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Abstract In this paper an efficient formulation of the
Path integral (PI) approach is developed for determin-
ing the response probability density functions (PDFs)
and first-passage statistics of nonlinear oscillators sub-
ject to stationary and time-modulated external Gaus-
sian white noise excitations. Specifically, the evolution
of the response PDF is obtained in short time steps, by
using a discrete version of the Chapman-Kolmogorov
equation and assuming a Gaussian form for the con-
ditional response PDF. Next, the technique involves
proceeding to treating the problem via an analytical
asymptotic expansion procedure, namely the Laplace’s
method of integration. In this manner, the repetitive
double integrals involved in the standard implementa-
tion of the PI approach are evaluated in a closed form,
while the response and first-passage PDFs are obtained
by mundane step-by-step application of the derived
approximate analytical expression. It is shown that the
herein proposed formulation can drastically decrease
the associated computational cost by several orders of
magnitude, as compared to both the standard PI tech-
nique and Monte Carlo solution (MCS) approach. A
number of nonlinear oscillators are considered in the
numerical examples. Notably, for these systems both
response PDFs and first-passage probabilities are pre-
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sented, whereas comparisons with pertinent MCS data
demonstrate the efficiency and accuracy of the tech-
nique.
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1 Introduction

Structural and mechanical systems in many engi-
neering fields are often subject to excitations such
as winds, seismic motions, and ocean waves, whose
realistic modeling necessitates their representation by
nonstationary stochastic processes. Further, in many
cases, these systems may include complex nonlin-
earites that arise due to various factors, such as mate-
rial hysteresis, friction in structural joints and solid–
fluid interaction forces. In this context, the prob-
lem of the response determination of systems com-
prising nonlinear/hysteretic terms under random exci-
tations represents, indeed, a persistent challenge in
the area of modern stochastic engineering mechan-
ics. Clearly, Monte Carlo simulations (MCS) based
approaches are among themost versatile tools for deter-
mining the response statistics of arbitrary stochastic
systems (e.g. [1,2]). In many instances, however, espe-
cially for large-scale complex systems, MCS tech-
niques can be computationally costly. In this regard,
various alternative approaches have been adopted in
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the literature, for instance resorting to the tools of
statistical linearization [2–4] and stochastic averaging
[5,6], Wiener Path Integral approaches [7,8], Galerkin
scheme-based procedures [9], and moment equation
procedures [10,11]. Further, recent attempts to address
this problem by deriving approximate analytical repre-
sentations of the stationary responseprobability density
functions (PDFs) can be found in [12,13].

A related problem of considerable interest for safety
and risk assessment pertains to the determination of
the so-called survival probability of the system. That
is, the probability the system response stays within
a prescribed domain within a specified time interval.
An alternative equivalent definition, namely the first-
passage problem, represents its counterpart. This refers
to the evaluation of the probability that the response of
the system reaches, and possibly crosses, a predeter-
mined level for the first time. In this regard, derivations
of exact solutions are reported in [14], while examples
of numerical or semi-analytical procedures to address
this problem can be found in [15–18].

In this context, the so-called Path Integral (PI)
approach represents an alternative method that yields
accurate estimates of the response PDF and reliability
statistics typically of low-dimensional nonlinear sys-
tems. In essence, the PI approach constitutes a dis-
crete versionof thewell-knownChapman-Kolmogorov
(CK) equation, which is associated with Markov pro-
cesses [19,20]. The main concept of the approach is
that the evolution of the response PDF is computed
in short time steps, assuming a Gaussian form for the
conditional response PDF. Specifically, the response
PDF at a certain time instant can be computed sim-
ply by evaluating an integral whose kernel involves the
response PDF in a previous time instant, and the con-
ditional PDF (CPDF) of the system. Since the seminal
contributions in [21–23], where the method’s numeri-
cal implementationwas first addressed, the PI approach
has been widely employed across various engineering
domains [24]. Typically the PI approach has been used
for the evaluation of the stochastic response of sys-
tems subject to stationary and time-modulated normal
white noise excitation [25–30]. Further advancements
have extended the method to address reliability anal-
yses [18,25,31,32], even considering the case of non-
normal excitations, such as Poisson, Lèvy white noises
and parametric excitations [33–40]. Notably, for low-
dimensional systems the PI approach can be signif-
icantly more efficient than MCS. However, its stan-

dard implementation proves computationally costly for
relatively high-dimensional MDOF systems. In this
regard, several different numerical schemes have been
proposed in the literature to expedite the computa-
tion of the integrals involved in the CK equation, such
as Gauss-Legendre scheme [41] which can be cou-
pled with non-Gaussian form of the transition PDF
[42], Fourier series based approach [43], Fast Gauss
Transform implemented within the short-time Gaus-
sian approximation of the CPDF [44], spline interpo-
lation of the log-PDF [29], and Generalized Cell Map-
ping method [45]. Further, recent research efforts have
focused on developing efficient implementation strate-
gies for the PI approach tailored toMDOF systems, for
instance based on GPU computing and parallelization
procedures [46–52]. Readers may also refer to [53] for
a comprehensive review on the PI method.

Although significant progresses have been achieved
in this domain, the high computational effort required
by the PI approach still represents a sustained chal-
lenge. Nevertheless, the advantageous features of the
technique, such as its accuracy even at low probability
levels and its applicability to virtually any type of non-
linearity, warrant additional exploration into alternative
implementations of the PI approach.

In this context, a potential approach could involve
employing an approximate analytical asymptotic expan-
sion treatment of the integrals within the CK equations.
This technique, commonly referred to as Laplace’s
method of integration, is a mathematical tool fre-
quently utilized to derive approximate closed-form
solutions for integrals containing exponential functions
in their kernels [54,55]. Recently, the aforementioned
technique has been used in combination with the PI
approach for determining the stochastic response of
nonlinear single-degree-of-freedom (SDOF) systems
[56] also endowed with fractional derivatives elements
[57]. However, in all these cases this has been achieved
by approximately modeling the oscillator response
amplitude as a one-dimensional Markovian process,
using a combination of statistical linearization and
stochastic averaging methods.

In this regard, in this paper, the PI approach formu-
lation/implementation based on the Laplace’s method
of integration is generalized and extended to cope
with nonlinear SDOF systems subject to stationary
and time-modulated white noise excitation. Notably,
this enhanced version of the PI approach circumvents
approximations associated with the stochastic averag-
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ing/linearization treatment previously employed. Specif-
ically, the Laplace’s method directly yields an approx-
imate closed-form solution of the double integrals
involved in the standard implementation of the PI
approach.

In this regard, it is noted that the proposed approach
substantially differs from other techniques aimed at
improving the performance of the PI method. Specifi-
cally, while these approaches, as previouslymentioned,
relied on different schemes for numerically comput-
ing the integrals involved in the CK equation, here the
Laplace’s method of integration is exploited to directly
yield an approximate analytical solution of these inte-
grals. In thismanner, the repetitive integration, required
by the classical numerical implementation of the PI
approach for each time step, can be circumvented and
the evolution of the response PDF is performed by a
direct application of the obtained approximate analyt-
ical expression.

Further, for the first time the Laplace’s method-
based PI approach is extended to perform reliability
analyses. In this manner, the evolution of the response
PDFs and first-passage probabilities of a broad class
of nonlinear oscillators are determined. It is shown
that the herein proposed implementation can drasti-
cally decrease the associated computational cost by
several orders of magnitude. Several numerical exam-
ples are included to illustrate the versatility of the
approach, comprising the Duffing and the self-excited
(Van der Pol-Rayleigh) oscillators, a nonlinear ship
rolling motion system, and a strongly nonlinear sys-
tem with signum-type nonlinearity. Finally, compar-
isons with pertinent MCS data demonstrate the effi-
ciency and accuracy of the approach.

2 Mathematical background on the Path Integral
approach

Consider an SDOF nonlinear system whose equation
of motion can be written as

Ẍ(t) + f (X, Ẋ , t) = V (t) (1)

where a dot over a variable denotes differentiation
with respect to time t , and f (X, Ẋ , t) is an arbitrar-
ily chosen nonlinear deterministic function of X (t) and
Ẋ(t). Further, V (t) is a modulated white noise process,
V (t) = χ(t)W (t), where χ(t) is a deterministic mod-
ulating function and W (t) is a zero-mean stationary

Gaussian white noise with constant (two-sided) power
spectral density S0. Thus, the time-dependent spectral
density of the process V (t) is given as

SV (t) = χ2(t)S0. (2)

Note that here modulated white noise excitation is
considered to model the case of nonstationary stochas-
tic excitations. Clearly, the more simple case of sta-
tionary Gaussian white noise is retrieved by assuming
χ(t) = 1.

Further, it is assumed that the initial conditions of
the system in Eq. (1), X (0) = X0 and Ẋ(0) = Ẋ0,
can be either deterministic or random variables with
assigned PDF pX0 Ẋ0

.
The system in Eq. (1) can be rewritten in terms of

state variables as

Ż(t) = f(Z, t) + lV (t) (3)

where Z(t) = [Z1(t) Z2(t)]T = [X (t) Ẋ(t)]T , l =
[0 1]T , and
f(Z, t) =

[
Z2

− f (Z1, Z2, t)

]
. (4)

Based on Eq. (3), Z(t) is a two-dimensional Markov
vector process that satisfies the CK equation

pZ(z, t + τ) =
∞∫

−∞

∞∫
−∞

pZ(z1, z2, t + τ |z̄1, z̄2, t)

pZ(z̄1, z̄2, t) dz̄1 dz̄2, (5)

where for compactness pZ(z, t + τ) = pZ(z1, z2, t +
τ), and pZ(z1, z2, t + τ |z̄1, z̄2, t) is the so-called Con-
ditional PDF (CPDF) of the response vector process
Z(t).

Equation (5) represents the basis of the PI approach.
Specifically, as it can be seen, the PDF of the response
process pZ(z1, z2, t + τ) at the time instant (t + τ) can
be evaluated by solving a double-integral whose kernel
involves the CPDF for assigned (deterministic) initial
condition (z̄1, z̄2) in t , and the PDF of the response
process in a previous time instant t .

Note that, althoughEq. (5) holds for any value of τ , if
τ is sufficiently small, the sought CPDF approximately
follows a Gaussian distribution [27]. Further, as shown
in [27], the CPDF pZ(z1, z2, t + τ |z̄1, z̄2, t) in Eq. (5)
can be obtained by evaluating the unconditional PDF
in τ of the process Z̄(ρ) governed by the differential
equation

˙̄Z(ρ) = f(Z̄, ρ) + lV (t + ρ); 0 ≤ ρ ≤ τ (6)
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associated with the initial conditions Z̄(0) = [z̄1 z̄2]T .
That is,

pZ(z1, z2, t + τ |z̄1, z̄2, t) = pZ̄(z̄, τ ) (7)

In this regard, Eq. (6) can be rewritten as⎧⎪⎨
⎪⎩

˙̄Z1(ρ) = Z̄2(ρ)
˙̄Z2(ρ) = − f (Z̄1, Z̄2) + V (t + ρ)

Z̄1(0) = z̄1; Z̄2(0) = z̄2

. (8)

Evaluating Eq. (8) in τ , and assuming τ sufficiently
small, yields

Z̄1(τ ) = z̄1 + z̄2τ = μ1(z̄1, z̄2), (9)

which is a deterministic function. Thus, the distribution
in τ of the process Z̄1(ρ) is a Dirac’s delta centered in
μ1(z̄1, z̄2). That is,

pz̄1(z1, τ ) = δ[z1 − (z̄1 + z̄2τ)]. (10)

As far as the process Z̄2(ρ) is concerned, as shown in
[27,44], Eq. (8) for small τ yields

Z̄2(τ ) = z̄2 − f (z̄1, z̄2)τ + Gτ 1/2, (11)

where G is a zero-mean normal random variable with
variance E[G2] = q(t) = 2π SV (t), and E[·] is
the mathematical expectation operator. Therefore, the
mean value and the variance of Z̄2(τ ) can be given
respectively as

E[Z̄2(τ )] = z̄2 − f (z̄1, z̄2)τ = μ2(z̄1, z̄2), (12)

and

σ 2
Z̄2

(τ ) = E[Z̄2
2(τ )] − E[Z̄2(τ )]2 = q(t)τ. (13)

Note that the variable z̄1 is deterministic, and the two
processes Z̄1 and Z̄2 are independent. In this manner,
as shown in [27,30], taking into account Eq. (7), the
complete CPDF in Eq. (5) can be given as

pZ(z1, z2, t + τ |z̄1, z̄2, t) = δ[z1 − (z̄1 + z̄2τ)]√
2πq(t)τ

exp

(
− (z2 − μ2(z̄1, z̄2))2

2q(t)τ

)
. (14)

Further, by inserting Eq. (14) into Eq. (5) and taking
into account the sampling property of the Dirac’s delta
function, Eq. (5) can be rewritten as

pZ(z, t + τ) = 1√
2πq(t)τ

∞∫
−∞

exp

(
− (z2 − μ2(z1 − z̄2τ, z̄2))2

2q(t)τ

)

pZ(z1 − z̄2τ, z̄2, t) dz̄2.

(15)

Equation (15) represents the final form of the PI
approach for nonlinear systems excited by modulated
Gaussian white noise processes. Note that, with respect
to Eqs. (5), (15) requires only the solution of a single
integral. Generally a discretized version of Eq. (15) is
implemented. In this regard, consider the time interval
[0, t f ], where t f is the final time instant, discretized
so that the generic time instant is tk = k�t where
(k = 0, ..., N ) and �t = t f /N is a small time step.
Then, Eq. (15) can be rewritten as

pZ,k+1(z) = 1√
2πqk�t

∞∫
−∞

exp

[
− (z2 − μ2(z1 − z̄2�t, z̄2))2

2qk�t

]

pZ,k(z1 − z̄2�t, z̄2) dz̄2. (16)

where for compactness pZ,k+1(z) = pZ(z1, z2, tk+1),
and qk = q(tk).

It can be readily seen from this equation that a
step-by-step application of Eq. (16) yields the entire
evolution of the response PDF pZ,k(z). However, this
requires a repetitive numerical integration in the z̄2
domain for each time step, which often constitutes the
highest contribution to the computational cost of the
method itself, especially for higher dimensional sys-
tems. Further, it is pointed out that the integral in Eq.
(16) involves the determination of the response PDF
in the previous time instant tk evaluated at the points
(z1 − z̄2�t, z̄2), which do not coincide with the points
in the domain (z1, z2) of the known PDF pZ,k(z). On
this basis, for each time step an interpolation proce-
dure is necessary, for instance using cubic B-splines,
to compute the required values of the PDF.

3 Path Integral approach via Laplace’s method of
integration

Examining the particular form of the integral in Eq.
(16), it can be argued that an approximate closed-form
solution of this integral could be derived by an asymp-
totic expansion treatment employing the Laplace’s
method of integration, as detailed in the Appendix A.

In this regard, note that a small time-step�t is com-
monly adopted in the standard implementation of the
PI approach (often smaller than 10−2) s, and generally
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the functions in the kernel of the integral in Eq. (16) are
sufficiently smooth. Thus, following Appendix A, an
approximate solution of Eq. (16) can be derived based
on Eq. (A5). Specifically, Eq. (16) can be rewritten as

pZ,k+1(z) = 1√
2πqk�t

∞∫
−∞

pZ,k(z1 − z̄2�t, z̄2)

exp

[
− λ

qk
g(z, z̄2)

]
dz̄2,

(17)

where

g(z, z̄2) = g(z1, z2, z̄2)

= [z2 − μ2(z1 − z̄2�t, z̄2)]
2 , (18)

and λ = 1/(2�t), with λ � 0.
In this manner Eq. (17) is given in a form similar to

Eq. (A1) and the Laplace’s method of integration can
be applied. In this regard, denote as z̄∗2 the value of z̄2
such that
∂g(z, z̄2)

∂ z̄2

∣∣∣∣
z̄2=z̄∗2

= gI (z, z̄∗2) = 0 (19)

and

∂2g(z, z̄2)
∂2 z̄2

∣∣∣∣
z̄2=z̄∗2

= gI I (z, z̄∗2) > 0 (20)

where the apexes (I ) and (I I ) stand for the order of
the derivatives with respect to z̄2.

Then, taking into account Eqs. (A5), the approxi-
mate analytical solution of the CK equation Eq. (16)
can be given as

pZ,k+1(z) =
√

2

gI I (z, z̄∗2)
e
− λ

qk
g(z,z̄∗2)

[
p̄Z,k(z1, z̄

∗
2) + qk

2λgI I (z, z̄∗2)
p̄ I IZ,k(z1, z̄

∗
2)

] (21)

where, for compactness,

p̄Z,k(z1, z̄
∗
2) = pZ(z1 − z̄∗2�t, z̄∗2, tk) (22)

and

p̄ I IZ,k(z1, z̄
∗
2) = ∂2 pZ,k(z1 − z̄2�t, z̄2)

∂ z̄22

∣∣∣∣∣
z̄2=z̄∗2

(23)

Notably, the significance of Eq. (21) relates to the
fact that the evolution of the response PDF of the non-
linear system in Eq. (1) can be readily computed via
a step-by-step application of this approximate analyt-
ical expression. Clearly, in this manner, the compu-
tationally demanding repetitive numerical integrations
involved in Eq. (15) are avoided.

Further, it is worth mentioning that Eq. (21) is based
on a second-order expansion of the kernel in Eq. (16),
and this generally yields a reasonable level of accu-
racy. Nevertheless, if necessary higher accuracy can be
achieved by employing a fourth-order expansion as in
Eq. (A6), leading to

pZ,k+1(z) =
√

2

gI I (z, z̄∗2)
e
− λ

qk
g(z,z̄∗2)

·
{
p̄Z,k(z1, z̄

∗
2) + qk

λ

[
p̄ I IZ,k(z1, z̄

∗
2)

2gI I (z, z̄∗2)

− p̄Z,k(z1, z̄∗2)
8

gIV (z, z̄∗2)
gI I (z, z̄∗2)2

.

− p̄ IZ,k(z1, z̄
∗
2)

2

gI I I (z, z̄∗2)
gI I (z, z̄∗2)2

+5 p̄Z,k(z1, z̄∗2)
24

gI I I (z, z̄∗2)2

gI I (z, z̄∗2)3

]}

(24)

Finally, as far as the implementation of Eqs. (21) or
(24) is concerned, note that the function p̄Z,k(z1, z̄∗2)
and its derivatives must be evaluated at each time step,
for instance using an interpolation procedure based on
the known response PDF pZ,k(z1, z2) and taking into
account Eq. (22). On the other hand, g(z, z̄∗2), in Eq.
(18), and its derivatives are deterministic functions,
independent of the PDF of the response process. There-
fore, they can be computed separately once beforehand,
together with the values z̄∗2 satisfying Eqs. (19) and
(20), hence further reducing the computational effort.

4 First-passage probability

The first-passage problem refers to the determination
of the probability that the various trajectories of the
stochastic processZ(t), solution of Eq. (1), cross a pre-
scribed safe domain for the first time, within a certain
time interval [0, T ]. Note that, as shown in [37], the
first-passage problem can be efficiently and accurately
addressed based on a modification of the PI approach.

In this regard, without loss of generality, assume that
only the barrier crossing of the displacement process
Z1(t) = X (t) is of interest and denote as [η, ξ ] the
threshold barriers of the prescribed safe domain. Next,
discretize the time interval [0, T ] into sufficiently small
steps �t . In this manner, it can be assumed that Eq.
(14) holds true, and all the trajectories of the process
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Z1(t)with deterministic initial condition (z1 = z̄1) are
monotone in the generic interval [tk , tk + �t].

Further, consider the classical absorbing barrier
problem. That is, it is assumed that each trajectory is
canceled upon reaching the prescribed threshold. On
this basis, a new function denoted asReliabilityDensity
Function (RDF) rξη(z1, z2, tk+1)may be introduced as
[37]

rξη,k+1(z) = U (z1 − η)U (ξ − z1)
∞∫

−∞

ξ∫
η

pZ(z, tk+1|z̄, tk) rξη,k(z̄) dz̄1 dz̄2, (25)

where pZ(z, tk+1|z̄, tk) is the CPDF, defined in Eq. (14)
for small time intervals τ = �t , U (·) is the unit step
function, and qξη,0(z) = U (z1 − η)U (ξ − z1)pX0 Ẋ0

.
Note that the function rξη,k(z) cannot be consid-

ered a PDF since its area is not unitary. Nevertheless,
it represents the probability that the trajectories of the
response process Z(t) fall, at the generic time instant
(tk + �t) in the interval [z, z + dz].

Clearly, Eq. (14) can be regarded as themodification
of the PI approach for the first-passage problem. Fur-
ther, once the RDF rξη,k(z) is evaluated, the so-called
reliability function RE (T ) can be obtained. Specifi-
cally, this is defined as the probability that the system
response Z1(t) stays within the threshold barrier [η, ξ ]
over the time interval [0, T ]; that is

RE (T ) =
∞∫

−∞

ξ∫
η

rξη(z, T ) dz1 dz2, (26)

In this manner, the so-called first-passage probability
PE (T ), namely the probability that the system response
crosses the barrier in the time interval [0, T ], can
be simply obtained as the complementary to one of
RE (T ). Finally, the corresponding first-passage time
PDF, that is the time at which the response process
Z1(t) crosses the barrier for the first time, is obtianed
as

pE (T ) = −dRE (T )

dT
(27)

4.1 First-passage problem by Laplace’s method

Notably, following the procedure previously discussed
for the response PDF, an approximate analytical solu-
tion of Eq. (25) could be obtained by resorting to an

asymptotic expansion treatment of the integrals based
on the Laplace’s method of integration. In this regard,
substituting Eq. (14) into Eq. (25) yields

rξη,k+1(z) =U (z1 − η)U (ξ − z1)√
2πqk�t

∞∫
−∞

ξ∫
η

exp

(
− (z2 − μ2(z̄))2

2qk�t

)

δ[z1 − (z̄1 + z̄2�t)] rξη,k(z̄) dz̄1 dz̄2,

(28)

Next, taking into account the sampling property of
the Dirac’s delta function, after mundane manipula-
tions, Eq. (28) yields

rξη,k+1(z) = U (z1 − η)U (ξ − z1)√
2πqk�t3

ξ∫
η

exp

[
− λ

qk
h(z, z̄1)

]
rξη,k

(
z̄1,

z1 − z̄1
�t

)
dz̄1,

(29)

where

h(z, z̄1) =
[
z2 − μ2

(
z̄1,

z1 − z̄1
�t

)]2
(30)

in which μ2(z1, z2) is given in Eq. (12).
As it can be seen, Eq. (29) only involves a sin-

gle integral in the z̄1 domain. This can be evalu-
ated again by utilizing the Laplace’s method of inte-
gration. Specifically, considering the variable change
z̄2 = (z1 − z̄1)/�t , Eq. (29) is simply rewritten as

rξη,k+1(z) = U (z1 − η)U (ξ − z1)√
2πqk�t

ξ∫
η

exp

[
− λ

qk
g(z, z̄2)

]

rξη,k (z1 − z̄2�t, z̄2) dz̄2, (31)

where g(z, z̄2) is given in Eq. (18). In this manner,
an expression analogous to Eq. (17) is obtained. Thus,
denote as z̄∗2 the value of z̄2, in the interval [η, ξ ], satis-
fying the conditions in Eqs. (19) and (20). Taking into
account Eq. (A5), the approximate analytical solution
of the integral in Eq. (31) can be given as

rξη,k+1(z) = U (z1 − η)U (ξ − z1)

√
2 e

− λ
qk

g(z,z̄∗2)√
gI I (z, z̄∗2)[

r̄ξη,k(z1, z̄
∗
2) + qk

2λ gI I (z, z̄∗2)
r̄ I Iξη,k(z1, z̄

∗
2)

](32)
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where, similarly to Eqs. (22) and (23),

r̄ξη,k(z1, z̄
∗
2) = rξη

(
z1 − z̄∗2�t, z̄∗2, tk

)
(33)

and

r̄ I Iξη,k(z1, z̄
∗
2) = ∂2

∂ z̄22
rξη

(
z1 − z̄∗2�t, z̄∗2, tk

)∣∣∣∣∣
z̄2=z̄∗2

. (34)

Note that, as for Eq. (21), the significance of Eq.
(32) relates to the fact that the RDF rξη,k+1(z) of the
nonlinear system in Eq. (1) can be readily computed
via a repetitive application of this approximate analyt-
ical expression. Thus, the computationally demanding
double numerical integrations in Eq. (28) are avoided.

Finally, as far as the implementation of Eq. (32) is
concerned, note that the function g(z, z̄∗2) in Eq. (32)
and the values z̄∗2 are deterministic and have been previ-
ously employed for the determination of the response
PDF in Eq. (21). Thus, they have been computed in
closed-form, once beforehand, further reducing the
computational cost of the procedure.

5 Numerical applications

In this section, the versatility and efficiency of the
developed technique are demonstrated by various
numerical examples. Specifically, three different non-
linear systemswith a bimodal responsePDFare consid-
ered, as well as a strongly nonlinear system possessing
a signum type nonlinearity [28].

In these examples the initial PDF has been assumed
as pX0 Ẋ0

= pX0 pẊ0
where pX0 and pẊ0

are Gaussian
distributions with standard deviation equals to 0.2.

For each case, both the evolution of the sys-
tem response PDF and the first-passage probability
are determined. Analyses are carried out taking into
account both stationary and nonstationary excitations,
employing a time-modulating function of the exponen-
tial type, as

χ(t) = 4

[
exp

(
t

4

)
− exp

(
t

2

)]
. (35)

As far as the numerical implementation of the pro-
posed approach is concerned, Eq. (21) has been used
since it generally leads to a sufficient degree of accu-
racy, employing a time step (�t = 5 · 10−3 s). Further,
for each case the domain of the PDFhas been uniformly
divided using intervals of (�x = �ẋ = 5 · 10−2) and

standard interpolation based on cubic polynomials has
been employed for determining p̄Z,k(z1, z̄∗2) in Eq. (21)
at each time step.. In addition, pertinentMCS data have
been obtained considering, for each case, 50000 sam-
ples for the evolution of the response PDF, and 106 sam-
ples for an accurate determination of the first-passage
probabilities.

5.1 Duffing oscillator

Consider first an SDOF Duffing nonlinear oscillator,
whose equation of motion is given in Eq. (21) where
the nonlinear function f (X, Ẋ , t) takes the form

f (X, Ẋ , t) = β Ẋ + k0X + εX3. (36)

where β and k0 are the damping and stiffness coeffi-
cients, respectively, while ε is a constant describing the
magnitude of the nonlinearity.

Note that the stationary joint response PDF of the
Duffing oscillator subject to a stationary Gaussian
white noise with constant PSD S0 has an analytical
expression (e.g., [58]) of the form

pX Ẋ (x, ẋ) = C exp

[
− β

π S0

(
k0x3

2
+ εx4

4
+ ẋ

2

)]
,

(37)

where C is a normalization constant. Following the
proposed approach, taking into account Eqs. (12), (18)
yields

g(z, z̄2) =[
z2 + 3z1 z̄

2
2�t3ε

− z̄32�t4ε + z1�t
(
z21ε + k0

)
+ z̄2

( − 1 + �tβ

− (
3z21ε + k0

)
�t2

)]2
(38)

and the points z̄∗2 can be found, either analytically or
numerically, using Eqs. (19) and (20). In this manner,
it can be proved that g(z, z̄∗2) = 0.

Analyses havebeen carriedout considering abimodal
oscillator, obtained by utilizing a negative term k0.
Specifically, the following set of parameters has been
used (k0 = −2.25, β = 0.15, ε = 6.75, S0 = 0.3/2π).
In this regard, Fig. 1 shows contour plots of the evo-
lution of the proposed PI-based response joint PDF,
while in Fig. 2 corresponding marginal displacement
and velocity response PDF, vis-à-vis pertinent MCS
results, are reported for various time instants.
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Fig. 1 Response joint PDF of the Duffing oscillator for white noise excitation. Contour plot obtained by the proposed PI approach for
different time instants

Fig. 2 Response marginal PDF of the Duffing oscillator for white noise excitation. Proposed PI approach (black lines) vis-à-vis MCS
data (red dots): a Marginal response displacement PDF; bMarginal response velocity PDF
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Fig. 3 Nonstationary response variances of the Duffing oscillator for white noise excitation. Proposed PI approach (black line) vis-à-vis
MCS data (red dots): a Response displacement variance; b Response velocity variance

Further, in Fig. 3 the nonstationary displacement and
velocity variances are plotted together with MCS esti-
mates and stationary values obtained by using Eq. (37).
As it can be seen, a very good agreement is achieved
both in terms of marginal PDFs for each time instant,
and response variances.

Next, analogous analyses have been carried out con-
sidering a nonstationary excitation using the modulat-
ing function in Eq. (35). In this regard, corresponding
results are shown in Figs. 4 and 5. As it can be seen,
comparisons with pertinent MCS demonstrate a sat-
isfactory level of accuracy exhibited by the proposed
approach.

Finally, to highlight the efficiency of the method,
the computational times required by the proposed PI
approach for determining the response PDF at the final
time instant (t = 15 s), and the one related to the
standard implementation of the PI technique [27], are
reported in Table 1. In this regard, note that the standard
PI technique has been implemented using the same dis-
cretization of the (z1, z2) domain, and the same value
of �t employed for the proposed PI approach. Further,
the ratio between the two computational times, here-
inafter referred to as efficiency ratio ε, is also shown.As
detailed in Table 1, the proposed approach requires just
few seconds of computations, significantly decreasing
the computational cost of the standard implementation
of the PI approach.

In passing, it should be mentioned that other tech-
niques may be also followed to increase the efficiency
of the standard PI approach (e.g. [46,48]). For instance,
a similar problem has been addressed in [46], where
the stationary response PDF of a Duffing oscillator has

Table 1 Computational time required by the PI procedures for
calculating the response PDF of the analyzed nonlinear systems
in t = 15 s

Nonlinear System Proposed PI Standard PI ε

Duffing 7.5s 939s 125

Self-excited 4.9s 62.8s 13

Ship rolling 7.6s 1170s 154

Variable stiffness 80.7s 3595s 44

Comparison between the proposed procedure and the classical
PI approach

been determined with the execution time of the GPU
parallel method and the standard PI approach given,
respectively, as 30 s and 546 s.

5.2 Self-excited oscillator

Next, consider the case of a so-called self-excited oscil-
lator with both nonlinear damping and nonlinear stiff-
ness terms, also referred to as Van der Pol-Rayleigh
oscillator [59]. In this case the nonlinear function
f (X, Ẋ , t) takes the form

f (X, Ẋ , t) = η(Ẋ2 + X2 − 1)Ẋ + X. (39)

where η is a constant.
Note that the stationary joint response PDF of this

system subject to a stationary Gaussian white noise
with constant PSD S0 has an analytical expression (e.g.,
[42]) of the form
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Fig. 4 Response joint PDF of the Duffing oscillator for modulated white noise excitation. Contour plot obtained by the proposed PI
approach for different time instants

Fig. 5 Response marginal PDF of the Duffing oscillator for modulated white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response displacement PDF; bMarginal response velocity PDF
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pX Ẋ (x, ẋ) = C exp

[
η

π S0

(
(x2 + ẋ2) − (x2 + ẋ2)2

2

)]

(40)

where C is a normalization constant.
Following theproposed approach, taking into account

Eqs. (12) and (18), the function g(z, z̄2) is obtained as

g(z, z̄2) = 2
[
z2 + z1�t − z̄2(1 + �t2)

+ηz̄2�t (z̄22 + (z1 − z̄2�t)2 − 1)
]

[
−1 − �t2 + η�t (z21 − 4z1 z̄2�t

+3z̄22(1 + �t2) − 1)
]

(41)

and the points z̄∗2 can be found, either analytically or
numerically, using Eqs. (19) and (20).

In this regard, in Fig. 6 contour plots of the proposed
PI-based response joint PDF corresponding to the
parameters values in [42] (η = 0.8, S0 = 0.1/2π) are
shown for various time instants. Further, in Fig. 7 corre-
sponding marginal displacement and velocity response
PDF, vis-à-vis pertinent MCS results, are plotted.
Finally, in Fig. 8 the nonstationary displacement and
velocity variances are shown together with MCS esti-
mates and stationary values obtained by using Eq. (40).
It can be readily seen that the proposed PI approach
yields quite accurate and reliable results, both in terms
of response variances and marginal PDFs for each time
instant.

As far as the efficiency of the method is concerned,
note that the computational times required by the pro-
posed approach vis-à-vis the one related to the standard
implementation of the PI technique are reported in Tab.
1.As it can be seen, the proposed procedure yields a sig-
nificant reduction of the computational cost, although
the standard PI technique in this case is still quite effi-
cient.

Finally, results related to the case of a nonstation-
ary excitation, using the modulating function in Eq.
(35), are shown in Figs. 9 and 10. As it can be seen,
comparisons with pertinent MCS demonstrate again a
satisfactory level of accuracy exhibited by the proposed
approach.

5.3 Ship rolling motion

Consider the problem of the nonlinear rolling motion
of a ship subject to random excitation. In this case, the
nonlinear function f (X, Ẋ , t) takes the form

f (X, Ẋ , t) = β1 Ẋ + β2|Ẋ |Ẋ + α1X

+α3X
3 + α5X

5. (42)

where αi and βi are defined constants.
Again, following the proposed approach, taking into

account Eqs. (12) and (18), the function g(z, z̄2) can be
obtained, and the points z̄∗2 are found by using Eqs. (19)
and (20).

Analyses have been carried out considering the
parameters in [12]; that is, (β1 = β2 = 0.1, α1 = α5

= 1, α3 = −2.5, S0 = 0.3/2π).
In this regard, Fig. 11 shows contour plots of the

proposed PI-based response joint PDF for different
time instants, while in Fig. 12 corresponding marginal
response PDF are plotted. Comparisons with pertinent
MCS data reveal a satisfactory level of accuracy in each
time instant for both the responsemarginal PDFs pX (t)
and pẊ (t).

Further, as far as the efficiency of the method is
concerned, note that the computational times required
by the proposed approach vis-à-vis the one related to
the standard implementation of the PI technique are
reported in Tab. 1. Again, as it can be seen, the use of
the asymptotic expansion in the PI approach has dras-
tically decreased the computational cost.

Finally, analyses have been carried out also consid-
ering a nonstationary excitation with modulating func-
tion in Eq. (35). Pertinent results are shown in Figs. 13
and 14, and comparisons with MCS demonstrate a sat-
isfactory level of accuracy exhibited by the proposed
approach.

5.4 System with variable stiffness

As a last application, consider a variable stiffness oscil-
lator, in which the nonlinear function f (X, Ẋ , t) takes
the form

f (X, Ẋ , t) = k0X
[
1 + r sign(X Ẋ)

]
. (43)

where k0 and r are defined parameters of the systems.
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Fig. 6 Response joint PDF of the self-excited oscillator for white noise excitation. Contour plot obtained by the proposed PI approach
for different time instants

Fig. 7 Response marginal PDF of the self-excited oscillator for white noise excitation. Proposed PI approach (black lines) vis-à-vis
MCS data (red dots): a Marginal response displacement PDF; bMarginal response velocity PDF
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Fig. 8 Nonstationary response variances of the self-excited oscillator for white noise excitation. Proposed PI approach (black line)
vis-à-vis MCS data (red dots): a Response displacement variance; b Response velocity variance

Fig. 9 Response joint PDF of the self-excited oscillator for modulated white noise excitation. Contour plot obtained by the proposed
PI approach for different time instants
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Fig. 10 Response marginal PDF of the self-excited oscillator for modulated white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response displacement PDF; bMarginal response velocity PDF

Fig. 11 Response joint PDF of the ship rolling motion for white noise excitation. Contour plot obtained by the proposed PI approach
for different time instants
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Fig. 12 Response marginal PDF of the ship rolling motion for white noise excitation. Proposed PI approach (black lines) vis-à-vis
MCS data (red dots): a Marginal response PDF of X (t); bMarginal response PDF of Ẋ(t)

Fig. 13 Response joint PDF of the ship rolling motion for modulated white noise excitation. Contour plot obtained by the proposed PI
approach for different time instants
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Fig. 14 Response marginal PDF of the ship rolling motion for modulated white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)

It is pointed out that the aforementioned system
may be of interest in developing smart materials and
it includes a so-called “strong nonlinearity” due to the
presence of the discontinuity of the signum function
in the nonlinear term, which may be rather challeng-
ing to address by using the standard PI approach [24].
In this regard, the proposed procedure has been imple-
mented employing linear interpolation for the evalua-
tion of the terms in Eq. (21) avoiding the use of cubic
and spline interpolations as suggested in [24]. Further,
with respect to the previous examples, a finer uniform
grid and smaller time steps have been chosen, consid-
ering �x = �ẋ = 2 · 10−2 and �t = 2 · 10−3 s.

Analyses have been carried out considering the
parameters in [24]; that is, (k0 = 1, r = 0.5, S0 = 0.3/2π).

In this regard, Fig. 15 shows contour plots of the
proposed PI-based response joint PDF for different
time instants, while in Fig. 16 corresponding marginal
response PDF are plotted. The juxtaposition withMCS
data reveals a satisfactory level of accuracy in each time
instant for both the response marginal PDFs pX (t) and
pẊ (t).

Further, the computational times requiredby the pro-
posed approach vis-à-vis the one related to the stan-
dard implementation of the PI technique are reported
in Table 1. As it can be seen, with respect to the pre-
vious cases, the computational time has increased due
to the finer grid and smaller time steps. Nevertheless,
the use of the asymptotic expansion in the PI approach
has significantly decreased the computational cost of
the standard implementation of the PI technique.

5.5 First-passage analyses

In this section, the accuracyof the asymptotic expansion-
based PI approach for the determination of the first-
passage probability PE (T ) is assessed by comparisons
with pertinent MCS data.

Analyses have been carried out considering the
aforementioned four different nonlinear systems, sub-
ject to a stationarywhite noise excitation. In this regard,
in Figs. 17, 18, 19 and 20 the log-linear plots of the
response marginal PDFs of these systems, evaluated at
(T = 5 s), are shown vis-à-vis pertinent MCS data.
Note that, as generally done in the literature, semi-
logarithmic plots are employed to more clearly show
the accuracy of the proposed approach for small val-
ues of the PDFs. As it can be seen, the proposed PI
approach-based results satisfactorily agree with corre-
spondingMCS data even at very lowmagnitude (about
10−4).

Further, Figs. 21, 22, 23 and 24 show the correspond-
ing first-passage probability PE (T ) related to the Duff-
ing nonlinear system (Eq. 36), the self-excited non-
linear system (Eq. 39), the ship rolling motion case
(Eq. 42), and the variable stiffness oscillator (Eq. 43),
respectively. In this regard, proposed PI-based results
have been obtained by using Eq. (36), taking into
account Eqs. (33) and (34), employing a time-step
(�t = 10−3 s), whereas MC simulations have been
carried out considering 106 samples for each case.
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Fig. 15 Response joint PDF of the system with variable stiffness for white noise excitation. Contour plot obtained by the proposed PI
approach for different time instants

Fig. 16 Response marginal PDF of the system with variable stiffness for white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)
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Fig. 17 Response marginal log-linear PDF of the Duffing oscillator for white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)

Fig. 18 Response marginal log-linear PDF of the self-excited oscillator for white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)

Fig. 19 Response marginal log-linear PDF of the ship rolling motion for white noise excitation. Proposed PI approach (black lines)
vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)
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Fig. 20 Response marginal log-linear PDF of the system with varible stiffness for white noise excitation. Proposed PI approach (black
lines) vis-à-vis MCS data (red dots): a Marginal response PDF of X (t); b Marginal response PDF of Ẋ(t)

Fig. 21 First-passage probabilities of the system in Eq. (36) for different values of the upper bound ξ . Proposed PI approach (black
crosses) vis-à-vis MCS data (red circles): a Probabilities for lower bound η = −ξ ; b Probabilities for lower bound η = −10

Fig. 22 First-passage probabilities of the system in Eq. (39) for different values of the upper bound ξ . Proposed PI approach (black
crosses) vis-à-vis MCS data (red circles): a Probabilities for lower bound η = −ξ ; b Probabilities for lower bound η = −10
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Fig. 23 First-passage probabilities of the system in Eq. (42) for different values of the upper bound ξ . Proposed PI approach (black
crosses) vis-à-vis MCS data (red circles): a Probabilities for lower bound η = −ξ ; b Probabilities for lower bound η = −10

Fig. 24 First-passage probabilities of the system in Eq. (43) for different values of the upper bound ξ . Proposed PI approach (black
crosses) vis-à-vis MCS data (red circles): a Probabilities for lower bound η = −ξ ; b Probabilities for lower bound η = −10

Note that, for each nonlinear system several val-
ues of the upper bound ξ of the interval [η, ξ ] have
been considered. In addition, for each case, two differ-
ent values of the lower bound η have been employed.
Specifically, Figs. 21, 22, 23 and 24a show results of
the first-passage probabilities PE (T ) for (η = −ξ),
while in Figs. 21, 22, 23 and 24b the values of PE (T )

for (η = −10) are reported.
As it can be seen in these figures, reasonable

agreement is achieved between the proposed PI-based
approach and MCS data in all the considered cases for
both values of the lower bound η.

In this regard, it can be argued that the high accuracy
observed for lower values of ξ is slightly decreased
when higher values of the upper bound are consid-
ered (ξ > 1.2), especially for highly nonlinear systems
as in Fig. 23. Undoubtedly, one of the reasons is that,

as ξ increases, the first-passage probability decreases
rapidly, reaching values of the order of accuracy corre-
sponding to Eq. (32), which is based on a second-order
expansion of the integral in Eq. (28).

Notably, the proposed PI approach follows satisfac-
torily the trend of PE (T ) obtained byMCS, and its level
of accuracy is deemed adequate to justify its applica-
tion for reliability analyses, taking into account that
a significant reduction of computational cost is also
achieved. In this regard, it is worth mentioning that
reliability analyses byMCS generally require a consid-
erable number of samples (of the order of 106). Never-
theless, if higher accuracy is necessary, a fourth-order
expansion of the kernel in Eq. (29) may be also adopted
by employing Eq. (A6).
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6 Conclusion

The Path Integral (PI) technique is based on a dis-
cretized version of the Chapman-Kolmogorov (CK)
equation solved in short time steps for determining the
stochastic response of nonlinear systems. This proce-
dure has proven to be reliable and particularly accurate
for low-dimensional systems. Nevertheless, its stan-
dard implementation can be computationally cumber-
some even for single-degree-of-freedom systems and
becomes prohibitive as the dimension of the system
increases. In this paper, a novel PI approach formula-
tion has been developed based on an analytical asymp-
totic expansion treatment of the CK equation, generally
referred to as Laplace’smethod of integration. Notably,
an approximate closed form solution of the double inte-
grals involved in the CK equation has been derived. In
this manner, the repetitive integrations required by the
standard implementation of the PI approach have been
circumvented and the evolution of the response proba-
bility density function (PDF) has been computed by a
simple application of the obtained approximate analyt-
ical expression in short time steps. Further, appropriate
extension for determining the first-passage probabili-
ties of the system has been also presented for the first
time. It has been shown that the herein proposed for-
mulation can drastically decrease the associated com-
putational effort by several orders of magnitude, as
compared to both the standard PI technique and Monte
Carlo solution (MCS). To elucidate the applicability of
the technique, several numerical examples have been
presented, considering both stationary and modulated
white noise excitations with time envelope function.
In this regard, nonstationary response PDFs and first-
passage probabilities for Duffing and self-excited (Van
der Pol-Rayleigh) oscillators, as well as a ship rolling
motion nonlinear system, have been included. Further,
to show the accuracy of the approach for strongly non-
linear systems, analyses have been carried out also con-
sidering a system with variable stiffness comprising a
signum type nonlinear term [28]. Comparisons with
pertinent MCS data have demonstrated the accuracy
and reliability of the procedure. Finally, it is noted that
the proposed approach has been developed for two-
dimensional nonlinear systems. Nevertheless, in future
work it is hoped that the proposed approach could be
used to treat relatively high-dimensional multi-degree-
of-freedom systems considering, for instance, the case

of stochastic excitation only entering in one component
of the pertinent stochastic differential equation [46,51].
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Appendix A The Laplace’s method of integration

Consider an integral of the form

I =
b∫

a

e−λg(y)h(y) dy, (A1)

where the parameter λ is large, and g(y) and h(y) are
smooth real-valued functions. Further, assume that the
function g(y) has a local minimum at y∗ inside the
interval [a, b].

On this base, it can be argued that the main contri-
bution to the integral I in Eq. (A1) is mostly originat-
ing from the neighborhood around y∗. In this regard,
consider the Taylor series expansion of g(y) and h(y)
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around y∗ up to the second order, which yields

g(y) ≈ g(y∗) + gI (y∗)(y − y∗) + gI I (y∗) (y − y∗)2

2
,

(A2)

and

h(y) ≈ h(y∗) + hI (y∗)(y − y∗) + hI I (y∗) (y − y∗)2

2
,

(A3)

where the apexes (I ) and (I I ) stand for the order of the
derivatives with respect to the variable y in Eq. (A1).

Since y∗ is a local minimum of g(y), then gI (y∗) =
0. Further, substituting Eqs. (A2) and (A3) in Eq. (A1),
yields [54]

I ≈ e−λg(y∗)h(y∗)
∞∫

−∞
exp−λgI I (y∗) (y − y∗)2

2
dy

+ e−λg(y∗)hI (y∗)
∞∫

−∞
(y − y∗)

exp−λgI I (y∗) (y − y∗)2

2
dy

+ e−λg(y∗)hI I (y∗)
∞∫

−∞

(y − y∗)2

2

exp−λgI I (y∗) (y − y∗)2

2
dy,

(A4)

Note that Eq. (A4) now involves only Gaussian inte-
grals which can be solved in closed-form. In this man-
ner, the approximate solution of the integral in Eq. (A1)
can be given as

I ≈ e−λg(y∗)
√

2π

λgI I (y∗)

[
h(y∗) + hI I

2λgI I (y∗)

]
(A5)

Clearly, the accuracy of the approximation can be
further improved by retaining additional terms in the
expansions in Eqs. (A2) and (A3). In this regard, if a
fourth order expansion og g(y) is considered, then Eq.

(A5) becomes

I ≈ e−λg(y∗)
√

2π

λgI I (y∗)

{
h(y∗)

+ 1

λ

[
hI I (y∗)
2gI I (y∗)

− h(y∗)
8

gIV (y∗)
gI I (y∗)2

− hI (y∗)
2

gI I I (y∗)
gI I (y∗)2

+ 5h(y∗)
24

gI I I (y∗)2

gI I (y∗)3

]}

(A6)
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