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Abstract 

Bloom filters, since their introduction over 50 years ago, have become a pillar to han-
dle membership queries in small space, with relevant application in Big Data Min-
ing and Stream Processing. Further improvements have been recently proposed 
with the use of Machine Learning techniques: learned Bloom filters. Those latter make 
considerably more complicated the proper parameter setting of this multi-criteria 
data structure, in particular in regard to the choice of one of its key components (the 
classifier) and accounting for the classification complexity of the input dataset. Given 
this State of the Art, our contributions are as follows. (1) A novel methodology, sup-
ported by software, for designing, analyzing and implementing learned Bloom filters 
that account for their own multi-criteria nature, in particular concerning classifier type 
choice and data classification complexity. Extensive experiments show the validity 
of the proposed methodology and, being our software public, we offer a valid tool 
to the practitioners interested in using learned Bloom filters. (2) Further contributions 
to the advancement of the State of the Art that are of great practical relevance are 
the following: (a) the classifier inference time should not be taken as a proxy for the fil-
ter reject time; (b) of the many classifiers we have considered, only two offer good 
performance; this result is in agreement with and further strengthens early findings 
in the literature; (c) Sandwiched Bloom filter, which is already known as being one 
of the references of this area, is further shown here to have the remarkable property 
of robustness to data complexity and classifier performance variability.

Keywords:  Bloom filters, Learned Bloom filters, Approximate set membership, Dataset 
complexity

Introduction
In the past 25 years, Machine Learning (ML) radically impacted on the computing land-
scape, unveiling a very significant part of the applications which brought Artificial Intel-
ligence in everyday life. Recent works show that ML can be used to design and analyze 
from a different perspective also some of the core components of “classical” computing 
field, such as algorithms and data structures. In particular, Kraska et al. [1] initiated a 
new research area focusing on learned data structures, currently under active develop-
ment and with documented impacts on several domains, such as databases, network 
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management [2] and Computational Biology [3]. An analogous trend concerning algo-
rithms has been proposed by Mitzenmacher and Vassilvitskii [4]. Concerning data struc-
tures, the common theme to this new approach is that of training a classifier [5] or a 
regression model [6] on the input data. Then such a learned model is used as an oracle 
that a given “classical” data structure can use in order to answer queries with improved 
performance (usually w.r.t. time). To date, learned indexes have been the most studied, 
e.g., [1, 7–17], although rank/select data structures have also received some attention 
[18]. In this work, we focus on Bloom filters (BFs) [19], which represent one of the cor-
nerstones of Big Data processing and stream analysis [20]. In short, they are special data 
structures expressly designed for storing a set which is large w.r.t. the available RAM 
resources. In a nutshell, rather than saving all the elements of the set, these structures 
wisely exploit hashing techniques so that it is possible to answer membership queries by 
using a relatively small amount of main memory. This property, which however is bal-
anced with a controllable amount of false positives when the data structure is queried, 
makes Bloom filters heavily used in contexts characterized by the processing of a mas-
sive amount of data, such as for instance in detecting redundancy within a stream [21], 
in sequencing DNA data [22, 23], or when it is necessary to limit the number of unnec-
essary disk accesses in cloud-based databases [24]. As well as other data structures, also 
Bloom filters received attention in the realm of learned data structures, within which 
learned Bloom filters have been proposed to improve efficiency [25]. This is definitely 
natural, accounting for their pervasive use. Indeed, several variants have been proposed 
also for the classical version of Bloom filters, long before the appearance of their learned 
counterparts.

Bloom filters (BF) solve the Approximate Set Membership problem, defined as follows: 
having fixed a universe U and a set of keys S ⊂ U , for any given x ∈ U , find out whether 
or not x ∈ S . False negatives, that is negative answers when x ∈ S , are not allowed. 
On the other hand, false positives (i.e., elements in U\S wrongly decreed as keys) are 
allowed, albeit their fraction (termed henceforth false positive rate, FPR for short) should 
be bounded by a given ǫ . The metrics that can be considered for evaluating any data 
structure solving the approximate set membership problems are: (1) the FPR, (2) the 
amount of RAM to be used to store the data structure, and (3) the reject time, that is the 
expected time required to reject any element not belonging to S. It is to be noted that the 
Bloom filter as described above assumes that U is one-dimensional, and we keep such 
an assumption throughout this paper. Bloom filters can be naturally extended to the 
multi-dimensional case with the use of suitable hash functions; however, the problem 
of how to design a multi-dimensional Bloom filter has not been considered and prop-
erly addressed in the scholarly literature, even in the learned setting which is considered 
here, e.g. [26, 27].

The first proposal for the learned version of a Bloom filter was naturally called learned 
Bloom filter (LBF) [1]; it is based on a binary classifier induced from data, with the aim 
of predicting set membership while requiring less space than a classical BF, being equal 
the FPR of the two structures (or vice versa, fix space budget and reduce the FPR). Such 
classifier is coupled with a standard BF storing the false negatives suffered from the for-
mer. When queried, the learned filter computes the prediction via the classifier and pos-
sibly uses the BF as a fallback ensuring that no false negatives on the training data are 
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ever produced. Mitzenmacher [28] has provided a model for those filters, together with 
a very informative mathematical analysis of their pros/cons, resulting in new models 
for LBFs, and additional models have been introduced recently [29, 30]. It is important 
to underline that all the mentioned learned Bloom filters are static, i.e., no updates are 
allowed. This is the realm we are studying here, aiming at a suitable joint optimization of 
the aforementioned key resources. As for the dynamic case, some progress is reported in 
[31] in the Data Stream model of computation.

It is worth pointing out that, although they differ in architecture, each of these propos-
als has a binary classifier at its core. Somehow, not much attention has been devoted to 
the choice of the classifier to be used in practical settings, despite its centrality in this 
new family of filters and its role in the related theoretical analysis [28]. Kraska et al. use 
a Recurrent Neural Network, while Dai and Shrivastava [29] and Vaidya et al. [30] use 
Random Forests. These choices are only informally motivated, giving no evidence of 
superiority with respect to other possible ones, e.g., via a comparative analysis. There-
fore, apart from preliminary investigations presented in [32, 33], the important problem 
of suitably choosing the classifier to be used to build a specific LBF has not been fully 
addressed so far. In addition to that, although the entire area of learned data structures 
and Algorithms finds its methodological motivation as a conceptual tool to reconsider 
classic approaches in a data-driven way, the role that the complexity of a dataset plays in 
guiding the practical choice of a learned data structure for that dataset has been consid-
ered to some extent for learned indexes only [15]. This aspect is even more relevant for 
LBFs. Indeed, as well discussed in [28], while the performance of classic BFs is “agnos-
tic” w.r.t. the statistical properties of the input data, LBFs are quite dependent on them. 
In addition, it is well-known that the performance of a learnt classifier (a central com-
ponent in this context) is very sensitive to the “classification complexity” of a dataset 
[34–37]. Nonetheless, the literature on LBFs usually describes experiments based on the 
processing of limited sets of benchmark data, e.g., in the realm of malicious URL detec-
tion [38] or geospatial information retrieval [27], without analyzing the sensitivity of the 
proposed approaches to the properties of the processed data. Such a state of the art is 
problematic, both methodologically and practically, for LBFs to be a reliable competitor 
of their classic counterparts.

Our aim is to provide a methodology and the associated software to support the 
design, analysis and deployment of state-of-the-art learned Boom filters with respect to 
specific constraints regarding their multi-criteria nature. Namely, space efficiency, false 
positive rate, and reject time. The present study is organized as follows. In “Classical and 
learned Bloom filters” section we briefly describe the original and learned variants of 
Bloom filters, underlining the specific roles of the hyperparameters to be tuned during 
the inductive phase. We illustrate in “Experimental methodology” section the method-
ology which we propose to LBF designers and users in need of studying the relations 
among the metrics used to evaluate how a (either classic or learned) filter performs on 
a fixed dataset, given the classification complexity of the latter, and the classifier the 
learned filter is based upon. “Experiments” section has the twofold aim of introducing 
the software platform within which we implemented the above-mentioned methodology 
and of describing the experiments which we carried out. In particular, having fixed the 
total space budget and the complexity of a dataset, we focus on the problem of choosing 
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the most suitable classifier backing a LBF, also considering reject time as a selection cri-
terion. In [28], a related approach uses a fixed filter, thus providing partial answers to our 
research question and, moreover, somehow suggesting an experimental methodology 
which has not been validated. The results of our experiments are discussed in “Results 
and discussion” section. In particular, we show that only two specific classifiers are worth 
to be considered when building a LBF, namely, those based on Support Vector Machines 
and feed-forward Neural Networks. Remarkably, they have been almost neglected in the 
existing literature, with the exceptions of [32, 33, 39].

Two further contributions regard: (1) an analysis of the relation among the classi-
fier inference time and the learned BF reject time, showing that the first should not be 
taken as a proxy for second; (2) the study of how the complexity of a dataset impacts 
on the performance of several state-of-the-art learned Bloom filters, identifying a vari-
ant exhibiting higher robustness against variations in the dataset complexity and in the 
classifier performance. As a byproduct, “Guidelines” section provides a set of guidelines 
and recommendations for the use of state-of-the-art learned Bloom filter variants. Some 
concluding remarks end the paper.

Classical and learned Bloom filters
As mentioned in the “Introduction” section, a Bloom filter is a data structure designed in 
order to solve the Approximate Set Membership problem for a set S [19]. It is composed 
of an array v of m boolean entries and of k hash functions, h1, . . . , hk , mapping keys and 
non-keys onto positions within v . Such functions are assumed to be k-wise independent 
[40, 41], although in practice less strict requirements are effective [19]. After the entries 
of v have been initialized to 0, all the keys x ∈ S are considered, setting vhj(x) ← 1 , for 
each j ∈ {1, . . . , k} . At this point, the filter can be used to predict membership in the 
set for a generic value x by evaluating vhj(x) , for each j: if at least once the result is 0, the 
value is rejected (that is, it is predicted to be a non-key). Otherwise, it is classified as a 
key (an element of S). By construction, such predictions never incur in false negatives, 
although hash collisions might cause false positives. However, the rate ǫ of the latter is 
inversely bound by m as stated by equation (21) in [19], that formally relates reject time, 
space requirements, and FPR. This fact is typically used to choose the filter configura-
tion. For instance, FPR can be minimized by suitably selecting the reject time once the 
filter space has been fixed. Similar relations can be exploited in order to fix m and k so 
as to build a BF exhibiting the most succinct configuration [25, 28]. Analogously, having 
fixed the FPR to ǫ and considering n = |S| keys, the BF with optimal reject time can be 
obtained via an array of size

bits, as shown in [42].
The learned variants of Bloom filters [1] can be seen as systems exhibiting the same 

properties of the latter, meanwhile reducing FPR or time/space resource demand. 
The common point to these variants is that all rely on a classifier induced from data. 
Their simplest implementation, which we will refer to as a LBF, is formally described 
as follows. Starting from a set of labeled instances (x, yx) , where yx = 1 if x ∈ S and 0 

(1)m =
n

ln 2
log2(1/ǫ)
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otherwise, a classifier C:U → [0, 1] is trained through supervised ML techniques to 
classify keys in S. Namely, the higher the classification score C(x) , the more likely x ∈ S . 
A crisp prediction is obtained through the application of a threshold τ ∈ [0, 1] , so that 
x ∈ U is, at this stage, considered as a key if and only if C(x) > τ . This setting, however, 
might give rise to a non-empty set FN = {x ∈ S |C(x) ≤ τ }} of false negatives, which is 
not accepted within the Approximate Set Membership problem. Therefore, the classifier 
is coupled with a (classical) Bloom filter F, called the backup filter, used to hold the ele-
ments in FN . All queries for which the classifier produces a negative output are searched 
in F, swapping the prediction whenever F answers x is a key. In sum, any x ∈ U is pre-
dicted to be a key if the classification score C(x) is greater than τ , or if C(x) ≤ τ and F 
does not reject x . In all other cases x is rejected.

An important difference between classical and learned Bloom filters is that the former 
have a FPR essentially independent of keys, whereas in a LBF the same quantity depends 
on the distribution of the instances used to query the filter itself. To this end, in the fol-
lowing we explicitly refer to the empirical FPR

of a learned filter, where ǫτ = |{x ∈ S |C(x) > τ }|/|S| is the analogous empirical FPR of 
the classifier C on a query set S ⊂ U\S , and ǫF is the FPR of the backup filter. Given 
the previous definition of empirical FPR (2), the overall LBF has FPR equal to ǫ when 
the backup filter F is built ensuring ǫF = (ǫ − ǫτ )/(1− ǫτ ) , under the constraint ǫτ < ǫ . 
Finally, we point out two important considerations. Firstly, choosing τ influences the val-
ues of the metrics used to evaluate a learned Bloom filter. Moreover, the dependency 
on data makes estimating the FPR in a learned setting no longer immediate as it is for 
classical filters, as highlighted in [28]. Similar considerations hold for the experimental 
methodology to be used to assess this FPR, which is one of the novelties proposed in this 
paper.

Alongside LBFs described so far, we consider the following variants. 

1.	 Sandwiched LBFs (SLBFs) [28] are based on the insight that filtering out non-
keys before querying the classifier can lead to an optimized space efficiency, and 
as a consequence to a smaller backup filter. More precisely, the provided keys are 
initially used to build an initial (still classical) BF I, and all keys in S not rejected 
by this filter are used to build a LBF. The overall system is queried as follows: if I 
rejects an element x ∈ U , the latter is predicted as a non-key, otherwise the predic-
tion provided for this element by the LBF is returned. The empirical FPR of a SLBF 
is obtained as ǫ = ǫI

(

ǫτ + (1− ǫτ )ǫF
)

 , being ǫI the FPR of the initial filter. Also in 
this case, the target FPR ǫ of the SLBF automatically identifies that of I. Precisely, 
ǫI = (ǫ/ǫτ )(1− |FN|/n) , where |FN| is the number of false negatives of C, under the 
constraint ǫ(1− |FN|/n) ≤ ǫτ ≤ 1− |FN|/n . Also in this case, FPR, space require-
ment and reject time are affected by the classifier accuracy.

2.	 Adaptive LBFs (ADA-BF) [29] represent another variation of a LBF in which the 
training instances x are partitioned in g groups in function of their classification 
score C(x) . Each group is assigned a different set of hash functions (although glob-
ally using the same number of functions a LBF would use), and when membership 

(2)ǫ = ǫτ + (1− ǫτ )ǫF
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is to be predicted for an instance x , this is done only using the hash functions of the 
corresponding score group. As for LBFs and SLBFs, the expected FPR is estimated 
empirically, though with a rather complex formula (the interested reader can refer 
to [29] for the mathematical details). As there are several variants of ADA-BF, in our 
experiments we consider the best performing one.

With the exception of another variant described in [30], for which the software is nei-
ther public nor available from the authors, our selection of learned BFs is state-of-the-art.

The induction of these learned filters requires to fine-tune some hyperparameters: 
LBF and SLBF have to fix the threshold τ , while ADA-BF needs the number g of 
groups to be set, as well as the value c̄ representing the proportion of non-keys scores 
falling in two consecutive groups. “Selecting optimal classifiers and learned Bloom 
filters” section details how such hyperparameters have been tuned.

Experimental methodology
This section outlines the methodology which we use to design and analyse learned 
Bloom filters, also accounting for the inherent complexity of the dataset to be classi-
fied. In short, we generalize the approach described in [33] as follows. Starting from 
a dataset (either real-world or synthetically generated in function of suitable clas-
sification complexity metrics), we adopt the following pipeline: collect or generate 
data; use them to induce a classifier, estimate the corresponding FPR; build a learned 
Bloom filter based on this classifier; estimate the overall empirical FPR. Here below 
we detail the classifier families that we consider, as well as the above-mentioned pro-
cedure used to generate synthetic data.

The considered classifiers

We performed a preliminary experimentation phase involving an initial list of ML mod-
els—compiled without exhaustiveness pretensions—with the aim of identifying which 
among them were worth of further consideration, on the basis of the performance/space 
requirements trade-off (experiments and data about this initial step of our study are 
available upon request). Confirming the results of another study [32], Logistic Regres-
sion [43], Naive Bayes [44] and Recurrent Neural Networks [45] were removed from the 
list of classifier families to be considered, due to their poor trade-off performance. Here 
below we succinctly illustrate the retained models, also detailing their inference process 
in a context characterized by unbalanced labels, as our evaluation both considers bal-
anced and unbalanced classification problems. We distinguish between regular and key 
hyperparameters of the corresponding learning algorithms, where the second category 
contains hyperparameters whose value affects the induced classifier space occupancy 
(which, when not differently specified, also acts as a proxy for classifier complexity). In 
light of this distinction, we only consider regular hyperparameters in the model selection 
phase. On the other hand, dedicated experiments are carried out w.r.t. different configu-
rations for the key hyperparameters, with the aim of analysing the interplay among FPR, 
space requirements and reject time in learned Bloom filters.
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In order to fix notation, we assume U = R
q as universe, and we refer to D ⊂ U as a set 

of d labeled instances, denoting by x ∈ D a training instance and by yx ∈ {0, 1} its label 
(with a slightly different notation for SVMs, as explained here below).

Linear SVM. Classification in Linear Support Vector Machines (SVMs) for a 
given instance x is usually based on the optimal hyperplane ( w, b ) and the sign of 
f (x) = w · x + b . To fall in the setting defined for a LBF, we need to transform the SVM 
prediction into a score in [0, 1]. To this end, we use f (x) as argument to a sigmoid func-
tion. The optimal hyperplane ( w, b ) is learned via maximization of the margin between 
the two classes, by solving

where misclassification is allowed by the slack variables ξx and penalized using the 
hyperparameter c > 0 (note that in this case yx ∈ {−1, 1} ). Nonlinear SVMs might have 
been used here, but the need of storing the kernel matrix (e.g., containing the values of 
a Gaussian kernel) alongside the hyperplane parameters results in an unacceptable size 
for the learned filters. For the linear case we have chosen, we have only one non-key 
hyperparameter, namely c. When dealing with unbalanced labels, we consider the cost-
sensitive SVM version described in [46].

Feed-forward NNs We also consider Feed-Forward neural networks [47, 48] accepting 
instances as inputs and equipped with l hidden layers, respectively having h1, . . . , hl hid-
den units (NN-h1, . . . , hl for short). One output unit completes the network topology. As 
usual, training involves the estimation of unit connections and biases from data. In this 
case, the hi s are key hyperparameters, while the learning rate lr acts as a regular hyper-
parameter to be tuned. It is worth noting that we fix the activation functions for all net-
work units (although the former are tunable in principle), to limit the size of the already 
massive set of experiments. Precisely, as typically done, we use ReLU and sigmoid activa-
tions for hidden and output units, respectively. Where appropriate, label imbalance is 
dealt with by a cost-sensitive model variant [49].

Decision trees Additionally, we consider the Decision Tree classifier (DT)  [50], 
a non-linear classifier based on recursive splits of the input space so as to suitably 
detect the regions to be assigned to the individual classes according to input data 
D. The set of recursive splits can be represented through a tree, where each node is 
associated with a feature and a threshold, used to bi-partition input data according to 
their value for that feature. Data are recursively split till leaf nodes, where no further 
split is possible. DTs are typically used to perform binary or multiclass classification, 
therefore leaves are associated with one of the classes. In our case instead, where a 
real score in [0, 1] is needed as output, the usual approach is to take the fraction of 
1-labeled samples ending in a leaf node (w.r.t. the total number of samples ending in 
the same node) as its prediction value. The setting of this classifier is jointly selected 
with that of Random Forests (an extension of DTs explained in the next paragraph), to 
avoid the model selection for both models to become too computationally intensive. 
As a consequence, we fix the maximum depth and maximum number of leaves dur-
ing the DT growth, and consider only one non-key hyperparameter, the minimum 

minw,b
1
2�w�2 + c

∑

x∈D ξx ,
such that yxf (x) ≥ 1− ξx ∀x ∈ D ,

ξx ≥ 0 ∀x ∈ D ,
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number δ of samples in a leaf. This hyperparameter prevents further splitting of nodes 
when the split would induce children containing less that δ samples, and accordingly 
allows to control the depth of the tree and its complexity. Although this can effec-
tively affect the classifier size, the overall training setting of DT substantially limits 
the impact of this hyperparameter on the DT size.

It is worth noting here that the ‘indirect’ way to derive a score of a classifier inher-
ently designed for discrete outputs might lead to ‘unusual’ distributions of out-
put scores, which might produce unstable behaviors of the learned BF using it. For 
instance, this is the case when the number of leaves is small and/or multiple leaves 
contain the same fraction of 1-labeled instances (that is, they are associated with the 
same output score), which can cause the classifier to have only a few distinct output 
scores.

Random Forests Finally, we consider also Random Forests [51], shortened as RF-t to 
make explicit that this model is an ensemble of t classification trees. Each such tree 
is trained on a different bootstrap subset of D randomly extracted with replacement. 
Analogously, the splitting functions at the tree nodes are chosen from a random sub-
set of the available attributes. The RF aggregates classifications uniformly across trees, 
computing for each instance the fraction of trees that output a positive classification. 
To address the case of unbalanced labels, we adopt an imbalance-aware variant of 
RFs  [52, 53] in which, during the growth of each tree, the bootstrap sample is not 
drawn uniformly over D, but by selecting an instance x with probability

where D+ = {x ∈ D|yx = 1} , and D− = D \ D+ . In this way, the probabilities of extract-
ing a positive or a negative example are both 1/2, and the trees are trained on balanced 
subsets. The key hyperparameter of a RF is t, directly impacting on the classifier size. 
The non-key hyperparameters are selected as for DTs (see previous paragraph).

Measures of classification complexity

Several approaches can be considered when the classification complexity of a data-
set is to be assessed (see [54] for a survey). In our experiments, we specifically focus 
on binary classification tasks, using the notation “class i”, i = 1, 2 , to refer to the two 
classes involved in the problem (although when less precision is needed, we resort 
to the classical terminology involving a positive and a negative class). Some of the 
measures listed in the above mentioned survey (precisely, F1, T2, or T3) proved to 
be insensitive across a variety of data synthetically generated, whereas the evaluation 
of other ones (mainly network- or neighborhood-based measures such as LSC and 
N1) required an excessive amount of RAM. Therefore we selected the feature-based 
measure F1v and the class-imbalance measure C2: both take values in [0, 1], and the 
higher the value, the more complex is the dataset. The former quantity, also called 
the Directional-vector Maximum Fisher’s Discriminant Ratio, is defined as follows: 
denote, respectively, by pi , µi , and �i the proportion of examples belonging to class 

px =

{

1
2|D+|

if yx = 1,
1

2|D−|
if yx = 0,
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i and the corresponding centroid and scatter matrix, so that W = p1�1 + p2�2 and 
B = (µ1 − µ2)(µ1 − µ2)

⊤ are the between- and within-class scatter matrices. In this 
case, d = W

−1(µ1 − µ2) corresponds to the direction onto which there is maximal 
separation of the two classes (being W−1 the pseudo-inverse of W  ), and we can define 
the F1v measure as

The second measure accounts for label balance in the dataset: letting ni be the number of 
examples of class i, we have C2 = (n1 − n2)

2/(n21 + n22).

Data generation

We generate synthetic data considering three parameters, a, r and ρ , which allow to 
tune the complexity of generated data according to the aforementioned measures. 
Intuitively, a controls the linearity of the separation boundary, r the label noise, and ρ 
the label imbalance. More precisely, in order to generate a binary classification dataset 
with a given level of complexity, n1 positive and n2 = ⌈ρn1⌉ negative instances (with 
N = n1 + n2 ), we proceed as follows. Let {x1, . . . xN } ⊂ R

q be the set of samples, with 
each sample xi having q features xi1, . . . , xiq , and a binary label yi ∈ {0, 1} . The N sam-
ples are drawn from a multivariate normal distribution N (0,�) , with � = γ Iq (with 
γ > 0 and Iq denoting the q × q identity matrix). In our experiments we set γ = 5 so 
as to have enough data spread, reminding that this value however does not affect the 
data complexity. Without loss of generality, we consider the case q = 2 . To determine 
the classes of positive and negative samples, the parabola x2 − ax21 = 0 is considered, 
with a > 0 : a point xi = (xi1, xi2) is positive ( yi = 1 ) if xi2 − ax2i1 > 0 , negative other-
wise ( yi = 0 ). This choice allows us to control the linear separability of positive and 
negative classes by varying the parameter a: the closer a to 0, the more linear the sep-
aration boundary. As a consequence, a controls the problem complexity for a linear 
classifier. An example of generated data by varying a is given in Fig. 1a–c. Further, to 
vary the data complexity even for non linear classifiers, labels are perturbed with dif-
ferent levels of noise: we flip the label of a fraction r of positive samples, selected uni-
formly at random, with an equal number on randomly selected negatives. The effect 
of three different levels of noise is depicted in Fig. 1d–f, where the higher the noise, 
the less sharp the separation boundary. The third parameter ρ is the ratio between the 
number of negative and positive samples in the dataset, thus it controls the C2 com-
plexity measure. Higher values of ρ make the negative boundary more clear (Fig. 1g–
i), while making harder training an effective classifier [55].

Experiments
This section describes the datasets and the hardware we use in our experiments, as 
well as the process we follow in order to select the optimal classifiers and the corre-
sponding learned Bloom filters.

(3)F1v =

(

1+
d
⊤
Wd

d
⊤
Bd

)−1

.
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Datasets

We process both domain-specific and synthetically generated datasets. Concerning 
the first category, we use a URL dataset and a DNA dictionary. The first has been 
used by [29], who also kindly provided us with the dataset, as part of their experi-
mentation on learned Bloom filters. The second dataset comes from experiments in 
Bioinformatics regarding the storage and retrieval of k-mers (i.e., strings of length k 
appearing in a given genome, whose spectrum is the dictionary of k-mers) [56] and 
was directly generated by us. We point out that no sensible information is contained 
in these datasets. With reference to Table 1, they represent two extreme cases of clas-
sification complexity: the URL dataset is easy, as it is simple in terms of linear sepa-
rability (F1v), albeit exhibiting a relevant C2 complexity due to the label imbalance; 
the DNA data is hard, in that it has almost the maximum F1v possible value, meaning 
that positive and negative classes are indistinguishable by a linear classifier.

Fig. 1  Graphical representation of synthetic data: first row, parameter configuration is np = 500 , r = 0 , ρ = 1 
and a = 0.01 (a), a = 0.1 (b), and a = 1 (c); second row np = 500 , a = 0.1 , ρ = 1 and r = 0 (d), r = 0.1 (e), and 
r = 0.25 (f); third row, np = 100 , a = 0.1 , r = 0 , ρ = 1 (g), ρ = 3 (h), and ρ = 5 (i). “pos” and “neg” entries in the 
legend stand for positive and negative class, respectively

Table 1  Complexity of the real data

Data F1v C2

URL 0.08172 0.62040

DNA 0.99972 0
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The URL dataset contains 485,730 unique URLs, 80,002 malicious and the remaining 
benign. Seventeen lexical features are associated with each URL, which are used as the 
classification features. It is worth pointing out that all of the previous works on learned 
Bloom filters have used URL data. In this context, a Bloom filter can be used as a time- 
and space-efficient data structure to quickly reject benign URLs, never erroneously 
trusting a malicious URL although occasionally misclassifying a benign one. We adhere 
to this standard here.

The DNA dataset refers to the human chromosome 14, containing n = 49,906,253 
14-mers [56] constituting the set of our keys. As non-keys, we uniformly generate other 
n 14-mers from the 414 possible strings on the alphabet {A,T, C,G} . Each 14-mer is 
associated with a 14-dimensional feature vector, whose components are the integers 
0, 1, 2, 3, each associated with one of the four DNA nucleobases A, T, C, G, respectively 
(for instance a 14-mer TAATTACGAATGGT is coded as (1, 0, 0, 1, 1, 0, 2, 3, 0, 0, 1, 3, 
3, 1)). A fundamental problem in Bionformatics, both technological [57] and in terms 
of evolutionary studies [58], is to quickly establish whether a given k-mer belongs to the 
spectrum of a genome. In this case, the Bloom filter stores the dictionary. It is worth 
mentioning that the use of Bloom filters in Bioinformatics is one of their latest fields of 
application, with expected high impact [59]. Such a domain has not been considered for 
the evaluation of learned Bloom filters, as we do here.

We also generate two categories of synthetic data, each attempting to reproduce the 
complexity of one of the domain-specific data. The first category has nearly the same 
C2 complexity of the URL dataset, i.e., it is unbalanced, with n1 = 105 and ρ = 5 . The 
second one has the same C2 complexity of the DNA dataset, i.e., it is balanced, with 
n1 = 105 and ρ = 1 . The choice of n1 allows to have a number of keys similar to that in 
the URL data, and at the same time to reduce the computational burden of the mas-
sive set of experiments planned. Indeed, both balanced and unbalanced categories 
contain nine datasets, exhibiting increasing levels of F1v complexity. Specifically, all 
possible combinations of parameters a ∈ {0.01, 0.1, 1} and r ∈ {0, 0.1, 0.25} are used. The 
corresponding complexity estimation is shown in Table  2. Consistently, F1v complex-
ity increases with a and r values, in both balanced and unbalanced settings. Notewor-
thy, the label imbalance slightly affects also the F1v measure: in absence of label noise 
( r = 0 ), F1v augments, likely due to the fact that F1v is an imbalance-unaware measure; 

Table 2  Complexity of the synthetic data

a r Balanced Unbalanced

F1v C2 F1v C2

0.01 0 0.127 0.0 0.129 0.615

0.1 0 0.181 0.0 0.202 0.615

1 0 0.306 0.0 0.360 0.615

0.01 0.1 0.268 0.0 0.187 0.615

0.1 0.1 0.327 0.0 0.269 0.615

1 0.1 0.459 0.0 0.433 0.615

0.01 0.25 0.571 0.0 0.308 0.615

0.1 0.25 0.619 0.0 0.399 0.615

1 0.25 0.718 0.0 0.563 0.615
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on the contrary, in presence of noise the F1v complexity is barely reduced w.r.t. the bal-
anced case. Although not immediate, the sense of this behavior might reside in what 
we also observe in Fig. 1g–i. That is, the boundary of negative class tends to be more 
crisp when ρ increases, thus mitigating the opposite effect the noise has on the boundary 
(Fig. 1d–f).

Hardware and software

We use two Ubuntu machines: an Intel Core i7-10510U CPU at 1.80 GHz× 8 with 16 GB 
RAM, and an Intel Xeon Bronze 3106 CPU at 1.70 GHz× 16 with 192 GB RAM. This 
latter is used for experiments that require a large amount of main memory, i.e., on the 
DNA dataset. The supporting software [60] is written in Python 3.8, leveraging the 
ADA-BF public implementation provided in [61], which we extend as follows: (1) the 
construction of learned Bloom filters can be done in terms of the classifiers listed in “The 
considered classifiers” section and of the datasets illustrated in “Datasets” section; (2) 
SLBF is added to the already included BF models; (3) the choice of the classifier thresh-
old τ is performed considering any number of evenly spaced percentiles of the obtained 
classification scores, instead than checking fixed values; (4) ranges for the hyperparam-
eters of the learned versions of BFs can be specified by the user; (5) a main script allows 
to perform all experiments, rather than invoking several scripts, each dedicated to a LBF 
variant.

The provided implementation is built on top of standard libraries, listed in a dedicated 
environment file in order to foster replicability. In particular, the space required by a 
given classifier is computed, as typically done in these cases, using the Pickle module and 
accounting for both structure information and parameters [62], in order to obtain a fair 
comparison among all tested configurations. Moreover, the software is open to exten-
sions concerning the inclusion of new datasets and/or new LBF models, thus it can be 
used as a starting point for further independent researches.

Selecting optimal classifiers and learned Bloom filters

Classifiers Being the classifier performance/size trade-off crucial for the learned vari-
ants of BF, we first assess the classifier generalization ability independently of the filter 
employing it. We adopt a threefold cross validation (CV) procedure (outer), measur-
ing the classifier performance in terms of (a) the area under the ROC curve (AUC), 
and of (b) the area under the precision-recall curve (AUPRC), averaged across folds. 
We tune non-key hyperparameters of each model via a nested threefold CV (inner), 
where in each round of the outer CV, we select the optimal non-key hyperparameters 
through a grid search, retaining the configuration yielding the best AUPRC value. The 
following grids are considered: c ∈ {10−1, 1, 10, 102, 103} (SVM); δ ∈ {1, 3, 5} (DT and 
RF); lr ∈ {10−4, 10−3} (NN). The different size of the grid across classifiers is due to 
the different training time of the classifier (SVM is the fastest one). The configuration 
of a classifier is strictly dependent on the space budget assigned to the LBF leveraging 
that classifier (see Table 5 discussed later on); consequently, the key hyperparameters 
for a given classifier, i.e., hyperparameters influencing the space occupancy, are set 
as follows. Recalling that no key hyperparameters exist for SVMs, we consider RFs 
related to two values of t, leading to a simpler and a more complex model. The choice 
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t = 10 , a reference already used in the literature [29], leads to a simple model, which 
we use on all datasets. As for the complex model, we have two subcases, depending 
on space budget. For the low budget case, we set t = 20 , and the corresponding model 
is used for the synthetic/URL dataset. As for the high budget case, we set t = 100 , and 
the corresponding model is used for the DNA dataset. Those choices, although empir-
ical, indeed provide models with the required complexity. For completeness, we men-
tion that other values of t could have been considered, but we have verified that those 
choices would not add any further insight to the perspective of our analysis. The key 
hyperparameters for NNs are selected so as to yield three models nearly having the 
same occupancy of the SVM and of the two RF models, for a fair comparison. Indeed, 
we concentrate on those two classifiers since they represent the two end-points in 
regard to the space occupancy spectrum: DTs use more space than the SVM and less 
than the RFs. The above-mentioned preliminary experiments have suggested, where 
enough space budget was available, that a two-layered topology is to be preferred to 
the one-layered one. Precisely, we consider the following models: NN-25, NN-150, 50 
and NN-200, 75 (synthetic dataset); NN-7, NN-150, 35 and NN-175, 70 (URL data-
set); NN-7, NN-125, 50, NN-500, 150 (DNA dataset). The final classifier configuration 
for all experiments and their space requirements are detailed in Table  3. In Table 4 
we also include the average prediction time of the tested classifiers, that, jointly with 

Table 3  Space occupancy in Kbits of selected classifiers on the considered datasets

The acronyms for all classifiers refer to the notation introduced in “The considered classifiers” section

SVM DT RF-10 RF-20 NN-25 NN-150,50 NN-200,75

Synthetic Data

 5 30.9 259.3 508.6 5.1 260.2 506.6

 SVM DT RF-10 RF-20 NN-7 NN-150,35 NN-175,70

URL Data

 5.9 31 259.3 508.7 6.2 259.2 499.9

 SVM DT RF-10 RF-100 NN-7 NN-125,50 NN-500,150

DNA Data

 5.8 30.9 259.5 2504 5.6 265.8 2652.3

Table 4  Average classifier inference time (across samples) in seconds. Same notations as in Table 3

SVM DT RF-10 RF-20 NN-25 NN-150,50 NN-200,75

Synthetic Data

 1.278 · 10−8 2.651 · 10−8 4.425 · 10−7 8.968 · 10−7 8.494 · 10−6 9.257 · 10−6 1.008 · 10−5

 SVM DT RF-10 RF-20 NN-7 NN-150,35 NN-175,70

URL Data

 3.730 · 10−8 6.515 · 10−8 5.815 · 10−7 9.930 · 10−7 6.825 · 10−6 7.018 · 10−6 7.198 · 10−6

 SVM DT RF-10 RF-100 NN-7 NN-125,50 NN-500,150

DNA Data

 2.87 · 10−8 1.236 · 10−7 5.572 · 10−7 5.364 · 10−6 6.572 · 10−6 8.138 · 10−6 1.044 · 10−5
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results in Table  3, will be discussed in “Results and discussion” and  “Guidelines” 
sections.

Learned Bloom filters We leverage the evaluation setting for the Bloom filter var-
iants proposed by [29], and composed of the following steps: (1) train the classifi-
ers using all keys and 30% of non-keys; (2) query the filter using remaining 70% of 
non-keys to compute the empirical FPR; (3) fix an overall memory budget of m bits 
the filters must use, and compare them in terms of their empirical FPR ǫ . Further-
more, we also measure the average reject time of filters, motivated by the fact that it 
can unveil interesting trends about the synergy of the filter variants and the classifier 
they employ. Indeed, we train any filter variant using in turn each of the considered 
classifiers.

The budget m is selected in relation to the desired (expected) ǫ of a classical Bloom 
filter, according to (1). We choose budgets differently on each dataset, since m directly 
depends on the key set size n. For synthetic data, having generated several datasets, 
we only test two different choices for the space budget m for each of them. Namely, 
those yielding ǫ ∈ {0.05, 0.01} for the classical Bloom filter using a bit vector of m 
bits. Conversely, more budget choices are tested on real datasets, since they are less 
numerous, namely those leading to ǫ ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001} . The differ-
ence between this setting and that of synthetic data is due to the following consid-
erations. First, the dimensionality of synthetic data is 2, whereas that of real data it is 
17 and 14, respectively, for URL and DNA. This makes the classifiers using real data 
larger than their counterparts on synthetic data. For this reason, on real data we omit 
the case ǫ = 0.05 , which yielded a too small budget. Indeed, some classifiers alone 
exceed the budget in this case (cfr. Table 3 for details about the space occupancy of 
classifiers). Moreover, having only two datasets, we can test more choices of ǫ , and 
accordingly better evaluate the behavior of learned Bloom filters when a smaller 
(expected) false positive rate is required.

Table  5 shows the obtained budget configurations for synthetic and real datasets. 
Even to train a learned Bloom filter we have operated a grid search to choose the opti-
mal hyperparameters on the training data, optimizing with respect to the FPR. The 
following grids are utilized: (a) LBF and SLBF, 15 evenly spaced values for threshold τ 
in the classifier score range [0, 1]; (b) ADA-BF, the integers within [3, 15] for g, and 10 
evenly spaced values in [1, 5] for c̄ (cfr. “Classical and learned Bloom filters’ section’). 
Importantly, the latter choice includes and extends the configurations adopted in [61] 
(namely, [8, 12] for g and [1.6, 2.5] for c̄).

Table 5  Space budget in Kbits adopted on the various datasets. ǫ is the false positive rate, n is the 
number of keys in the dataset

Data ǫ Budget (Kbits) n

Synthetic 0.05, 0.01 622, 956 105

URL 0.01, 0.005, 0.001, 0.0005, 0.0001 765, 880, 1148, 1263, 1530 8 · 104

DNA 0.01, 0.005, 0.001, 0.0005, 0.0001 477460, 549325, 716191, 788056, 
954921

4.99 · 107
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Results and discussion
In this section we present the results obtained from the classifier screening on both syn-
thetic and real data, the experimental evaluation of all variants of LBFs based on those 
classifiers, and the relative discussion. In particular, we focus on the following questions: 
(1) It is possible to detect in advance, before constructing the learned BF, which classifier 
is best of use starting only from the classifier performance? (2) Is there a direct impact 
of the data complexity on the performance of a learned BF? (3) The noise in data plays 
a role of the performance of a learned BF? (4) Is there a relation linking the choice of a 
learned BF to reject time? We discuss the first question in “Performance of classifiers” 
section, the two subsequent ones in “Data classification complexity versus learned filters 
performance” section, and the last one in “Reject time” section.

Performance of classifiers

As clear from previous sections, the classifier can be seen as an oracle for a learned BF, 
where the better the oracle, the better the related filter, i.e., its FPR for a given fixed the 
space budget. Accordingly, we first discuss the performance of classifiers, tested on the 
datasets described in “Datasets” section, and according to the hyperparameter configu-
rations described in “Selecting optimal classifiers and learned Bloom filters” section. Fig-
ure 2 depicts the performance of classifiers on balanced and unbalanced synthetic data, 
whereas results obtained on real data are shown in Fig. 3. However, it is central here to 

Fig. 2  Performance averaged across folds of compared classifiers on synthetic data. First row for balanced 
data, second row for unbalanced data. Bars are grouped by dataset, in turn denoted by a couple (a, r) 
expressing, respectively, the separation boundary linearity and the amount of label noise



Page 16 of 26Malchiodi et al. Journal of Big Data           (2024) 11:45 

emphasize that the interpretation of such results is somewhat different than what one 
would do in a standard machine learning setting. Indeed, we have a space budget for the 
entire filter, and the classifier must discriminate well between keys and non-keys, while 
being substantially succinct with regard to the space budget of the data structure. Such 
a scenario implicitly imposes a performance/space trade-off: hypothetically, we might 
have a perfect classifier using less space than the budget, and on the other extreme, a 
poor classifier exceeding the space budget.

Overall results analysis

First, the behavior of classifiers in terms of AUC and AUPRC is coherent with what 
expected according to our methodology to generate synthetic data. Indeed, the SVM 
performance decays when the parameter a increases, being in line with the fact that it 
means increasing the non-linearity of the class separation boundary. Analogously, all 
classifiers worsen as noise r increases, which is clearly what to expect in this case. More-
over and most importantly, two main cases arise with respect to classification complex-
ity: roughly F1v ≤ 0.35 and F1v > 0.35 . Being this threshold experimentally derived, the 
division between the two cases is not crisp. We refer to the first case as datasets ‘easier 
and easier’ to classify, for brevity ‘easy’, and to the second as datasets ‘harder and harder’ 
to classify, for brevity ‘hard’.

Easy datasets. All classifiers perform very well on synthetic datasets with the stated 
complexity (except for SVMs when a > 0.01 ). Clearly, with such excellent oracles, the 
remaining part of a learned Bloom filter (e.g., with reference to the description of LBF, 
the backup filter) is intuitively expected to be very succinct.

Hard datasets. In this case, both AUC and AUPRC sensibly drop, being in some cases 
(SVM) not so far from the behavior of a random classifier. While in the previous case the 
performance of classifiers clearly yields the choice of the most succinct and faster model, 
here there is a trade-off to consider. Indeed, within the given space budget, at one end of 
the spectrum, we have the choice of a small-space and inaccurate classifier, at the other 
end of the spectrum we have larger and more accurate ones. As an example, for the LBF 

Fig. 3  Performance averaged across folds of compared classifiers on real data: a URL, b DNA
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in the first case a large backup filter is required, whereas in the second one the classifier 
would use most of the space budget.

Preliminary observations on the classifiers to be retained

Here we address the question of how to choose a classifier to build the filter upon, based 
only on the knowledge of space budget and data classification complexity/classifier per-
formance. On synthetic and URL data (Figs. 2, 3a), more complex classifiers perform just 
slightly better than the simpler ones, likely due to the low data complexity in these cases. 
At the same time, they require a sensibly higher fraction of the space budget (Table 5), 
and it is thereby natural to retain in these cases only the smallest/simplest variants, 
namely: DT, RF-10 and NN-25 (synthetic) and NN-7 (URL), in addition to SVM (we 
refer here, and in the rest of the paper, to the acronyms introduced in “The considered 
classifiers” section). Conversely, in our DNA experiments more complex classifiers sub-
stantially outperform the simpler counterparts, coherently with the fact that this classifi-
cation problem is much harder (Tables 1, 2). Since the available space budget is larger in 
this case, all classifiers have been retained in the subsequent filter evaluation.

Performance of learned Bloom filters

In this section we: (1) explore the behavior of learned filters with respect to the data 
classification complexity, an aspect so far neglected in the literature (see Introduction); 
(2) discuss the reject time of filters with regard to their empirical FPR; (3) gain further 
insights about the interplay between the classifiers and the learned Bloom filter variants.

Data classification complexity versus learned filters performance

The empirical FPR of learned Bloom filters on balanced and unbalanced synthetic data 
(generated according to the procedure described in “Datasets” section) are respectively 
shown in Figs. 4 and 5, whereas Figs. 6 and 7 depict the results on URL and DNA data. 
In all cases, also the baseline Bloom filter is present.

Easy datasets. According to the rough definition introduced in “Overall results analy-
sis” section (F1v around 0.35 or smaller), the three/four leftmost configurations on the 
x-axis in Figs. 4 and 5 of synthetic data, and URL data can be considered as ‘easy’ data. 
In such cases, our results are coherent with those obtained in the literature, where ADA-
BF slightly outperforms the other competitors [29], and RF-10 induces lower FPR values 
with regard to the baseline BF. However, such a classifier is not the best choice, since 
other ones induce filters with lower FPR, e.g., NN-25 for synthetic data and NN-7 for 
URL data. This again warns from the use of classifiers without a justification, as it has 
been done in previous studies.

Hard datasets. A novel scenario emerges with the increase of data complexity, i.e., 
when moving towards right on the horizontal axis in Figs. 4 and 5, or when consider-
ing DNA data. The performance of the filters drops more and more, in compliance 
with the performance decay of the subordinate classifiers (“Performance of classifi-
ers” section), and unexpectedly the drop is faster in ADA-BF (and LBF) w.r.t. SLBF. 
This trend can be ascertained for instance on all synthetic data having r > 0 (noise 
injection). Unexpectedly because it represents an inversion with reference to the 
trend reported in the literature, where usually ADA-BF outperforms SLBF (which in 
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turn improves LBF). Our results indeed manifest that SLBFs is more robust to noise, 
which is likely due to a reduced dependency for SLBF on the classifier performance, 
favoured by the usage of the initial Bloom filter. Such a filter indeed allows the classi-
fier to be queried only on a subset of the data.

When adopting RFs in this setting, the empirical FPR of learned filters strongly 
increases, and potential explanations reside in the excessive score discretization: hav-
ing 10 trees, only 11 distinct scores are possible. In addition, RF space occupancy 
is larger (limiting in turn the space to be assigned to initial/backup filters). These 
results have a relevant confirmation on the very hard and large DNA dataset (Fig. 7), 
where LBF cannot attain any improvement with regard to the baseline BF, unlike 
SLBF and ADA-BF. A potential cause is in the worse performance of classifiers on 

Fig. 4  False positive rates of LBF (first row), SLBF (second row), and ADA-BF (third row) attained on balanced 
synthetic datasets (cfr. “Datasets” section). On the horizontal axis, labels X_Y denote the dataset obtained 
when using a = X  and r = Y . The blue dotted line corresponds to the empirical false positive rate of the 
classical BF in that setting. Two space budgets m are tested, ensuring that ǫ = 0.05 (left) and ǫ = 0.01 (right) 
for the classical BF. Legends shared across rows
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Fig. 5  False positive rates of LBF (first row), SLBF (second row), and ADA-BF (third row) attained on 
unbalanced synthetic datasets (cfr. “Datasets” section). On the horizontal axis, the labels X_Y denote the 
dataset obtained when using a = X  and r = Y . The blue dotted line corresponds to the measured false 
positive rate of the classical Bloom filter in that setting. Two space budgets are tested: that ensuring ǫ = 0.05 
for a classical Bloom filter (left), and that ensuring ǫ = 0.01 (right). Legends shared across rows

Fig. 6  Empirical false positive rate of LBF (left), SLBF (central), and ADA-BF (right) filters on URL data. On the 
horizontal axis the different budgets configurations. Dotted blue line represents the baseline classical Bloom 
filter. The legend is shared across rows
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this hard dataset, differently from those obtained on synthetic and URL data, and in 
a too marked dependency of LBF on the classifier performance. Such a dependency is 
likely to be mitigated instead in the other two filter variants by the usage of the ini-
tial BF (SLBF) and by the fine-grained classifier score partition (ADA-BF). DTs even 
amplify this behavior: for the reasons explained in “The considered classifiers” sec-
tion, its scores are strongly quantized and on this hard task we found they do not 
span the whole range [0, 1] (most leaf scores are concentrated around 0.5), fostering a 
nearly flat FPR for both LBF and ADA-BF. As a general tendency, SLBF outperforms 
both LBF and baseline of one order of magnitude in FPR with the same space amount, 
and ADA-BF when using weaker classifiers, or when a higher budget is available. We 
suspect the latter case is due to overfitting in the partitioning of classifier codomain 
ADA-BF operates, which is more deleterious when the classifier performance is not 
excellent, as it happens for DNA data. As a consequence, here the classifiers leading 
to the best empirical FPR values are the most complex, differently from hard synthetic 
data, where the key set was smaller (and consequently also the space budget was 
smaller). In particular, the best choice for these data are NN-500,150 and NN-125,50, 
which, as an additional motivation to employ them, can be also further compressed 
using specific techniques recently emerged [63]. In other words, we can conclude that 
too simple classifiers are useless or even deleterious on hard datasets, see for instance 
SVM-based filters, that never improve the baseline.

Reject time

Table 6 provides the average per-element reject time of all learned filters, taken across 
all the query sequences and space budgets that we have used in our experiments. 
They are expressed as percentage increment (or decrement) of the time required by 
the baseline. A first novel and interesting feature which emerges is that learned BF are 
sometimes faster than the baseline, which in principle is not expected, since learned 
variants have to query a classifier in addition to a classical BF. Our interpretation is 
that this can happen for two main reasons: (1) the adopted classifier is very fast and 
also effective, hence allowing in most cases to skip querying the backup filter; (2) the 
key set is very large, thus requiring a large baseline BF, whereas a good classifier can 
allow to sensibly drop the dimension of backup filters, thus making their invocation 

Fig. 7  Empirical false positive rate of LBF (left), SLBF (central), and ADA-BF (right) filters on DNA data. On the 
horizontal axis the different budgets configurations. Dotted blue line represents the baseline classical Bloom 
filter. Same legends as in Fig. 6
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much faster. See for instance the case of DNA data, where most learned filters are 
faster that the baseline, with most classifiers.

Another intriguing behavior concerns the reject time of ADA-BF, often the worst 
architecture in terms of this metric. We believe it depends on the more complex proce-
dure used in order to establish whether or not to access the backup filter—an exception 
is represented by DT-based filters, where, as apposite to other classifiers, the ‘anoma-
lous’ score distribution moves the optimal number of groups learned towards the lowest 
values, and the resulting filters are faster. Indeed, such a procedure is subject to tuning, 
which in turn can yield less or more complex instances of the filter. As evident from our 
experiments, such a strategy does not always payoff.

Finally, we discuss the relationship between the inference time of the classifiers and 
the reject time of the learned Bloom filters, an aspect completely overlooked in the lit-
erature. In particular, from our experiments it emerges that the classifier inference time 
cannot be considered as a proxy for the reject time of the induced learned Bloom filter, 
and accordingly it is to be considered in the choice of the classifier only when classifiers 
exhibit very similar classification performance.

Indeed, we can observe that the order of the inference time of classifiers (Table 4) is 
often inverted with regard to the reject time of the corresponding filters. For instance, 
SVM is always the fastest classifier, but in some cases RF-based filters are faster (e.g., 
LBF and SLBF on synthetic data). This behavior is not so immediate to explain, and 
might be related to the following discussion. The accuracy of the classifier can impact on 
the false negative rate of the filter, and consequently on the number of false negatives to 

Table 6  Learned Bloom filters average reject time, expressed as ratio between learned filter and 
baseline BF reject times (whose time in seconds is in parentheses) 

Positive (resp. negative) values indicate that the learned filter is slower (faster) than the baseline. The best configurations 
are highlighted in bold. Results are averaged across test queries and the filter space budgets considered. We remark that for 
DNA experiments another machine has been used w.r.t. synthetic and URL data (see “Hardware and software” section)

Classifier LBF SLBF ADA-BF

Synthetic Data ( 1.364 · 10−5)

 SVM 18.4 6.1 151.2

 DT −1.1 − 1.2 1.3

 RF −11.1 − 17.5 112.8

 NN 106.9 54.1 159.3

URL Data ( 3.259 · 10−5)

 SVM 22.6 3.7 3.9

 DT − 1.4 − 1.4 −1.1

 RF 6.6 7.1 9.7

 NN 43.9 49.6 35.3

DNA Data (4.817 · 10−5)

 SVM − 12.5 −11.7 35.9

 DT −1.1 − 1.3 1.3

 RF-10 1.4 − 20.6 32.0

 RF-100 19.8 − 7.4 40.6

 NN-7 −5.0 − 12.0 25.8

 NN-125,50 −3.6 − 7.5 25.2

 NN-500,150 −1.9 − 11.6 39.2
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be stored in the backup filter/s (as well as on the reject time of the backup filter). There-
fore, to optimize the reject time of a learned BF one can reduce the inference time of the 
classifier and/or reduce its false negative rate (that is, lowering the size of the backup 
filter). As an example, on synthetic data RFs outperform SVMs (Fig. 2), their inference 
time is one order of magnitude higher than SVMs (on average), but all the learned filters 
it induces have a lower reject time than the SVM-based counterparts (cfr. Table 6).

Guidelines
We summarize in this section our findings about the configuration of learned variants 
of Bloom filters, given a prior knowledge of data complexity and available space budget.

Data Complexity and Classifier Choice. With reference to Fig.  8, and recalling from 
“Reject time” section that the classifier inference time is not a proxy for the filter reject time, 
although it is natural to choose a fast classifier among several ones having comparable classi-
fication power, our recommendations are as follows. First, it must be evaluated how complex 
is the dataset, e.g. in our experiments easy ( F1v ≤ 0.35 ) and hard (otherwise). Choosing the 
classifier is relatively straightforward on easy datasets: independently of the space budget, it 
is always more convenient to select simple classifiers. We found linear SVMs to be the best 
choice on datasets having almost linear separation boundary ( a < 0.1 ), and the smallest/sim-
plest NNs are advisable to be used in the remaining cases of this category.

Conversely, the space budget becomes more discriminant for the classifier choice on 
hard datasets. Within the budget given by (1), we can distinguish two extreme cases for 
hard datasets: those having a relatively small set of keys, and accordingly a small budget, 
and those having instead a large key set and a high budget. When the budget is small, for 
instance like it happens in more complex synthetic data, the following considerations 
hold: (1) the choice is almost forced towards small (and potentially inaccurate) classi-
fiers, being the larger ones too demanding for the available budget; (2) a (linear) SVM is 
to be excluded, due to the increased difficulty of the task; Therefore, among the remain-
ing classifiers, we recommend the use of small NNs, which in our experiments were the 

Fig. 8  Recommended guidelines for choosing the classifier in a learned BF
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most succinct model among the best performing ones (cfr. Fig. 2). On the other hand, 
when the budget is high (as with DNA data) our findings suggest to learn more accurate 
classifiers, even if this requires the usage of a considerable budget fraction. Therefore, 
we suggest to invest a significant part of the budget in a complex model (in our experi-
ments, the most complex NNs) that will better fit the available data. This is motivated 
by the following facts: (1) the gain related to higher classification abilities allows to save 
space when constructing the auxiliary BFs of the learnt filters, and to consequently have 
a smaller reject time (cfr. “Data classification complexity versus learned filters perfor-
mance” section); (2) too poor classifiers induce the learned BFs to perform even worse 
than their classical counterpart (see Fig. 7); (3) the availability of a big amount of data 
allows to train complex classifiers more effectively [64].

Learned Bloom Filters Choice. With regard to the choice of the learned BF to be 
applied, we recommend the suggestions depicted in Fig. 9. In presence of complex or 
noisy data, use a SLBF, in view of its ability to exploit even classifiers having a poor 
performance. In the remaining situations, the required reject time becomes discri-
minant. Since ADA-BF often exhibits the highest reject times, if a fast learned BF 
is required, SLBF should be preferred over ADA-BF, otherwise ADA-BF is a better 
choice (confirming previous literature results).

Conclusions and future developments
The present study proposes an experimental evaluation that can guide in the design 
and validation of learned Bloom filters. The key point is to base the choice of the 
classifier to be used in a learned Bloom filter on the space budget of the entire data 

Fig. 9  Recommended guidelines for choosing the learned BF type
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structure, as well as on the classification complexity of the dataset in input. Our 
experimental approach has unveiled behaviors of learned Bloom filters neglected by 
previous studies, including: (1) how robust are the current learned filters for the pro-
cessing of datasets of increasing complexity: indeed, only the “easy to classify” sce-
nario has been considered in the Literature so far; (2) how robust are the learned 
filters with regard to noise injection in input data: our methodology revealed that 
the efficiency ranking of learned Bloom filters emerged in previous studies must be 
revised in presence of noisy data; (3) how crucial and discriminant is the selection of 
the classifier in terms of false positive rate, size and reject time of the learned Bloom 
filter. We have summarized such novel insights within a “Guidelines” section to help 
practitioners in suitably designing learned Bloom filters for their applications.

A potential limitation of such results is that they might be dependent on the consid-
ered data; nonetheless, this is somehow inevitable due to the nature of learned data 
structures. Finally, we point out that the societal impacts of our contributions are in 
line with general-purpose Machine Learning technology. Natural extensions of this 
research are the following. As already remarked, we have complied with an experi-
mental setting coherent with the state of the art. We can also consider the scenario 
in which the desired false positive rate is fixed (instead of the overall filter size) and 
one asks for the most succinct pair classifier-filter (instead of the lowest false posi-
tive rate). Moreover, in his seminal paper [28], Mitzenmacher has shown that learned 
Bloom filters can be quite sensitive to the input query distribution. Yet, no study is 
available to quantify this aspect. Our methodology can be extended also to those 
types of analysis and work in this direction is in progress. Finally, as outlined in the 
Introduction, the multi-dimensional case has received very little attention, and it 
deserves further investigations.
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