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Abstract

The Generalized Trigonometric Functions (GTF) have been introduced using an appropriate redefinition of Euler type
identities involving non-standard forms of imaginary numbers, realized by different types of matrices. In this paper
we use the GTF to get parameterization of practical interest for non-singular matrices. The possibility of using this
procedure to deal with applications in electron transport is also touched on.
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1. Introduction

According to refs. [1]-[5], the Generalized Trigonometric Functions (GTF) of order 2 C(t), S (t) are defined by
means of the identity

et M̂ = C(t) 1̂ + S (t) M̂ (1)

where M̂, 1̂ are respectively a 2 × 2 non-singular matrix and the unit, namely

M̂ =

(
a b
c d

)
, 1̂ =

(
1 0
0 1

)
(2)

From eq. (1) it also follows that

et λ+ = C(t) + S (t) λ+,

et λ− = C(t) + S (t) λ−
(3)

with λ ± being the eigenvalues of M̂, assumed to be non-singular, thus getting the explicit form of the GTF, namely

C(t) =
λ−eλ+t − λ+eλ−t

λ− − λ+

,

S (t) =
eλ+t − eλ−t

λ+ − λ−

(4)

The structure of eq. (1) is that of the Euler-De Moivre identity, with M̂ playing the role of imaginary unit, on the other
side eq. (3) represents the scalar counterpart of (1) and, accordingly, λ ± are understood as conjugated imaginary units.
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The properties of the cos and sin like functions C(t), S (t) can be inferred from either eqs. (1)-(3), which yield for
example (see also ref. [5])

C2 + ∆M̂S 2 + Tr(M̂) CS = eTr(M̂) t,

Tr(M̂) = a + d,

∆M̂ = a d − b c

(5)

and

C(2 t) = C2 − ∆M̂S 2,

S (2 t) = 2 C(t) S (t) + Tr(M̂) S 2 (6)

The previous relationships are recognized as the fundamental trigonometric identity (eq. (5)) and as the duplication
formulae (eq. (6)).

By keeping the derivative of both sides of eq. (1) with respect to the variable t, we find

d
dt

et M̂ =

(
d
dt

C(t)
)

1̂ +

(
d
dt

S (t)
)

M̂ (7)

being also

d
dt

et M̂ = M̂et M̂ = C(t)M̂ + S (t) M̂2 (8)

and since

M̂2 = −∆M̂ 1̂ + Tr(M̂) M̂ (9)

we end up, after combining eqs. (7)-(9) and equating “real” and “imaginary” parts, the following identities, specifying
the properties under derivatives of the GTF

d
dt

C( t) = −∆M̂S (t),

d
dt

S ( t) = Tr(M̂) S (t) + C(t)
(10)

We can infer directly from eq. (4) that the second order GTF’s exhibit, under variable reflection, the identities

C(− t) = e−Tr(M̂) t
(
−Tr(M̂) S (t) + C(t)

)
= e−Tr(M̂) t

(
d
dt

S (t)
)
,

S (−t) = −e−Tr(M̂) tS (t)
(11)

which underscore the significant difference with the ordinary TF (be they circular or hyperbolic) with definite even or
odd parities.

Further properties can be argued by the use of other means; by keeping e.g. the freedom of treating M̂ as an ordinary
algebraic quantity we can formally derive integrals involving GTF thus finding e.g.
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∫ t

dt′et′ M̂ = IC(t) 1̂ + IS (t) M̂,∫ t

dt′et′ M̂ =
1
M̂

et M̂ = C(t) M̂−1 + S (t) 1̂,

IC(t) =

∫ t

dt′C(t′), IS (t) =

∫ t

dt′S (t′)

(12)

Moreover, since the following identity holds

M̂−1 = c−11̂ + s−1M̂

c−1 =
λ−λ

−1
+ − λ+λ

−1
−

λ− − λ+

=
Tr(M̂)

∆M̂
,

s−1 =
λ−1

+ − λ
−1
−

λ+ − λ−
= −

1
∆M̂

(13)

we obtain the “primitives” of the GTF’s

IC(t) =
Tr(M̂)

∆M̂
C(t) + S (t),

IS (t) = −
1

∆M̂
C(t)

(14)

A straightforward consequence of the previous relationships is

∫ ∞

0
dt′C(−t′) =

Tr(M̂)
∆M̂

,∫ ∞

0
dt′S (−t′) = −

1
∆M̂

M̂
(15)

which hold true only if the integrals are convergent, namely if Re(λ±) are both positive.

A further slightly more intriguing example is provided by the Gaussian integral

∫ +∞

−∞

dte−t2 M̂ =

√
π

M̂
=
√
π
(
c− 1

2
1̂ + s− 1

2
M̂

)
,

c−1/2 =
λ−λ

−1/2
+ − λ+λ

−1/2
−

λ− − λ+

,

s−1/2 =
λ−1/2

+ − λ−1/2
−

λ+ − λ−

(16)

which yields the following generalizations of the Fresnel integrals, obtained by other means in ref. [5],

∫ +∞

−∞

dtC(−t2) =
√
πc− 1

2∫ +∞

−∞

dtS (−t2) =
√
πs− 1

2

(17)
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The convergence of these integrals depends on the eigenvalues λ±, if convergence is ensured, eq. (17) provides the
most general form of solution.

Iterating the procedure, leading to eqs. (10), namely by keeping successive derivatives with respect to t of both sides
of (1) and by noting that

M̂n = cn1̂ + snM̂ (18)

we end up with

(
d
dt

)n

C(t) = cnC(t) + cn+1S (t)(
d
dt

)n

S (t) = snC(t) + sn+1S (t)
(19)

It is evident that the coefficients cν, sν are essentially GTF in which eλ±t are replaced by λν±. The relevant properties
are discussed later in the paper.

The addition formulae too can be derived in terms of the cn, sn coefficients as

C(t + t′) = C(t) C(t′) + c2S (t) S (t′),
S (t + t′) = (C(t) + s2S (t)) S (t′) + S (t) C(t′),

s2 = Tr(M̂), c2 = −∆M̂

(20)

In absence of the simple reflection properties of the ordinary circular functions, we can establish the subtraction
formulae according to the expressions given below

C(t − t′) = e−s2 t′ [s2S (t′)C(t) + C(t′)C(t) − c2S (t) S (t′)
]
,

S (t − t′) = −e− s2t′ [C(t)S (t′) −C(t′)S (t)
] (21)

which, once combined with eq, (20), yields the following prosthaphaeresis like identities

C(p) − es2
(p−q)

2 C(q) = − s2S
( p − q

2

)
C

( p + q
2

)
+

+ 2c2S
( p − q

2

)
S

( p + q
2

) (22)

In the forthcoming section we will provide some examples aimed at providing the usefulness of this family of functions
in applications.

2. GTF, Matrix parameterization and generalized complex forms

To proceed further, we remind that eq. (1) follows from the Cayley-Hamilton Theorem [6], which allows to write
a given function (usually an exponential) of a matrix Σ̂ in terms of its characteristic polynomial. We will now use the
GTF to provide the reverse procedure, namely we write a given matrix Σ̂ in exponential form, namely

Σ̂ = eT̂ ,

Σ̂ =

(
l m
n p

)
, T̂ =

(
α β
γ δ

) (23)
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The problem we are interested in is therefore that of finding the elements of the exponentiated matrix T̂ , once those
of Σ̂ are known. The use of eq. (1) yields

e T̂ = C(1) 1̂ + S (1) T̂ (24)

where the GTF are expressed in terms of the eigenvalues of T̂ . It is therefore worth to remind that both Σ̂, T̂ are
diagonalised through the same matrix D̂ and therefore

D̂−1Σ̂ D̂ = eD̂−1T̂ D̂,

D̂−1Σ̂ D̂ =

(
σ+ 0
0 σ−

)
=

(
eτ+ 0
0 eτ−

) (25)

where σ±, τ± denote the eigenvalues of the Σ̂ and T̂ matrices respectively it is furthermore evident that

τ± = ln(σ±) (26)

We can therefore write

Σ̂ = C(1) 1̂ + S (1) T̂ ,

C(1) =
ln(σ−)σ+ − ln(σ+)σ−

ln(σ−) − ln(σ+)
,

S (1) =
σ+ − σ−

ln(σ+) − ln(σ−)

(27)

and

T̂ =


l −C(1)

S (1)
m

S (1)
n

S (1)
p −C(1)

S (1)

 (28)

It is now worth noting that

Σ̂n = en T̂ = C(n) 1̂ + S (n) T̂ (29)

and it should be stressed that the arguments of the GTF in the elements of the matrix T̂ in eq. (24) remains the unity.

The parameterization we have proposed is a generalized form of what is known in the Physics of charged beam
transport as the Courant-Snyder parameterization, which is exploited to adapt the beam sizes to the characteristics of
the transport device or in laser optics to transport an optical beam through ordinary lens systems [7].

In the following we will extend the method to matrices with larger dimensions, using higher order GTF. Before
doing this, we take advantage from the present point of view to extend the notion of complex number, which will be
defined as

ζ+ = x + λ+ y,

ζ− = x + λ− y
(30)

with “modulus”

ζ+ζ− = x2 + Tr(M̂) x y + ∆M̂y2 (31)
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The relevant trigonometric form can be written as (λ may be either λ+ or its conjugate form λ−)

ζ = |A| eλϑ,

|A| =
√
ζ+ζ−e−Tr(M̂) ϑ

2 ,

ϑ =
1

λ+ − λ−
ln

[
1 +

y
xλ+

1 +
y
xλ−

] (32)

The conclusion, we may draw from this last result, is that the concept of imaginary number is more subtle than it
might be thought, it is not necessarily associated with the roots of a negative number but can be constructed with any
pair of numbers, solutions of a second degree algebraic equation [5].

We have tried to keep our treatment of GTF following in a close parallel with the ordinary circular trigonometry,
it is therefore important to note that the geometrical image of the condition (5) is no more a circle but a more compli-
cated curve not necessarily closed. Notwithstanding a “cos” and “sin” like interpretation of the GTF is still possible
(see Figs. 1-2). It is however worth noting that GTF may be circular or hyperbolic like, according to whether Im(λ)
be , 0, or = 0. The argument of the GTF cannot be simply regarded as angles, notwithstanding, it is natural to ask
whether there is any quantity playing the role of π, even though if e.g. Tr(M̂) , 0 we are not dealing with periodic
functions.

To clarify this point we try to keep advantage from the Euler-formula ”e i π
2 = i” to define two distinct quantities π±

such that

eλ−
π−
2 = λ−

eλ+
π+
2 = λ+

(33)

yielding

π± =
2 ln(λ±)
λ±

(34)

It is furthermore worth noting the “funny” identities

eλ±π± = Tr(M̂)λ± − ∆M̂

λλ+

− = e
∆M̂

2 π− ,

λλ−+ = e
∆M̂

2 π+ ,

eλ
2
−
π−
2 = e(Tr(M̂)λ−

π−
2 e−

∆M̂
2 π− = λλ−−

(35)

The last of which can also be reinterpreted as

λλ−− = λTr(M̂)−λ+

− (36)

It is also evident that if Im(λ±) , 0 the GTF functions exhibit infinite zeros on the real axis, which for C and S are,
respectively, given by

Ct∗n =
1

2(λ− − λ+)
[λ−π− − λ+π+ − 4 i n π] ,

S t∗n =
2 in π

(λ− − λ+)

(37)

To appreciate the analogies and the differences as well, we have reported in Figs. 3 the function C(t) and its
counterpart C(−t).
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(a) Geometrical Images.
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Figure 1: Generalized Trigonometric Functions for Im(λ) , 0.
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(b) Behavior vs. Argument.

Figure 2: Generalized Trigonometric Functions for Im(λ) = 0.
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(b) Im(λ) = 0.

Figure 3: Behavior of C(t) and C(−t) vs Argument.

3. Third and Higher Order GTF

According to terminology of ref. [5] the order of the GTF is associated with that of the corresponding generating
matrix. If M̂ is a 3 × 3 non-singular matrix with three distinct eigenvalues we have

et M̂ = C0(t) 1̂ + C1(t) M̂ + C2(t) M̂2 (38)

We can introduce the third order GTF, C0, 1, 2(t)

 C0(t)
C1(t)
C2(t)

 =
[
V̂(λ1, λ2, λ3)

]−1

 eλ1t

eλ2t

eλ3t


V̂(λ1, λ2, λ3) =

 1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3


(39)

where V̂(λ1, λ2, λ3) is the Vandermonde matrix, constructed with the eigenvalues of M̂. The inverse of V̂ can be writ-
ten as [8]


1 λ1 λ2

1

1 λ2 λ2
2

1 λ3 λ2
3



−1

=



λ2λ3

(λ1 − λ2) (λ1 − λ3)
λ1λ3

(λ2 − λ1) (λ2 − λ3)
λ1λ2

(λ3 − λ1) (λ3 − λ2)

−
λ2 + λ3

(λ1 − λ2) (λ1 − λ3)
−

λ1 + λ3

(λ2 − λ1) (λ2 − λ3)
−

λ1 + λ2

(λ3 − λ1) (λ3 − λ2)
1

(λ1 − λ2) (λ1 − λ3)
1

(λ2 − λ1) (λ2 − λ3)
1

(λ3 − λ1) (λ3 − λ2)


(40)

We can therefore write the third order GTF as

C0(t) =
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
λiλ j(λ j − λi) eλk t,

C1(t) =
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
(λ2

i − λ
2
j ) eλk t,

C2(t) = −
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
(λi − λ j) eλk t

(41)
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where

∆(λ1, λ2, λ3) = (λ2 − λ1) (λ3 − λ1) (λ3 − λ2) (42)

Is the Vandermonde determinant and εi, j,k is the Levi-Civita tensor.

By following the same procedure as before, we can extend to the third order the properties of the second order case.
It is easily argued that they satisfy third order differential equations and that the relevant addition formulae read

C0(t + t′) = C0(t) C0(t′) + 0c3
[
C1(t) C2(t′) + C1(t′) C2(t)

]
+ 0c4C2(t) C2(t′),

C1(t + t′) =
[
C0(t) C1(t′) + C1(t) C0(t′)

]
+ 1c3

[
C1(t) C2(t′) + C1(t′) C2(t)

]
+ 1c4C2(t) C2(t′),

C2(t + t′) =
[
C0(t) C2(t′) + C1(t) C1(t′) + C2(t) C0(t′)

]
+ 2c3

[
C1(t) C2(t′) + C1(t′) C2(t)

]
+ 2c4C2(t) C2(t′)

(43)

where αcn, α = 0, 1, 2 are the third order GTF with eλαt replaced by λn
α.

More in general we also find that

Cα(n t) =

n∑
n1,n2, n3=0

n1+n2+n3=n

(
n

n1 n2 n3

)
αcn−n1C

n1
0 Cn2

1 Cn3
2 (44)

with
(

n
n1 n2 n3

)
being the multinomial coefficient.

It is also easily understood that the analogous of eqs. (13), (15) for the third order GTF read

IC0(t) = 0c−1C0(t) + C1(t),

IC1(t) = C2(t) + 1c−1C2

IC2(t) = 2c−1C0(t),∫ ∞

0
dtCα(−t) = αc−1,∫ ∞

−∞

dtCα(−t2) =
√
παc− 1

2
,

α = 0, 1, 2

(45)

where

0cν =
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
λiλ j(λ j − λi) λνk,

1cν =
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
(λ2

i − λ
2
j ) λ

ν
k,

2cν = −
1

∆(λ1, λ2, λ3)

3∑
i, j,k=1

εi, j,k

2
(λi − λ j) λνk

(46)

It is now worth stressing that the following identities hold true in the case of third order matrices expressed in
terms of GTF, namely

M̂n = 0cn1̂ + 1cnM̂ + 2cnM̂2 (47)
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Let us now consider the possibility of extending the Courant-Snyder parameterization to third order matrices. To this
aim we set

Σ̂ = eT̂ (48)

The explicit form of the matrix T̂ can be obtained by setting

Σ̂ = C0(1) 1̂ + C1(1) T̂ + C2(1) T̂ 2 (49)

where αC(1) Cα(1) are written in terms of the eigenvalues of the matrix T̂ according to the prescription discussed in
sec. 2, furthermore, since

Σ̂−1 = C0(−1) 1̂ + C1(−1) T̂ + C2(−1) T̂ 2 (50)

the matrix T̂can be obtained as

T̂ =
C2(−1) Σ̂ −C2(1) Σ̂−1 + [C2(−1) C0(1) −C2(1) C0(−1)] 1̂

C2(−1) C1(1) −C1(−1) C2(1)
(51)

The use in applications of these last results in applications will be discussed elsewhere.

It is evident that the results we have obtained so far can be extended to an arbitrary n × n matrix, it is however
instructive to consider more specific examples involving particular cases as e.g. a 5 × 5 anti-symmetric matrix F̂,
which can be exponentiated as it follows [9]

et F̂ = 1̂ +
1
√

Γ

[
f1(t) F̂ + f2(t) F̂2 + f3(t)F̂3 + f4(t) F̂4

]
(52)

where

Γ = Tr(F̂4) −
1
4

[
Tr(F̂2)

]2
,

θ2
± = −

1
4

Tr(F̂2) ±
1
2

√
Γ,

f1(t) =

(
sin(θ−t)
θ−

θ2
+ −

sin(θ+t)
θ+

θ2
−

)
f2(t) =

(
1 − cos(θ−t)

θ2
−

θ2
+ −

1 − cos(θ+t)
θ2

+

θ2
−

)
f3(t) =

(
sin(θ−t)
θ−

−
sin(θ+t)
θ+

)
,

f4(t) =

(
1 − cos(θ−t)

θ2
−

−
1 − cos(θ+t)

θ2
+

)

(53)

We can provide the identification of the f functions with the f i f th order GTF

C0(t) = 1,

Cα(t) =
1
√

Γ
fα(t),

α = 1, ..., 4

(54)

It is also worth noting that, from the previous identities, the following relationships are easily inferred
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F̂2 n+1 =
1
√

Γ

[
1 f2 n+1 F̂ + 3 f2 n+1F̂3

]
,

F̂2 n = 1̂ +
1
√

Γ

[
2 f2 n F̂2 + 4 f2 nF̂4

] (55)

where the coefficients

1 f2 n+1 =

(
θ2 n+1
−

θ−
θ2
− −

θ2 n+1
+

θ+

θ2
+

)
,

3 f2 n+1 =

(
θ2 n+1
−

θ−
−
θ2 n+1

+

θ+

)
,

2 fn =

(
θ2 n
−

θ2
−

θ2
+ −

θ2 n
+

θ2
+

θ2
−

)
,

4 fn =

(
θ2 n
−

θ2
−

−
θ2 n

+

θ2
+

)
(56)

play a role analogous to that of αcn introduced in the previous sections.

4. Final Comments

In the previous sections we have introduced the properties of the auxiliary coefficients cn and sn, their role is fairly
important within the present context and warrants further analysis.

To this aim we note that they satisfy the following recurrences

(
cn+1
sn+1

)
=

 0 −∆M̂

1 Tr(M̂)

 (
cn

sn

)
,(

c0
s0

)
=

(
1
0

) (57)

which follow from the identities

M̂n+1 = cn+11̂ + sn+1M̂,

M̂n+1 = −∆M sn1̂ +
[
cn + Tr(M̂) sn

]
M̂

(58)

The above recurrences can be cast in the decoupled form

cn+2 − Tr(M̂) cn+1 + ∆M̂ cn = 0 (59)

and for sn we find an analogous expression.

The solution of the difference equation (59) can be obtained by the use of the Binet method [10], after setting cn = rn

we find indeed

cn = α1rn
+ + α2rn

− (60)
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with r± being solutions of the auxiliary equation

r2 − Tr(M̂)r + ∆M̂ = 0 (61)

and α1,2 being defined through the “initial constants” c0,1.
Accordingly we obtain

cn =
1

r− − r+

[
c0(r−rn

+ − r+rn
−) + c1

(
rn
− − rn

+

)]
(62)

It is also interesting to note that, by rescaling n = m − 2, eq. (59) writes

cm = −∆M̂ cm−2 + Tr(M̂) cm−1 (63)

Eq. (63), for Tr(M̂) = 1 and ∆M̂ = −1 (e.g. the eigenvalues of M̂ are the golden ratio and the opposite of the golden
ratio conjugate), reduces to the Fibonacci sequence. The link between the previous coefficient and the Fibonacci
trigonometry will be discussed elsewhere.

These coefficients play a more general role when extended to the case of higher order matrices and the systematic
study of their properties may simplify the calculations of problems where exponentiation of matrices are involved.

In the past, different generalizations of the trigonometric functions have been proposed, in addition to those quoted in
this paper different avenues have been explored along this direction. The tool exploited within such a framework can
be comprised into three different branches:

a) Use of matrix methods and generalization of the Euler exponential rule.

b) Extension of the trigonometric fundamental identity, providing a thread with elliptic functions [11].

c) Generalized forms of the series expansion, providing a link with integer order Mittag-Leffler function [12, 13,
14].

This last point of view provides a significant step forward in the theory of special functions, yielding a tool for appli-
cations in the field of classical and quantum optics [15, 16, 17].

Preliminary attempts to merge the points of view a) and c) have been put forward in refs. [18, 19].

Even though the matter presented in this paper may sound abstract there are important applications in beam transport
optics as illustrated below.

The use of 4 × 4 matrices is currently employed to deal with transverse coupling in charged beam transport [20].
Baumgarten [21] has proposed the use of real Dirac matrices [22] to construct a generalization of the one dimensional
Courant-Snyder theory of beam transport.

Within such a context the beam transport through a solenoid can be written as

d
ds



x

x′

K
y

y′

K


= K



0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0





x

x′

K
y

y′

K


(64)

12



where K is the solenoid strength and the column vector is represented by the position an velocity for the transverse
coordinates (x, y), finally sis the propagation coordinate, playing the role of time.

The solution of the previous system of differential equation can be written as

Z = Û(s)Z0,

Û(s) = eKsT̂

T̂ =


0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 −1 0


(65)

The use of the techniques outlined in the previous section yields for the evolution operator

Û(s) = 1̂ +
sin(2Ks)

2
T̂ +

1 − cos(2Ks)
4

T̂ 2 −
sin(2Ks)

16
T̂ 3 (66)

however the above expression simplifies since T̂ 3 = −4 T̂ .

In this case the GTF are simple combinations of the ordinary circular functions.

The method proposed is however fairly important because the (sixteen) real Majorana matrices provide a basis for
the 4 × 4 matrices and it could be interesting to develop a systematic study within the context of GTF viewed as the
associated auxiliary functions. The relevant applications might be interesting for a plethora of problems including e.g.
four level systems interacting with external radiation.

We conclude this paper by noting that, in terms of the Majorana matrices, the solenoid transport matrix reads

T̂ = γ0 − γ9,

γ0 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , γ9 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


(67)

Since γ0, γ9 are commuting quantities, we can also write

eT̂ ξ = eγ̂0ξe−γ̂9ξ,

eγ̂0,9ξ = cos(ξ) 1̂ + sin(ξ) γ̂0,9
(68)

and easily recover the result reported in eq. (66).

A more systematic analysis will be presented elsewhere.
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