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Abstract. This study investigates the feasibility of classifying physio-
logical stress states using Machine Learning (ML) algorithms on short-
term (ST, ∼5 min) and ultra-short-term (UST, < 5 min, down to 10
heartbeats) heart rate (HRV) or pulse rate variability (PRV) features
computed from inter-beat interval time series. Three widely employed
ML algorithms were used, i.e. Naive Bayes Classifier, Support Vector
Machines, and Neural Networks, on various time-, frequency- and infor-
mation domain HRV/PRV indices on a single-feature basis. Data were
collected from healthy individuals during different physiological states
including rest, postural and mental stress. Results highlighted compara-
ble values using either HRV or PRV indices, and higher accuracy (> 65%
for most features and all classifiers) when classifying postural than men-
tal stress. While decreasing the time series length, time-domain indices
resulted still reliable down to ∼10 s, contrary to UST frequency-domain
features which reported lower accuracy below 60 heartbeats.

Keywords: Heart Rate Variability (HRV), Pulse Rate Variability (PRV),
Ultra-Short-Term (UST) variability, Stress Classification, Machine Learn-
ing (ML).

1 Introduction

The American Physiological Association has defined stress as ”the pattern of
specific and non-specific responses an organism makes to stimuli events that dis-
turb its equilibrium” [6]. Excess stress has been recognised as one of the most
significant pathogenic factors of modern life [22]. While numerous physiological
signals have been proven suitable to detect stress, the most commonly used are
the electrocardiogram (ECG) and the photoplethysmogram (PPG). A typical
approach for noninvasive stress assessment involves examining Heart Rate Vari-
ability (HRV), which is the beat-to-beat variation of the heart rate (HR). HRV is
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typically measured by analysing the time intervals between successive heartbeats
(computed from ECG R-R intervals). Analysis can be performed on 24h record-
ings (long-term HRV analysis), 5 minutes recordings (short-term) or even shorter
recordings (Ultra-Short Term, UST). The most commonly adopted method for
assessing HRV, especially for practical applications, involves the use of short-
term measurements. HRV indices are considered among the most dependable
indicators of mental and physical stress [20]. The complexity of cardiovascular
regulation is reflected by HRV, which can indicate the body’s ability to react to a
variety of stimuli (such as environmental and psychological stressors) due to the
inhibition of the parasympathetic and activation of the sympathetic branches of
the autonomous nervous system during stress [20].
In recent times, there has been a growing interest in investigating whether and
to what extent HRV can also be assessed through PPG, whose cardiovascular
variability indices are usually referred as to ”Pulse Rate Variability” (PRV) and
are computed from pulse-to-pulse intervals [17, 20]. PPG is an optical technique
used in wearable devices that can detect changes in microvascular blood volume.
It is simple, low-cost, safe, and minimally invasive [12]. Although PPG and ECG
are often considered interchangeable for measuring HRV, several pieces of evi-
dence suggest that the beat-to-beat variability recorded with PPG is somewhat
different from HRV [12, 17, 19]. As wearable sensors become more widespread,
there is a rising demand for using UST recordings as a substitute for short-term
HRV and PRV. This satisfies the increasing need for continuous and real-time
monitoring of the individuals’ well-being status [3]. Recently, Machine Learning
(ML) algorithms have been utilised to aid in the classification of various auto-
nomic nervous system states related to different stress types [1]. Applying ML
techniques to HRV and PRV features to classify the stress level thus represents
an important challenge for researchers. In particular, various studies have been
focused on classifying physiological states using HRV [4, 7] or PRV [1, 15] time-
or frequency-domain indices.
In a previous paper [8] we investigated the performance of several ML algorithms
to classify postural and mental stress using short-term HRV and PRV indices.
Another work investigated the feasibility of employing ultra-short-term time,
frequency, and information-domain HRV indices to distinguish among different
stress conditions, using classical statistical analyses [23]. Herein, we aim instead
to apply ML algorithms to UST HRV and PRV indices computed on rest and
during postural or mental stress. To the best of our knowledge, this is the first
study employing single-feature ML algorithms for physiological state classifica-
tion using information-domain measures alongside classical time- and frequency-
domain indices. The objective is to assess the effectiveness of a single-feature
classification for the identification of the features providing better discrimina-
tion of different physiological states in healthy young individuals. Moreover, the
study aims to assess whether using UST HRV and PRV features allows achieving
results comparable to the short-term indices.
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2 Materials and methods

2.1 Subjects and experimental protocol

Analyses were carried out on a previously used to assess cardiovascular variabil-
ity during orthostatic and mental stress [17, 13]. Data were collected from 76
young, healthy normotensive volunteers with normal body mass index (32 males
and 44 females; age: 18 ± 2.7 years). The analysed physiological signals consisted
of horizontal bipolar thoracic leads ECG recordings and arterial blood pressure
acquired through the volume-clamp method (sampling rate: 1 kHz). Three dif-
ferent conditions of the experimental protocol have been taken into account for
the analyses, in particular, a resting phase (REST), a head-up tilt state causing
orthostatic stress (HUT) and a mental stress condition during which the sub-
ject is undergoing a mental arithmetic test (MA). Both physiological states have
shown to be two stress conditions associated with a shift in sympathovagal bal-
ance towards sympathetic activation/parasympathetic inhibition [10]. We refer
the reader to [17, 23, 8] for further details on the experimental protocol and the
information on the ethical approval.

2.2 Preprocessing and features extraction

Starting from the acquired signals, time series of 300 heartbeats were extracted
for each subject and condition. The R-R intervals (RRI) and the pulse-pulse
intervals (PPI) time series were obtained by measuring the temporal distance
between consecutive QRS complexes in the ECG and the blood pressure max-
ima, respectively, thus extracting the HRV and PRV time series. Indices were
first computed on short-term (300 beats, i.e. ∼ 5 min) cardiovascular variability
time series. Then, in order to perform a UST analysis, shorter time series were
obtained by reducing the length of RRI and PPI series of 30 samples for each
step, from 300 heartbeats down to a minimum of 60 samples [23], then of 15
samples down to a minimum of 30 heartbeats and finally of 10 samples down
to 10 samples (i.e. 300, 270, 240, 210, 180, 150, 120, 90, 60, 45, 30, 20, and 10
heartbeats).
Twelve features, divided into three domains (time, frequency and information),
were then calculated both on RRI and PPI series, [17, 23]. In detail, the follow-
ing time domain indices were calculated for RRI and PPI series: mean (MEAN),
root mean square of successive differences (RMSSD) and standard deviation of
normal-to-normal intervals (SDNN). In the frequency domain, absolute spectral
power was calculated in the Low Frequency (LF, 0.04-0.15 Hz) and High Fre-
quency (HF, 0.15-0.4 Hz) bands, considering also the normalised power within
these bands (LFn and HFn). LF-to-HF power ratio formerly used as the sympa-
thovagal balance index (SVB) was calculated and the respiratory peak frequency
fHF was determined as the peak frequency in the HF band. In the information
domain, three entropy measures were computed: the entropy (H), the condi-
tional entropy (CE), and the self-entropy (SE) of the RRI and PPI time series.
The last two features were estimated using the k-nearest neighbour approach, a
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model-free method based on nearest-neighbour metrics, as in [23]. We refer the
reader to [17, 23] for further details on the computation of the features mentioned
above.

2.3 Classification algorithms

Three widely used state-of-the-art ML classifiers were compared in terms of
their performance in discriminating between rest and orthostatic/mental stress.
The analyses were entirely conducted on MATLAB 2021b (The MathWorks,
Inc., Natick, MA, USA) using the integrated ”Statistics and Machine Learning
Toolbox”. All classifiers were trained using two input vectors: (i) the first one
containing the features used for training (each column represents an observation),
(ii) the second one encompassing the response variable for each observation. The
following ML algorithms were used:

• Naive Bayes Classifier (NBC) is a supervised linear learning algorithm
that requires normally distributed features, mutually exclusive or indepen-
dent of each other, and divides data into K classes using K discrimination
functions [11]. The algorithm used assumes that all the classes have the same
not regularised diagonal covariance matrix.

• Support Vector Machines (SVMs) are supervised learning algorithms that
work by finding the hyperplane in a high-dimensional feature space that
achieves the maximum separation between the distinct classes [18]. A Gaus-
sian kernel function and a ’one-vs-all’ learner were used to perform multi-
class classification. The kernel scale was set to 12.1 and data were standard-
ised by respectively centring and scaling each column of the predictor data
by the weighted column mean and standard deviation.

• Neural Networks (NNs) are ML models with multiple layers of intercon-
nected nodes (resembling human neurons) [11], trained to adjust interconnec-
tion weights and biases to minimise output discrepancies. The used NN ar-
chitecture consisted of a fully connected layer with one node (i.e. the number
of considered features), with a rectified linear unit as an activation function.
Each numeric predictor variable was centred and scaled by the corresponding
column mean and standard deviation to standardise data.

The analyses carried out in this work were aimed to compare the performances
of the three mentioned ML algorithms to classify data into the different phys-
iological states, REST phase, HUT phase and MA phase investigating as well
the features which can effectively better discriminate among the distinct stress
phases. Moreover, the study aims to determine whether UST HRV and PRV
features can provide results comparable to the short-term indices.
For RRI and PPI data, the three classifiers were trained for each time series
length after calculating the features described in Section 2.2. To carry out the
training and testing of each classifier, a k -fold cross-validation (k=5), was used
with a 20% of test and 80% of training. Each classifier was trained by providing
the HRV or PRV features as input; the same model parameters were chosen for
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both HRV and PRV features to compare the obtained results better. Since the
time series had the same length in the three conditions, the classes were bal-
anced.
The performance of the classifiers was evaluated mainly through accuracy, but
also by calculating per-class metrics such as recall and specificity for each phys-
iological state [21].

3 Results

Table 1 reports the accuracy values obtained for the three ML approaches in both
the three-class and two-class classifications on a single-feature basis, to assess
which state is best classified by each feature, using either HRV or PRV indices. In
classification tasks, accuracy refers to the percentage of correct predictions the
classifier makes. In a two-class classification problem, there are only two possible
classes to which data can belong, hence the random guess accuracy is 50% (the
same applies to recall and specificity). On the other hand, in a three-class clas-
sification problem, there are three possible classes to which the data can belong,
thus the random guess threshold is equal to 33.33%. Values around or below the
random guess threshold are reported in bold. The accuracy values of the three-
class classification (REST vs. HUT vs. MA) (approximately 50%) were lower
than those obtained for the two-class approach (REST vs. HUT and REST vs.
MA) which achieved average values of roughly 70% and 60%, respectively. When
classifying REST and MA, the only feature to achieve accuracy values higher
than 65% was the MEAN, with values of 73.68%, 73.03%, and 76.32% achieved
for the NBC, SVM, and NN classifiers, respectively. Higher accuracy values were
obtained when distinguishing between REST and HUT classes (in grey), with
multiple features exceeding an accuracy of 65% for RRI and PPI-based indices.
Table 2 illustrates the results in terms of accuracy and metrics by class, i.e. recall
and specificity, for each ML algorithm considering each feature individually for
the HUT class in the REST vs. HUT classification. The lowest accuracy val-
ues were obtained for SDNN, fHF and LF features, with accuracy around the
random guess (50%) for all three classifiers (in bold) and recall values in some
cases lower than 60%. For the further analyses focusing on shorter time series,
we decided to take into account only the best features in terms of accuracy, by
setting a threshold of 65% allowing at least 15% improvement over a random
guess [14]. Features that exceeded the 65% threshold for all the classifiers and for
both HRV and PRV indices were CE, SE, HF, HFn, LFn, MEAN and RMSSD
(in grey). The selected features achieved recall values for the HUT class in most
cases higher than 80% as well.
Figure 1 depicts the accuracy of the three ML classifiers and of the most signifi-
cant features, decreasing the length of RRI and PPI time series. The information-
based features were computed down to 60 heartbeats while the frequency fea-
tures were computed down to 20 heartbeats (black vertical lines). All features
showed a decreasing trend with heartbeats, from a few, up to a maximum of
10 percentage points. Only the time domain features continued to yield higher
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accuracy values for all the classifiers for both RRI and PPI-based indices till a
few heartbeats, with values around 80% (RMSSD) or even 90% (MEAN).

Table 1. Total classification accuracy values using the three ML classifiers on a single-
feature basis: comparison of the three-class classification (REST vs. HUT vs. MA) and
the two-class classifications (REST vs. HUT or MA) using either RRI and PPI-based
features.

REST-HUT-MA REST-HUT REST-MA

FEATURE NBC SVM NN NBC SVM NN NBC SVM NN

RRI 61.40 58.77 65.35 88.82 88.16 86.84 73.68 73.03 76.32
MEAN

PPI 62.28 58.77 65.35 90.13 88.82 85.53 73.03 73.03 77.63

RRI 55.26 53.51 44.30 77.63 76.32 76.97 62.50 59.87 50.00
RMSSD

PPI 55.26 52.19 47.81 77.63 76.97 76.97 62.50 63.16 51.97

RRI 46.93 42.11 35.09 66.45 66.45 61.18 61.18 61.18 53.29
SDNN

PPI 44.74 39.91 37.28 65.13 65.13 65.79 61.18 61.18 55.26

RRI 35.53 43.86 35.09 53.29 54.61 55.26 48.68 51.32 53.95
fHF

PPI 36.84 38.60 37.72 51.97 50.66 50.66 54.61 56.58 46.05

RRI 49.12 50.44 45.18 71.05 69.74 73.68 61.18 54.61 54.61
HF

PPI 46.05 46.05 43.42 69.08 67.76 67.11 61.84 54.61 50.66

RRI 52.63 52.63 49.56 80.26 78.29 72.37 60.53 61.84 52.63
HFn

PPI 50.00 50.44 43.42 77.63 74.34 69.74 61.84 61.84 57.89

RRI 36.40 33.33 34.65 53.29 53.29 53.95 55.92 53.95 43.42
LF

PPI 41.23 32.89 28.07 50.00 51.97 50.66 55.92 51.32 42.76

RRI 53.51 49.56 46.93 80.26 80.26 78.95 59.21 58.55 42.76
LFn

PPI 52.19 47.37 45.61 76.32 75.00 71.71 59.87 59.87 51.97

RRI 46.05 46.49 49.12 67.11 61.18 78.29 60.53 51.97 57.89
SVB

PPI 46.93 44.74 45.18 66.45 65.79 70.39 61.18 56.58 51.97

RRI 51.32 51.32 52.19 76.32 78.29 75.66 48.68 51.97 51.32
CE

PPI 52.19 49.56 45.61 74.34 74.34 71.05 53.95 50.00 50.00

RRI 45.18 39.47 41.67 67.76 67.11 60.53 61.84 61.18 51.97
H

PPI 42.98 38.60 41.67 65.79 66.45 57.24 59.87 60.53 49.34

RRI 52.63 52.19 49.56 81.58 81.58 79.61 50.00 49.34 50.66
SE

PPI 54.82 51.32 42.54 76.97 76.97 73.68 55.92 50.00 44.74
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Table 2. Accuracy (ACC), recall (REC), specificity (SP), for the HUT class computed
using RRI and PPI-based indices on a single-feature basis for the REST vs. HUT
classification.

REST vs. HUT

NBC SVM NN

FEATURES ACC REC SP ACC REC SP ACC REC SP

RRI 88.82 88.16 89.47 88.16 84.21 92.11 86.84 88.16 85.53
MEAN

PPI 90.13 89.47 90.79 88.82 86.84 90.79 85.53 85.53 85.53

RRI 77.63 92.11 63.16 76.32 92.11 60.53 76.97 82.89 71.05
RMSSD

PPI 77.63 92.11 63.16 76.97 90.79 63.16 76.97 76.32 77.63

RRI 66.45 77.63 55.26 66.45 85.53 47.37 61.18 73.68 48.68
SDNN

PPI 65.13 77.63 52.63 65.13 84.21 46.05 65.79 77.63 53.95

RRI 53.29 50.00 56.58 54.61 60.53 48.68 55.26 60.53 50.00
fHF

PPI 51.97 39.47 64.47 50.66 42.11 59.21 50.66 53.95 47.37

RRI 71.05 96.05 46.05 69.74 96.05 43.42 73.68 78.95 68.42
HF

PPI 69.08 94.74 43.42 67.76 96.05 39.47 67.11 72.37 61.84

RRI 80.26 81.58 78.95 78.29 77.63 78.95 72.37 73.68 71.05
HFn

PPI 77.63 81.58 73.68 74.34 71.05 77.63 69.74 72.37 67.11

RRI 53.29 69.74 36.84 53.29 96.05 10.53 53.95 57.89 50.00
LF

PPI 50.00 63.16 36.84 51.97 93.42 10.53 50.66 56.58 44.74

RRI 80.26 82.89 77.63 80.26 80.26 80.26 78.95 75.00 82.89
LFn

PPI 76.32 78.95 73.68 75.00 75.00 75.00 71.71 72.37 71.05

RRI 67.11 39.47 94.74 61.18 27.63 94.74 78.29 73.68 82.89
SVB

PPI 66.45 40.79 92.11 65.79 35.53 96.05 70.39 67.11 73.68

RRI 76.32 72.37 80.26 78.29 75.00 81.58 75.66 75.00 76.32
CE

PPI 74.34 72.37 76.32 74.34 71.05 77.63 71.05 67.11 75.00

RRI 67.76 73.68 61.84 67.11 78.95 55.26 60.53 68.42 52.63
H

PPI 65.79 72.37 59.21 66.45 80.26 52.63 57.24 65.79 48.68

RRI 81.58 77.63 85.53 81.58 81.58 81.58 79.61 80.26 78.95
SE

PPI 76.97 75.00 78.95 76.97 75.00 78.95 73.68 75.00 72.37
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Fig. 1. Accuracy of the 3 ML classifiers on a single-feature basis at decreasing time
series length (heartbeats) for (a) HRV and (b) PRV indices.
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4 Discussion

The results described in Section 3 will be herein discussed. Firstly, in Section
4.1, our attention will be devoted to examining the viability of classifying phys-
iological states by utilising various machine learning (ML) algorithms based on
individual features of standard short-term HRV or PRV. Both three-stage (REST
vs. HUT vs. MA) and two-stage classification (REST vs. HUT or vs. MA) will be
taken into account. Subsequently, the viability of employing shorter time series
(i.e. UST analysis), as a substitute for the short-term standard will be discussed
in Section 4.2, focusing only on REST-HUT classification.

4.1 Classification using short-term HRV and PRV features

The accuracy values obtained with the three-class classification (Table 1) were
indicative of an arbitrary classification primarily attributable to the classifiers’
inability to effectively distinguish between the REST and MA classes. This obser-
vation is confirmed by the classification results obtained for the two-class REST
vs. MA classification approach, where very low accuracy values were obtained.
The classification accuracy was higher when distinguishing between the REST
and HUT classes, for either RRI or PPI-based indices. This finding is deemed reli-
able as it has been previously demonstrated that the orthostatic stress condition
is more marked than MA stress [23], given the stronger sympathetic activation
and the concurrent parasympathetic withdrawal [16, 17].
In light of these results, the focus was shifted to REST vs. HUT classification,
taking in this case also into account per-class metrics for a more detailed assess-
ment of the effectiveness of the classification model. The results shown in Table 2
highlighted recall values consistently above 60%, reinforcing the effectiveness of
the classification model for discriminating between the REST and HUT classes.
On the other hand, only the frequency-domain HF and SVB features, strongly
related to each other, exhibited low values across all three classifiers and for both
RRI and PPI data.
Finally, similar accuracy and per-class metrics results were obtained using either
HRV or PRV indices (cf. Tables 1 and 2).

4.2 REST vs HUT classification using Ultra-Short-Term features

To assess the feasibility of using UST analysis, only the features that yielded ac-
curacy values exceeding 65% for all three classifiers were selected, i.e. MEAN and
RMSSD w.r.t. time-domain, HF, HFn and LF w.r.t. frequency-domain and fi-
nally CE and SE w.r.t. information-domain features. Using the above-mentioned
seven features, the three classifiers were trained and tested by varying the length
of the series from the initial 300 heartbeats down to 10 heartbeats. Although
according to [3, 20] a minimum of 1 minute is needed to reliably estimate HF
and at least 2 minutes for the LF component with regard to frequency-domain
HRV/PRV analysis, we have adopted the approach followed by several other
studies which have instead computed such features on even shorter time series
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down to 10 s [2, 5, 9]. In our case, it was feasible to compute the information
domain features using 60 heartbeats as a minimum. On the contrary, the fre-
quency features were only up to 20 beats, while they started already to lose their
discriminating capability from 60 beats downwards.
Our results highlight that the accuracy values are almost constant when consid-
ering time- and information-domain UST features (until they can be computed).
On the other hand, frequency features accuracy values exhibited a decreasing
trend, particularly when going below 60 heartbeats. Moreover, the three classi-
fiers exhibited similar accuracy levels, and this was also observed when consid-
ering either HRV or PRV features. As already demonstrated by [3], not all UST
indices are good short-term HRV and PRV surrogates, and generally, time do-
main features (e.g. MEAN and RMSSD) proved more effective in classifying the
two physiological states. Although employing different methods and datasets,
these results are in agreement with ours [2, 3, 5]. Herein, MEAN and RMSSD
time domain features yielded higher accuracy values for RRI and PPI in all the
classifiers, underscoring their high potential for classifying postural stress.

5 Conclusion

This work presented a comparison of the performances of various ML algorithms
for classifying physiological states using either HRV or PRV indices on a single-
feature basis. Our results indicated comparable results for RRI or PPI-based
indices and confirmed that it was easier to discriminate postural than mental
stress. Our findings identified some reliable UST HRV and PRV features (e.g.
MEAN and RMSSD) that can be employed for detecting postural stress even for
very few heartbeats (∼ 10 s). On the other hand, UST frequency-domain HRV
and PRV indices were worse short-term surrogates, with decreased accuracy for
shorter (< 60 s) time series. Future activities may envisage the use of the entire
feature set and the application of other widely used classifiers (e.g. Random
Forest [7]).
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