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Abstract. In this note we present a review, some considerations and new
results about maps with values in a distribution space and domain in a
σ-finite measure space X. Namely, this is a survey about Bessel maps,
frames and bases (in particular Riesz and Gel’fand bases) in a distri-
bution space. In this setting, the Riesz-Fischer maps and semi-frames
are defined and new results about them are obtained. Some examples
in tempered distributions space are examined.
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1. Introduction

Given a Hilbert space H with inner product ⟨·|·⟩ and norm ∥ · ∥, a frame is a
sequence of vectors {fn} in H if there exist A,B > 0 such that:

A∥f∥2 ≤
∞∑
k=1

|⟨f |fn⟩|2 ≤ B∥f∥2, ∀f ∈ H.

As known, this notion generalizes orthonormal bases, and has reached an
increasing level of popularity in many fields of interests, such as signal theory,
image processing, etc., but it is also an important tool in pure mathematics:
in fact it plays key roles in wavelet theory, time-frequency analysis, the theory
of shift-invariant spaces, sampling theory and many other areas (see [10, 11,
18, 20, 24]).

A generalization of frame, the continuous frame, was proposed by Kaiser
[24] and by Aĺı, Antoine, Gazeau [1, 2]: if (X,µ) is a measure space with µ
as σ-finite positive measure, a function F : x ∈ X 7→ Fx ∈ H is a continuous
frame with respect to (X,µ) if:

i) F is weakly measurable, i.e. the map x ∈ X 7→ ⟨f |Fx⟩ ∈ C is µ-
measurable for all f ∈ H;

This manuscript is the AAM version of the DOI 10.1007/978-3-030-51945-2_29, 
published in Bastos, M.A., Castro, L., Karlovich, A.Y. (eds) Operator Theory, 
Functional Analysis and Applications. Operator Theory: Advances and Applications, 
vol 282 (2021).



2 Francesco Tschinke

ii) there exist A,B > 0 such that, for all f ∈ H:

A∥f∥2 ≤
∫
X

| ⟨f |Fx⟩ |2dµ ≤ B∥f∥2, ∀f ∈ H.

Today, the notion of continuous frames in Hilbert spaces and their link with
the theory of coherent states is well-known in the literature.

With the collaboration of C. Trapani and T. Triolo [29], the author
introduced bases and frames in distributional spaces. To illustrate the moti-
vations for this study, we have to consider the rigged Hilbert space (or Gel’fand
triple) [16, 17]: that is, if H is a Hilbert space, the triple:

D[t] ⊂ H ⊂ D×[t×],

where D[t] is a dense subspace of H endowed with a locally convex topology
t stronger than the Hilbert norm and D×[t×] is the conjugate dual space of
D endowed with the strong dual topology t×. If D is reflexive, the inclusions
are dense and continuous.

In this setting, let us consider the generalized eigenvectors of an oper-
ator, i.e. eigenvectors that do not belong to H. More precisely: if A is an
essentially self-adjoint operator in D which maps D[t] into D[t] continuously,

then A has a continuous extension Â given by its adjoint, (i.e. Â = A†) from
D× into itself. A generalized eigenvector of A, with eigenvalue λ ∈ C, is an
eigenvector of Â; that is, a conjugate linear functional ωλ ∈ D× such that:

⟨Af |ωλ⟩ = λ ⟨f |ωλ⟩ , ∀f ∈ D.

The above equality can be read as Âωλ = A†ωλ = λωλ.

A simple and explicative example is given by the derivative operator:
A := i d

dx : S(R) → S(R) where S(R) is the Schwartz space (i.e. infinitely
differentiable rapidly decreasing functions). The rigged Hilbert space is:

S(R) ⊂ L2(R) ⊂ S×(R), (1.1)

where the set S×(R) is known as space of tempered distributions. Then
ωλ(x) = 1√

2π
e−iλx -that does not belong to L2(R)- is a generalized eigen-

vector of A with λ as eigenvalue.

Each function ωλ can be viewed as a regular distribution of S×(R)
through the following integral representation:

⟨ϕ|ωλ⟩ =
∫
R
ϕ(x)ωλ(x)dx =

1√
2π

∫
R
ϕ(x)eiλxdx := ϕ̌(λ)

and the linear functional ϕ 7→ ϕ̌(λ) defined on S(R) is continuous. Further-
more by the Fourier-Plancherel theorem, one has: ∥ϕ̌∥22 =

∫
R | ⟨ϕ|ωλ⟩ |2dx =

∥ϕ∥22.
With a limiting procedure, the Fourier transform can be extended to

L2(R). Since a function f ∈ L2(R) defines a regular tempered distribution,
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we have, for all ϕ ∈ S(R):

⟨ϕ|f⟩ : =
∫
R
f(x)ϕ(x)dx=

∫
R

(
1√
2π

∫
R
f̂(λ)eiλxdλ

)
ϕ(x)dx =

=

∫
R
f̂(λ)ϕ̌(λ)dλ =

∫
R
f̂(λ)⟨ϕ|ωλ⟩ dλ.

That is:

f =

∫
R
f̂(λ)ωλdλ. (1.2)

in weak sense. The family {ωλ; λ ∈ R} of the previous example can be con-
sidered as the range of a weakly measurable function ω : R → S×(R) which
allows a representation as in (1.2) of any f ∈ L2(R) in terms of generalized
eigenvectors of A. This is an example of a distribution basis. More precisely,
since the Fourier-Plancherel theorem corresponds to the Parseval identity,
this is an example of Gel’fand distribution basis [29, Subsec. 3.4], that plays,
in S×(R), the role of an orthonormal basis in a Hilbert space.

The example above is a particular case of the Gel’fand-Maurin theorem
(see [17, 19] for details), which states that, if D is a domain in a Hilbert
space H which is a nuclear space under a certain topology τ , and A is an
essentially self-adjoint operator on D which maps D[t] into D[t] continuously,
then A admits a complete set of generalized eigenvectors.

If σ(A) is the spectrum of the closure of the operatorA, the completeness
of the set {ωλ;λ ∈ σ(A)} is understood in the sense that the Parseval identity
holds, that is:

∥f∥ =

(∫
σ(A)

| ⟨f |ωλ⟩ |2dλ

)1/2

, ∀f ∈ D. (1.3)

To each λ there corresponds the subspace D×
λ ⊂ D× of all generalized eigen-

vectors whose eigenvalue is λ. For all f ∈ D it is possible to define a linear
functional f̃λ on D×

λ by f̃λ(ωλ) := ⟨ωλ|f⟩ for all ωλ ∈ D×
λ . Following [16, 17],

the correspondence D → D××
λ defined by f 7→ f̃λ is called the spectral de-

composition of the element f corresponding to A. If f̃λ ≡ 0 implies f = 0
(i.e. the map f 7→ f̃λ is injective) then A is said to have a complete system
of generalized eigenvectors.

The completeness and condition (1.3) may be interpreted as a kind of
orthonormality of the ωλ’s: the family {ωλ}λ∈σ(A) in [29] is called a Gel’fand

basis.

Another meaningful situation comes from quantum mechanics. Let us
consider the rigged Hilbert space (1.1) corresponding to the one-dimensional
case. The Hamiltonian operator H is an essentially self-adjoint operator on
S(R), with self-adjoint extension H on the domain D(H), dense in L2(R).
According to the spectral expansion theorem in the case of non-degenerate
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spectrum, for all f ∈ L2(R), the following decomposition holds:

f =
∑
n∈J

cnun +

∫
σc

c(α)uαdµ(α).

The set {un}n∈J , J ⊂ N, is an orthonormal system of eigenvectors of H; the
measure µ is a continuous measure on σc ⊂ R and {uα}α∈σc are generalized
eigenvectors of H in S×(R). This decomposition is unique. Furthermore:

∥f∥2 =
∑
n∈J

|cn|2 +
∫
σc

|c(α)|2dµ(α).

The subset σc, corresponding to the continuous spectrum, is a union of in-
tervals of R, i.e. the index α is continuous. The generalized eigenvectors uα

are distributions: they do not belong to L2(R), therefore the “orthonormal-
ity” between generalized eigenvectors is not defined. Nevertheless, it is often
denoted by the physicists with the Dirac delta: “ ⟨uα|uα′⟩”=δα−α′ .

Frames, semi-frames, Riesz bases, etc. are families of sequences that
generalize orthonormal bases in Hilbert space maintaining the possibility to
reconstruct vectors of the space as superposition of more ’elementary’ vec-
tors renouncing often to the uniqueness of the representation, but gaining in
versatility.

In this sense, they have been considered in literature in various spaces
of functions and distributions: see for example the following (not exhaustive)
list: [5, 8, 12, 14, 15, 25, 26].

It is remarkable that in a separable Hilbert space, orthonormal bases
and Riesz bases are countable and notions corresponding to Riesz basis have
been formulated in the continuous setting, but it is known that they exist
only if the space given by the index set is discrete [7, 22, 23]. On the other
hand, in the distributions and rigged Hilbert space setting the corresponding
objects can be continuous.

Revisiting some results of [29] about Bessel maps, frames and (Gel’fand
and Riesz) bases in distribution set-up, in this paper the notions of Riesz-
Fischer map and of semi-frames in a space of distributions are proposed.

After some preliminaries and notations (Section 2), in Section 3 distribu-
tion Bessel maps are considered and the notion of distribution Riesz-Fischer
maps is proposed, showing some new results about them (such as bounds
and duality properties). Since distribution Bessel maps are not, in general,
bounded by a Hilbert norm, we consider appropriate to define in Section 4
the distribution semi-frames, notion already introduced in a Hilbert space
by J.-P. Antoine and P. Balasz [4]. Finally, distribution frames, distribution
bases, Gel’fand and Riesz bases, considered in [29], are revisited in Section 5
with some additional examples.
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2. Preliminary definitions and facts

2.1. Rigged Hilbert space

Let D be a dense subspace of a Hilbert spaceH endowed with a locally convex
topology t finer than the topology induced by a Hilbert norm. Denote as D×

the vector space of all continuous conjugate linear functionals on D[t], i.e., the
conjugate dual of D[t], endowed with the strong dual topology t× = β(D×,D),
which can be defined by the seminorms:

qM(F ) = sup
g∈M

| ⟨F |g⟩ |, F ∈ D×, (2.1)

where M is a bounded subset of D[t]. In this way, a rigged Hilbert space is
defined in a standard fashion:

D[t] ↪→ H ↪→ D×[t×], (2.2)

where ↪→ denotes a continuous injection. Since the Hilbert space H can be
identified with a subspace of D×[t×], we will systematically read (2.2) as
a chain of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. These identifications
imply that the sesquilinear form B(·, ·) which puts D and D× in duality is an
extension of the inner product of H; i.e. B(ξ, η) = ⟨ξ|η⟩, for every ξ, η ∈ D (to
simplify notations we adopt the symbol ⟨·|·⟩ for both of them) and also the
embedding map ID,D× : D → D× can be taken to act on D as ID,D×f = f
for every f ∈ D. For more insights, besides to [16, 17], see also [21]. In this
paper, if is not otherwise specified, we will work with a rigged Hilbert space
D[t] ↪→ H ↪→ D×[t×] with D[t] reflexive, in this way the embedding ↪→ is
continuous and dense.

2.2. The space L(D,D×)

If D[t] ⊂ H ⊂ D×[t×] is a rigged Hilbert space, let us denote by L(D,D×)
the vector space of all continuous linear maps from D[t] into D×[t×]. If D[t]
is barreled (e.g., reflexive), an involution X 7→ X† can be introduced in
L(D,D×) by the identity:⟨

X†η|ξ
⟩
= ⟨Xξ|η⟩, ∀ξ, η ∈ D.

Hence, in this case, L(D,D×) is a †-invariant vector space. We also denote by
L(D) the algebra of all continuous linear operators Y : D[t] → D[t] and by
L(D×) the algebra of all continuous linear operators Z : D×[t×] → D×[t×].
If D[t] is reflexive, for every Y ∈ L(D) there exists a unique operator Y × ∈
L(D×), the adjoint of Y , such that

⟨Φ|Y g⟩ =
⟨
Y ×Φ|g

⟩
, ∀Φ ∈ D×, g ∈ D.

In similar way an operator Z ∈ L(D×) has an adjoint Z× ∈ L(D) such that
(Z×)× = Z. In the monograph [3] the topic is treated more deeply.
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2.3. Weakly measurable maps

In this paper a weakly measurable map is considered as a subset of D×: if
(X,µ) is a measure space with µ a σ-finite positive measure, ω : x ∈ X 7→
ωx ∈ D× is a weakly measurable map if, for every f ∈ D, the complex valued
function x 7→ ⟨f |ωx⟩ is µ-measurable. Since the form which puts D and D× in
conjugate duality is an extension of the inner product of H, we write ⟨f |ωx⟩
for ⟨ωx|f⟩, f ∈ D. If not otherwise specified, throughout the paper we will
work with a measure space (X,µ) above described.

Definition 2.1. Let D[t] be a locally convex space, D× its conjugate dual and
ω : x ∈ X → ωx ∈ D× a weakly measurable map, then:

i) ω is total if, f ∈ D and ⟨f |ωx⟩ = 0 µ-a.e. x ∈ X implies f = 0;
ii) ω is µ-independent if the unique measurable function ξ on (X,µ) such

that, if
∫
X
ξ(x) ⟨g|ωx⟩ dµ = 0 for every g ∈ D, then ξ(x) = 0 µ-a.e.

3. Bessel and Riesz-Fischer distribution maps

3.1. Bessel distribution maps

Definition 3.1. Let D[t] be a locally convex space. A weakly measurable map
ω is a Bessel distribution map (briefly: Bessel map) if for every f ∈ D,∫
X
| ⟨f |ωx⟩ |2dµ < ∞.

The following Proposition is the analogue of Proposition 2 and Theorem
3 in [30, Section 2, Chapter 4].

Proposition 3.2 ([29, Proposition 3.1]). If D[t] a Fréchet space, and ω : x ∈
X 7→ ωx ∈ D× a weakly measurable map. The following statements are equiv-
alent:

(i) ω is a Bessel map;
(ii) there exists a continuous seminorm p on D[t] such that:(∫

X

| ⟨f |ωx⟩ |2dµ
)1/2

≤ p(f), ∀f ∈ D; (3.1)

(iii) for every bounded subset M of D there exists CM > 0 such that:

sup
f∈M

∣∣∣ ∫
X

ξ(x) ⟨ωx|f⟩ dµ
∣∣∣ ≤ CM∥ξ∥2, ∀ξ ∈ L2(X,µ). (3.2)

We have also the following:

Lemma 3.3 ([29, Lemma 3.4]). If D is a Fréchet space and ω a Bessel distri-
bution map, then: ∫

X

⟨f |ωx⟩ωxdµ

converges for every f ∈ D to an element of D×. Moreover, the map D ∋ f 7→∫
X
⟨f |ωx⟩ωxdµ ∈ D× is continuous.
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Let ω be a Bessel map: the previous lemma allows to define on D × D
the sesquilinear form Ω:

Ω(f, g) =

∫
X

⟨f |ωx⟩ ⟨ωx|g⟩ dµ. (3.3)

By Proposition 3.2, one has:

|Ω(f, g)|=
∣∣∣∣∫

X

⟨f |ωx⟩ ⟨g|ωx⟩ dµ
∣∣∣∣≤∥ ⟨f |ωx⟩ ∥2 ∥⟨g|ωx⟩∥2 ≤ p(f)p(g), ∀f, g ∈D.

This means that Ω is jointly continuous on D[t]. Hence there exists an op-
erator Sω ∈ L(D,D×), with Sω = S†

ω, Sω ≥ 0, such that:

Ω(f, g) = ⟨Sωf |g⟩ =
∫
X

⟨f |ωx⟩ ⟨ωx|g⟩ dµ, ∀f, g ∈ D (3.4)

that is,

Sωf =

∫
X

⟨f |ωx⟩ωxdµ, ∀f ∈ D.

Since ω is a Bessel distribution map and ξ ∈ L2(X,µ), we put for all g ∈ D:

Λξ
ω(g) :=

∫
X

ξ(x) ⟨ωx|g⟩ dµ. (3.5)

Then Λξ
ω is a continuous conjugate linear functional on D, i.e. Λξ

ω ∈ D×. We
write:

Λξ
ω :=

∫
X

ξ(x)ωxdµ

in weak sense. Therefore we can define a linear map Tω : L2(X,µ) → D×[t×],
which will be called the synthesis operator, by:

Tω : ξ 7→ Λξ
ω.

By (3.2), it follows that Tω is continuous from L2(X,µ), endowed with its
natural norm, into D×[t×]. Hence, it possesses a continuous adjoint T×

ω :
D[t] → L2(X,µ), which is called the analysis operator, acting as follows:

T×
ω : f ∈ D[t] 7→ ξf ∈ L2(X,µ), where ξf (x) = ⟨f |ωx⟩ , x ∈ X.

One has that Sω = TωT
×
ω .

3.2. Riesz-Fischer distribution map

Definition 3.4. Let D[t] be a locally convex space. A weakly measurable map
ω : x ∈ X 7→ ωx ∈ D× is called a Riesz-Fischer distribution map (briefly:
Riesz-Fischer map) if, for every h ∈ L2(X,µ), there exists f ∈ D such that:

⟨f |ωx⟩ = h(x) µ-a.e. (3.6)

In this case, we say that f is a solution of equation ⟨f |ωx⟩ = h(x).

Clearly, if f1 and f2 are solutions of (3.6), then f1 − f2 ∈ ω⊥ := {g ∈
D : ⟨g|ωx⟩ = 0, µ− a.e.}. If ω is total, the solution is unique. We prove the
following:
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Lemma 3.5. Let D be a reflexive locally convex space, h(x) be a measurable
function and x ∈ X 7→ ωx ∈ D×[t×] a weakly measurable map. Then the
equation:

⟨f |ωx⟩ = h(x) (3.7)

admits a solution f ∈ D if, and only if, there exists a bounded subset M of
D such that |h(x)| ≤ supf∈M | ⟨f |ωx⟩ | µ-a.e.

Proof. Necessity is obvious. Conversely, let x ∈ X be a point such that
⟨f |ωx⟩ = h(x) ̸= 0. Let us consider the subspace Vx of D× given by Vx :=
{αωx}α∈C, and let us define the functional µ on Vx by: µ(αωx) := αh(x). We
have that |µ(αωx)| = |αh(x)| ≤ |α| supf∈M | ⟨f |ωx⟩ | = supf∈M | ⟨f |αωx⟩ |,
in other words: |µ(Fx)| ≤ supf∈M | ⟨f |Fx⟩ | for all Fx ∈ Vx. By the Hahn-

Banach theorem, there exists an extension µ̃ to D× such that |µ̃(F )| ≤
supf∈M | ⟨f |F ⟩ |, for every F ∈ D×. Since D is reflexive, there exists f̄ ∈ D
such that µ̃(F ) =

⟨
f̄ |F

⟩
. The statement follows from the fact that µ(ωx) =

h(x). �

If M is a subspace of D and the topology of D is generated by the
family of seminorms {pα}α∈I , then the topology on the quotient space D/M

is defined, as usual, by the seminorms {p̃α}α∈I , where p̃α(f̃) := inf{pα(g) :
g ∈ f +M}. The following proposition can be compared to the case of Riesz-
Fischer sequences: see [30, Chapter 4, Section 2, Proposition 2].

Proposition 3.6. Assume that D[t] is a Fréchet space. If the map ω : x ∈
X → ωx ∈ D× is a Riesz-Fischer map, then for every continuous seminorm
p on D, there exists a constant C > 0 such that, for every solution f of (3.6),

p̃(f̃) := inf{p(g) : g ∈ f + ω⊥} ≤ C∥ ⟨f |ωx⟩ ∥2.

Proof. Since ω⊥ is closed, it follows that the quotient D/ω⊥ := Dω⊥ is a

Fréchet space. If f ∈ D, we put f̃ := f + ω⊥ . Let h ∈ L2(X,µ) and f
a solution of (3.6) corresponding to h; then, we can define an operator S :

L2(X,µ) → Dω⊥ by h 7→ f̃ . Let us consider a sequence hn ∈ L2(X,µ) such
that hn → 0 and, for each n ∈ N, let fn be a corresponding solution of (3.6).
One has that

∫
X
|hn(x)|2dµ → 0, i.e.

∫
X
| ⟨fn|ωx⟩ |2dµ → 0. This implies that

⟨fn|ωx⟩ → 0 in measure, so there exists a subsequence such that ⟨fnk
|ωx⟩ → 0

a.e. (see [13]). On the other hand, if Shn = f̃n is a sequence convergent to f̃
in Dω⊥ w.r. to the quotient topology defined by the seminorms p̃(·), it follows
that the sequence is convergent in the weak topology of Dω⊥ , i.e.:⟨

f̃n|F̃
⟩
→
⟨
f̃ |F̃

⟩
∀F̃ ∈ D×

ω⊥ .

Let us consider the canonical surjection ρ : D → Dω⊥ , ρ : f 7→ f̃ = f + ω⊥.
Its transpose map (adjoint) ρ† : D×

ω⊥ → D× is injective (see [21], p. 263) and

ρ†[D×
ω⊥ ] = ω⊥⊥. Then ρ† : D×

ω⊥ → ω⊥⊥ is invertible. Hence,⟨
f̃n|F̃

⟩
=
⟨
ρ(fn)|(ρ†)−1(F )

⟩
=
⟨
fn|ρ†((ρ†)−1(F ))

⟩
= ⟨fn|F ⟩ , ∀F ∈ ω⊥⊥.



Riesz-Fischer, semi-frames, frames 9

Thus, if f̃n → f̃ in the topology of Dω⊥ , then ⟨fn|F ⟩ → ⟨f |F ⟩, for all F ∈
ω⊥⊥, and, in particular, since ω ⊂ ω⊥⊥, one has ⟨fn|ωx⟩ → ⟨f |ωx⟩. Since
⟨fn|ωx⟩ has a subsequence convergent to 0, one has f ∈ ω⊥. From the closed
graph theorem, it follows that the map S is continuous, i.e. for all continuous
seminorms p̃ on Dω⊥ there exists C > 0 such that: p̃(Sh) ≤ C∥h∥2, for
all h ∈ L2(X,µ). The statement follows from the definition of Riesz-Fischer
map. �

Corollary 3.7. Assume that D[t] is a Fréchet space. If the map ω : x ∈ X →
ωx ∈ D× is a total Riesz-Fischer map, then for every continuous seminorm
p on D, there exists a constant C > 0 such that, for the solution f of (3.6),

p(f) ≤ C∥ ⟨f |ωx⟩ ∥2.

Remark 3.8. For an arbitrary weakly measurable map ω, we define the subset
of D[t]: D(Vω) := {f ∈ D : ⟨f |ωx⟩ ∈ L2(X,µ)} and the analysis operator Vω :
f ∈ D(Vω) 7→ ⟨f |ωx⟩ ∈ L2(X,µ). Clearly, ω is a Riesz-Fischer map if and only
if Vω : D(Vω) → L2(X,µ) is surjective. If ω is total, it is injective too, so Vω

is invertible. A consequence of Corollary 3.7 is that V −1
ω : L2(X,µ) → D(Vω)

is continuous.

3.3. Duality

Definition 3.9. Let D ↪→ H ↪→ D× be a rigged Hilbert space and ω a weakly
measurable map. We call dual map of ω, if it exists, a weakly measurable
map θ such that for all f, g ∈ D:∣∣∣∣∫

X

⟨f |θx⟩ ⟨ωx|g⟩ dµ
∣∣∣∣ < ∞

and

⟨f |g⟩ =
∫
X

⟨f |θx⟩ ⟨ωx|g⟩ dµ, ∀f, g ∈ D.

Proposition 3.10. Suppose that ω is a Riesz-Fischer map. Then the map θ is
a Bessel map.

Proof. For all h ∈ L2(X,µ) there exists f̄ ∈ D such that
⟨
f̄ |ωx

⟩
= h(x)

µ-a.e. Since θ is a dual map, one has that: |
∫
X
h(x) ⟨θx|g⟩ dµ| < ∞ for all

h ∈ L2(X,µ). It follows that ⟨θx|g⟩ ∈ L2(X,µ) (see [28, Chapter 6, Exercise
4]). �

Proposition 3.11. Let D be reflexive and let ω be a µ-independent Bessel map.
Furthermore, suppose that for all h ∈ L2(X,µ) there exists a bounded subset
M ⊂ D such that:∣∣∣∣∫

X

h(x) ⟨ωx|g⟩ dµ
∣∣∣∣ ≤ sup

f∈M
| ⟨f |g⟩ |, ∀g ∈ D,

then the dual map θ is a Riesz-Fischer map.
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Proof. Since h ∈ L2(X,µ), and since ω is a Bessel map, one has:
|
∫
X
h(x) ⟨ωx|g⟩ dµ| < ∞. Let us consider g =

∫
X
⟨g|ωx⟩ θxdµ as element of

D×. We define the following functional on D (as subspace of D×): µ(g) :=∫
X
h(x) ⟨ωx|g⟩ dµ. By hypothesis, one has:

|µ(g)| ≤ sup
f∈M

| ⟨f |g⟩ |.

By the Hahn-Banach theorem, there exists an extension µ̃ to D× such that:

|µ̃(G)| ≤ sup
f∈M

| ⟨f |G⟩ |, ∀G ∈ D×.

Since D is reflexive, there exists f̃ ∈ D×× = D such that µ̃(G) =
⟨
f̃ |G

⟩
.

In particular
⟨
f̃ |g
⟩
=
∫
X
h(x) ⟨ωx|g⟩ dµ. Since θ is dual of ω, we have too:⟨

f̃ |g
⟩

=
∫
X

⟨
f̃ |θx

⟩
⟨ωx|g⟩ dµ. But ω is µ-independent, then it follows that

h(x) =
⟨
f̃ |θx

⟩
µ-a.e. �

4. Semi-frames and frames

4.1. Distribution semi-frames

Definition 4.1. Given a rigged Hilbert space D ↪→ H ↪→ D×, a Bessel map ω
is a distribution upper semi-frame if it is complete (total) and if there exists
B > 0:

0 <

∫
X

| ⟨f |ωx⟩ |2dµ ≤ B∥f∥2, ∀f ∈ D, f ̸= 0. (4.1)

Since the injection D ↪→ H is continuous, it follows that there exists
a continuous seminorm p on D such that ∥f∥ ≤ p(f) for all f ∈ D. If ξ ∈
L2(X,µ), then the continuous conjugate functional Λξ

ω on D defined in (3.5)

is bounded in D[∥ · ∥]; it follows that it has a bounded extension Λ̃ξ
ω to H,

defined, as usual, by a limiting procedure. Therefore, there exists a unique
vector hξ ∈ H such that:

Λ̃ξ
ω(g) = ⟨hξ|g⟩ , ∀g ∈ H.

This implies that the synthesis operator Tω takes values in H, it is bounded
and ∥Tω∥ ≤ B1/2; its hilbertian adjoint Cω := T ∗

ω extends the analysis oper-
ator T×

ω .

The action of Cω can be easily described: if g ∈ H and {gn} is a se-
quence of elements of D, norm converging to g, then the sequence {ηn}, where
ηn(x) = ⟨gn|ωx⟩, is convergent in L2(X,µ). Put η = limn→∞ ηn. Then,

⟨Tωξ|g⟩ = lim
n→∞

∫
X

ξ(x) ⟨ωx|gn⟩ dµ =

∫
X

ξ(x)η(x)dµ. (4.2)

Hence T ∗
ωg = η.
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The function η ∈ L2(X,µ) depends linearly on g, for each x ∈ X. Thus
we can define a linear functional ω̌x by

⟨g|ω̌x⟩ = lim
n→∞

⟨gn|ωx⟩ , g ∈ H; gn → g. (4.3)

Of course, for each x ∈ X, ω̌x extends ωx; however ω̌x need not be continuous,
as a functional on H. We conclude that:

T ∗
ω : g 7→ ⟨g|ω̌x⟩ ∈ L2(X,µ).

Moreover, in this case, the sesquilinear form Ω in (3.4), which is well
defined on D ×D, is bounded with respect to ∥ · ∥ and possesses a bounded

extension Ω̂ to H. Hence there exists a bounded operator Ŝω in H, such that:

Ω̂(f, g) =
⟨
Ŝωf |g

⟩
, ∀f, g ∈ H. (4.4)

Since ⟨
Ŝωf |g

⟩
=

∫
X

⟨f |ωx⟩ ⟨ωx|g⟩ dµ, ∀f, g ∈ D, (4.5)

Ŝω extends the frame operator Sω and Sω : D → H. It is easily seen that
Ŝω = Ŝ∗

ω and Ŝω = TωT
∗
ω . By definition, we have:

0 < ∥Ŝωf∥ ≤ B∥f∥, ∀f ∈ H, f ̸= 0.

Then Ŝω is bounded, self-adjoint and injective too. This means that RanSω

is dense in H, and Ŝ−1
ω is densely defined. If ω is not a frame, Ŝ−1

ω is an
unbounded, self-adjoint operator (see [4]).

Remark 4.2. If {ωx}x∈X is an upper semi-frame, then there exists a continu-
ous seminorm p on D such that ∥ ⟨f |ωx⟩ ∥2 ≤ p(f) for all f ∈ D. In fact, the
injection D ↪→ H is continuous, i.e. ∥f∥ ≤ p(f) for all f ∈ D. The converse is
not true: let us consider the rigged Hilbert space S(R) ↪→ L2(R) ↪→ S×(R);
the system of derivative of Dirac’s deltas {δ′x}x∈R is total. Since S(R) is
a Fréchet space, (ii) of Proposition 3.2 it holds. However {δ′x}x∈R is not a
distribution upper semi-frame; in fact:∫

R
| ⟨ϕ|δ′x⟩ |2dx = ∥ϕ′∥22 ∀ϕ ∈ S(R),

but the derivative operator d
dx : S(R) → L2(R) is unbounded (clearly with

respect to the topology of the Hilbert norm).

Remark 4.3. In [29] it is defined the notion of bounded Bessel map, that is a
Bessel map in rigged Hilbert space such that:

∫
X
| ⟨f |ωx⟩ |2dµ ≤ B∥f∥2, ∀f ∈

D. It is a more general notion than upper bounded semi-frame. In fact, we
can consider, as example, the distribution ωx := ηK(x)δx where ηK(x) is a
C∞-function with compact support K and M := maxx∈K |ηK(x)|:∫

R
| ⟨ϕ|ωx⟩ |2dx =

∫
R
| ⟨ϕ|ηK(x)δx⟩ |2dx =

=

∫
R
|ηK(x)ϕ(x)|2dx ≤ M2

∫
K

|ϕ(x)|2dx ≤ M2∥ϕ∥22.
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Therefore ω is a bounded Bessel map, but it is not total, then it is not an
upper semi-frame.

Definition 4.4. Given a rigged Hilbert space D ↪→ H ↪→ D×, a Bessel map ω
is a distribution lower semi-frame if there exists A > 0 such that:

A∥f∥2 ≤
∫
X

| ⟨f |ωx⟩ |2dµ, ∀f ∈ D. (4.6)

By definition, it follows that ω is total. If D is a Fréchet space, by
Proposition 3.2 one has Sω ∈ L(D,D×) and, if ω is not a frame, Sω is
unbounded. Furthermore, Sω is injective, and S−1

ω is bounded.

Example. Let us consider the space OM , known (see [27]) as the set of in-
finitely differentiable functions on R that are polynomially bounded together
with their derivatives. Let us consider g(x) ∈ OM such that 0 < m < |g(x)|.
If we define ωx := g(x)δx, then {ωx}x∈R is a distribution lower semi-frame
with A = m2.

The proof of the following lemma is analogous to that of Lemma 2.5 in
[4]:

Lemma 4.5. Let ω be an upper semi-frame with upper frame bound M and
θ a total family dual to ω. Then θ is a lower semi-frame, with lower frame
bound M−1.

4.2. Distribution Frames

This section is devoted to distribution frames, with main results already
shown in [29].

Definition 4.6 ([29, Definition 3.6]). Let D[t] ⊂ H ⊂ D×[t×] be a rigged
Hilbert space, with D[t] a reflexive space and ω a Bessel map. We say that ω
is a distribution frame if there exist A,B > 0 such that:

A∥f∥2 ≤
∫
X

| ⟨f |ωx⟩ |2dµ ≤ B∥f∥2, ∀f ∈ D. (4.7)

A distribution frame ω is clearly, in particular, an upper bounded semi-
frame. Thus, we can consider the operator Ŝω defined in (4.4). It is easily
seen that, in this case,

A∥f∥ ≤ ∥Ŝωf∥ ≤ B∥f∥, ∀f ∈ H.

This inequality, together with the fact that Ŝω is symmetric, implies that Ŝω

has a bounded inverse Ŝ−1
ω everywhere defined in H.

Remark 4.7. It is worth noticing that the fact that ω and Sω extend to H
does not mean that ω a frame in the Hilbert space H, because we do not
know if the extension of Sω has the form of (3.4) with f, g ∈ H.

To conclude this section, we recall a list of properties of frames proved
in [29].
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Lemma 4.8 ([29, Lemma 3.8]). Let ω be a distribution frame. Then, there
exists Rω ∈ L(D) such that SωRωf = R×

ωSωf = f , for every f ∈ D.

As a consequence, the reconstruction formulas for distribution frames
hold for all f ∈ D:

f = R×
ωSωf =

∫
X

⟨f |ωx⟩R×
ωωxdµ;

f = SωRωf =

∫
X

⟨Rωf |ωx⟩ωxdµ.

These representations have to be interpreted in the weak sense.

Remark 4.9. The operator Rω acts as an inverse of Sω. On the other hand the
operator Ŝω has a bounded inverse Ŝ−1

ω everywhere defined in H. It results

that [29, Remark 3.7]: Ŝ−1
ω D ⊂ D and Rω = Ŝ−1

ω �D.
There exists the dual frame:

Proposition 4.10 ([29, Lemma 3.10]). Let ω be a distribution frame. Then
there exists a weakly measurable function θ such that:

⟨f |g⟩ =
∫
X

⟨f |θx⟩ ⟨ωx|g⟩ dµ, ∀f, g ∈ D.

Where θx := R×
ωωx. The frame operator Sθ for θ is well defined and we

have: Sθ = ID,D×Rω.
The distribution function θ, constructed in Proposition 4.10, is also a

distribution frame, called the canonical dual frame of ω. Indeed, it results
that [29]:

B−1∥f∥2 ≤ ⟨Sθf |f⟩ ≤ A−1∥f∥2, ∀f ∈ D.

4.3. Parseval distribution frames

Definition 4.11. If ω is a distribution frame, then we say that:

a) ω is a tight distribution frame if we can choose A = B as frame bounds.
In this case, we usually refer to A as a frame bound for ω;

b) ω is a Parseval distribution frame if A = B = 1 are frame bounds.

More explicitly a weakly measurable distribution function ω is called a
Parseval distribution frame if [29, Definition 3.13]:∫

X

| ⟨f |ωx⟩ |2dµ = ∥f∥2, f ∈ D.

It is clear that a Parseval distribution frame is a frame in the sense of De-
finition 4.6 with Sω = ID, the identity operator of D.

Lemma 4.12 ([29, Lemma 3.14]). Let D ⊂ H ⊂ D× be a rigged Hilbert space
and ω : x ∈ X 7→ ωx ∈ D× a weakly measurable map. The following state-
ments are equivalent.

(i) ω is a Parseval distribution frame;
(ii) ⟨f |g⟩ =

∫
X
⟨f |ωx⟩ ⟨ωx|g⟩ dµ, ∀f, g ∈ D;
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(iii) f =
∫
X
⟨f |ωx⟩ωxdµ, the integral on the r.h.s. is understood as a conti-

nuous conjugate linear functional on D, that is an element of D×.

The representation in (iii) of Lemma 4.12 is not necessarily unique.

5. Distribution basis

Definition 5.1 ([29, Definition 2.3]). Let D[t] be a locally convex space, D×

its conjugate dual and ω : x ∈ X 7→ ωx ∈ D× a weakly measurable map.
Then ω is a distribution basis for D if, for every f ∈ D, there exists a unique
measurable function ξf such that:

⟨f |g⟩ =
∫
X

ξf (x) ⟨ωx|g⟩ dµ, ∀f, g ∈ D

and, for every x ∈ X, the linear functional f ∈ D → ξf (x) ∈ C is continuous
in D[t].

The above formula can be represented by:

f =

∫
X

ξf (x)ωxdµ

in weak sense.

Remark 5.2. Clearly, if ω is a distribution basis, then it is µ-independent.
Furthermore, since f ∈ D 7→ ξf (x) ∈ C continuously, there exists a unique
weakly µ-measurable map θ : X → D× such that: ξf (x) = ⟨f |θx⟩ for every
f ∈ D. We call θ dual map of ω. If θ is µ-independent, then it is a distribution
basis too.

5.1. Gel’fand distribution basis

The Gel’fand distribution basis, introduced in [29], is a good substitute for the
notion of an orthonormal basis which is meaningless in the present framework.

Definition 5.3. A weakly measurable map ζ is Gel’fand distribution basis if
it is a µ-independent Parseval distribution frame.

By definition and Lemma 4.12, this means that, for every f ∈ D there
exists a unique function ξf ∈ L2(X,µ) such that:

f =

∫
X

ξf (x)ζxdµ (5.1)

with ξf (x) = ⟨f |ζx⟩ µ-a.e. Furthermore ∥f∥2 =
∫
X
| ⟨f |ζx⟩ |2dµ and ζ is total

too.
For every x ∈ X, the map f ∈ H 7→ ξf (x) ∈ C defines as in (4.3) a

linear functional ζ̌x on H, then for all f ∈ H:

f =

∫
X

⟨
f |ζ̌x

⟩
ζxdµ.

We have the following characterization result [29]:
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Proposition 5.4 ([29, Proposition 3.15]). Let D ⊂ H ⊂ D× be a rigged Hilbert
space and let ζ : x ∈ X 7→ ζx ∈ D× be a Bessel distribution map. Then the
following statements are equivalent.

(a) ζ is a Gel’fand distribution basis.
(b) The synthesis operator Tζ is an isometry of L2(X,µ) onto H.

Example ([29, Example 3.17]). Given the rigged Hilbert space:

S(R) ↪→ L2(R) ↪→ S×(R),
for x ∈ R the function ζx(y) = 1√

2π
e−ixy, defines a (regular) tempered

distribution: in fact, denoting as usual by ĝ, ǧ, respectively, the Fourier
transform and the inverse Fourier transform of g ∈ L2(R), one has that

S(R) ∋ ϕ 7→ ⟨ϕ|ζx⟩ = 1√
2π

∫
R ϕ(y)e−ixydy = ϕ̂(x) ∈ C. For all x ∈ R the

set of functions ζ := {ζx(y)}x∈R is a Gel’fand distribution basis, because the
synthesis operator Tζ : L2(R) → L2(R) defined by:

(Tζξ)(x) =
1√
2π

∫
R
ξ(y)e−ixydy = ξ̂(x), ∀ξ ∈ L2(R)

is an isometry onto L2(R) by Plancherel theorem. The analysis operator is:
T ∗
ζ f = f̌ , for all f ∈ L2(R).

Example ([29, Example 3.18]). Let us consider again S(R) ↪→ L2(R) ↪→
S×(R). For x ∈ R, let us consider the Dirac delta δx : S(R) → C, ϕ 7→
⟨ϕ|δx⟩ := ϕ(x). The set of Dirac deltas δ := {δx}x∈R is a Gel’fand distribution
basis. In fact, the Parseval identity holds:∫

R
| ⟨δx|ϕ⟩ |2dx =

∫
R
|ϕ(x)|2dx = ∥ϕ∥22, ∀ϕ ∈ S(R).

The synthesis operator: Tδ : L2(R) → L2(R) is:

⟨Tδξ|ϕ⟩ =
∫
R
ξ(x) ⟨δx|ϕ⟩ dx =

∫
R
ξ(x)ϕ(x)dx = ⟨ξ|ϕ⟩ , ∀ϕ ∈ S(R).

Then Tδξ = ξ for all ξ ∈ L2(R). Since Tδ is an identity, it is an isometry onto
L2(R).

5.2. Riesz distribution basis

Proposition 5.4 and (5.1) suggest a more general class of bases that will play
the same role as Riesz bases in the ordinary Hilbert space framework.

Definition 5.5. Let D ⊂ H ⊂ D× be a rigged Hilbert space. A weakly mea-
surable map ω : x ∈ X 7→ ωx ∈ D× is a Riesz distribution basis if ω is a
µ-independent distribution frame.

One has the following:

Proposition 5.6 ([29, Proposition 3.19]). Let D ⊂ H ⊂ D× be a rigged Hilbert
space and let ω : x ∈ X 7→ ωx ∈ D× be a Bessel distribution map. Then the
following statements are equivalent:
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(a) ω is a Riesz distribution basis;
(b) If ζ is a Gel’fand distribution basis, then the operator W defined, for

f ∈ H, by:

f =

∫
X

ξf (x)ζxdµ 7→ Wf =

∫
X

ξf (x)ωxdµ

is continuous and has bounded inverse;
(c) the synthesis operator Tω is a topological isomorphism of L2(X,µ) onto

H.

Proposition 5.7. If ω is a Riesz distribution basis then ω possesses a unique
dual frame θ which is also a Riesz distribution basis.

Example. Let us consider f ∈ C∞(R): 0 < m < |f(x)| < M . Let us define
ωx := f(x)δx: then {ωx}x∈R is a distribution frame, in fact:∫

R
| ⟨ωx|ϕ⟩ |2dx =

∫
R
|f(x)ϕ(x)|2dx ≤ M2∥ϕ∥22, ∀ϕ ∈ S(R),

and

m2∥ϕ∥22 ≤
∫
R
|f(x)ϕ(x)|2dx ≤ M2∥ϕ∥22, ∀ϕ ∈ S(R).

Furthermore, {ωx}x∈R is µ-independent. In fact, putting:∫
R
ξ(x) ⟨ωx|g⟩ dx = 0, ∀g ∈ S(R),

one has: ∫
R
ξ(x) ⟨ωx|g⟩ dx =

∫
R
ξ(x)f(x) ⟨δx|g⟩dx = 0, ∀g ∈ S(R).

Since {δx}x∈R is µ-independent, it follows that ξ(x)f(x) = 0 a.e., then ξ(x) =
0 a.e.. By definition, {ωx}x∈R is a Riesz distribution basis.

Concluding remarks

In a Hilbert space, frames, semi-frames, Bessel, Riesz-Fischer sequences, and
Riesz bases are related through the action of a linear operator on elements
of an orthonormal basis (see also [29, Remark 3.22]). On the other hand, in
literature some studies on bounds (upper and lower) of these sequences have
been already considered and their links with the linear operators related to
them have been studied (see [6, 9, 4]). For that, it is desirable to continue an
analogous study in rigged Hilbert spaces by considering linear operators in
L(D,D×).
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