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1. Introduction

The precise measurements of primary cosmic rays provide important information on the origin,
acceleration, and propagation processes of cosmic rays in the galaxy. Among the abundant cosmic
ray nuclei, iron has the larger interaction cross sections and relative smaller Larmor radius.So iron
spectrum is very important in shedding light on source of cosmic rays, propagation and interaction
with interstellar medium[1–4].

Up to now, there have been many measurements of the iron flux, such as balloon-borne
experiment ATIC-2[5],and space-borne experiments HEAO-3[6], TRACER06[7] ,and magnetic
spectrometric experiment AMS-2[8].

DAMPE is a calorimetric-type instrument, which has a large acceptance and good charge
resolution. DAMPE has continuously collected more than 10 billions events since launched on
Dec. 17, 2015. In this report we present the analysis procedure of iron flux. We also do detailed
studies of the fragmentation of iron in the detector using Monte Carlo simulations.

2. DAMPE instrument

The DAMPE consists of 4 sub-detectors.The Plastic Scintillator Detector (PSD) is used to
measure particle charge, it can also be used as an anti-coincidence detector for γ -rays. The Silicon
Tungsten tracKer-converter (STK) is used for trajectorymeasurement aswell as chargemeasurement.
The Bi3Ge4O12(BGO) electromagnetic calorimeter plays a key role in energy measurement as well
as electron-hadron identification. The NeUtron Detector (NUD) provide further electron-hadron
separation[9]. Four sub-detectors have been operating stably and in good working conditions[10,
11].

3. Fragmentation and quenching of iron in detector

The inelastic scattering cross section of nucleus is proportional to the 2/3 power of the mass
number of nucleus. The binding energy per nucleon of iron is 8.6 MeV. The energy required for iron
nuclei fragmentation is 0.45GeV.When Fe nuclei pass through thematerial on the top of the detector,
they are easily broken. So the inelastic scattering is important for iron spectrum analysis. Most of
irons fragment into light nuclei, such as protons and helium nuclei. It is found that the fragmentation
channels of iron in different energy ranges are obviously different in FTFP_BERTmodel. Although
the total inelastic scattering cross section varies little with energy, the fragmentation channels are
quite different. Iron with tend to fragment into heavier secondary particles around 100 GeV in
FTFP model.

Fig. [1] (left) shows the total fragmentation probability in PSD detector by using FTFP and
FLUKA models. Fig. [1] (right) shows the ratio of Fe fragmented into sub-Fe(Sc,Ti,V,Cr,Mn)
channels to the total fragmentation probability in PSD detector by using FTFP and FLUKAmodels.
The probability of iron fragmentation in the FTFP model is higher. So the track selection efficiency
in FTFPmodel is relatively lower, but near 100GeV, the iron has a higher probability of fragmentation
into a sub-iron nuclei, for which we can also reconstruct the track.

Fig. [2] shows the distribution of Stop_Z (Z-direction coordinates of first inelastic scattering)
with energy.The fragmentation probability of FTFP bigger then FLUKA, so the in FLUKA modle,
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Figure 1: Left-the probability fragment of iron in PSD. Right-the ratio of fragmented into sub-iron to total
fragmentation result.
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Figure 2: the position of first inelastic scattering of iron in detector. Left-FTFP model. Right-FLUKA
model.

more events fragmented after path through BGO detector. When irons passes through the 4-layer
PSD, it loses approximately 5.4 GeV of energy. Therefore, the iron with dozens of GeV incident
energy loss a large portion of energy.Consequently most of the low-energy irons disappear in the
top of the detector. If iron can not pass through the STK, the track will not be reconstructed, and if
they can not pass through the first four layers of BGO, the trigger condition may not be satisfied.
Therefore, the selection efficiency drop quickly with the decrease of the incident energy.

Fig. [3] show the energy deposition fraction(EDep/Einc) from 80 to 160GeV for FTFP model.
In this energy range, irons have more probability fragmented into sub-rions, which loses relatively
little energy. When irons fragmented in PSD or STK into sub-irons, the secondary particles still
could reconstruct STK tracks and carry much energy into BGO detector. If irons fragmented in
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Figure 3: Energy Deposited ratio of iron MC sample with energy from 80 to 160GeV. left-Model of FTFP,
right-Model of FTFP with quenching.
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Figure 4: Topological graph of iron fragmented in BGO detector, which deposit relative much energy in
BGO detector.left-view of XOZ direction, right-view of YOZ direction,

PSD or STK into Heliums or Protons, it is very difficult to reconstruct STK tracks, and secondary
particles carry fewer energy into BGO detector. The position of fragmentation also affect the track
reconstruction and energy deposition ratio. In this energy range, the particles fragmented in BGO
detector can deposit the most energy in BGO as shown in Fig. [4], and can easily reconstruct STK
track. The particles fragmented in STK detector can deposit the fewer energy in BGO as shown in
Fig. [5], and is difficult to reconstruct STK track.

The final result of the energy deposition ratio is shown in Fig. [6](right). Not only is the
difference between different models very large, but the difference in the quenching effect caused by
the fragmentation channel is also very large.

4. Data analysis

We use 5 years of data from January 1, 2016 to December 31, 2021. The datasets collected
in the South Atlantic Anomaly(SAA) region are excluded. The live time of this analysis is about

4



P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
5

Iron flux measurement with DAMPE Zhi-hui Xu

-600 -400 -200 0 200 400 600

XOZ view [30.725GeV]

600

400

200

0

-200

NUD ADC

PSD: N_MIPs

STK ADC

BGO Energy

BGO: MeV

(Both Log10)

STK BGO LOGGED

0

0.5

1

1.5

2

2.5

3

0
200
400
600
800

0

5

10

Reconstructed track

SIMU track

XOZ view [30.725GeV]

-600 -400 -200 0 200 400 600

YOZ view [30.725GeV]

600

400

200

0

-200

NUD ADC

PSD: N_MIPs

STK ADC

BGO Energy

BGO: MeV

(Both Log10)

STK BGO LOGGED

0

0.5

1

1.5

2

2.5

3

0
200
400
600
800

0

5

10

Reconstructed track

SIMU track

YOZ view [30.725GeV]

Figure 5: Topological graph of iron fragmented in STK detector, which deposit relative fewer energy in
BGO detector.left-view of XOZ direction, right-view of YOZ direction,
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Figure 6: The Energy deposition ratio, which affected by quenching effect.

1.2 × 108 seconds. Monte-Carlo (MC) simulation datasets were generated with Geant4 toolkit
with the physics model FTFP_BERT, quenching effect on the BGO calorimeter is also taken into
account.In order to reconstruct the spectrum of iron, we used MC data as template to estimate the
contamination, then we reconstruct the original spectrum by unfolding the measured spectrum.

4.1 Event Selection

• Pre-selection.

We select events with deposited energy in BGO calorimeter larger than 80 GeV, because
low energy events deposit too much energy in PSD and STK. Therefore energy resolution
must significantly decrease when energy deposition is lower than 80 GeV in BGO. The good
events should satisfy several requirements. First of all, the events should meet the High
Energy Trigger (HET) requirement, and at lest there is one STK track.
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• STK Track selection.

STK detector consists of 12 layers silicon strip detectors, when particle passes through the
silicon, the detector records clusters in hit points, then we can use these clusters to construct
track with Kalman filter algorithm. In most probable situations, there exist more than one
tracks constructed for one incident primary cosmic ray particle, but only one is true. We use
several criteria to select the best track. Firstly the track at least has 8 clusters to ensure that
the track is reliable. Secondly, we require the STK track passes through the PSD bar which
has the maximum read-out in the whole layers. It is because the back of splash particles can
not deposit comparable energy with iron itself in PSD detector. Furthermore, we still require
that the reduced chi2 of track is less than 50 to exclude those of bad quality. Finally, we select
the track which has the biggest average ADC read-out in STK detector.

• Charge selection.

PSD consists of two layers placed in a cross staggered configuration (Y-view for layer-1 and
X-view for layer-2), with 41 plastic scintillator logs in each layer. The energy deposition of
charged particles is proportional to Z2 if the path length is given. The energy deposition
is about 2 MeV for proton minimum ionization particles (MIPs) cross one layer PSD verti-
cally(the path length is 1 cm). The particles are required to pass through both X-layer and
Y-layer. Meanwhile, it is required that the length in each PSD bar is larger than 5 mm, and
if the charges difference derived from the two layers differ by larger 10%, we will take the
larger one as the charge value[12, 13]. The charge readout has a series of calibrations, such
as hit position calibration, fluorescence attenuation correction and alignment correction, as
well as the calibration of different layers of readout difference.We fixed the peak value of the
iron at 26, and fixed the peak value of the charge readout of sub-iron at the corresponding
nominal value. As a result, after a series of calibrations, the peak values of all elements does
not change with energy. The iron flux is the highest among cosmic rays with Z > 20, and
pollution mainly comes fromMn(Z = 25), so we select candidate iron with charge from 25.5
to 27.2. Finally, we exclude the events for which the charges of both layers are less than
10. This can directly eliminate the case of recoil to STK and PSD after being broken at the
bottom of the detector.

4.2 Particle identification and background

In order to effectively distinguish between iron and sub-irons, and estimate the pollution by
super-iron elements, we used 10 Landau convolution Gaussian functions to fit flight data from
Z=19(K) to Z=28( Ni) elements, and then use the simulated data as a template to fit the flight
data. Fig. [7] shows the results of template fitting from 158 to 200 GeV. With template fitting, the
contaminations of other elements are calculated and shown in right of Fig. [7].

5. Summary and outlook

Detailed studies of the fragmentation of iron in the detector have been performed using Monte
Carlo simulations. It is found that the fragmentation and quenching affect events reconstruction
and the efficiency of data selection. DAMPE has very accurate particle identification capability for
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Figure 7: left-template fiting of data.Black point are the flight data, green solid line are simulation data.right-
contamination.Black point represent the total contamination , and the green circle is the contamination from
Mn

Fe and Sub-Fe elements. But there are still a lot of detailed work to be done. In the future, we will
give an iron spectrum up to few TeV/n and improve the precision at higher energies.
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