go beyond the scope of the present work and will be considered in
future studies.

B. Discontinuous Galerkin formulation for the buckling problem
The formulation proposed in this work for solving the linear buckling problem of multilayered shells is derived from the variational

statement given in Eq.(24). In particular, it is stated as follow: find the eigenfunction 𝑼ℎ ∈ V𝑁𝑈

ℎ𝑝
and the eigenvalue 𝜆ℎ such that

𝐵(𝑽,𝑼ℎ) + 𝜆ℎ𝐵
𝐺 (𝑽,𝑼ℎ, 𝜎𝑖 𝑗 ) = 0, ∀𝑽 ∈ V𝑁𝑈

ℎ𝑝
, (32)

where 𝐵(𝑽,𝑼ℎ) is given in Eq.(30) and 𝐵𝐺 (𝑽,𝑼ℎ, 𝜎𝑖 𝑗 ) is defined as

𝐵𝐺 (𝑽,𝑼ℎ, 𝜎𝑖 𝑗 ) ≡
∫
Ωℎ

𝜉

𝜕𝑽⊺

𝜕𝜉𝛼

(
𝑸𝐺𝛼𝛽

𝜕𝑼ℎ
𝜕𝜉𝛽

+ 𝑹𝐺𝛼3𝑼ℎ

)
+ 𝑽⊺

(
𝑹𝐺⊺
𝛼3

𝜕𝑼ℎ
𝜕𝜉𝛼

+ 𝑺𝐺33𝑼ℎ

)
. (33)

The buckling DG formulation given in Eq.(32) employs the same bilinear form 𝐵(𝑽,𝑼ℎ) introduced for the static DG formulation given
in Eq.(29) including the boundary terms defined over 𝜕Ωℎ

𝜉 𝐼
and 𝜕Ωℎ

𝜉𝐷
. While it is clear that the boundary terms defined over 𝜕Ωℎ

𝜉 𝐼
are

needed to ensure the continuity of the solution among the mesh elements, it is worth noting that the boundary terms defined over 𝜕Ωℎ
𝜉𝐷

are also required because the adjacent solution 𝑼 must verify 𝑼 = 0 on 𝜕Ω𝜉𝐷 . On the other hand, the bilinear form 𝐵𝐺 (𝑽,𝑼ℎ, 𝜎𝑖 𝑗 )
form consists of the approximate version of the second integral appearing in Eq.(24) without additional boundary terms. As show by
the numerical tests discussed in Sec.(V), the DG formulation given in Eq.(32) provides the solution of the linear buckling problem for
multilayered shells. It is work noting that, in Eq.(33), the penalty parameter appears only in the definition of 𝐵(𝑽,𝑼ℎ) to enforce the
inter-element continuity and the homogeneous boundary conditions, while it does not appear in the bilinear form 𝐵𝐺 (𝑽,𝑼ℎ, 𝜎𝑖 𝑗 ), which
is the one related to the buckling problem. Although not explicitly shown in the results section, the buckling eigenvalues and eigenvectors
obtained from Eq.(33) were not influenced by the choice of 𝜇 when this was selected following the same recommendations specified for
linear static analysis.

C. Implicitly-defined mesh
The Interior Penalty DG formulations given in Eqs.(29) and (32) for the static and the buckling problems of multilayered shells are

valid regardless of the chosen meshing strategy. In fact, they may be employed in combination with conventional (e.g. triangular or
structured) meshes as well as with non-conventional (e.g. polygonal) meshes.
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Table 1 Properties of the considered materials.

Material ID Property Component Value
M1 Young’s moduli 𝐸1/𝐸𝑟 variable

𝐸2/𝐸𝑟 , 𝐸3/𝐸𝑟 1
Poisson’s ratios 𝜈23, 𝜈13, 𝜈12 0.25
Shear moduli 𝐺23/𝐸𝑟 0.5

𝐺13/𝐸𝑟 , 𝐺12/𝐸𝑟 0.6
M2 Young’s moduli 𝐸1/𝐸𝑟 40

𝐸2/𝐸𝑟 , 𝐸3/𝐸𝑟 1
Poisson’s ratios 𝜈23, 𝜈13, 𝜈12 0.25
Shear moduli 𝐺23/𝐸𝑟 0.6

𝐺13/𝐸𝑟 , 𝐺12/𝐸𝑟 0.5

In this work, we employ the implicitly-defined mesh technique firstly introduced by Saye [60] in the context of DG methods for fluid
dynamics applications. Such a meshing strategy is based on an implicit representation of the modelling domain Ω𝜉 within a background
rectangle Π𝜉 ⊇ Ω𝜉 by suitably introducing a level set function 𝜑 = 𝜑(𝜉1, 𝜉2) such that

Ω𝜉 ≡
{
(𝜉1, 𝜉2) ∈ Π𝜉 | 𝜑(𝜉1, 𝜉2) < 0

}
(34a)

and
𝜕Ω𝜉 ≡

{
(𝜉1, 𝜉2) ∈ 𝜕Π𝜉 | 𝜑(𝜉1, 𝜉2) < 0

}
∪
{
(𝜉1, 𝜉2) ∈ Π𝜉 | 𝜑(𝜉1, 𝜉2) = 0

}
, (34b)

where 𝜕Π𝜉 denotes the boundary of Π𝜉 . A background structured grid is then generated for Π𝜉 and its cells are intersected with the
implicitly-defined domain Ω𝜉 . This leads to a classification of the cells based on their volume fraction: entire cells are those falling
entirely inside Ω𝜉 , empty cells are those falling entirely outside Ω𝜉 , partial cells are those cut by the zero contour of the level set function
and having a volume fraction larger than a user-defined threshold and small cells are those cut by the zero contour of the level set
function and having a volume fraction smaller or equal to the same threshold. Small cells are merged with their nearby entire or partial
cells to avoid the ill-conditioning of the discrete system of equations due to overly small volume fractions. Finally, the elements of the
implicitly-defined mesh consist of the (potentially extended) entire and partial cells. As an example, Fig.(2a) shows the classification of the
cells of a 9×9 background grid generated for a shell modelling domain consisting of a square with a circular hole, while the corresponding
implicitly-defined mesh is displayed in Fig.(2b), which also highlights the extended elements.

The present implicit-mesh DG formulation technique exploits the ease of generation of structured grids and offers a high-order
accurate resolution of the considered problem also in proximity of the cut cells thanks to the use of high-order quadrature rules for
implicitly-defined domains and boundaries [53]. The interested reader is referred to Ref.[60] for a more comprehensive description of the
generation of the implicitly-defined mesh and to Refs.[42, 43] for the application of the implicit-mesh DG methods to the static analysis of
plates and shells. The high-order accuracy of implicit-mesh DG methods is also discussed in Refs.[61–64] in the context of elliptic and
hyperbolic partial differential equations. As a last comment on the present meshing strategy, it is clear that the implicitly-defined mesh
coincides with a standard structured grid when 𝜑(𝜉1, 𝜉2) < 0 ∀(𝜉1, 𝜉2) ∈ Π𝜉 .

V. Numerical results
In this section the capabilities of the proposed buckling formulation are assessed through several numerical tests. Three composite

structures are investigated, namely a laminated plate, a laminated cylindrical shell and a laminated plate with a circular cut-out, under
various geometrical and material configurations. In the performed tests, the adopted ESL theories are denoted by ED𝑁1𝑁2𝑁3 where 𝑁𝑖 is
the order of the through-the-thickness expansion of the covariant displacement component 𝑢 𝜉𝑖 , see Eq.(6). The FSDT is also considered
as a special case of the ED110 theory combined with the plane stress assumption. The engineering constants of the considered materials
are listed in Tab.(1), while the lamination sequences of the considered composite structures are reported in Tab.(2). Legendre polynomials
are employed as thickness functions and as basis functions for the DG formulations.

A. Laminated plate
The first investigated composite structure is a multilayered square plate with simply-supported edges as illustrated in Fig.(3) , i.e.

𝑢 𝜉1 = 𝑢 𝜉3 = 0 at 𝜉1 = (0, 𝑎) and 𝑢 𝜉2 = 𝑢 𝜉3 = 0 at 𝜉2 = (0, 𝑎). The mean surface of the plate is defined through the simple map

𝒙0 =


𝜉1

𝜉2

0

 , (35)
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Table 2 Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness
P1 M1 [0/90/0] 𝜏0 = 𝜏/4, 𝜏90 = 𝜏/2
P2 M1 [0/90/0/90/0/90/0/90/0] 𝜏0 = 𝜏/10, 𝜏90 = 𝜏/8
C1 M2 [0/90/0/90/0] 𝜏/5
C2 M2 [0/90/0] 𝜏0 = 𝜏/5, 𝜏90 = 3𝜏/5
H1 M1 [(+30/−30)2]𝑠 𝜏/8
N1 M2 [0/90/90/0] 𝜏/4

Fig. 3 Geometry of the multilayered square plate.

Fig. 4 Convergence of the non-dimensional buckling load for the multilayered square plate.
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Table 3 Non-dimensional buckling load for multilayered plate as a function of the ESL theory, the orthotropy ratio 𝑬1/𝑬𝒓

and the stacking sequence. The results obtained in [9] using a 3D model are also reported for comparison purposes. Here, the
thickness ratio is 𝒂/𝝉 = 10.

𝐸1/𝐸𝑟 = 3 10 20 30 40
P1

3D [9] 5.3044 9.7621 15.0191 19.3040 22.8807
ED333 [18] 5.3060 9.7720 15.0551 19.3785 23.0021
ED333 5.3058 9.7713 15.0536 19.3760 22.9986
ED222 [18] 5.3556 9.9945 15.6458 20.4027 24.4816
ED222 5.3554 9.9939 15.6441 20.3999 24.4775
FSDT𝑉𝐾 [18] 5.3991 9.9653 15.3513 19.7566 23.4529
FSDT 5.2927 9.7578 15.0573 19.4104 23.0734

P2

3D [9] 5.3352 10.0417 15.9153 20.9614 25.3436
ED333 [18] 5.3385 10.0578 15.9629 21.0501 25.4786
ED333 5.3383 10.0572 15.9613 21.0474 25.4746
ED222 [18] 5.3810 10.2301 16.4245 21.8793 26.7207
ED222 5.3809 10.2294 16.4228 21.8763 26.7164
FSDT𝑉𝐾 [18] 5.4126 10.1895 16.1459 21.2650 25.7152
FSDT 5.3261 10.0341 15.9295 21.0141 25.4462

where (𝜉1, 𝜉2) ∈ Ω𝜉 ≡ [0, 𝑎] × [0, 𝑎]. A uniform initial stress state is assumed for each layer and is defined by setting

𝜎
⟨ℓ ⟩
11 = −𝑐⟨ℓ ⟩11 𝜀0, and 𝜎

⟨ℓ ⟩
22 = −𝜒𝑐⟨ℓ ⟩22 𝜀0 (36)

and all other components to zero. In Eq.(36) 𝜀0 is a reference strain, 𝑐⟨ℓ ⟩11 and 𝑐
⟨ℓ ⟩
22 are elements of the stiffness matrix of the ℓ-th layer and

𝜒 is a parameter that is equal to 0 for uniaxial compression and 1 for biaxial compression. The non-dimensional critical buckling load is
defined as follows

𝑁𝑐𝑟 ≡ 𝜆
𝑎2

𝐸𝑟𝜏
3

𝑁ℓ∑︁
ℓ=1

∫ 𝜉
⟨ℓ⟩
3𝑡

𝜉
⟨ℓ⟩
3𝑏

𝜎
⟨ℓ ⟩
11 d𝜉3, (37)

where 𝜆 is the smallest eigenvalue obtained by solving the problem in Eq.(32).
We initially consider the stacking sequence denoted by P1 in Tab.(2) with thickness ratio 𝑎/𝜏 = 20, orthotropy ratio 𝐸1/𝐸𝑟 = 25

and 𝜒 = 0, and partition the modelling domain of the plate using a simple structured grid consisting of 𝑁𝑒 = 𝑛2
𝑒 elements, being 𝑛𝑒 the

number of elements per side of the modelling domain. The plate is modelled using the FSDT. The value of the non-dimensional critical
buckling load 𝑁𝑐𝑟 given in Eq.(37) is then computed as a function of the degree 𝑝 of the basis functions and the number of elements 𝑁𝑒.
Figure (4) reports the obtained values of 𝑁𝑐𝑟 as a function of the system order defined as 𝑁𝑒𝑁𝑝𝑁𝑈 where 𝑁𝑝 ≡ (1 + 𝑝)2. As depicted in
the figure, higher-order DG formulations show a faster convergence of the critical buckling load and use a smaller number of degrees of
freedom to obtain the converged result with respect to lower-order formulations.

The value of 𝑁𝑐𝑟 is then computed using a 4 × 4 grid and 𝑝 = 6 polynomial basis functions, and the effect of thickness ratio 𝑎/𝜏, the
orthotropy ratio 𝐸1/𝐸𝑟 , the biaxial load parameter 𝜒 and the selected shell theory is investigated. Table (3) reports the values of 𝑁𝑐𝑟 as a
function of the ESL theory and the ratio 𝐸1/𝐸𝑟 for the stacking sequences denoted by P1 and P2 in Tab.(2) with thickness ratio 𝑎/𝜏 = 10.
The effect of the biaxial load parameter 𝜒 on the critical buckling load is reported in Tab.(4) for five different values of the thickness ratio
𝑎/𝜏 and for two ESL theories upon selecting an orthotropy ratio equal to 𝐸1/𝐸𝑟 = 25 and the stacking sequence P1. In both Tab.(3) and
(4), the results obtained with the present formulation are compared with those obtained in [9] via a 3D model and those obtained in
[18] using different ESL theories. In all cases, an excellent agreement between the present DG formulation and the reference models is
observed. The largest differences might be noticed in the results obtained using the FSDT and are due the adoption of the Von Karman
hypotheses in the referenced work. It is however worth noting that using the full set of non-linear strain components also for the FSDT
provides more accurate results if compared with the 3D solution.
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Table 4 Non-dimensional uniaxial and biaxial buckling load as a function of two shell theories and different thickness ratios 𝒂/𝝉.
Here, the orthotropy ratio is 𝑬1/𝑬𝒓 = 25 and the stacking sequence is P1.

𝑎/𝜏 = 10 20 25 50 100
𝜒 = 0

ED444 [18] 17.3127 21.7304 22.4358 23.4593 23.7316
ED444 17.3106 21.7300 22.4356 23.4593 23.7316
FSDT𝑉𝐾 [18] 17.6568 21.8687 22.5307 23.4855 23.7383
FSDT 17.3336 21.7344 22.4382 23.4599 23.7317

𝜒 = 1
ED444 [18] 8.7057 10.8849 11.2314 11.7334 11.8668
ED444 8.7052 10.8848 11.2314 11.7334 11.8668
FSDT𝑉𝐾 [18] 8.8284 10.9344 11.2654 11.7428 11.8692
FSDT 8.7324 10.8946 11.2380 11.7352 11.8672

Fig. 5 Geometry of the multilayered cylindrical shell.
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(a) (b)

Fig. 6 Convergence of the non-dimensional buckling load for the multilayered cylindrical shell C1 with (a) 𝒂/𝝉 = 20 and 𝒂/𝑹 = 1
and (b) 𝒂/𝝉 = 100 and 𝒂/𝑹 = 2.

(a) (b)

Fig. 7 Sample buckling mode for the cylindrical shell C1 with (a) 𝒂/𝝉 = 50 and 𝒂/𝑹 = 2 and (b) 𝒂/𝝉 = 100 and 𝒂/𝑹 = 2.
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(a) (b)

Fig. 8 Error in the first buckling load of the cylindrical shell C1 with 𝒂/𝑹 = 0.05 and 𝒂/𝝉 = 50 as function of the computational
time for different values of the polynomial order and the number of mesh elements. (a) FSDT and (b) ED333 theory. Computational
time of the analysis for different numbers of elements and orders of the polynomials.

B. Laminated cylindrical shell
The second set of tests are referred to the cylindrical shell shown in Fig.(5). The shell mean surface is defined as

𝒙0 =


𝜉1

𝑅 cos(𝜉2)
𝑅 sin(𝜉2)

 , (38)

where (𝜉1, 𝜉2) ∈ Ω𝜉 ≡ [0, 𝑎] × [0, 𝜃] and 𝜃 = 𝑎/𝑅. The shell is simply-supported and subjected to a uniform initial stress state defined by
setting

𝜎
⟨ℓ ⟩
11 = −𝜎0 (39)

and zero in all other components. In this case, the following non-dimensional critical buckling load is employed

𝑁𝑐𝑟 ≡ 𝜆
𝜎0𝑎2

𝐸𝑟𝜏
2 . (40)

The stacking sequence denoted by C1 in Tab.(2) is considered for this set of tests. We perform a similar convergence analysis to the
one presented in Sec.(V.A) for a cylindrical shell characterized by 𝑎/𝜏 = 20 and 𝑎/𝑅 = 1 and modelled using the ED333 theory and a
cylindrical shell characterized by 𝑎/𝜏 = 100 and 𝑎/𝑅 = 2 and modelled using the FSDT theory. Figure (6) reports the computed value of
the critical buckling load given in Eq.(40) as a function of the system order and, similarly to what observed in Fig.(4), shows the benefit of
using higher-order methods in terms of convergence rate and overall number of degrees of freedom.

The value of 𝑁𝑐𝑟 is then computed using a 4 × 4 grid and 𝑝 = 6 polynomial basis functions for different ESL theories and different
values of the ratios 𝑎/𝜏 and 𝑎/𝑅. Table (5) reports the computed values of 𝑁𝑐𝑟 as a function of various ESL theories and the ratio 𝑎/𝜏 for
the cylindrical shell with 𝑎/𝑅 = 0.05. A similar parametric analysis is reported in Tab.(6), where we consider the FSDT and the ED444
theory and change the ratios 𝑎/𝜏 and 𝑎/𝑅. Similarly to the plate case, Tab.(5) and (6) also report the reference critical buckling load
𝑁𝑐𝑟 obtained in [18], and confirm the accuracy of the present formulation. As an example, the first buckling mode of the cylindrical
shell characterized by 𝑎/𝑅 = 2 and 𝑎/𝜏 = 50 and the cylindrical shell characterized by 𝑎/𝑅 = 2 and 𝑎/𝜏 = 100, both modelled by the
FSDT theory, are displayed in Fig.(7). By looking at Fig.(6), it is possible to notice that using high-order polynomials allows achieving
convergence of the buckling load with a smaller number of overall degrees of freedom with respect to using low-order polynomials. This
is valid for both buckling eigenmodes that involve a small number and a large number of half waves throughout the structure. Eventually,
to further illustrate the advantages of using high-order approximations, the error in first buckling load for the shell C1 with 𝑎/𝑅 = 0.05
and 𝑎/𝜏 = 50 is plotted as a function of the computational time for different values of order 𝑝 of the polynomial basis functions and of
number 𝑁𝑒 of mesh elements. The obtained results are reported in Figs.(8a) and (8b) for the FSDT and the ED333 theory, respectively, and
clearly show the superior performance of higher-order basis functions with respect to low-order basis functions in terms of computational
time required to achieve a given level of accuracy. In other words, the results obtained for the considered numerical tests suggest that
using higher-order polynomial basis functions in combination with a coarser mesh is preferable over low-order polynomials combined
with a finer mesh, regardless of the chosen through-the-thickness expansion.
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Table 5 Non-dimensional buckling load for the multilayered cylindrical shell C1 as a function of the shell theory and the thickness
ratio 𝒂/𝝉. Here, 𝒂/𝑹 = 0.05.

𝑎/𝜏 = 10 20 30 50 100
ED444 [18] 24.20 31.94 34.06 35.42 36.85
ED444 24.19 31.94 34.06 35.42 36.85
ED333 [18] 24.20 31.94 34.06 35.42 36.85
ED333 24.19 31.94 34.06 35.42 36.85
ED222 [18] 25.27 32.37 34.27 35.50 36.87
ED222 25.26 32.37 34.27 35.50 36.87
FSDT𝑉𝐾 [18] 24.18 31.90 34.04 35.42 36.85
FSDT 23.95 31.78 33.97 35.39 36.84

Fig. 9 Geometry of the multilayered square plate with a circular cut-out.

As the last test on cylindrical shell structures, the advantage of employing higher-order through-the-thickness approximations is
investigated. The cylindrical shell C2 with 𝑎/𝑅 = 0.5 and variable 𝑎/𝜏 is considered. The shell is clamped at the surface corresponding to
𝜉1 = 0, a pressure 𝑡1 = −𝑞0 is applied on the surface corresponding to 𝜉1 = 𝑎, while the other edges are kept free. In this test, the initial
stress field 𝜎

⟨ℓ ⟩
𝑖 𝑗

is computed as a result of the corresponding linear static analysis. The tests are carried out with a 2 × 2 structured grid
and a polynomial order 𝑝 = 6. For these analyses, the non-dimensional critical buckling load is computed as

𝑁𝑐𝑟 ≡ 𝜆
𝑞0𝑎2

𝐸𝑟𝜏
2 . (41)

Table (7) reports the computed values of the buckling load for three different ratios 𝑎/𝜏 and different shell theories, namely the FSDT,
the ED333 and the ED444 theories. The table also reports the buckling loads computed with a three-dimensional analysis using the
C3D20R elements implemented in Abaqus [65]. The obtained results show that the buckling load computed with the FSDT matches
the three-dimensional result when the shell is relatively thin but differs noticeably for larger values of the thickness. In the latter case,
high-order through-the-thickness expansions recover the three-dimensional solutions and their use is recommended.

C. Laminated Plate with circular cut-out
In the third set of tests, the critical buckling load is computed for the laminated plate with a circular cut-out shown in Fig.(9). For

these tests, the implicit-mesh DG formulation is employed. The shell mean surface is described by the map given in Eq.(35) with
(𝜉1, 𝜉2) ∈ Ω𝜉 ≡ [0, 𝑎] × [0, 𝑎]. The mesh of the domain is constructed starting from a 15 × 15 background grid, while the space of basis
functions uses 𝑝 = 3 polynomials. The modelling domain of the plate is implicitly-defined via the following level-set function

𝜙(𝜉1, 𝜉2) =
𝐷2

4
−
(
𝜉1 −

𝑎

2

)2
−
(
𝜉2 −

𝑎

2

)2
, (42)

where 𝐷 is the diameter of the circular cut-out. The stacking sequence denoted by H1 in Tab.(2) is considered for these tests.
Unlike the two previous sets of tests, where the initial stress was prescribed as a constant field, the initial stress distribution for this test

case is computed from a linear elastic static analysis. The boundary condition of the static analysis are as follows: the boundaries at
𝜉2 = 0 and 𝜉2 = 𝑎 are simply supported, i.e. 𝑢 𝜉2 = 𝑢 𝜉3 = 0; the boundary at 𝜉1 = 0 is clamped; and the boundary at 𝜉1 = 𝑎 is subjected to
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Table 6 Non-dimensional buckling load for the multilayered cylindrical shell C1 as a function of two shell theories and the ratios
𝒂/𝝉 and 𝒂/𝑹.

𝑎/𝜏 = 10 20 50 100
𝑎/𝑅 = 0.1

ED444 [18] 24.20 32.05 36.29 40.42
ED444 24.20 32.05 36.29 40.42
FSDT𝑉𝐾 [18] 24.21 32.04 36.31 40.46
FSDT [18] 23.97 31.90 36.25 40.41
FSDT 23.96 31.90 36.26 40.42

𝑎/𝑅 = 0.2
ED444 [18] 24.23 32.49 39.74 54.67
ED444 24.24 32.49 39.74 54.67
FSDT𝑉𝐾 [18] 24.31 32.57 39.88 54.88
FSDT [18] 24.00 32.33 39.70 54.67
FSDT 24.00 32.34 39.71 54.67

𝑎/𝑅 = 1
ED444 [18] 25.26 45.28 140.6 253.3
ED444 25.26 45.28 140.6 253.3
FSDT𝑉𝐾 [18] 27.63 49.61 154.1 259.4
FSDT [18] 25.03 45.14 140.6 253.2
FSDT 25.11 45.26 140.7 253.4

𝑎/𝑅 = 2
ED444 [18] 28.23 74.97 220.1 448.2
ED444 28.23 74.97 220.2 448.2
FSDT𝑉𝐾 [18] 38.90 103.9 243.7 469.1
FSDT [18] 27.96 74.84 221.3 448.9
FSDT 28.08 75.02 223.1 450.2

Table 7 Non-dimensional buckling load for the multilayered cylindrical shell C2 as a function of the shell theories and the ratio
𝒂/𝝉 for 𝒂/𝑹 = 0.5.

𝑎/𝜏 = 20 10 5
FSDT 3.971 2.350 1.752
ED333 3.957 2.310 1.634
ED444 3.956 2.308 1.631
C3D20R elements [65] 3.965 2.309 1.631
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Table 8 Non-dimensional displacement at buckling for the multilayered plate with the circular cut-out H1 as a function of
different shell theories and the ratios 𝒂/𝝉 and 𝑫/𝒂.

𝑎/𝜏 = 20 50 100
𝐷/𝑎 = 0

S4R elements [65] 3.231 4.093 4.268
FSDT 3.229 4.080 4.253
ED222 3.367 4.119 4.265
ED333 3.215 4.078 4.253
ED444 3.216 4.078 4.253

𝐷/𝑎 = 0.1
S4R elements [65] 3.216 4.035 4.207
FSDT 3.217 4.035 4.208
ED222 3.350 4.074 4.221
ED333 3.203 4.032 4.208
ED444 3.204 4.033 4.209

𝐷/𝑎 = 0.25
S4R elements [65] 3.770 4.716 4.914
FSDT 3.759 4.709 4.908
ED222 3.922 4.758 4.924
ED333 3.745 4.709 4.910
ED444 3.747 4.710 4.911

𝐷/𝑎 = 0.5
S4R elements [65] 5.670 7.858 8.418
FSDT 5.626 7.850 8.427
ED222 5.977 7.986 8.481
ED333 5.576 7.848 8.435
ED444 5.581 7.850 8.436

𝐷/𝑎 = 0.75
S4R elements [65] 9.836 17.318 19.748
FSDT 9.732 17.252 19.734
ED222 10.714 17.783 19.954
ED333 9.493 17.127 19.709
ED444 9.501 17.133 19.713

a uniform displacement given by 𝑢 𝜉1 = −𝛿0 and 𝑢 𝜉2 = 𝑢 𝜉3 = 0. The non-dimensional critical value of the applied displacement for which
the buckling occurs is computed as

𝑢𝑐𝑟 ≡ 𝜆
𝛿0𝑎

𝜏2 . (43)

Tab.(8) reports the computed values of 𝑢𝑐𝑟 as a function of the selected ESL theory, the hole diameter 𝐷 and the thickness ratio 𝑎/𝜏 for
the stacking sequence denoted by 𝐻1 in Tab.(2). The obtained results and are compared with those obtained with Abaqus using the S4R
elements and demonstrate the accuracy of the present DG formulation combined with the implicitly-defined mesh technique. The first
buckling mode for the plate characterized by 𝑎/𝜏 = 50 and 𝐷/𝑎 = 0.5 and modelled with the FSDT theory is displayed in Fig.(10).

D. Laminated generally-curved NURBS-based shell
In the final set of tests, the present formulation is employed to perform the buckling analysis of a generally-curved shell with and

without a cut-out. The shell mean surface is described by a NURBS parametrization [66, 67] whose control points, weights, order and
knot vectors are provided in details in [42]. The shell also contains a cut-out that is implicitly defined by the following level set function

𝜙(𝒙0) = 𝑎𝑑 − |𝑥01 − 𝑥1𝑛 |𝑑 − |𝑥02 − 𝑥2𝑛 |𝑑 . (44)

The geometrical parameters appearing in Eq.(44) and in Fig.(11), which shows the shell geometry from three different views, are given in
Tab.(9). It is worth noting that the level set function of the variables 𝑥01 and 𝑥02 is easily transformed into a function of the curvilinear
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Fig. 10 Sample buckling mode for the laminated plate with cut-out.
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Fig. 11 Geometry of the generally-curved NURBS-based shell in three different views with superimposed mesh boundaries.
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(a) Mode 1 (DG) (b) Mode 2 (DG) (c) Mode 5 (DG)

(d) Mode 1 (Abaqus) (e) Mode 2 (Abaqus) (f) Mode 5 (Abaqus)

Fig. 12 Buckling modes for the NURBS-based shell N1 with the cut-out in terms of the magnitude of the displacement.

variables 𝜉1 and 𝜉2 by using the the map of the mean surface introduced in Eq.(1).
As sketched in Fig.(11c), the shell is clamped at the surface corresponding to 𝜉2 = 1, while a uniform displacement 𝒖 = (0, 𝛿0, 0)

is applied at the surface 𝜉2 = 0; the other boundaries are kept free. The considered shell section is the one denoted by N1 in Tab.(2),
while the selected shell theory is the FSDT. The eigenvalue problem is solved by the present DG formulation using 10 × 10 grid and a
polynomial order 𝑝 = 6. The same problem is solved by the FEM software library Abaqus using S3 elements and S4R elements for the
shell with the cut-out and without the cut-out, respectively. The comparison between the obtained results is given in Tab.(10) in terms of
the 1st, 2nd and 5th values of the following non-dimensional critical loading

𝑢𝑐𝑟 ≡ 𝜆
𝛿0𝐻

𝜏2 . (45)

An excellent agreement is observed for all values of the critical loading for the shell with and without the cut-out. Eventually, the
comparison between the eigenmodes obtained with the present formulation and with Abaqus and corresponding to the 1st, 2nd and 5th
eigenvalues is reported in Fig.(12) for the shell with the cut-out and in Fig.(13) for the shell without the cut-out. An excellent matching is
also observed for the eigenmodes of the problem.

As a last comment, it is worth mentioning that, for a structure where there is coupling between membrane and flexural behaviour, the
physical meaning of a linear buckling analysis is questionable as a clear bifurcation in the loading path is not present. However, the results
obtained by the linear buckling analysis provide useful information regarding the structure response in the finite-deformation regime,
indicating when the stiffness may undergo a significant decrease. A DG formulation for a fully non-linear analysis of multilayered shells is
currently under investigation and will be presented in future studies.

VI. Conclusions
In this work, a novel formulation for the linear buckling analysis of multilayered plates and shells was presented. The formulation is

based on the use of ESL theories to model the mechanical behavior of multilayered structures and on the use of implicit-mesh Interior
Penalty DG methods for solving the linear buckling problem.

Starting from the three-dimensional variational statement of Eulerian buckling and introducing the through-the-thickness expansion of
the covariant components of the displacement field, the variational statement of Eulerian buckling for laminated structures modelled by
ESL theories was derived in terms of generalized displacement variables. Then, the variational statement was employed to formulate the
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(a) Mode 1 (DG) (b) Mode 2 (DG) (c) Mode 5 (DG)

(d) Mode 1 (Abaqus) (e) Mode 2 (Abaqus) (f) Mode 5 (Abaqus)

Fig. 13 Buckling modes for the NURBS-based shell N1 without the cut-out in terms of the magnitude of the displacement.

proposed Interior Penalty DG scheme, which is based on a discontinuous representation of the approximated solution throughout the
mesh elements and on the use of suitably defined boundary integrals to enforce the inter-element solution continuity and the boundary
conditions. To account for the presence of cutouts, the DG scheme was implemented in conjunction with the implicitly-defined mesh
technique, whereby the shell modelling domain is implicitly represented via a level set function and the mesh elements are constructed by
intersecting an easy-to-generate background grid and the implicitly-defined domain.

The capabilities of the proposed formulation were assessed through various numerical tests conducted on multilayered shells modelled
by different ESL theories, including the FSDT as a special case, and characterized by different stacking sequences and boundary conditions.
Three geometries were investigated: a square plate, a cylindrical shell and a square plate with a central circular cutout. Convergence
analyses were performed on the critical buckling load for the square plate and the cylindrical shell subjected to a prescribed stress
distribution. The computed values of the buckling load was reported as a function of the number of mesh elements and degree of the
polynomial basis functions. The obtained results confirmed the benefit of using higher-order DG methods to achieve faster convergence
rates with a smaller number of degrees of freedom with respect to lower-order DG methods. The buckling analysis on the square plate
with the circular cutout was performed using the initial stress distribution obtained from a static analysis. For all the numerical tests,

Table 9 Geometrical parameters for the NURBS-based generally-curved shell.

NURBS-based shell
𝐻 50 cm
𝐷 5 cm
𝐿 60 cm
𝑎 8.5 cm
𝑑 3
𝑥1𝑛 15 cm
𝑥2𝑛 12 cm
𝜏 1 mm
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Table 10 Non-dimensional displacement at buckling for the NURBS-based shell N1 with and without the cut-out.

Shell geometry 1st (DG) 1st (FEM) 2nd (DG) 2nd (FEM) 5th (DG) 5th (FEM)
With cut-out 34.31 34.38 36.02 36.12 58.47 58.51

Without cut-out 61.75 62.09 62.42 62.77 70.35 70.76

the obtained values of the critical buckling load were compared with reference results taken from the existing literature or with those
computed using the standard FEM software library Abaqus [65]. Excellent agreement between the proposed formulation and the reference
models was always observed.

In the future, the present approach for the study of laminated structures will be extended to account for free and forced vibration
problems, finite deformation elasticity and the analysis of plate and shell assemblies, which are currently under investigation.
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