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Abstract
We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum
emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any
dimension. The theory encompasses the calculation and general properties of Green’s functions,
atom-photon bound states, collective master equations and decoherence-free Hamiltonians
(DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal
atom lying at a fictitious location. As a major application, we provide for the first time a general
criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the
photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is
used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended
photonic Lieb lattice.

1. Introduction

In recent years, it became experimentally possible realizing so called giant atoms [1]. A giant atom is a
(usually artificial) quantum emitter which interacts coherently with the field at a discrete set of coupling
points (see figure 1(a)). Such a non-local coupling was first achieved in circuit QED (see e.g. [2, 3]) for
superconducting qubits coupled to a 1D waveguide along which either phonons [4] or microwave photons
[5, 6] can propagate, where the distance between coupling points can be made comparable with the carrier
wavelength, thus enabling unprecedented self-interference effects. A recent experiment used a ferromagnetic
spin ensemble coupled to a meandering waveguide [7], while implementations based on ultracold atoms [8]
and Rydberg atoms in photonic crystal waveguides [9] were recently put forward. Notably, the coupling of a
giant atom to the field at each point can be made complex with a controllable phase, which was recently
demonstrated [10].

Giant atoms allow for quantum optics phenomena which are impossible with normal atoms (i.e. with the
standard local coupling). A remarkable effect, predicted theoretically [11] and experimentally confirmed in a
circuit-QED setup [5], is occurrence of decoherence-free Hamiltonians (DFHs) between atoms mediated by
the field of a 1D waveguide [12–15]. These are purely dispersive dipole-dipole interactions, described by an
effective many-body spin Hamiltonian, which arise for suitable arrangements of the coupling points when
the atomic frequency lies in the field’s continuum. This is achieved through destructive interference which
fully suppresses dissipation into the photonic bath, a task out of reach with normal (i.e. point-like) atoms.
Moreover, in some settings such as acoustic waveguides, retardation times associated with the coupling
points’ distance can be made long compared to the atom decay time resulting in unprecedented
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Figure 1. (a) Giant atom (two-level system of frequency ω0) non-locally coupled to a photonic bath Bmodeled as a set of coupled
cavities. There are only two coupling points in this example with coupling strengths g1 and g2. (b) Under a suitable mapping
(unitary Uχ on B) the giant atom can be transformed into a normal one featuring a single coupling point corresponding to the
single-photon state |χ⟩ (‘site state’).

non-Markovian phenomena [16–20]. Recently, the study of giant atoms was extended to the ultrastrong
coupling regime [21, 22].

While there exists already a significant body of literature on giant atoms in continuous waveguides, their
study in discrete structured baths and especially photonic lattices is still in the early stages [23–36]. In
particular, it was predicted formation of atom-photon bound states (BSs) and occurrence of DFHs, both in
and out of the continuum, in some specific coupled-cavity arrays. To the best of our knowledge, however, no
general study of giant-atom properties in amodel-independent fashion was carried out so far, i.e. without
considering a specific photonic bath structure, which appears an indispensable step to devise general criteria
for engineering future giant-atoms setups.

Another issue of methodological relevance, but which will turn out to have conceptual implications, is
the following. The most common approach adopted so far to investigate giant atoms in structured baths is to
apply the resolvent (i.e. Green’s-function) method [37, 38] to the case of multiple coupling points and use
the bath normal modes, which leads to a picture where the giant atom can be formally viewed as a normal
atom but with a modified coupling strength to each bath normal mode. One can ask whether some sort of
mapping to a normal (point-like) atom is possible even in real space and, if so, whether it brings any
advantage. While this entails dealing with local bath modes in place of normal ones, real-space approaches
proved powerful in a number of quantum optics problems (e.g. atom-photon scattering in waveguides). We
will show that this is the case even with giant atoms, allowing e.g. to bypass dealing explicitly with the Green’s
function in certain problems.

A further issue concerns DFHs: for normal atoms (local coupling) these are well-known to be mediated
by atom-photon BSs out of the continuum, typically within bandgaps of photonic lattices [38–42] and are
investigated both theoretically [43–50] and experimentally [51–53]. It is natural to ask whether an analogous
interpretation in terms of BSs can be made for DFHs of giant atoms, but in terms of BSs in the photonic
continuum (which cannot occur for normal atoms). This issue is far from being a merely theoretical
curiosity since (as will become clear later) it is deeply connected with the identification of a model- and
dimension-independent physical mechanism behind occurrence of DFHs, a task that has not been carried
out to date.

With the above motivations, in this paper we present a general theory of giant atoms in structured
photonic baths (having in mind mostly waveguides and photonic lattices of arbitrary dimension, even higher
than 1D). Despite the coupling is non-local, we first arrange the atom-field interaction Hamiltonian in a way
formally analogous to a normal atom by defining a fictitious giant-atom’s location (and a related
single-photon state), which depends on the pattern of coupling points and their interaction strengths. This is
used to derive a general and very compact expression of the atom-photon Green’s function (resolvent) in
terms of the bare bath Green’s function, which can be exploited to derive a number of quantum optics
properties. We apply this resolvent formalism to establish some general features and occurrence conditions of
atom-photon BSs of giant atoms and to work out a general collective Lindblad master equation. This
describes the open dynamics of a set of giant atoms in a structured zero-temperature bath, the rates of which
are each expressed (taking advantage of the fictitious giant-atom locations) in terms of two-point matrix
elements of the bath resolvent (thus formally like normal atoms). We make use of the master equation to
prove that occurrence of a DFH is equivalent to occurrence of one BS for each giant atom (in or out of the
continuum). When BSs have non-zero overlaps with fictitious position states of the giant atoms, a non-trivial
DFH arises, which in particular explains in a very simple way why a braided configuration is required in a 1D
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waveguide. Most importantly, this BS picture is shown to be an effective tool for predicting new classes of
DFHs (including higher dimensions), which we will illustrate through various examples after singling out a
class of BSs called vacancy-like dressed states (VDSs).

Before proceeding further, we note that the giant atom definition which is conveniently adopted in this
work—namely a quantum emitter with more than one coupling points—may not exactly match definitions
used elsewhere (for which having multiple coupling points is certainly a necessary but in general not
sufficient condition).

This work is organized as follows. In section 2, we define the model and Hamiltonian and show how one
can rearrange the atom-field interaction Hamiltonian as if the giant atom were a normal one, defining at the
same time a fictitious location (and related single-photon state). We continue in section 3 by deriving a
compact expression for the general single-excitation Green’s function of the joint system in terms of the
fictitious position of the giant atom and the bare field’s resolvent. As a major application, this is used in the
following section 4 to derive general properties of atom-photon BSs, both in and out of the continuum. In
section 5, we generalize the Hamiltonian model to the case of many giant atoms and present a general
Lindblad master equation governing their open dynamics. This is then applied in the next section 6 to
formulate a general condition for occurrence of DFHs in terms of BSs and to arrange the effective atom-atom
coupling strengths (defining the same Hamiltonian) in terms of overlapping BSs. In section 7, we study an
important class of BSs: VDSs and several instances are illustrated in the following section 8. The study of
such states, as shown in section 9, sheds new light on known DFHs and, most importantly, allows to predict
new ones. As the 2D examples in sections 8 and 9 feature atoms with no less than three coupling points, one
can wonder whether this is the minimum number to obtain BSs in the continuum in a 2D lattice. We show
that this is not the case by presenting a counterexample in section 10, where VDSs and DFHs in the
continuum arise with only two coupling points per atom. We conclude with a summary and discussion of
the results in section 11.

2. Model and Hamiltonian

We consider a general setup comprising a generic photonic bath B and one giant atom, as sketched in
figure 1(a). Bath B is modeled as a discrete network of single-mode coupled cavities each labeled by x
(standing for an integer or a set of integers) with bx the usual bosonic ladder operator destroying a photon in
cavity x. It is worth noticing that this general model encompasses the standard continuous waveguide with
linear dispersion law that is routinely considered in most works on giant atoms, which is indeed retrieved
when B is a 1D array of cavities weakly coupled to an atom whose frequency falls within a photonic band
(allowing to linearize the photon dispersion law).

The B’s free Hamiltonian has the general form

HB =
∑
x

ωxb
†
xbx +

∑
x ̸=x ′

Jxx′b
†
xbx′ (1)

with ωx the frequency of cavity x and Jxx′ the photon hopping rate between cavities x and x′.9 The giant atom
is modeled as a two-level system of frequency ω0 and ground (excited) state |g⟩ (|e⟩), the corresponding
ladder operators being σ− = σ†

+ = |g⟩⟨e| (the generalization to many giant atoms will be discussed later on in
section 5). Assuming weak coupling, the photonic bath and giant atom interact according to the
rotating-wave approximation. Importantly, due to the giant-atom nature of the quantum emitter, this
interaction is generally non-local, meaning that the atom is directly coupled toN cavities of B withN ⩾ 1
(forN = 1 we retrieve the standard case of a normal atom, i.e. local coupling). The total Hamiltonian thus
reads

H=HB +ω0σ+σ− +
N∑
ℓ=1

(
gℓ b

†
xℓσ− +H.c.

)
, (2)

where gℓ (generally complex) is the atom’s coupling strength to cavity xℓ (see figure 1(a)), their total number
beingN . A cavity to which the atom is directly coupled (i.e. cavity xℓ such that gℓ ̸= 0) will be often called
‘coupling point’.

9 We assume each cavity x to be a single-mode cavity, which requires the hopping rates Jxx′ to be much smaller than the frequency
separation between cavity normal modes, an approximation usually well-matched in experiments.
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It is convenient to define the field ladder operator

bχ =
N∑
ℓ=1

α∗
ℓbxℓ with αℓ =

gℓ
ḡ
and ḡ=

√∑
ℓ

|gℓ|2, (3)

which is a linear combination of the ladder operators bxℓ corresponding to theN coupling points xℓ, and the
coefficients αℓ’s are proportional to the related coupling strengths gℓ’s. Since

∑N
ℓ=1 |αℓ|2 = 1, bχ fulfills

[bχ,b†χ] = 1. With this definition the Hamiltonian (2) can now be arranged as

H=HB +ω0σ+σ− + ḡ
(
b†χσ− +H.c.

)
, (4)

which is formally analogous to the case of a normal atom (notice that ḡ> 0). We point out however that bχ
generally does not commute with field operators b†x , this being a signature of the non-local nature of
atom-photon coupling.

2.1. Single-excitation sector
Due to the rotating-wave approximation the total number of excitations

∑
x b

†
xbx +σ+σ− is a constant of

motion. The one-excitation sector is spanned by the set of states |e⟩|vac⟩ and {|g⟩|x⟩} with |vac⟩ the field’s
vacuum state and |x⟩= b†x |vac⟩ the Fock state featuring one photon at cavity x. Since we will work mostly in
this one-excitation subspace, it is convenient to adopt a light notation and replace

|e⟩|vac⟩ → |e⟩, |g⟩|x⟩ → |x⟩ .

Thus |e⟩ now denotes the state where one excitation lies on the atom (and there are no photons), while state
|x⟩ describes a single photon at cavity x (with the atom in the ground state |g⟩).

The total Hamiltonian in this subspace can be conveniently arranged in the form

H(1) = ω0|e⟩⟨e|+H(1)
B + ḡ(|χ⟩⟨e|+H.c.) , (5)

where (cf equation (1))

H(1)
B =

N∑
x=1

ωx|x⟩⟨x|+
∑
x ̸=x ′

Jxx′ |x⟩⟨x ′| (6)

is the field’s free Hamiltonian in the one-excitation subspace, while

|χ⟩= b†χ|0⟩=
N∑
ℓ=1

αℓ|xℓ⟩, (7)

is a (normalized) single-photon state (recall equation (3)). In the remainder, for convenience we will often
refer to the single-photon state |χ⟩ as the site state.

Henceforth, we will drop superscript ‘(1)’ in both H(1) and H(1)
B .

2.2. Mapping into a normal atom
A giant atom can be thought of as a normal atom which is yet coupled to a modified bath [1, 8]. For the
discrete bath considered here, this can be easily seen in real space by replacing theN single-photon states
{|x1⟩, |x2⟩, . . ., |xN ⟩} (one for each coupling point) with {|χ⊥

i ⟩, |χ⟩}, where |χ⟩ is the site state in
equation (7) while |χ⊥

i ⟩, for i = 1, . . .,N−1, is any basis spanning the (N-1)-dimensional subspace of
{|x1⟩, |x2⟩, . . ., |xN ⟩} orthogonal to |χ⟩, i.e. such that ⟨χ⊥

i |χ⟩= 0 and ⟨χ⊥
i |χ⊥

i′ ⟩= δii′ (see figure 1(b)).
This corresponds to a unitary transformation Uχ on the field’s Hilbert space such that the atom is now

coupled only to the fictitious site corresponding to the site state |χ⟩ (see figure 1(b)). The cost of this
mapping is that unitary Uχ will also change the bath Hamiltonian as HB →H ′

B = UχHBU†
χ, where H

′
B may

be more complicated to cope with compared to HB, e.g. because symmetries of the latter (such as
translational symmetry) might no longer hold for H ′

B. A simple but illustrative example is shown in figure 2
in the case that B is a coupled-cavity array and an atom with two coupling points, showing that H ′

B breaks
translational invariance. Despite this potential drawback, we will nevertheless see that this new picture,
where the giant atom is turned into a normal atom (yet coupled to a modified bath), is useful to establish
some general properties, e.g. concerning formation of atom-photon BSs.

4
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Figure 2. Left: giant atom with two coupling points (labeled a and b) interacting with a coupled-cavity array (waveguide) having
only nearest-neighbor hopping rates. For ga = gb = g, the site state |χ⟩ in this case is the symmetric superposition of |a⟩ and |b⟩.
The mapping defined by Uχ turns the giant atom into a normal atom, but at the same time transforms the waveguide in a
non-trivial way (right panel): cavities a and b are now replaced by their symmetric and antisymmetric combinations (each of
these coupling now to four different cavities).

3. Green’s function

The Green’s function (or resolvent operator) [54] is an effective theoretical tool which is particularly suited
to investigate atom-photon interactions [37, 38, 55].

The Green’s function associated with the total atom-field system is defined as G(z) = 1/(z−H) with H
the total Hamiltonian (cf equation (4)). In [56], it was shown that in the single-excitation sector G(z) can be
conveniently arranged in a compact form in terms of the bare field’s Hamiltonian. The generalization of this
expression to a giant atom is immediate thanks to equation (5) and reads10

G(z) = GB (z)+
1

F(z)
|Ψ(z)⟩⟨Ψ(z) |, (8)

where GB(z) is the bath’s Green function (more on this in the following section 3.1)11

|Ψ(z)⟩= |e⟩+ |ψ (z)⟩, (9)

|ψ (z)⟩= ḡGB (z) |χ⟩, (10)

F(z) = z−ω0 − ḡ2⟨χ |GB (z) |χ⟩ . (11)

Like with normal atoms [38] the Green’s function is helpful in particular for calculating atom-photon
dressed states (both bound and unbound), providing at the same time the theoretical basis to establish
important properties of these states. To accomplish such tasks, one can take advantage of the particularly
compact expression (8).

Since (8) is expressed in terms of the bath Green’s function GB(z), in the next subsection we review the
form of GB(z) in the common case that B is a photonic lattice.

3.1. Translationally-invariant bath
When B is a photonic lattice, discrete translational invariance holds. Then, based on the Bloch theorem the
photonic energy spectrum consists of bands having dispersion law ωnk with n the band index and wave vector
k lying in the first Brillouin zone. The associated eigenstates are {|ϕnk⟩} such that HB|ϕnk⟩= ωnk|ϕnk⟩ with
real-space wave function

⟨r,β|ϕnk⟩= unβ (k) e
ik·r, (12)

where r is a discrete vector (belonging to a Bravais lattice) which identifies the unit cell, while β is a discrete
sublattice index (thus |x⟩ in equation (1) is here embodied by |r,β⟩).

The bath Green’s function therefore generally reads

GB (z) =
∑
n,k

|ϕnk⟩⟨ϕnk|
z−ωnk

. (13)

10 Indeed, to derive (8) [56] the only essential requirement is that the interaction Hamitonian has the form ∝(|χ⟩⟨e|+H.c.) regardless
of the nature of |χ⟩.
11 There is a slight difference in the definition of |Ψ(z)⟩ and F(z) used here and the one in [56].
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If ω denotes a generic real frequency, it turns out that GB(ω) is singular at any value of ω lying within an
energy band (this being a branch cut of GB(z)). At such frequencies, GB(ω)must be replaced with GB(ω

+),
meaning that, in the denominator of (13) for z=ω, ω must be turned into ω+ iϵ with ϵ→ 0+. As a
consequence, GB(ω

+) is generally complex inside bands. Such a singularity does not occur when ω lies in a
photonic band gap, in which case GB(ω) is real and coincides with GB(ω

+).
Although the Green’s function is helpful also in the study of scattering (i.e. unbound) states, in the

remainder we will focus only on atom-photon bound states since they are key to the occurrence of DFHs as
will become clearer later on.

4. Atom-photon Bound States (BSs)

Atom-photon (dressed) BSs have recently attracted a lot of interest, in particular because they can mediate
atom-atom interactions with remarkable properties such as tunable interaction range and topological
protection [43, 45, 47–49, 51–53].

A dressed BS, |ΨBS⟩, is by definition a normalizable stationary state of the total system, that is

H|ΨBS⟩= ωBS|ΨBS⟩ with ⟨ΨBS|ΨBS⟩= 1 . (14)

As is well-known, the poles of the Green’s function are in one-to-one correspondence with bound
eigenstates of H [54], namely z= ωBS with ωBS fulfilling (14) is a real pole of G(z) (and viceversa). Thus the
search for atom-photon BSs reduces to finding the real poles of G(z). Assuming that GB(z) does not have real
poles (e.g. when B is translationally invariant, see section 3.1), then we see from equation (8) that the poles of
G(z) are the real zeros of function F(z) or equivalently the real roots of equation F(ω) = 0 (defined on the
real ω-axis). Using (11) this equation more explicitly reads

ω = ω0 + ḡ2⟨χ|GB

(
ω+
)
|χ⟩, (15)

where

Σ
(
ω+
)
= ḡ2⟨χ|GB

(
ω+
)
|χ⟩ (16)

is naturally interpreted as the self-energy of the giant atom. The presence of ω+ (instead of ω) is due in order
to encompass BSs in the continuum (typically within a photonic band): as we will see later, these cannot
occur with normal atoms but are possible with giant atoms (for BSs out of the continuum, GB(ω

+)≡ GB(ω)
and subscript ‘+’ can be dropped). For simplicity, in the remainder we will refer to ⟨χ|GB(ω

+)|χ⟩ (without
the ḡ2 factor) as the self-energy although it has of course the dimensions of the inverse of an energy.

In line with the general Green’s function theory, an atom-photon BS (strictly speaking its associated
projector |ΨBS⟩⟨ΨBS|) is the residue of G(z) at a pole z= ωBS fulfilling (15). Accordingly, with the help of
equations (8)–(10) we see that a dressed BS for a giant atom has the general form

|ΨBS⟩= |Ψ(z=ωBS)⟩=N (|e⟩+ |ψBS⟩) , (17)

with the (unnormalized) single-photon state |ψBS⟩ and normalization factorN respectively given by

|ψBS⟩= ḡGB

(
ω+
BS

)
|χ⟩, (18)

N =
1√

1+ ⟨ψBS|ψBS⟩
, (19)

and where (as said) ωBS is a solution of the pole equation (15). Notice that |ψBS⟩ is of the first order in the
effective coupling strength ḡ and, accordingly,N features no first order terms∼ ḡ.

Replacing the expansion of |χ⟩ in terms of single-photon states {|x⟩} (see equation (7)), we get the BS
photonic wave function in real space

|ψBS⟩= ḡ
N∑
ℓ=1

αℓGB

(
ω+
BS

)
|xℓ⟩ . (20)

For a normal atom placed at xℓ, this reduces to GB(ω
+
BS)|xℓ⟩ (unnormalized). Note that this might suggest

that the giant-atom BS is a coherent superposition of normal-atom BSs, which is instead generally false since
it would require ωBS to simultaneously fulfill (15) and ωBS = ω0 + ḡ2⟨xℓ|GB(ωBS)|xℓ⟩ for any ℓ= 1, . . .,N
which is not necessarily true.

6
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4.1. In-gap BSs (out of the continuum)
Inside a bandgap, GB(ω

+) = GB(ω) (see equations (15)) hence the giant-atom self-energy ⟨χ|GB(ω)|χ⟩
takes real values. Using that GB(ω) = (ω−HB)

−1, we then have G ′
B(ω) =−(ω−HB)

−2, where the prime
denotes the derivative with respect to ω. Thus

d

dω
⟨χ|GB (ω) |χ⟩=−⟨χ|(ω−HB)

−2 |χ⟩⩽ 0 . (21)

This implies that function F(ω) (cf equation (11)) ismonotonic. Recalling now that the solutions of the pole
equation (15) are the zeros of F(ω), we conclude that at most one BS per bandgap can exist.

We point out that this property is independent of the number of coupling points. Therefore, at variance
with in-band BSs (see next subsection), having a giant atom instead of a normal one does not affect the
maximum number of BSs occurring in bandgap.

4.2. In-band BSs (in the continuum)
For ω inside a continuous band, the self-energy ⟨χ|GB(ω

+)|χ⟩ is now complex with real and imaginary parts
given by

Re⟨χ|GB

(
ω+
)
|χ⟩= P

ˆ
dω ′ ρ(ω

′)

ω−ω ′ , (22)

Im⟨χ|GB

(
ω+
)
|χ⟩=−πρ(ω) , (23)

with P the integral’s principal value and

ρ(ω) =
∑
n,k

δ (ω−ωnk) ⟨χ |ϕnk⟩⟨ϕnk|χ⟩, (24)

where we used the property 1/y+ = 1/(y+ iϵ) = P(1/y)− iπδ(y) with ϵ→ 0+ (see appendix A for details).
The energy function (24) can be seen as the effective local density of states (LDOS), and coincides with the
LDOS of a normal atom placed at the fictious position corresponding to the site state |χ⟩. Note that the sum
over bands (index n) appears since in general there may be overlapping bands.

Since we look for real solutions ωBS of the pole equation, these need to simultaneously satisfy the pair of
equations

ωBS = ω0 + ḡ2Re⟨χ|GB

(
ω+
BS

)
|χ⟩, (25)

Im⟨χ|GB

(
ω+
BS

)
|χ⟩= 0 (26)

(in a bandgap the latter condition is guaranteed since the self-energy is real as shown in section 4.1).
This implies, in particular, that the energy of a BS must belong to the set of zeros of function

Im⟨χ|GB(ω
+)|χ⟩ (imaginary part of the self-energy). Now, it is clear from (23) that Im⟨χ|GB(ω

+)|χ⟩
vanishes if and only if

⟨χ |ϕnk⟩= 0 for ωnk = ω . (27)

In other words, a necessary condition for having a BS of energy ωBS is that all the bath eigenstates of energy
ωBS do not overlap the site state |χ⟩. More explicitly, this condition reads (see equations (7) and (12))

⟨χ|ϕnk⟩=
∑
ℓ

α∗
ℓ unβℓ

(k) eik·rℓ = 0 , (28)

with |xℓ⟩ (ℓth coupling point) here embodied by |rℓ,βℓ⟩. Clearly, equation (28) can never be satisfied by a
normal atom since in this case (28) would feature only one term in the summation thus requiring a
vanishing Bloch wave function, which is absurd.

By plugging (7) into equation (16) we get

⟨χ|GB

(
ω+
)
|χ⟩=

∑
ℓ

|αℓ|2⟨xℓ|GB

(
ω+
)
|xℓ⟩+

∑
ℓ,ℓ ′

α∗
ℓαℓ ′⟨xℓ|GB

(
ω+
)
|xℓ ′⟩ . (29)

This shows that the giant-atom self-energy depends in particular on off-diagonalmatrix elements of the
field’s Green’s function (terms ℓ̸=ℓ ′). This marks a major difference from a normal atom (coupled to only
one cavity), in which case only a single diagonal entry of GB(ω) is involved. Such terms generally introduce
an oscillatory dependence of the self-energy on energy ω (in contrast with a bandgap where it is monotonic),

7
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entailing that equations (25) and (26) can admit more than one solutions, meaning in particular that
multiple BSs can occur inside a photonic band. This property, which was proven in detail in the specific case
of a coupled-cavity array [18], is key to the appearance of stationary oscillations exhibited by a giant atom
with three coupling points in a waveguide [19].

4.3. BSs in the weak-coupling regime
When the strength ḡ of the atom-field interaction is small enough and, provided that GB(z) has a smooth
behavior around z= ω0 (meaning that we are in the weak-coupling regime), the existence conditions of a BS
(i.e. equations (25) and (26)) to leading order reduce to

ωBS = ω0, (30)

Im⟨χ|GB

(
ω+
0

)
|χ⟩= 0 . (31)

Recalling equations (23) and (27), the latter equation is equivalent to

⟨χ |ϕnk⟩= 0 for ωnk = ωBS = ω0, (32)

which thus embodies a necessary and sufficient condition for a BS to occur in the weak-coupling regime. Out
of the continuum (e.g. inside bandgaps), this is surely satisfied (due to lack of HB’s eigenstates with energy
ω0) and the weak-coupling BS always exists. In the continuum, instead, equation (32) cannot be satisfied by a
normal atom (recall equation (28)) but can be matched by a giant atom with a suitable pattern of coupling
points (i.e. for a suitable site state |χ⟩).

When it exists, a BS in the weak-coupling regime has the form (cf equation (17))

|ΨBS⟩= |e⟩+ |ψBS⟩ (weak−coupling BS) , (33)

with

ωBS = ω0, |ψBS⟩= ḡGB

(
ω+
0

)
|χ⟩ . (34)

Notice that |ΨBS⟩ is normalized to leading order since, as we observed earlier, (19) features no first-order
terms in ḡ. Also, note that |ΨBS⟩ → |e⟩ in the limit ḡ→ 0.

These BSs, which can show up even in the continuum with giant atoms [8, 18, 30], are crucial for the
occurrence of decoherence-free interactions, as will become clear later in section 6.

5. Many giant atoms: Hamiltonian andmaster equation

We now relax the assumption that only one giant atom is coupled to bath B and consider now Na ⩾ 1 giant
atoms interacting with the field. Hamiltonian (2) is naturally generalized as

H=HB +ω0

Na∑
j=1

σj+σj− +

Na∑
j=1

N∑
ℓ=1

(
gjℓb

†
xjℓσj− +H.c.

)
, (35)

with gjℓ the coupling strength of the ℓth coupling point of the jth atom, this point having coordinate xjℓ (for
simplicity we assume that the number of coupling pointsN and atom’s frequency ω0 are the same for all
atoms).

The site ladder operator (3) becomes now atom-dependent

bχj =
N∑
ℓ=1

α∗
jℓbxjℓ with αjℓ =

gjℓ
ḡj

and ḡj =

√∑
ℓ

|gjℓ|2, (36)

where from now on we set ḡj = ḡ (independent of the atom). Accordingly, the site state of atom j now reads
(cf equation (7))

|χj⟩= b†χj
|0⟩=

N∑
ℓ=1

αjℓ|xjℓ⟩ . (37)

When B is a photonic lattice, this is written as

|χj⟩=
N∑
ℓ=1

αjℓ|rjℓ,βjℓ⟩ , (38)

8
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with rjℓ identifying the unit cell and βjℓ the sublattice of the ℓth coupling point of atom j. The total
Hamiltonian can thus be written compactly as (cf equation (4))

H=HB +ω0

Na∑
j=1

σj+σj− +

Na∑
j=1

ḡ
(
b†χj
σj− +H.c.

)
(39)

(henceforth, it will be understood in all sums that index j runs from 1 to Na).
Based on Hamiltonian (39), at zero temperature and in the usual Markovian regime, the reduced state of

the atoms ρ at time t obeys the Lindblad master equation (see appendix B)

ρ̇=−i [Heff,ρ] +D [ρ] , (40)

with the effective Hamiltonian and collective dissipator given by

Heff =
∑
j,j ′

(
ω0δjj′ +Kjj′

)
σj+σj′−, (41)

D [ρ] =
∑
j,j ′

γjj′

[
σj′−ρσj+ − 1

2

{
ρ,σj+σj′−

}]
, (42)

where

Kj j ′ = ḡ2
⟨χj|GB

(
ω+
0

)
|χj′⟩+ ⟨χj′ |GB

(
ω+
0

)
|χj⟩∗

2
, (43)

γj j ′ = i ḡ2
(
⟨χj|GB

(
ω+
0

)
|χj′⟩−⟨χj′ |GB

(
ω+
0

)
|χj⟩∗

)
. (44)

More explicitly, rates Kj j ′ and γj j ′ can be written as (see appendix B)

Kjj′ = ḡ2P
ˆ
dω

ρj j ′ (ω)

ω0 −ω
, (45)

γjj′ = 2π ḡ2ρj j ′ (ω0) , (46)

where, similarly to equation (24), we defined ρj j ′(ω) =
∑

n,k δ(ω−ωnk)⟨χj|ϕnk⟩⟨ϕnk|χj′⟩, where we recall
that |ϕnk⟩ are the eigenstates of HB and ωnk their energies.

Equation (40) is a many-emitter master equation (holding even if bath B is not translationally invariant),
which is expressed in terms of the bath Green’s function (master equations in this form are known for
normal atoms, see e.g. [57], considering a continuous photonic bath). For normal atoms (N = 1), the
effective atom-atom coupling strengths Kjj′ and dissipation rates γjj′ depend on two-point matrix elements
of the bath Green’s function involving the actual positions xj’s of the atoms. Equation (41) shows that this
remains formally true with giant atoms, but now in terms of their fictitious positions χj’s (cf definition (37)).

We next focus on occurrence of DFHs, namely those cases when all dissipation rates γj j ′ in the above
master equation vanish, which we will then link to atom-photon BSs.

6. Decoherence-free Hamiltonian (DFH)

When the dissipator (42) vanishes, one is left with an effective Schrödinger equation for the giant atoms
having as generator the effective many-body spin Hamiltonian Heff (cf equation (41)) which is then referred
to as a DFH. This occurs when rates γj j ′ = 0 (for any j and j′).

As shown by equation (46), when j ′=j rate γj j ′ clearly vanishes if and only if ⟨χj|ϕnk⟩= 0 for any j and
any |ϕnk⟩ such that ωnk = ω0, which then implies that γj j ′ = 0 even for j ′ ̸= j. By recalling equation (32)
(condition for occurrence of BS under weak coupling), we thus conclude that a DFH arises if and only if each
atom seeds the weak-coupling BS (cf equations (33) and (34))

|Ψj
BS⟩= |ej⟩+ |ψj

BS⟩ (weak−coupling BS of atom j) , (47)

with |ej⟩ the state where the jth atom is excited and there are no photons. To our knowledge, this property
had not been highlighted in such an explicit way to date even for normal atoms.

Also, using equations (41), (43), (44) and (47), the DFH can be fully expressed in terms of the giant-atom
BSs as

Heff =
∑
j ,j ′

(
ω0δj j ′ +Kjj′

)
σj+σj′− withKjj′ = ḡ⟨χj|ψ j ′

BS⟩, (48)

9
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where we used (cf equation (44)) γj j ′ = 0, entailing ⟨χj′ |GB(ω
+
0 )|χj⟩∗ = ⟨χj|GB(ω

+
0 )|χj′⟩. Recall that

|ψ j ′

BS⟩ ∼ ḡ, which shows explicitly that, as expected, Kjj′ ∼ ḡ2.
It is worth noticing that Heff is guaranteed to be Hermitian since Kjj′ =K∗

j′j (which follows immediately
from equation (43)). This also entails (recall that ḡ> 0)

⟨χj|ψ j ′

BS⟩= ⟨χj′ |ψ j
BS⟩

∗, (49)

showing that the interaction strength Kjj′ can be equivalently seen as either the overlap between the BS of
emitter j′ and the site state of emitter j or as the c.c. of the overlap between the BS of emitter j and the site
state of emitter j′. This equivalence can be useful, as we will show later on.

This shows that two atoms get effectively coupled provided that the BS seeded by each overlaps with the
site state of the other one, with the corresponding interaction strength essentially measured by the overlap.
More explicitly,

Kjj′ = ḡ
∑
ℓ

α∗
jℓ⟨xjℓ|ψ

j ′

BS⟩= ḡ2
∑
ℓ,ℓ ′

α∗
jℓαj′ℓ ′⟨xjℓ|GB

(
ω+
0

)
|xj′ℓ ′⟩ . (50)

To sum up, we have extended to giant atoms the property that decoherence-free interactions are always
mediated by atom-photon BSs, either in or out of the continuum.

We next proceed to the study of an important class of giant-atom BSs called ‘vacancy-like dressed states
(VDSs)’, the main motivation being that, combined with the general theory just shown, they provide a
powerful tool to understand and predict giant-atom DFHs (as we show later on).

7. Vacancy-like Dressed States (VDSs)

7.1. Review of VDSs for normal atoms
For a normal atom coupled to a bath B, a VDS [49] is by definition a single-excitation dressed state having
the same energy as the atom, i.e.

H|ΨVDS⟩= ω0|ΨVDS⟩, (51)

where H is a special case of (1) forN = 1 and gℓ = g. Notice that, by definition, identity (51) exactly holds
for any value of the coupling strength g (not only in the weak-coupling regime as in section 4.3), meaning in
particular that, even if g is made larger and larger, the VDS energy remains pinned to the bare atom energy
ω0. VDSs enter basic waveguide-QED phenomena such as perfect reflection of a photon from an atom and
dressed BSs in the continuum [49] (recently, they were extended to fermionic matter-wave systems [58]).
Moreover, they are essential to understand occurrence of atom-photon BSs enjoying topological/symmetry
protection [24, 48, 49, 59].

While such states can be both bound and unbound, in this paper we focus solely on bound VDSs, hence
from now on ‘VDS’ must be always intended as a bound VDS (i.e. ⟨ΨVDS|ΨVDS⟩= 1).

Notably, there exists a tight relationship between VDSs and BSs induced by a vacancy, hence the name
‘vacancy-like dressed states’. To see this, in line with [49], we call ‘v’ the cavity directly coupled to the normal
atom and Bv the bath B with a vacancy in place of cavity v (see figure 3(a)). Then it can be shown that any
VDS can be expressed in the form

|ΨVDS⟩= cosθ |e⟩+ eiφ sinθ|ψVDS⟩, (52)

with

θ = arctan |η|, φ = argη with η =− g

⟨v|HB|ψVDS⟩
, (53)

and where, importantly, |ψVDS⟩ is a BS seeded by a vacancy at site v, i.e. a normalized eigenstate of HBv (free
Hamiltonian of Bv)

HBv |ψVDS⟩= ω0|ψVDS⟩ . (54)

Notice that the eigenvalue of |ψVDS⟩ here is the same as the one in (51) and coincides with the atom’s
frequency. To understand occurrence of a VDS, notice that |v⟩ is coupled to both |e⟩ and bath Bv as shown in
figure 3(b). By decomposing HBv into its eigenstates (see figure 3(b)), one obtains a star-like configuration
having |v⟩ at its center. Now, through a mechanism in fact analogous to formation of dark states [60], if one
of the HB’s eigenstates has energy ω0 (same as |e⟩), then there always exists a superposition of this eigenstate

10
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Figure 3. Vacancy-like dressed states (VDSs). (a) A normal atom is coupled to cavity v of an unspecified bath B (whose
Hamiltonian HB is given by equation (1)). The bath where cavity v is replaced by a vacancy is called Bv and its free Hamiltonian
HBv . (b) Formation mechanism of a VDS: if there exists an HBv ’s eigenstate called |ψVDS⟩ with energy ω0, there always exists a
superposition of |e⟩ and |ψVDS⟩ that decouples from |v⟩. This superposition, called |ΨVDS⟩, is thus an eigenstate of the total
Hamiltonian H with eigenvalue ω0. (c) VDSs are naturally extended to a giant atom, where the roles of |v⟩ and Bv are now
respectively played by the site state |χ⟩ and Bχ (the Hilbert space of Bχ is the set of all single-photon states which are orthogonal
to |χ⟩).

(called |ψVDS⟩) and |e⟩ which decouples from |v⟩ and thereby is a stationary state of the total system with
energy ω0 (dressed state) [49].

Reversing the above picture provides a practical method to find a VDS as follows: one first searches for a
(bound)HBv ’s eigenstate |ψVDS⟩ such that ⟨v|HB|ψVDS⟩ ̸= 0 and next tunes the atom to the energy of thisHB’s
eigenstate. The superposition of |ψVDS⟩ and |e⟩ defined by (52) is then a VDS.

7.2. Giant-atom VDS
A giant-atom VDS is naturally defined formally just as in equation (51). Since in the picture defined by
transformation Uχ (see section 2.2) the giant atom is effectively turned into a normal atom coupled only to
|χ⟩, we can formally apply the standard VDS theory just reviewed but with g and |v⟩ now replaced by ḡ and
|χ⟩, respectively (cf equations (3) and (7)). Accordingly, Bv (bath with a vacancy substituting v) (see
figure 3(a)) is now replaced by Bχ (see figure 3(c)) namely the set of all single-photon states which are
othogonal to the site state |χ⟩.

Thereby, a VDS has the general form (52), where now

θ = arctan |η|, φ = argη with η =− ḡ

⟨χ |HB|ψVDS⟩
, (55)

and where, importantly, |ψVDS⟩ now is a normalized eigenstate of HBχ
(free Hamiltonian of Bχ) with energy

ω0

HBχ
|ψVDS⟩= ω0|ψVDS⟩ . (56)

With the described replacements (see figure 3(c)), the formation mechanism of a giant-atom VDS is a
natural extension of the one for a normal atom (cf figure 3(b)). We stress that, like its normal-atom
counterpart, a distinctive feature of a giant-atom VDS is that it arises—always at frequency ω0—no matter
how large the coupling strength g (hence even in regimes when the atom decay is non-Markovian).

For future use (when we will discuss DFHs), it is useful to give here the expression of the VDS (52) in the
weak-coupling limit, which reads

|ΨVDS⟩= |e⟩+ η|ψVDS⟩ , (57)

with (cf equation (53)) η =−ḡ/⟨χ |HB|ψVDS⟩. Accordingly, we can state that when a BS is also a VDS
then (33) holds with (cf equation (34))

|ψBS⟩=
ḡ

⟨χ |HB|ψVDS⟩
|ψVDS⟩, (58)

hence (up to a constant factor) |ψBS⟩ essentially coincides with |ψVDS⟩.12 It is worth to point out that for the
above weak-coupling limit to exist we must require the natural condition ⟨χ |HB|ψVDS⟩ ̸= 0 (otherwise
η→∞, see equation (55)).

12 In the general case (beyond weak coupling), equation (58) features an additional factor 1/N on the right-hand side (cf equations (17)
and (19)).
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We already made clear in section 6 that occurrence of DFHs goes hand in hand with formation of BSs.
Searching for BSs can thus be exploited as a method to engineer novel types of DFHs with giant atoms. This
is in particular true for VDSs, whose emergence in many systems can be predicted in a relatively
straightforward fashion (as we will see through several examples in the next section) according to the
following recipe. First, based on the pattern of coupling points, identifies the site state |χ⟩ (see figure 1(b)).
All single-photon states orthogonal to |χ⟩ then define Bχ (see figure 3(c)). Next, inside Bχ so identified,
search for an HBχ

’s eigenstate |ψVDS⟩ such that ⟨χ |HB|ψVDS⟩ ̸= 0. The superposition of |ψVDS⟩ and |e⟩
defined by (52) is then ensured to be a VDS, whose photonic wave function is given by (58).

7.3. Decay dynamics in the presence of a VDS
When a VDS exists, an initially excited quantum emitter will just not decay in the weak-coupling regime (in
which case the atomic component of the VDS dominates over the photonic one). This will happen even if ω0

lies in the photonic continuum, in which case |e⟩ is a subradiant state.
Beyond weak coupling, the VDS is still guaranteed to exist (see discussion in section 7.2) but will now

feature a larger photonic fraction. Then, if no additional BSs arise, the atom will generally behave in a
non-Markovian fashion exhibiting fractional decay, meaning even at long times the emitter keeps a residual
excitation measured by |⟨e|ΨVDS⟩|.

8. Examples of giant-atom VDS

In the following, we provide some paradigmatic examples of bound VDSs occurring with giant atoms.

8.1. Photonic graphene, three coupling points
Assume that B is a 2D honeycomb lattice (‘photonic graphene’) (see figure 4(a)) with nearest-neighbor
hopping rates J and where each bare cavity frequency is ωc (thus in equations (1) and (6), ωx = ωc while
Jxx′ = J for x and x′ nearest neighbors while Jxx′ = 0 otherwise). As shown figure 4(a), the bath is coupled to a
giant atom with three coupling points (N = 3) of equal strengths g (thus gℓ = g for ℓ= 1,2,3), which are the
three nearest neighbors of a certain cavity (no matter which). For convenience, we label the three coupling
points simply with ℓ= 1,2,3 and the central cavity with 0 (see figure). Thus the site state in this case is the
symmetric superposition of |1⟩, |2⟩ and |3⟩ (cf equation (7)), i.e.

|χ⟩= 1√
3
(|1⟩+ |2⟩+ |3⟩) . (59)

Clearly, state |0⟩ lies fully within Bχ since it is orthogonal to |χ⟩. Moreover, |0⟩ is coupled by HB to |χ⟩ since
⟨χ|HB|0⟩=

√
3J. Given that besides |χ⟩ there is no other single-photon state coupled to |0⟩, it is evident that

|0⟩ is an eigenstate of HBχ
,

HBχ
|0⟩= ωc|0⟩ . (60)

Based on the last section, thereby, by setting ω0 = ωc a VDS (52) exists with |ψVDS⟩= |0⟩ and (cf
equation (58))

|ψBS⟩=
g

J
|0⟩, (61)

where we used that ḡ=
√
3g (cf equation (3)). This VDS-BS thus features a photonic wave function fully

localized in the region (a single cavity in the present case) surrounded by the three coupling points.
We notice that HB has the well-known graphene energy spectrum (see top-right panel of figure 4(a)),

featuring two bands that ‘touch’ one another just at energy ω = ωc (corresponding to the well-known Dirac
points). The above BS thus has a hybrid nature between a BS within a bandgap and a BS in the continuum.
We notice that, at this energy, no BS is possible with a normal atom (local coupling), but only a
‘quasi-bound’ state extending over a large region [47].

We next consider a giant atom with four coupling points ℓ= 1,2,3,4 (equal strengths) again coupled to
the honeycomb lattice as shown in figure 4(b). The site state reads |χ⟩= 1

2 (|1⟩+ |2⟩+ |3⟩+ |4⟩) and there
are now two internal cavities called 0 and 0′ which lie fully within Bχ. Notice that, in addition to |χ⟩, state |0⟩
(|0 ′⟩) is now coupled by HB to |0 ′⟩ (|0⟩) and, most notably, also to states {|χ⊥

i ⟩} (see section 2.2),
i.e. superpositions of {|1⟩, |2⟩, |3⟩, |4⟩} different from |χ⟩ (this is at variance with the previous case in
section 8.1 where the central site was coupled only to |χ⟩). Accordingly,

HBχ
|0⟩= J|0 ′⟩+

∑
i

⟨χ⊥
i |HB|0⟩|χ⊥

i ⟩, (62)

12



Quantum Sci. Technol. 10 (2025) 015057 L Leonforte et al

Figure 4. Examples of VDSs with giant atoms. (a) Photonic graphene and giant atom with three coupling points. (b) Same as
panel (a) in the case of four coupling points. (c) Coupled-cavity array (discrete waveguide) and giant atom with two coupling
points. (d) Homogeneous square lattice and giant atom with four coupling points. The VDS has non-zero amplitude only on red
and blue cavities on which it takes uniform modulus while the phase is 0 (π) on red (blue) cavities. Each panel (top right) features
also a sketch of the energy spectrum of HB and the required atom frequency ω0 for the considered VDS to occur.

and an analogous equation holds by swapping 0 with 0′. It turns out that |ψ+⟩= 1√
2
(|0⟩+ |0 ′⟩) (symmetric

superposition of |0⟩ and |0 ′⟩) fulfills

HBχ
|ψ+⟩= (ωc + J) |ψ+⟩ . (63)

This is because, due to reflection symmetry (see figure 4(b)), |ψ+⟩ is uncoupled from the three states |χ⊥
i ⟩},

i.e. ⟨χ⊥
i |HB|ψ+⟩= 0, while it is coupled to the site state |χ⟩ according to

⟨χ |HB|ψ+⟩=
√
2J . (64)

According to the last section, since |ψ+⟩ is an eigenstate of HBχ
, by setting ω0 = ωc + J a VDS (52) exists with

|ψVDS⟩= |ψ+⟩ and (cf equation (58))

|ψBS⟩=
√
2g

J
|ψ+⟩, (65)

where used that ḡ= 2g (cf equation (3)).

8.2. Discrete waveguide, two coupling points
Consider now a homogeneous coupled-cavity array (discrete waveguide) described by the Hamiltonian
HB =−J

∑
n |n⟩⟨n+ 1|+H.c. (the frequency of each cavity is set to zero), whose well-known energy

spectrum features a single band of width 4J centered at ω= 0 (see inset of figure 4(c)). A giant atom with
N = 2 is coupled with the same strength g to the two cavities n=0 and n=d (see figure 4(c)). Thus (see
section 2.2)

|χ⟩= 1√
2
(|0⟩+ |d⟩) , |χ⊥⟩= 1√

2
(|0⟩− |d⟩) . (66)

Sites n= 1, . . .,d− 1, lying between the giant’s atom’s coupling points, can be jointly viewed as a
coupled-cavity array of finite length d (thus subject to standard open boundary conditions). Their
corresponding free Hamiltonian is thus that of a discrete 1D cavity, whose well-known eigenstates and
energy spectrum respectively read (see e.g. [49, 61])

|ψkm⟩=
√

2

d

d−1∑
n=1

sin(kmn) |n⟩, (67)

ωkm = ωc − 2Jcoskm , (68)

with km =mπ/d andm= 1,2, . . .,d− 1. By construction, states (67) belong to Bχ. We next note that HB

enjoys reflection symmetry around the midpoint between sites 0 and d and, moreover, that (with respect to
the same symmetry) |ψkm⟩ has parity (−1)m+1, while |χ⟩ (|χ⊥⟩) has parity±1 (see figure 4(c)). Thus, form
odd |ψkm⟩ has even parity and decouples from |χ⊥⟩, i.e. ⟨χ⊥|HB|ψkm⟩= 0. Hence,

HBχ
|ψkm⟩= ωkm |ψkm⟩ form odd . (69)

Therefore, the condition to have a VDS (52) with |ψVDS⟩= |ψkm⟩ reads ω0 = ωkm for some oddm. By
introducing k0 such that ωkm=k0 = ω0, this condition reads km = k0, namely (we setm= 2ν+ 1 wth ν integer
sincemmust be odd)

k0d= (2ν+ 1)π . (70)
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The BS photonic wave function then reads (cf equation (58))

|ψBS⟩=−
√

d

2

g

sin(km) J
|ψkm⟩, (71)

where we used ḡ=
√
2g and ⟨χ |HB|ψkm⟩=− 2√

d
sin(km)J.

It can be shown that, under a suitable mapping (‘waveguide unfolding’) [62, 63], the above BS is
equivalent to the known BS in the continuum seeded by a normal atom in front of a mirror [61, 64–66].

8.3. Square lattice, four coupling points
The most natural 2D extension of the previous coupled-cavity array is the square lattice in figure 4(d), where
J again denotes the nearest-neighbor hopping rate and we set to zero the frequency of each cavity (ωc = 0).
The energy spectrum is known to consist of a single band of width 8J centered at ωc = 0 (where a singularity
in the photonic density of states is known to occur).

We consider a giant atom with four coupling points ℓ= 1,2,3,4 (equal strength gℓ = g) placed on the
four vertices of a square13 like the one sketched in figure 4(d). Let B0 be the set of cavities (nine overall in
figure 4(d)) which lie inside the square internal to the coupling points. These cavities embody themselves a
finite-size lattice called B0 in the remainder, which evidently belongs to Bχ. Unlike all previous instances,
each B0’s cavity is now generally coupled not only to |χ⟩= 1

2

∑4
ℓ=1 |ℓ⟩ and {|χ⊥

i ⟩} but even to the
single-photon states corresponding to the boundary cavities inside the dashed ellipses in figure 4(d) (a total
of eight sites in this example).

It is easy to see that the finite lattice B0 admits a zero-energy eigenstate |ψ0⟩ whose wave function has
non-zero amplitude only on red and blue cavities in figure 4(d), on which it takes uniform modulus and
phase 0 (π) on red (blue) cavities. This state is explicitly written as [67, 68]

|ψ0⟩=
1√
N0

(∑
x∈P

|x⟩−
∑
x∈M

|x⟩

)
, (72)

with P (M) denoting the set of cavities where the phase is 0 (π) and N0 = µ2 (with µ an integer) the overall
number of cavities where |ψ0⟩ has non-zero amplitude (i.e. the total number of elements of the set P∪M).
The example in figure 4(d) features N0 = 9.

It can be checked by inspection (see figure 4(d)) that, due to destructive interference, state |ψ0⟩ is
effectively decoupled from the aforementioned ‘boundary’ cavities and is only coupled to state |χ⟩ according
to ⟨χ|HB|ψ0⟩= 2J/

√
N0. Accordingly, setting ω0 = ωc = 0, a VDS (52) exists with |ψVDS⟩= |ψ0⟩ whose

photonic wave function reads (cf equation (58))

|ψBS⟩=
g
√
N0

J
|ψ0⟩ . (73)

These results can be contrasted with a normal atom, which under analogous conditions (ω0 = ωc = 0) is not
only unable to seed a BS but even shows up intrinsically non-Markovian emission due to the aforementioned
singularity [68]. We note that the photonic wave function of the present giant-atom VDS is essentially
analogous to the multi-atom BS first investigated in [68, 69] and recently extended to a fermionic bath with
four impurities [58].

9. VDS-mediated DFHs

Based on section 6, each type of (bound) VDS derived in the previous section gives rise to a corresponding
DFH (when the condition to seed such BS are met by each giant emitter).

9.1. Photonic graphene
Assume to have a pair of identical giant atoms (labeled by j = 1,2) withN = 3 and ω0 = ωc, each coupled to
photonic graphene according to the scheme shown in figure 5(a): all the coupling points of emitter j (here
called ℓj with ℓ= 1,2,3 and j = 1,2) are the nearest neighbors of one coupling point of emitter j ̸= j ′. The
coupling strength of any coupling point is g. We know that a DFH occurs if each atom in the weak-coupling
regime gives rise to a BS with ωBS ≃ ω0 (cf equation (33) and section 6). As shown in section 8.1 and

13 We consider a square for simplicity, but the present discussion can be naturally generalized to a rectangle.
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Figure 5. Examples of VDS-based DFHs with giant atoms. (a) Two giant atoms with three coupling points in photonic graphene
(cf figure 4(a)). (b) Two giant atoms with four coupling points in photonic graphene (cf figure 4(b)). (c) Generalization of (b) to
a periodic arrangement of giant atoms. (d) Pair of giant atoms with two coupling points in a discrete waveguide (cf figure 4(c)) in
the serial, braided and nested configurations. (e) Pair of giant atoms with four coupling points in a square lattice: braided and
nested arrangements.

figure 4(a), this indeed happens when ω0 = ωc in which case each emitter j = 1,2 seeds the VDS in
section 8.1 (so that ωBS = ω0 is matched exactly) with (cf equation (61))

|ψj
BS⟩=

g

J
|0j⟩ . (74)

Clearly, we have (see figure 5(a)) |01⟩ ≡ |12⟩ while |02⟩ ≡ |21⟩. Hence, recalling that |χj⟩= 1√
3

∑3
ℓ=1 |ℓj⟩ and

ḡ=
√
3g, we get a DFH defined by equation (48) with

K12 =K21 = ḡ⟨χ1|ψ2
BS⟩=

g2

J
. (75)

Similar conclusions hold ifN = 4 and ω0 = ωc + J with the two giant atoms arranged as in figure 5(b).
Now, an argument analogous to the previousN = 3 case combined with the results of section 8.1 and

figure 4(b) yield (cf equation (65)) |ψj
BS⟩=

√
2g
J |ψj

+⟩ and hence

K12 =K21 = ḡ⟨χ1|ψ2
BS⟩= 2

√
2
g2

J
⟨χ1|ψ2

+⟩=
g2

J
. (76)

(we used |χj⟩= 1
2

∑4
ℓ=1 |ℓj⟩ and ḡ= 4g).

The above schemes can be naturally scaled to many atoms. An instance is shown in figure 5(c), which
extends the scheme in panel (b) realizing an effective one-dimensional spin Hamiltonian with strictly
nearest-neighbor interactions of strength equal to (76). Although not shown in the figure, it is evident that a
two-dimensional spin Hamiltonian can be constructed by a natural 2D generalization of figure 5(c).

9.2. Discrete waveguide
Consider a pair of giant atoms withN = 2 each coupled to a discrete waveguide as in figure 5(d) (compare
with figure 4(c)), where cavities 0 and d are the coupling points of atom 1, while x21 and x22 generically
denote the coupling points of atom 2 (three different choices are sketched). According to section 8.2 (see also
equation (70)), under the conditions

k0d= (2ν+ 1)π, k0 (x22−x21) = (2ν ′ + 1)π, (77)

each emitter seeds a VDS. In particular, atom 1 seeds a VDS with photonic wave function (cf equation (71))

|ψ1
BS⟩=−

√
d

2

g

sin(km) J
|ψk0⟩, (78)

where |ψk0⟩ is given by equation (67) under the replacement km → k0.
The question is now whether or not, depending on the atoms’ arrangement, K12 ̸= 0 (if K12 = 0 we get a

master equation where not only the dissipator but also the effective Hamiltonian vanishes). Analogously to a
continuous waveguide [11], the two giant atoms can be arranged according to three possible topologies (see
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figure 5(d)): serial, braided and nested. Evidently, the serial configuration necessarily entails K12 = 0 since
the BS of one atom is fully confined between its coupling points, hence its overlap with the site state of the
other emitter trivially vanishes. It is also clear that the braided configuration yields a non-zero interaction
under the only condition that the coupling point of one emitter does not lie on a node of the VDS of the
other emitter. The effective coupling strength in this configuration is worked out as (cf equation (78))

K12 =K21 =
2g2

v
sin(k0x21) , (79)

where we defined the photon group velocity v= dω/dk= 2J sink0 (cf equation (68)).
We are left with the analysis of the nested configuration (see figure 5(d)). In this case, evidently, the BS of

atom 2 has zero amplitude on both atom-1 coupling points, hence K21 =K12 ∝ ⟨χ1|ψ2
BS⟩= 0 resulting in a

null DFH. It is interesting to point out that the BS of atom 1 generally does have non-zero amplitude on every
coupling point of atom 2. However, these amplitudes sum to zero so that the overlap between |ψ1

BS⟩ and |χ2⟩
still vanishes

K12 ∝ ⟨χ2|ψ1
BS⟩ ∝ [sin(k0x21)+ sin(k0x22)] = 0, (80)

in agreement with the general constraint K12 =K∗
21 (see equation (49)). To derive equation (80) we used the

VDS condition for atom 2 (second identity of equation (77)). Thus we conclude that, like the serial one, the
nested configuration also yields a null DFH.

These results are fully in line with those predicted for a continuous waveguide through fully different
approaches [11, 14] (these can be retrieved by turning the array into a continuous waveguide through
linearization of the dispersion law (see e.g. [49]). Remarkably, this unifies the physical mechanism behind
DFHs of giant atoms in a waveguide continuum with the BS-mediated picture that is usually applied to
DFHs in bandgaps.

9.3. Sufficient condition for zero interaction
In general, the interaction strength for a pair of atoms j and j′ vanishes whenever the BS of one atom (j

and/or j′) has zero amplitude on every coupling point of the other atom, i.e. when ⟨xjℓ|Ψ j ′

BS⟩= 0 for any ℓ

and/or ⟨xj′ℓ|Ψ j
BS⟩= 0 for any ℓ. In the serial configuration of the setup in figure 5(d) both identities hold,

whereas in the nested geometry only one holds but the interaction strength vanishes anyway.

9.4. Square lattice
We finally study the case of a pair of giant atoms withN = 4 coupled to a homogeneous square lattice as in
figure 5(e) (braided arrangement) where each emitter’s coupling points are arranged analogously to
Figure 4(d). Since there is only one coupling point of emitter 2 (1) which overlaps the BS seeded by emitter 1
(2), a DFH arises with interaction strength given by (cf equations (48), (72) and (73))
K12 =K21 = ḡ⟨χ2|ψ1

BS⟩= g2/J.14

The above emitters’ arrangement can be considered a 2D extension of the braided configuration of
section 9.2 and figure 5(d). Likewise, we can define a nested geometry as shown in figure 5(e) (bottom
panel), in which case we get K12 =K21 = 0 due to condition 9.3 since the BS of the internal emitter has zero
amplitude on every coupling point of the external one.

10. DFH in 2D with two coupling points

In contrast to the 1D waveguide of figure 5(c) featuring giant atoms with two coupling points, all the
previous 2D instances of DFHs (cf figures 5(a), (b), (c) and (e)) employed giant atoms with at least three
coupling points. In each case, the VDS was confined within a region having three or four coupling points as
vertexes. One may wonder whether three is a general lower bound on the number of coupling points in order
to realize decoherence-free interactions in a 2D lattice. It turns out that this is not the case, which we show
through the following counterexample in 2D using giant atoms with only two coupling points. This
counterexample is again constructed by taking advantage of the VDS picture.

Consider the three-partite 2D lattice sketched in figure 6(a). This is a generalization of the standard Lieb
lattice [70] with added next-nearest-neighbor hopping rates [71], where all hopping rates—both
nearest-neighbor and next-nearest-neighbor, have the same value J. We set to zero the frequency of each
cavity. As shown in figure 6(b), the bare lattice shows up three bands which touch one another at the four

14 The occurrence of such a DFH was briefly mentioned in [8].
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Figure 6. Giant atoms withN = 2 in a photonic 2D Lieb lattice with added next-nearest-neighbor hoppings. (a) Lattice
structure, where the three sublattices are highlighted. All photon hopping rates (diagonal, horizontal and diagonal) are equal to J.
(b) Dispersion laws of the three photonic bands (frequency ω in units of J). The bands touch one another at the corners of the
first Brillouin zone. (c) Top: VDS seeded by a giant atom with two coupling points (cavities 0 and 6) coupled to the ends of a
five-cavity string (cavities 1–5). The VDS has non-zero amplitude only on red and blue cavities, on which it takes uniform
modulus and phase 0 (π) on red (blue) cavities. Bottom: giant atom coupled to an eleven-cavity string and seeded VDS. (d) Top:
non-trivial DFH with two giant atoms of the same geometry (horizontal in this case). Bottom: instance of trivial DFH with giant
atoms of different geometry (one horizontal one vertical). There is no way to arrange for the VDS of one atom to overlap the
coupling point of the other atom.

corners of the first Brillouin zone in a way that no bandgap occur. Like graphene and square lattice (see e.g.
[47, 68]), depending on its frequency the decay dynamics of a normal atom can be non-Markovian even if it
is tuned within the photonic continuum. In particular, this happens for ω0 =−J in which case the emitter
undergoes a dynamics very similar to vacuum Rabi oscillations (not shown here) which can be attributed to
the central photonic band in figure 6(b) whose dispersion law is almost flat close to this energy. In contrast,
we will show next that a giant atom of the same frequency and with only two coupling points can seed a VDS.

10.1. VDS with two coupling points
Consider the linear array of Na = 5 cavities sketched on top of figure 6(c). It is easy to see that the free
Hamiltonian of this homogeneous five-cavity array admits in particular the eigenstate (cf figure 6(c) for the
definition of cavity labels)

|ψa⟩=
1

2
(|1⟩− |2⟩+ |4⟩− |5⟩) (81)

with energy ωa =−J (note that there is a node at cavity 3). One can check by inspection that, due to
destructive interference, this state decouples from each of the three cavities located right on top of 1, 3 and 5,
respectively, as well as from the corresponding three cavities on the bottom. On the other hand, the remaining
two lattice cavities directly linked to the array, which are labeled by 0 and 6 in figure 6(c), couple to state |ψa⟩
only through their antisymmetric superposition |χ⟩= 1√

2
(|0⟩−|6⟩) with strength ⟨χ|HB|ψa⟩= J/

√
2. This

is because the symmetric superposition of |0⟩ and |6⟩ decouples from state (81) due to the opposite phases of
amplitudes ⟨1|ψa⟩ and ⟨5|ψa⟩. Accordingly, if we couple a giant atom to cavities 0 and 6 with strengths
g0 =−g6 = g (i.e. there are only two coupling points with a π phase shift) and tune its frequency to
ω0 = ωa =−J, a VDS (52) exists with |ψVDS⟩= |ψa⟩ whose photonic wave function reads (cf equation (58))

|ψBS⟩=
2g

J
|ψ0⟩ . (82)

(in this case ḡ=
√
2g). In contrast to a normal atom of the same frequency, therefore, such giant atom will

not decay (for weak coupling).

10.2. DFH
Following the same general scheme as in the previous instances, such VDS will ensue a non-trivial DFH in
the presence of two giant atoms of this form arranged e.g. as in the top of figure 6(d) (notice that each giant
atom is coupled to a cavity where the VDS seeded by the other one has non-zero amplitude). The resulting
interaction strength is worked out as (cf equations (48) and (82))

K12 =K21 =−g2

J
. (83)
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Observe that the wavefunction of such class of VDSs can have either horizontal geometry (as e.g. in
figure 6(c)) or vertical geometry. Interestingly, the effective Hamiltonian of two giant atoms can be
non-trivial only when both giant atoms are arranged in a vertical configuration (see top of figure 6(d)) or
both in a horizontal one. Indeed, if their configurations are different there is no way to arrange for the VDS
of one atom to overlap the coupling point of the other atom (see bottom of figure 6(d)), entailing
K12 =K21 = 0: the two atoms will be free from decoherence but they will not interact with one another
whatsoever.

10.3. General case
Similarly to states (72) in the square lattice, the present VDSs are also scalable in size (which in this case is the
length of the cavity array sandwiched between the two coupling points). Indeed, by adding to cavities 1–5 in
the top of figure 6(c) a string of six nearest-neighbor cavities (no matter on which of the two ends of the
five-cavity array), one ends up with an eleven-cavity block (see bottom of figure 6(c)) which again admits an
eigenstate of energy ωa =−J with wavefunction

|ψa⟩=
|1⟩−|2⟩+|4⟩−|5⟩+|7⟩−|8⟩+|10⟩−|11⟩

2
√
2

(84)

(nodes on cavities 3, 6, 9) This state has properties analogous to state (81): it decouples from the seven
cavities right on top of 1,3,4,5,7 and 9 and get coupled only to the antisymmetric superposition of cavities 0
and 12. Therefore, a VDS and a DFH can be obtained through an analogous reasoning. In general, one
obtains a VDS of growing length by adding iteratively a six-cavity cluster (on either end). The general size of
such VDS, which in fact measures the distance between the giant-atom coupling points, is therefore
Na = 5+ 6ν with ν = 0,1, . . ..

11. Conclusions

In this paper, we presented a general theoretical framework for approaching giant atoms coupled to
structured photonic baths, whose experimental realization is today reachable in scenarios such as circuit
QED. We first showed that one can effectively describe the system as a normal atom locally coupled to a
fictitious cavity, and then used this picture to work out a compact expression of the joint atom-photon
Green’s function fully in terms of the free bath resolvent and the single-photon state associated with the
fictitious cavity (‘site state’). We next derived basic properties of atom-photon BSs, both in and out of the
continuum, a general multi-atom master equation and the condition for occurrence of a DFH. In this way,
we in particular unified known DFHs occurring within bandgaps with recently discovered DFHs in the
continuum (the latter being achievable only with giant atoms), by pinpointing emergence of BSs as their
common key feature. It was indeed proven that the overlap of the BS of one (giant) atom onto the site state of
another one measures the strength of their mutual photon-mediated interaction. An important class of BSs
was next identified: VDSs, one such state being tightly connected with a localized photon eigenstate of the
bath Hamiltonian but with a vacancy in place of the giant-atom’s site state.

We note that in all of our examples we considered coupling points with uniform strengths. Relaxing this
condition generally affects emergence of VDSs and ensuing DFHs since their existence rely on a destructive
interference mechanism. This is explicitly illustrated in appendix C in the case of giant atoms coupled to a
discrete waveguide, where we show that emergence of VDS and DFH are robust to small discrepancies
between the strengths of coupling points.

The BS-based framework provides a natural interpretation of DFHs of giant atoms in the continuum of a
1D waveguide, where it is known (even experimentally) that a non-zero DFH can arise only with braided
arrangements of emitters, while nested and serial configurations are ineffective: to suppress dissipation, each
emitter must seed a sinusoidal VDS that yet results in a non-zero interaction only provided that the VDS of
one atom overlaps the site state of another one, a condition indeed ensured solely by the braided geometry.

Even more importantly, the BS-based framework combined with VDS theory work as an effective general
tool to predict new classes of DFHs with giant atoms (having no analogues with normal atoms). As
paradigmatic examples, we showed that giant atoms with three or four coupling points coupled to the
photonic analogue of graphene or a square lattice of coupled cavities can give rise to, generally
two-dimensional, DFHs. Notably, these occur within the photonic continuum, including singular points
where the bath density of states locally vanishes (as in graphene) or diverges (as in the square lattice). At such
points, normal atoms are unable to seed strictly BSs and/or fully lack a Markovian limit. We also showed with
an explicit example (extended Lieb lattice) that DFHs in a 2D photonic continuum are possible by using
giant atoms with only two coupling points, such DFHs being mediated by a BS with linear geometry.
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Quantum optics with giant atoms is a very young research area, especially in structured photonic baths
(typically lattices), where the first related studies appeared only in the last couple of years and mostly targeted
specific models through ad hoc approaches. In this paper, we instead addressed the topic from a broad
perspective by developing a model-independent approach and establishing a number of general properties.
Since giant atoms are generally complex systems (compared to point-like emitters), it is reasonable to expect
that they can bring about a zoo of interesting effects, the vast majority of which being yet unexplored (for
instance coupling points with non-uniform strengths and/or phases are still little studied). We thus envisage
that the framework introduced here could in particular supply a versatile methodology in order to advance
the field along new unexplored avenues.

While finishing writing this manuscript, we became aware of the related [72], which is being made
available as a preprint at the same time as our paper.
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Appendix A. Green’s functionmatrix element

The matrix element of the bath Green’s function between two (generally different) site states is

⟨χj|GB

(
ω+
0

)
|χj′⟩=

ˆ
dω

ρj j ′ (ω)

ω0 + iε−ω
, (A.1)

with ϵ→ 0+ and ρj j ′(ω) =
∑

n,k δ(ω−ωnk)⟨χj|ϕnk⟩⟨ϕnk|χj′⟩. Now, using that 1/y+ = 1/(y+ iϵ) =
P(1/y)− iπδ(y) (for y real) we get

1

ω0 + iε−ω
= P

(
1

ω0 −ω

)
− iπδ (ω−ω0) , (A.2)

which replaced in (A.1) yields

⟨χj|GB

(
ω+
0

)
|χj′⟩= P

ˆ
dω

ρj j ′ (ω)

ω0 −ω
− iπρj j ′ (ω0) . (A.3)

Notice that the term∼ P is generally complex; it is yet ensured to be real in the special case
|χj⟩= |χj′⟩= |χ⟩ so that equations (22) and (23) hold.

Appendix B. Derivation of the master equation

Equation (39) describes a model where the Na emitters embody the open system which is coupled to the bath
B according to the interaction Hamiltonian

HI =

Na∑
j=1

ḡ
(
b†χj
σj− +H.c.

)
, (B.1)

which fulfills ⟨vac|HI|vac⟩= 0.
Passing to the interaction picture such that

b̃χj (t) = e−iHBtbχj , σ̃j− (t) = e−iω0tσj−, (B.2)
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and performing the usual Born-Markov approximation, when the bath is in the vacuum state |vac⟩ the
emitters’ state ρ̃ evolves in time according to (see e.g. [73])

˙̃ρ(t) =−
ˆ t

0
dt ′TrB

{[
H̃I (t) ,

[
H̃I (t

′) , ρ̃(t) |vac⟩⟨vac|
]]}

, (B.3)

with TrB the trace over the bath degrees of freedom. Using equations (B.1) and (B.2), we explicitly get

˙̃ρ=−
∑
j,j ′

[(
σj+σj′−ρ̃−σj′−ρ̃σj+

)
Bj j ′ +H.c.

]
, (B.4)

with

Bj j ′ = ḡ2
ˆ ∞

0
dτ eiω0τ ⟨vac| b̃χj(t)b̃

†
χj′
(t− τ))|vac⟩. (B.5)

(where the upper integration limit was extended from t to∞ as the bath correlation time is very short).

B.1. Rates Bj j ′ in terms of the bath resolvent
Using (7) and e−iHBτ |vac⟩= |vac⟩, the integrand of (B.5) can be arranged as

eiω0τ ⟨vac|bχj(t)b
†
χj′
(t− τ))|vac⟩= ⟨χj|e−i(HB−ω0)τ |χj′⟩ . (B.6)

When this is plugged in (B.5) and e−i(HB−ω0)τ is expanded in terms of energies and eigenstates of HB, we get

Bj j ′ = ḡ2⟨χj|
∑
n,k

ˆ ∞

0
dτ e−i(ωnk−ω0)τ |ϕnk⟩⟨ϕnk||χj′⟩. (B.7)

The improper integral is worked out by adding an infinitesimally small positive imaginary part ϵ→ 0+ to ω0

as
ˆ ∞

0
dτ e−i(ωnk−ω0)τ = lim

t→∞

ˆ t

0
dτ e−i(ωnk−ω0−iϵ)τ

= lim
t→∞

ie−i(ωnk−ω0−iε)τ

(ω0 + iε−ωnk)

∣∣∣∣0
t

=
i

ω0 + iε−ωnk
.

(B.8)

When this is replaced back in (B.7) and recalling the definition of the Green’s function equation (13), we
can express each rate Bj j ′ fully in terms of the bath Green’s function as

Bj j ′ = i ḡ2⟨χj|GB

(
ω+
0

)
|χj′⟩. (B.9)

(recall that ω+
0 = ω0 + iϵ).

B.2. Final form in terms ofHeff andD
One can check that equation (B.4) can be arranged in the equivalent form (we also go back to the
Schrödinger picture)

ρ̇=−i [Heff,ρ] +D [ρ] , (B.10)

with

Heff =
∑
j,j ′

(
ω0δjj′ +Kjj′

)
σj+σj′−, (B.11)

D [ρ] =
∑
j,j ′

γjj′

[
σj′−ρσj+ − 1

2

{
ρ,σj+σj′−

}]
, (B.12)

where

Kjj′ =
i

2

(
Bj j ′ −B∗

j′j

)
,

γjj′ = Bj j ′ +B∗
j′j . (B.13)

This matches precisely master equation (40).
Finally, by plugging (A.3) in (B.9) and then the latter in equation (B.13) we end up with equations (45)

and (46).
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Appendix C. Non-uniform coupling strengths for a discrete waveguide andN = 2

Here, we consider again giant atoms forN = 2 in a discrete waveguide (cf sections 8.2 and 9.2) but now
allow for coupling points of generally different strengths.

C.1. One giant atom
For a single giant atom coupled to cavities n= 0 and n= d respectively with strengths g1 and g2, the site state
reads (cf equation (66))

|χ⟩= α1|0⟩+α2|d⟩, (C.1)

with (cf equations (3) and (7)) αℓ = gℓ/ḡ for ℓ= 1,2 and ḡ=
√

|g1|2 + |g2|2. For simplicity, we consider the
case that gℓ > 0 (the generalization to complex coupling strengths is straightforward). Accordingly, we
conveniently express α1 and α2 as

α1 = cosϑ, α2 = sinϑ, (C.2)

with 0⩽ ϑ⩽ π/2. Uniform couplings are thus retrieved for ϑ= π/4.
Based on sections 4 and 5, the key quantity to work out is ⟨χ |GB(ω

+
0 )|χ⟩. To carry out this task, we recall

(cf section 8.2) that the bath Hamiltonian reads HB =−J
∑

n |n⟩⟨n+ 1|+H.c. The matrix representation of
the corresponding bath Green’s function within the band then is given by [54]

⟨n|GB

(
ω+
)
|n ′⟩=− i

2J

√
1−

(
ω
2J

)2
− ω

2J
+ i

√
1−

(
ω

2J

)2
|n−n ′|

. (C.3)

The spectrum of HB is given by ω =−2Jcosk with−π ⩽ k⩽ π (we assume to be in the thermodynamic
limit, hence k is a continuous variable). Defining wave vector k0 through ω0 =−2Jcosk0, we get

⟨n|GB

(
ω+
0

)
|n ′⟩=− i

2J sink0
eik0|n−n ′| =− i

v
eik0|n−n ′|, (C.4)

where in the last identity we introduced the photon group velocity v= dω/dk= 2J sink0. Using
equation (C.4) together with equations (C.1) and (C.2) we thus find

⟨χ |GB

(
ω+
0

)
|χ⟩=−i

1

v

[
1+ 2α1α2e

ik0d
]
=−i

1

v

[
1+ sin(2ϑ)eik0d

]
, (C.5)

whose real and imaginary parts are given by

Re⟨χ |GB

(
ω+
0

)
|χ⟩= 1

v
sin(2ϑ) sin(k0d), (C.6)

Im⟨χ |GB

(
ω+
0

)
|χ⟩=−1

v
[1+ sin(2ϑ)cos(k0d)] . (C.7)

For g1 = g2 = g (entailing ϑ= π/4) and k0d= (2ν+ 1)π, both the real and imaginary parts vanish and we
retrieve the VDS in section 8.2. Notice that the imaginary term can only vanish for sin(2ϑ) = 1 and
cos(k0d) =−1, which shows that no BS in the continuum is possible when g1 ̸= g2. Thus having uniform
couplings is an essential requirement. When this condition does not occur the atom decays. Indeed, using
equation (44) (for j = j ′ = 1) combined with equation (C.7) the emitter’s decay rate is computed as

γ =−2ḡ2Im⟨χ |GB

(
ω+
0

)
|χ⟩= 2ḡ2

v
[1+ sin(2ϑ)cos(k0d)] . (C.8)

For uniform couplings (i.e. for ϑ= π/4) and k0d= (2ν+ 1)π, we get γ= 0 as expected due to the
emergence of the VDS. Relaxing such conditions will instead cause the atom to decay. Notice however that
ϑ= π/4 and k0d= (2ν+ 1)π are stationary points of the sine and cosine functions appearing in (C.8),
implying that the atom-photon BS is stable against small deviations from such ideal parameters.
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C.2. Two giant atoms
We next consider two giant atoms, in which case the respective site states read

|χ1⟩= α1|0⟩+α2|d⟩, |χ2⟩= α1|x21⟩+α2|x21 + d⟩, (C.9)

where, in line with section 9.2, atom 1 has coupling points x11 = 0 and x12 = d while atom 2 is coupled to
cavities x21 and x22 (coefficients α1 and α2 are analogous to appendix C.1). We will focus on the braided
configuration (see figure 5(d)) such that 0< x21 < d and x22 > d.

Under weak coupling, the dynamics of the two atoms is governed by master equation (40) with (cf
equations (43) and (44))

K12 =K∗
21 = ḡ2

⟨χ1|GB

(
ω+
0

)
|χ2⟩+ ⟨χ2|GB

(
ω+
0

)
|χ1⟩∗

2
, (C.10)

γ12 = γ∗21 = i ḡ2
(
⟨χ1|GB

(
ω+
0

)
|χ2⟩− ⟨χ2|GB

(
ω+
0

)
|χ1⟩∗

)
. (C.11)

Using equations (C.3) and (C.9) we have

⟨χ1|GB

(
ω+
0

)
|χ2⟩=− i

v
ξ , ⟨χ2|GB

(
ω+
0

)
|χ1⟩∗ =

i

v
ξ∗, (C.12)

with ξ = eik0x21 +α1α2(eik0(x21+d) + eik0(d−x21)). Plugging these into equations (C.10) and (C.11) and with
the help of equation (C.2) we thus find

K12 =
ḡ2

v
[sin(k0x21)+ sin(2ϑ) sin(k0d)cos(k0x21)] , (C.13)

γ12 =
2ḡ2

v
cos(k0x21) [1+ sin(2ϑ)cos(k0d)] . (C.14)

In line with appendix C.1, when the VDS exists, i.e. for ϑ= π/4 and k0d= (2ν+ 1)π, we get a
decoherence-free dynamics since γ12 = 0 with the atom-atom effective coupling strength given by

K12 =
2g2

v sin(k0x21) in agreement with equation (79). This phenomenon is robust to deviations from the
ideal VDS condition, such as a small discrepancy between g1 and g2, for reasons analogous to those discussed
at the end of section appendix C.1.
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