
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Malchiodi et al. Journal of Big Data (2024) 11:45
https://doi.org/10.1186/s40537-024-00906-9

Journal of Big Data

The role of classifiers and data
complexity in learned Bloom filters: insights
and recommendations
Dario Malchiodi1,2*†   , Davide Raimondi1†, Giacomo Fumagalli1†, Raffaele Giancarlo3† and Marco Frasca1† 

Abstract 

Bloom filters, since their introduction over 50 years ago, have become a pillar to han-
dle membership queries in small space, with relevant application in Big Data Min-
ing and Stream Processing. Further improvements have been recently proposed
with the use of Machine Learning techniques: learned Bloom filters. Those latter make
considerably more complicated the proper parameter setting of this multi-criteria
data structure, in particular in regard to the choice of one of its key components (the
classifier) and accounting for the classification complexity of the input dataset. Given
this State of the Art, our contributions are as follows. (1) A novel methodology, sup-
ported by software, for designing, analyzing and implementing learned Bloom filters
that account for their own multi-criteria nature, in particular concerning classifier type
choice and data classification complexity. Extensive experiments show the validity
of the proposed methodology and, being our software public, we offer a valid tool
to the practitioners interested in using learned Bloom filters. (2) Further contributions
to the advancement of the State of the Art that are of great practical relevance are
the following: (a) the classifier inference time should not be taken as a proxy for the fil-
ter reject time; (b) of the many classifiers we have considered, only two offer good
performance; this result is in agreement with and further strengthens early findings
in the literature; (c) Sandwiched Bloom filter, which is already known as being one
of the references of this area, is further shown here to have the remarkable property
of robustness to data complexity and classifier performance variability.

Keywords:  Bloom filters, Learned Bloom filters, Approximate set membership, Dataset
complexity

Introduction
In the past 25 years, Machine Learning (ML) radically impacted on the computing land-
scape, unveiling a very significant part of the applications which brought Artificial Intel-
ligence in everyday life. Recent works show that ML can be used to design and analyze
from a different perspective also some of the core components of “classical” computing
field, such as algorithms and data structures. In particular, Kraska et al. [1] initiated a
new research area focusing on learned data structures, currently under active develop-
ment and with documented impacts on several domains, such as databases, network

†Dario Malchiodi, Davide
Raimondi, Giacomo Fumagalli,
Raffaele Giancarlo, and Marco
Frasca have contributed equally
to this work

*Correspondence:
dario.malchiodi@unimi.it

1 Department of Computer
Science, Università degli
Studi di Milano, Via Celoria 18,
20133 Milan, Italy
2 CINI National Laboratory
of Artificial Intelligence
and Intelligent Systems (AIIS),
University of Rome, 00185 Rome,
Italy
3 Department of Mathematics
and CS, University of Palermo, Via
Archirafi 34, 90123 Palermo, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00906-9&domain=pdf
http://orcid.org/0000-0002-7574-697X

Page 2 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

management [2] and Computational Biology [3]. An analogous trend concerning algo-
rithms has been proposed by Mitzenmacher and Vassilvitskii [4]. Concerning data struc-
tures, the common theme to this new approach is that of training a classifier [5] or a
regression model [6] on the input data. Then such a learned model is used as an oracle
that a given “classical” data structure can use in order to answer queries with improved
performance (usually w.r.t. time). To date, learned indexes have been the most studied,
e.g., [1, 7–17], although rank/select data structures have also received some attention
[18]. In this work, we focus on Bloom filters (BFs) [19], which represent one of the cor-
nerstones of Big Data processing and stream analysis [20]. In short, they are special data
structures expressly designed for storing a set which is large w.r.t. the available RAM
resources. In a nutshell, rather than saving all the elements of the set, these structures
wisely exploit hashing techniques so that it is possible to answer membership queries by
using a relatively small amount of main memory. This property, which however is bal-
anced with a controllable amount of false positives when the data structure is queried,
makes Bloom filters heavily used in contexts characterized by the processing of a mas-
sive amount of data, such as for instance in detecting redundancy within a stream [21],
in sequencing DNA data [22, 23], or when it is necessary to limit the number of unnec-
essary disk accesses in cloud-based databases [24]. As well as other data structures, also
Bloom filters received attention in the realm of learned data structures, within which
learned Bloom filters have been proposed to improve efficiency [25]. This is definitely
natural, accounting for their pervasive use. Indeed, several variants have been proposed
also for the classical version of Bloom filters, long before the appearance of their learned
counterparts.

Bloom filters (BF) solve the Approximate Set Membership problem, defined as follows:
having fixed a universe U and a set of keys S ⊂ U , for any given x ∈ U , find out whether
or not x ∈ S . False negatives, that is negative answers when x ∈ S , are not allowed.
On the other hand, false positives (i.e., elements in U\S wrongly decreed as keys) are
allowed, albeit their fraction (termed henceforth false positive rate, FPR for short) should
be bounded by a given ǫ . The metrics that can be considered for evaluating any data
structure solving the approximate set membership problems are: (1) the FPR, (2) the
amount of RAM to be used to store the data structure, and (3) the reject time, that is the
expected time required to reject any element not belonging to S. It is to be noted that the
Bloom filter as described above assumes that U is one-dimensional, and we keep such
an assumption throughout this paper. Bloom filters can be naturally extended to the
multi-dimensional case with the use of suitable hash functions; however, the problem
of how to design a multi-dimensional Bloom filter has not been considered and prop-
erly addressed in the scholarly literature, even in the learned setting which is considered
here, e.g. [26, 27].

The first proposal for the learned version of a Bloom filter was naturally called learned
Bloom filter (LBF) [1]; it is based on a binary classifier induced from data, with the aim
of predicting set membership while requiring less space than a classical BF, being equal
the FPR of the two structures (or vice versa, fix space budget and reduce the FPR). Such
classifier is coupled with a standard BF storing the false negatives suffered from the for-
mer. When queried, the learned filter computes the prediction via the classifier and pos-
sibly uses the BF as a fallback ensuring that no false negatives on the training data are

Page 3 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

ever produced. Mitzenmacher [28] has provided a model for those filters, together with
a very informative mathematical analysis of their pros/cons, resulting in new models
for LBFs, and additional models have been introduced recently [29, 30]. It is important
to underline that all the mentioned learned Bloom filters are static, i.e., no updates are
allowed. This is the realm we are studying here, aiming at a suitable joint optimization of
the aforementioned key resources. As for the dynamic case, some progress is reported in
[31] in the Data Stream model of computation.

It is worth pointing out that, although they differ in architecture, each of these propos-
als has a binary classifier at its core. Somehow, not much attention has been devoted to
the choice of the classifier to be used in practical settings, despite its centrality in this
new family of filters and its role in the related theoretical analysis [28]. Kraska et al. use
a Recurrent Neural Network, while Dai and Shrivastava [29] and Vaidya et al. [30] use
Random Forests. These choices are only informally motivated, giving no evidence of
superiority with respect to other possible ones, e.g., via a comparative analysis. There-
fore, apart from preliminary investigations presented in [32, 33], the important problem
of suitably choosing the classifier to be used to build a specific LBF has not been fully
addressed so far. In addition to that, although the entire area of learned data structures
and Algorithms finds its methodological motivation as a conceptual tool to reconsider
classic approaches in a data-driven way, the role that the complexity of a dataset plays in
guiding the practical choice of a learned data structure for that dataset has been consid-
ered to some extent for learned indexes only [15]. This aspect is even more relevant for
LBFs. Indeed, as well discussed in [28], while the performance of classic BFs is “agnos-
tic” w.r.t. the statistical properties of the input data, LBFs are quite dependent on them.
In addition, it is well-known that the performance of a learnt classifier (a central com-
ponent in this context) is very sensitive to the “classification complexity” of a dataset
[34–37]. Nonetheless, the literature on LBFs usually describes experiments based on the
processing of limited sets of benchmark data, e.g., in the realm of malicious URL detec-
tion [38] or geospatial information retrieval [27], without analyzing the sensitivity of the
proposed approaches to the properties of the processed data. Such a state of the art is
problematic, both methodologically and practically, for LBFs to be a reliable competitor
of their classic counterparts.

Our aim is to provide a methodology and the associated software to support the
design, analysis and deployment of state-of-the-art learned Boom filters with respect to
specific constraints regarding their multi-criteria nature. Namely, space efficiency, false
positive rate, and reject time. The present study is organized as follows. In “Classical and
learned Bloom filters” section we briefly describe the original and learned variants of
Bloom filters, underlining the specific roles of the hyperparameters to be tuned during
the inductive phase. We illustrate in “Experimental methodology” section the method-
ology which we propose to LBF designers and users in need of studying the relations
among the metrics used to evaluate how a (either classic or learned) filter performs on
a fixed dataset, given the classification complexity of the latter, and the classifier the
learned filter is based upon. “Experiments” section has the twofold aim of introducing
the software platform within which we implemented the above-mentioned methodology
and of describing the experiments which we carried out. In particular, having fixed the
total space budget and the complexity of a dataset, we focus on the problem of choosing

Page 4 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

the most suitable classifier backing a LBF, also considering reject time as a selection cri-
terion. In [28], a related approach uses a fixed filter, thus providing partial answers to our
research question and, moreover, somehow suggesting an experimental methodology
which has not been validated. The results of our experiments are discussed in “Results
and discussion” section. In particular, we show that only two specific classifiers are worth
to be considered when building a LBF, namely, those based on Support Vector Machines
and feed-forward Neural Networks. Remarkably, they have been almost neglected in the
existing literature, with the exceptions of [32, 33, 39].

Two further contributions regard: (1) an analysis of the relation among the classi-
fier inference time and the learned BF reject time, showing that the first should not be
taken as a proxy for second; (2) the study of how the complexity of a dataset impacts
on the performance of several state-of-the-art learned Bloom filters, identifying a vari-
ant exhibiting higher robustness against variations in the dataset complexity and in the
classifier performance. As a byproduct, “Guidelines” section provides a set of guidelines
and recommendations for the use of state-of-the-art learned Bloom filter variants. Some
concluding remarks end the paper.

Classical and learned Bloom filters
As mentioned in the “Introduction” section, a Bloom filter is a data structure designed in
order to solve the Approximate Set Membership problem for a set S [19]. It is composed
of an array v of m boolean entries and of k hash functions, h1, . . . , hk , mapping keys and
non-keys onto positions within v . Such functions are assumed to be k-wise independent
[40, 41], although in practice less strict requirements are effective [19]. After the entries
of v have been initialized to 0, all the keys x ∈ S are considered, setting vhj(x) ← 1 , for
each j ∈ {1, . . . , k} . At this point, the filter can be used to predict membership in the
set for a generic value x by evaluating vhj(x) , for each j: if at least once the result is 0, the
value is rejected (that is, it is predicted to be a non-key). Otherwise, it is classified as a
key (an element of S). By construction, such predictions never incur in false negatives,
although hash collisions might cause false positives. However, the rate ǫ of the latter is
inversely bound by m as stated by equation (21) in [19], that formally relates reject time,
space requirements, and FPR. This fact is typically used to choose the filter configura-
tion. For instance, FPR can be minimized by suitably selecting the reject time once the
filter space has been fixed. Similar relations can be exploited in order to fix m and k so
as to build a BF exhibiting the most succinct configuration [25, 28]. Analogously, having
fixed the FPR to ǫ and considering n = |S| keys, the BF with optimal reject time can be
obtained via an array of size

bits, as shown in [42].
The learned variants of Bloom filters [1] can be seen as systems exhibiting the same

properties of the latter, meanwhile reducing FPR or time/space resource demand.
The common point to these variants is that all rely on a classifier induced from data.
Their simplest implementation, which we will refer to as a LBF, is formally described
as follows. Starting from a set of labeled instances (x, yx) , where yx = 1 if x ∈ S and 0

(1)m =
n

ln 2
log2(1/ǫ)

Page 5 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

otherwise, a classifier C:U → [0, 1] is trained through supervised ML techniques to
classify keys in S. Namely, the higher the classification score C(x) , the more likely x ∈ S .
A crisp prediction is obtained through the application of a threshold τ ∈ [0, 1] , so that
x ∈ U is, at this stage, considered as a key if and only if C(x) > τ . This setting, however,
might give rise to a non-empty set FN = {x ∈ S |C(x) ≤ τ }} of false negatives, which is
not accepted within the Approximate Set Membership problem. Therefore, the classifier
is coupled with a (classical) Bloom filter F, called the backup filter, used to hold the ele-
ments in FN . All queries for which the classifier produces a negative output are searched
in F, swapping the prediction whenever F answers x is a key. In sum, any x ∈ U is pre-
dicted to be a key if the classification score C(x) is greater than τ , or if C(x) ≤ τ and F
does not reject x . In all other cases x is rejected.

An important difference between classical and learned Bloom filters is that the former
have a FPR essentially independent of keys, whereas in a LBF the same quantity depends
on the distribution of the instances used to query the filter itself. To this end, in the fol-
lowing we explicitly refer to the empirical FPR

of a learned filter, where ǫτ = |{x ∈ S |C(x) > τ }|/|S| is the analogous empirical FPR of
the classifier C on a query set S ⊂ U\S , and ǫF is the FPR of the backup filter. Given
the previous definition of empirical FPR (2), the overall LBF has FPR equal to ǫ when
the backup filter F is built ensuring ǫF = (ǫ − ǫτ)/(1− ǫτ) , under the constraint ǫτ < ǫ .
Finally, we point out two important considerations. Firstly, choosing τ influences the val-
ues of the metrics used to evaluate a learned Bloom filter. Moreover, the dependency
on data makes estimating the FPR in a learned setting no longer immediate as it is for
classical filters, as highlighted in [28]. Similar considerations hold for the experimental
methodology to be used to assess this FPR, which is one of the novelties proposed in this
paper.

Alongside LBFs described so far, we consider the following variants.

1.	 Sandwiched LBFs (SLBFs) [28] are based on the insight that filtering out non-
keys before querying the classifier can lead to an optimized space efficiency, and
as a consequence to a smaller backup filter. More precisely, the provided keys are
initially used to build an initial (still classical) BF I, and all keys in S not rejected
by this filter are used to build a LBF. The overall system is queried as follows: if I
rejects an element x ∈ U , the latter is predicted as a non-key, otherwise the predic-
tion provided for this element by the LBF is returned. The empirical FPR of a SLBF
is obtained as ǫ = ǫI

(

ǫτ + (1− ǫτ)ǫF
)

 , being ǫI the FPR of the initial filter. Also in
this case, the target FPR ǫ of the SLBF automatically identifies that of I. Precisely,
ǫI = (ǫ/ǫτ)(1− |FN|/n) , where |FN| is the number of false negatives of C, under the
constraint ǫ(1− |FN|/n) ≤ ǫτ ≤ 1− |FN|/n . Also in this case, FPR, space require-
ment and reject time are affected by the classifier accuracy.

2.	 Adaptive LBFs (ADA-BF) [29] represent another variation of a LBF in which the
training instances x are partitioned in g groups in function of their classification
score C(x) . Each group is assigned a different set of hash functions (although glob-
ally using the same number of functions a LBF would use), and when membership

(2)ǫ = ǫτ + (1− ǫτ)ǫF

Page 6 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

is to be predicted for an instance x , this is done only using the hash functions of the
corresponding score group. As for LBFs and SLBFs, the expected FPR is estimated
empirically, though with a rather complex formula (the interested reader can refer
to [29] for the mathematical details). As there are several variants of ADA-BF, in our
experiments we consider the best performing one.

With the exception of another variant described in [30], for which the software is nei-
ther public nor available from the authors, our selection of learned BFs is state-of-the-art.

The induction of these learned filters requires to fine-tune some hyperparameters:
LBF and SLBF have to fix the threshold τ , while ADA-BF needs the number g of
groups to be set, as well as the value c̄ representing the proportion of non-keys scores
falling in two consecutive groups. “Selecting optimal classifiers and learned Bloom
filters” section details how such hyperparameters have been tuned.

Experimental methodology
This section outlines the methodology which we use to design and analyse learned
Bloom filters, also accounting for the inherent complexity of the dataset to be classi-
fied. In short, we generalize the approach described in [33] as follows. Starting from
a dataset (either real-world or synthetically generated in function of suitable clas-
sification complexity metrics), we adopt the following pipeline: collect or generate
data; use them to induce a classifier, estimate the corresponding FPR; build a learned
Bloom filter based on this classifier; estimate the overall empirical FPR. Here below
we detail the classifier families that we consider, as well as the above-mentioned pro-
cedure used to generate synthetic data.

The considered classifiers

We performed a preliminary experimentation phase involving an initial list of ML mod-
els—compiled without exhaustiveness pretensions—with the aim of identifying which
among them were worth of further consideration, on the basis of the performance/space
requirements trade-off (experiments and data about this initial step of our study are
available upon request). Confirming the results of another study [32], Logistic Regres-
sion [43], Naive Bayes [44] and Recurrent Neural Networks [45] were removed from the
list of classifier families to be considered, due to their poor trade-off performance. Here
below we succinctly illustrate the retained models, also detailing their inference process
in a context characterized by unbalanced labels, as our evaluation both considers bal-
anced and unbalanced classification problems. We distinguish between regular and key
hyperparameters of the corresponding learning algorithms, where the second category
contains hyperparameters whose value affects the induced classifier space occupancy
(which, when not differently specified, also acts as a proxy for classifier complexity). In
light of this distinction, we only consider regular hyperparameters in the model selection
phase. On the other hand, dedicated experiments are carried out w.r.t. different configu-
rations for the key hyperparameters, with the aim of analysing the interplay among FPR,
space requirements and reject time in learned Bloom filters.

Page 7 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

In order to fix notation, we assume U = R
q as universe, and we refer to D ⊂ U as a set

of d labeled instances, denoting by x ∈ D a training instance and by yx ∈ {0, 1} its label
(with a slightly different notation for SVMs, as explained here below).

Linear SVM. Classification in Linear Support Vector Machines (SVMs) for a
given instance x is usually based on the optimal hyperplane ( w, b ) and the sign of
f (x) = w · x + b . To fall in the setting defined for a LBF, we need to transform the SVM
prediction into a score in [0, 1]. To this end, we use f (x) as argument to a sigmoid func-
tion. The optimal hyperplane ( w, b ) is learned via maximization of the margin between
the two classes, by solving

where misclassification is allowed by the slack variables ξx and penalized using the
hyperparameter c > 0 (note that in this case yx ∈ {−1, 1} ). Nonlinear SVMs might have
been used here, but the need of storing the kernel matrix (e.g., containing the values of
a Gaussian kernel) alongside the hyperplane parameters results in an unacceptable size
for the learned filters. For the linear case we have chosen, we have only one non-key
hyperparameter, namely c. When dealing with unbalanced labels, we consider the cost-
sensitive SVM version described in [46].

Feed-forward NNs We also consider Feed-Forward neural networks [47, 48] accepting
instances as inputs and equipped with l hidden layers, respectively having h1, . . . , hl hid-
den units (NN-h1, . . . , hl for short). One output unit completes the network topology. As
usual, training involves the estimation of unit connections and biases from data. In this
case, the hi s are key hyperparameters, while the learning rate lr acts as a regular hyper-
parameter to be tuned. It is worth noting that we fix the activation functions for all net-
work units (although the former are tunable in principle), to limit the size of the already
massive set of experiments. Precisely, as typically done, we use ReLU and sigmoid activa-
tions for hidden and output units, respectively. Where appropriate, label imbalance is
dealt with by a cost-sensitive model variant [49].

Decision trees Additionally, we consider the Decision Tree classifier (DT) [50],
a non-linear classifier based on recursive splits of the input space so as to suitably
detect the regions to be assigned to the individual classes according to input data
D. The set of recursive splits can be represented through a tree, where each node is
associated with a feature and a threshold, used to bi-partition input data according to
their value for that feature. Data are recursively split till leaf nodes, where no further
split is possible. DTs are typically used to perform binary or multiclass classification,
therefore leaves are associated with one of the classes. In our case instead, where a
real score in [0, 1] is needed as output, the usual approach is to take the fraction of
1-labeled samples ending in a leaf node (w.r.t. the total number of samples ending in
the same node) as its prediction value. The setting of this classifier is jointly selected
with that of Random Forests (an extension of DTs explained in the next paragraph), to
avoid the model selection for both models to become too computationally intensive.
As a consequence, we fix the maximum depth and maximum number of leaves dur-
ing the DT growth, and consider only one non-key hyperparameter, the minimum

minw,b
1
2�w�2 + c

∑

x∈D ξx ,
such that yxf (x) ≥ 1− ξx ∀x ∈ D ,

ξx ≥ 0 ∀x ∈ D ,

Page 8 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

number δ of samples in a leaf. This hyperparameter prevents further splitting of nodes
when the split would induce children containing less that δ samples, and accordingly
allows to control the depth of the tree and its complexity. Although this can effec-
tively affect the classifier size, the overall training setting of DT substantially limits
the impact of this hyperparameter on the DT size.

It is worth noting here that the ‘indirect’ way to derive a score of a classifier inher-
ently designed for discrete outputs might lead to ‘unusual’ distributions of out-
put scores, which might produce unstable behaviors of the learned BF using it. For
instance, this is the case when the number of leaves is small and/or multiple leaves
contain the same fraction of 1-labeled instances (that is, they are associated with the
same output score), which can cause the classifier to have only a few distinct output
scores.

Random Forests Finally, we consider also Random Forests [51], shortened as RF-t to
make explicit that this model is an ensemble of t classification trees. Each such tree
is trained on a different bootstrap subset of D randomly extracted with replacement.
Analogously, the splitting functions at the tree nodes are chosen from a random sub-
set of the available attributes. The RF aggregates classifications uniformly across trees,
computing for each instance the fraction of trees that output a positive classification.
To address the case of unbalanced labels, we adopt an imbalance-aware variant of
RFs [52, 53] in which, during the growth of each tree, the bootstrap sample is not
drawn uniformly over D, but by selecting an instance x with probability

where D+ = {x ∈ D|yx = 1} , and D− = D \ D+ . In this way, the probabilities of extract-
ing a positive or a negative example are both 1/2, and the trees are trained on balanced
subsets. The key hyperparameter of a RF is t, directly impacting on the classifier size.
The non-key hyperparameters are selected as for DTs (see previous paragraph).

Measures of classification complexity

Several approaches can be considered when the classification complexity of a data-
set is to be assessed (see [54] for a survey). In our experiments, we specifically focus
on binary classification tasks, using the notation “class i”, i = 1, 2 , to refer to the two
classes involved in the problem (although when less precision is needed, we resort
to the classical terminology involving a positive and a negative class). Some of the
measures listed in the above mentioned survey (precisely, F1, T2, or T3) proved to
be insensitive across a variety of data synthetically generated, whereas the evaluation
of other ones (mainly network- or neighborhood-based measures such as LSC and
N1) required an excessive amount of RAM. Therefore we selected the feature-based
measure F1v and the class-imbalance measure C2: both take values in [0, 1], and the
higher the value, the more complex is the dataset. The former quantity, also called
the Directional-vector Maximum Fisher’s Discriminant Ratio, is defined as follows:
denote, respectively, by pi , µi , and �i the proportion of examples belonging to class

px =

{

1
2|D+|

if yx = 1,
1

2|D−|
if yx = 0,

Page 9 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

i and the corresponding centroid and scatter matrix, so that W = p1�1 + p2�2 and
B = (µ1 − µ2)(µ1 − µ2)

⊤ are the between- and within-class scatter matrices. In this
case, d = W

−1(µ1 − µ2) corresponds to the direction onto which there is maximal
separation of the two classes (being W−1 the pseudo-inverse of W  ), and we can define
the F1v measure as

The second measure accounts for label balance in the dataset: letting ni be the number of
examples of class i, we have C2 = (n1 − n2)

2/(n21 + n22).

Data generation

We generate synthetic data considering three parameters, a, r and ρ , which allow to
tune the complexity of generated data according to the aforementioned measures.
Intuitively, a controls the linearity of the separation boundary, r the label noise, and ρ
the label imbalance. More precisely, in order to generate a binary classification dataset
with a given level of complexity, n1 positive and n2 = ⌈ρn1⌉ negative instances (with
N = n1 + n2 ), we proceed as follows. Let {x1, . . . xN } ⊂ R

q be the set of samples, with
each sample xi having q features xi1, . . . , xiq , and a binary label yi ∈ {0, 1} . The N sam-
ples are drawn from a multivariate normal distribution N (0,�) , with � = γ Iq (with
γ > 0 and Iq denoting the q × q identity matrix). In our experiments we set γ = 5 so
as to have enough data spread, reminding that this value however does not affect the
data complexity. Without loss of generality, we consider the case q = 2 . To determine
the classes of positive and negative samples, the parabola x2 − ax21 = 0 is considered,
with a > 0 : a point xi = (xi1, xi2) is positive ( yi = 1 ) if xi2 − ax2i1 > 0 , negative other-
wise ( yi = 0 ). This choice allows us to control the linear separability of positive and
negative classes by varying the parameter a: the closer a to 0, the more linear the sep-
aration boundary. As a consequence, a controls the problem complexity for a linear
classifier. An example of generated data by varying a is given in Fig. 1a–c. Further, to
vary the data complexity even for non linear classifiers, labels are perturbed with dif-
ferent levels of noise: we flip the label of a fraction r of positive samples, selected uni-
formly at random, with an equal number on randomly selected negatives. The effect
of three different levels of noise is depicted in Fig. 1d–f, where the higher the noise,
the less sharp the separation boundary. The third parameter ρ is the ratio between the
number of negative and positive samples in the dataset, thus it controls the C2 com-
plexity measure. Higher values of ρ make the negative boundary more clear (Fig. 1g–
i), while making harder training an effective classifier [55].

Experiments
This section describes the datasets and the hardware we use in our experiments, as
well as the process we follow in order to select the optimal classifiers and the corre-
sponding learned Bloom filters.

(3)F1v =

(

1+
d
⊤
Wd

d
⊤
Bd

)−1

.

Page 10 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

Datasets

We process both domain-specific and synthetically generated datasets. Concerning
the first category, we use a URL dataset and a DNA dictionary. The first has been
used by [29], who also kindly provided us with the dataset, as part of their experi-
mentation on learned Bloom filters. The second dataset comes from experiments in
Bioinformatics regarding the storage and retrieval of k-mers (i.e., strings of length k
appearing in a given genome, whose spectrum is the dictionary of k-mers) [56] and
was directly generated by us. We point out that no sensible information is contained
in these datasets. With reference to Table 1, they represent two extreme cases of clas-
sification complexity: the URL dataset is easy, as it is simple in terms of linear sepa-
rability (F1v), albeit exhibiting a relevant C2 complexity due to the label imbalance;
the DNA data is hard, in that it has almost the maximum F1v possible value, meaning
that positive and negative classes are indistinguishable by a linear classifier.

Fig. 1  Graphical representation of synthetic data: first row, parameter configuration is np = 500 , r = 0 , ρ = 1
and a = 0.01 (a), a = 0.1 (b), and a = 1 (c); second row np = 500 , a = 0.1 , ρ = 1 and r = 0 (d), r = 0.1 (e), and
r = 0.25 (f); third row, np = 100 , a = 0.1 , r = 0 , ρ = 1 (g), ρ = 3 (h), and ρ = 5 (i). “pos” and “neg” entries in the
legend stand for positive and negative class, respectively

Table 1  Complexity of the real data

Data F1v C2

URL 0.08172 0.62040

DNA 0.99972 0

Page 11 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

The URL dataset contains 485,730 unique URLs, 80,002 malicious and the remaining
benign. Seventeen lexical features are associated with each URL, which are used as the
classification features. It is worth pointing out that all of the previous works on learned
Bloom filters have used URL data. In this context, a Bloom filter can be used as a time-
and space-efficient data structure to quickly reject benign URLs, never erroneously
trusting a malicious URL although occasionally misclassifying a benign one. We adhere
to this standard here.

The DNA dataset refers to the human chromosome 14, containing n = 49,906,253
14-mers [56] constituting the set of our keys. As non-keys, we uniformly generate other
n 14-mers from the 414 possible strings on the alphabet {A,T, C,G} . Each 14-mer is
associated with a 14-dimensional feature vector, whose components are the integers
0, 1, 2, 3, each associated with one of the four DNA nucleobases A, T, C, G, respectively
(for instance a 14-mer TAATTACGAATGGT is coded as (1, 0, 0, 1, 1, 0, 2, 3, 0, 0, 1, 3,
3, 1)). A fundamental problem in Bionformatics, both technological [57] and in terms
of evolutionary studies [58], is to quickly establish whether a given k-mer belongs to the
spectrum of a genome. In this case, the Bloom filter stores the dictionary. It is worth
mentioning that the use of Bloom filters in Bioinformatics is one of their latest fields of
application, with expected high impact [59]. Such a domain has not been considered for
the evaluation of learned Bloom filters, as we do here.

We also generate two categories of synthetic data, each attempting to reproduce the
complexity of one of the domain-specific data. The first category has nearly the same
C2 complexity of the URL dataset, i.e., it is unbalanced, with n1 = 105 and ρ = 5 . The
second one has the same C2 complexity of the DNA dataset, i.e., it is balanced, with
n1 = 105 and ρ = 1 . The choice of n1 allows to have a number of keys similar to that in
the URL data, and at the same time to reduce the computational burden of the mas-
sive set of experiments planned. Indeed, both balanced and unbalanced categories
contain nine datasets, exhibiting increasing levels of F1v complexity. Specifically, all
possible combinations of parameters a ∈ {0.01, 0.1, 1} and r ∈ {0, 0.1, 0.25} are used. The
corresponding complexity estimation is shown in Table 2. Consistently, F1v complex-
ity increases with a and r values, in both balanced and unbalanced settings. Notewor-
thy, the label imbalance slightly affects also the F1v measure: in absence of label noise
( r = 0 ), F1v augments, likely due to the fact that F1v is an imbalance-unaware measure;

Table 2  Complexity of the synthetic data

a r Balanced Unbalanced

F1v C2 F1v C2

0.01 0 0.127 0.0 0.129 0.615

0.1 0 0.181 0.0 0.202 0.615

1 0 0.306 0.0 0.360 0.615

0.01 0.1 0.268 0.0 0.187 0.615

0.1 0.1 0.327 0.0 0.269 0.615

1 0.1 0.459 0.0 0.433 0.615

0.01 0.25 0.571 0.0 0.308 0.615

0.1 0.25 0.619 0.0 0.399 0.615

1 0.25 0.718 0.0 0.563 0.615

Page 12 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

on the contrary, in presence of noise the F1v complexity is barely reduced w.r.t. the bal-
anced case. Although not immediate, the sense of this behavior might reside in what
we also observe in Fig. 1g–i. That is, the boundary of negative class tends to be more
crisp when ρ increases, thus mitigating the opposite effect the noise has on the boundary
(Fig. 1d–f).

Hardware and software

We use two Ubuntu machines: an Intel Core i7-10510U CPU at 1.80 GHz× 8 with 16 GB
RAM, and an Intel Xeon Bronze 3106 CPU at 1.70 GHz× 16 with 192 GB RAM. This
latter is used for experiments that require a large amount of main memory, i.e., on the
DNA dataset. The supporting software [60] is written in Python 3.8, leveraging the
ADA-BF public implementation provided in [61], which we extend as follows: (1) the
construction of learned Bloom filters can be done in terms of the classifiers listed in “The
considered classifiers” section and of the datasets illustrated in “Datasets” section; (2)
SLBF is added to the already included BF models; (3) the choice of the classifier thresh-
old τ is performed considering any number of evenly spaced percentiles of the obtained
classification scores, instead than checking fixed values; (4) ranges for the hyperparam-
eters of the learned versions of BFs can be specified by the user; (5) a main script allows
to perform all experiments, rather than invoking several scripts, each dedicated to a LBF
variant.

The provided implementation is built on top of standard libraries, listed in a dedicated
environment file in order to foster replicability. In particular, the space required by a
given classifier is computed, as typically done in these cases, using the Pickle module and
accounting for both structure information and parameters [62], in order to obtain a fair
comparison among all tested configurations. Moreover, the software is open to exten-
sions concerning the inclusion of new datasets and/or new LBF models, thus it can be
used as a starting point for further independent researches.

Selecting optimal classifiers and learned Bloom filters

Classifiers Being the classifier performance/size trade-off crucial for the learned vari-
ants of BF, we first assess the classifier generalization ability independently of the filter
employing it. We adopt a threefold cross validation (CV) procedure (outer), measur-
ing the classifier performance in terms of (a) the area under the ROC curve (AUC),
and of (b) the area under the precision-recall curve (AUPRC), averaged across folds.
We tune non-key hyperparameters of each model via a nested threefold CV (inner),
where in each round of the outer CV, we select the optimal non-key hyperparameters
through a grid search, retaining the configuration yielding the best AUPRC value. The
following grids are considered: c ∈ {10−1, 1, 10, 102, 103} (SVM); δ ∈ {1, 3, 5} (DT and
RF); lr ∈ {10−4, 10−3} (NN). The different size of the grid across classifiers is due to
the different training time of the classifier (SVM is the fastest one). The configuration
of a classifier is strictly dependent on the space budget assigned to the LBF leveraging
that classifier (see Table 5 discussed later on); consequently, the key hyperparameters
for a given classifier, i.e., hyperparameters influencing the space occupancy, are set
as follows. Recalling that no key hyperparameters exist for SVMs, we consider RFs
related to two values of t, leading to a simpler and a more complex model. The choice

Page 13 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

t = 10 , a reference already used in the literature [29], leads to a simple model, which
we use on all datasets. As for the complex model, we have two subcases, depending
on space budget. For the low budget case, we set t = 20 , and the corresponding model
is used for the synthetic/URL dataset. As for the high budget case, we set t = 100 , and
the corresponding model is used for the DNA dataset. Those choices, although empir-
ical, indeed provide models with the required complexity. For completeness, we men-
tion that other values of t could have been considered, but we have verified that those
choices would not add any further insight to the perspective of our analysis. The key
hyperparameters for NNs are selected so as to yield three models nearly having the
same occupancy of the SVM and of the two RF models, for a fair comparison. Indeed,
we concentrate on those two classifiers since they represent the two end-points in
regard to the space occupancy spectrum: DTs use more space than the SVM and less
than the RFs. The above-mentioned preliminary experiments have suggested, where
enough space budget was available, that a two-layered topology is to be preferred to
the one-layered one. Precisely, we consider the following models: NN-25, NN-150, 50
and NN-200, 75 (synthetic dataset); NN-7, NN-150, 35 and NN-175, 70 (URL data-
set); NN-7, NN-125, 50, NN-500, 150 (DNA dataset). The final classifier configuration
for all experiments and their space requirements are detailed in Table 3. In Table 4
we also include the average prediction time of the tested classifiers, that, jointly with

Table 3  Space occupancy in Kbits of selected classifiers on the considered datasets

The acronyms for all classifiers refer to the notation introduced in “The considered classifiers” section

SVM DT RF-10 RF-20 NN-25 NN-150,50 NN-200,75

Synthetic Data

 5 30.9 259.3 508.6 5.1 260.2 506.6

 SVM DT RF-10 RF-20 NN-7 NN-150,35 NN-175,70

URL Data

 5.9 31 259.3 508.7 6.2 259.2 499.9

 SVM DT RF-10 RF-100 NN-7 NN-125,50 NN-500,150

DNA Data

 5.8 30.9 259.5 2504 5.6 265.8 2652.3

Table 4  Average classifier inference time (across samples) in seconds. Same notations as in Table 3

SVM DT RF-10 RF-20 NN-25 NN-150,50 NN-200,75

Synthetic Data

 1.278 · 10−8 2.651 · 10−8 4.425 · 10−7 8.968 · 10−7 8.494 · 10−6 9.257 · 10−6 1.008 · 10−5

 SVM DT RF-10 RF-20 NN-7 NN-150,35 NN-175,70

URL Data

 3.730 · 10−8 6.515 · 10−8 5.815 · 10−7 9.930 · 10−7 6.825 · 10−6 7.018 · 10−6 7.198 · 10−6

 SVM DT RF-10 RF-100 NN-7 NN-125,50 NN-500,150

DNA Data

 2.87 · 10−8 1.236 · 10−7 5.572 · 10−7 5.364 · 10−6 6.572 · 10−6 8.138 · 10−6 1.044 · 10−5

Page 14 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

results in Table 3, will be discussed in “Results and discussion” and “Guidelines”
sections.

Learned Bloom filters We leverage the evaluation setting for the Bloom filter var-
iants proposed by [29], and composed of the following steps: (1) train the classifi-
ers using all keys and 30% of non-keys; (2) query the filter using remaining 70% of
non-keys to compute the empirical FPR; (3) fix an overall memory budget of m bits
the filters must use, and compare them in terms of their empirical FPR ǫ . Further-
more, we also measure the average reject time of filters, motivated by the fact that it
can unveil interesting trends about the synergy of the filter variants and the classifier
they employ. Indeed, we train any filter variant using in turn each of the considered
classifiers.

The budget m is selected in relation to the desired (expected) ǫ of a classical Bloom
filter, according to (1). We choose budgets differently on each dataset, since m directly
depends on the key set size n. For synthetic data, having generated several datasets,
we only test two different choices for the space budget m for each of them. Namely,
those yielding ǫ ∈ {0.05, 0.01} for the classical Bloom filter using a bit vector of m
bits. Conversely, more budget choices are tested on real datasets, since they are less
numerous, namely those leading to ǫ ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001} . The differ-
ence between this setting and that of synthetic data is due to the following consid-
erations. First, the dimensionality of synthetic data is 2, whereas that of real data it is
17 and 14, respectively, for URL and DNA. This makes the classifiers using real data
larger than their counterparts on synthetic data. For this reason, on real data we omit
the case ǫ = 0.05 , which yielded a too small budget. Indeed, some classifiers alone
exceed the budget in this case (cfr. Table 3 for details about the space occupancy of
classifiers). Moreover, having only two datasets, we can test more choices of ǫ , and
accordingly better evaluate the behavior of learned Bloom filters when a smaller
(expected) false positive rate is required.

Table 5 shows the obtained budget configurations for synthetic and real datasets.
Even to train a learned Bloom filter we have operated a grid search to choose the opti-
mal hyperparameters on the training data, optimizing with respect to the FPR. The
following grids are utilized: (a) LBF and SLBF, 15 evenly spaced values for threshold τ
in the classifier score range [0, 1]; (b) ADA-BF, the integers within [3, 15] for g, and 10
evenly spaced values in [1, 5] for c̄ (cfr. “Classical and learned Bloom filters’ section’).
Importantly, the latter choice includes and extends the configurations adopted in [61]
(namely, [8, 12] for g and [1.6, 2.5] for c̄).

Table 5  Space budget in Kbits adopted on the various datasets. ǫ is the false positive rate, n is the
number of keys in the dataset

Data ǫ Budget (Kbits) n

Synthetic 0.05, 0.01 622, 956 105

URL 0.01, 0.005, 0.001, 0.0005, 0.0001 765, 880, 1148, 1263, 1530 8 · 104

DNA 0.01, 0.005, 0.001, 0.0005, 0.0001 477460, 549325, 716191, 788056,
954921

4.99 · 107

Page 15 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

Results and discussion
In this section we present the results obtained from the classifier screening on both syn-
thetic and real data, the experimental evaluation of all variants of LBFs based on those
classifiers, and the relative discussion. In particular, we focus on the following questions:
(1) It is possible to detect in advance, before constructing the learned BF, which classifier
is best of use starting only from the classifier performance? (2) Is there a direct impact
of the data complexity on the performance of a learned BF? (3) The noise in data plays
a role of the performance of a learned BF? (4) Is there a relation linking the choice of a
learned BF to reject time? We discuss the first question in “Performance of classifiers”
section, the two subsequent ones in “Data classification complexity versus learned filters
performance” section, and the last one in “Reject time” section.

Performance of classifiers

As clear from previous sections, the classifier can be seen as an oracle for a learned BF,
where the better the oracle, the better the related filter, i.e., its FPR for a given fixed the
space budget. Accordingly, we first discuss the performance of classifiers, tested on the
datasets described in “Datasets” section, and according to the hyperparameter configu-
rations described in “Selecting optimal classifiers and learned Bloom filters” section. Fig-
ure 2 depicts the performance of classifiers on balanced and unbalanced synthetic data,
whereas results obtained on real data are shown in Fig. 3. However, it is central here to

Fig. 2  Performance averaged across folds of compared classifiers on synthetic data. First row for balanced
data, second row for unbalanced data. Bars are grouped by dataset, in turn denoted by a couple (a, r)
expressing, respectively, the separation boundary linearity and the amount of label noise

Page 16 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

emphasize that the interpretation of such results is somewhat different than what one
would do in a standard machine learning setting. Indeed, we have a space budget for the
entire filter, and the classifier must discriminate well between keys and non-keys, while
being substantially succinct with regard to the space budget of the data structure. Such
a scenario implicitly imposes a performance/space trade-off: hypothetically, we might
have a perfect classifier using less space than the budget, and on the other extreme, a
poor classifier exceeding the space budget.

Overall results analysis

First, the behavior of classifiers in terms of AUC and AUPRC is coherent with what
expected according to our methodology to generate synthetic data. Indeed, the SVM
performance decays when the parameter a increases, being in line with the fact that it
means increasing the non-linearity of the class separation boundary. Analogously, all
classifiers worsen as noise r increases, which is clearly what to expect in this case. More-
over and most importantly, two main cases arise with respect to classification complex-
ity: roughly F1v ≤ 0.35 and F1v > 0.35 . Being this threshold experimentally derived, the
division between the two cases is not crisp. We refer to the first case as datasets ‘easier
and easier’ to classify, for brevity ‘easy’, and to the second as datasets ‘harder and harder’
to classify, for brevity ‘hard’.

Easy datasets. All classifiers perform very well on synthetic datasets with the stated
complexity (except for SVMs when a > 0.01 ). Clearly, with such excellent oracles, the
remaining part of a learned Bloom filter (e.g., with reference to the description of LBF,
the backup filter) is intuitively expected to be very succinct.

Hard datasets. In this case, both AUC and AUPRC sensibly drop, being in some cases
(SVM) not so far from the behavior of a random classifier. While in the previous case the
performance of classifiers clearly yields the choice of the most succinct and faster model,
here there is a trade-off to consider. Indeed, within the given space budget, at one end of
the spectrum, we have the choice of a small-space and inaccurate classifier, at the other
end of the spectrum we have larger and more accurate ones. As an example, for the LBF

Fig. 3  Performance averaged across folds of compared classifiers on real data: a URL, b DNA

Page 17 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

in the first case a large backup filter is required, whereas in the second one the classifier
would use most of the space budget.

Preliminary observations on the classifiers to be retained

Here we address the question of how to choose a classifier to build the filter upon, based
only on the knowledge of space budget and data classification complexity/classifier per-
formance. On synthetic and URL data (Figs. 2, 3a), more complex classifiers perform just
slightly better than the simpler ones, likely due to the low data complexity in these cases.
At the same time, they require a sensibly higher fraction of the space budget (Table 5),
and it is thereby natural to retain in these cases only the smallest/simplest variants,
namely: DT, RF-10 and NN-25 (synthetic) and NN-7 (URL), in addition to SVM (we
refer here, and in the rest of the paper, to the acronyms introduced in “The considered
classifiers” section). Conversely, in our DNA experiments more complex classifiers sub-
stantially outperform the simpler counterparts, coherently with the fact that this classifi-
cation problem is much harder (Tables 1, 2). Since the available space budget is larger in
this case, all classifiers have been retained in the subsequent filter evaluation.

Performance of learned Bloom filters

In this section we: (1) explore the behavior of learned filters with respect to the data
classification complexity, an aspect so far neglected in the literature (see Introduction);
(2) discuss the reject time of filters with regard to their empirical FPR; (3) gain further
insights about the interplay between the classifiers and the learned Bloom filter variants.

Data classification complexity versus learned filters performance

The empirical FPR of learned Bloom filters on balanced and unbalanced synthetic data
(generated according to the procedure described in “Datasets” section) are respectively
shown in Figs. 4 and 5, whereas Figs. 6 and 7 depict the results on URL and DNA data.
In all cases, also the baseline Bloom filter is present.

Easy datasets. According to the rough definition introduced in “Overall results analy-
sis” section (F1v around 0.35 or smaller), the three/four leftmost configurations on the
x-axis in Figs. 4 and 5 of synthetic data, and URL data can be considered as ‘easy’ data.
In such cases, our results are coherent with those obtained in the literature, where ADA-
BF slightly outperforms the other competitors [29], and RF-10 induces lower FPR values
with regard to the baseline BF. However, such a classifier is not the best choice, since
other ones induce filters with lower FPR, e.g., NN-25 for synthetic data and NN-7 for
URL data. This again warns from the use of classifiers without a justification, as it has
been done in previous studies.

Hard datasets. A novel scenario emerges with the increase of data complexity, i.e.,
when moving towards right on the horizontal axis in Figs. 4 and 5, or when consider-
ing DNA data. The performance of the filters drops more and more, in compliance
with the performance decay of the subordinate classifiers (“Performance of classifi-
ers” section), and unexpectedly the drop is faster in ADA-BF (and LBF) w.r.t. SLBF.
This trend can be ascertained for instance on all synthetic data having r > 0 (noise
injection). Unexpectedly because it represents an inversion with reference to the
trend reported in the literature, where usually ADA-BF outperforms SLBF (which in

Page 18 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

turn improves LBF). Our results indeed manifest that SLBFs is more robust to noise,
which is likely due to a reduced dependency for SLBF on the classifier performance,
favoured by the usage of the initial Bloom filter. Such a filter indeed allows the classi-
fier to be queried only on a subset of the data.

When adopting RFs in this setting, the empirical FPR of learned filters strongly
increases, and potential explanations reside in the excessive score discretization: hav-
ing 10 trees, only 11 distinct scores are possible. In addition, RF space occupancy
is larger (limiting in turn the space to be assigned to initial/backup filters). These
results have a relevant confirmation on the very hard and large DNA dataset (Fig. 7),
where LBF cannot attain any improvement with regard to the baseline BF, unlike
SLBF and ADA-BF. A potential cause is in the worse performance of classifiers on

Fig. 4  False positive rates of LBF (first row), SLBF (second row), and ADA-BF (third row) attained on balanced
synthetic datasets (cfr. “Datasets” section). On the horizontal axis, labels X_Y denote the dataset obtained
when using a = X and r = Y . The blue dotted line corresponds to the empirical false positive rate of the
classical BF in that setting. Two space budgets m are tested, ensuring that ǫ = 0.05 (left) and ǫ = 0.01 (right)
for the classical BF. Legends shared across rows

Page 19 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

Fig. 5  False positive rates of LBF (first row), SLBF (second row), and ADA-BF (third row) attained on
unbalanced synthetic datasets (cfr. “Datasets” section). On the horizontal axis, the labels X_Y denote the
dataset obtained when using a = X and r = Y . The blue dotted line corresponds to the measured false
positive rate of the classical Bloom filter in that setting. Two space budgets are tested: that ensuring ǫ = 0.05
for a classical Bloom filter (left), and that ensuring ǫ = 0.01 (right). Legends shared across rows

Fig. 6  Empirical false positive rate of LBF (left), SLBF (central), and ADA-BF (right) filters on URL data. On the
horizontal axis the different budgets configurations. Dotted blue line represents the baseline classical Bloom
filter. The legend is shared across rows

Page 20 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

this hard dataset, differently from those obtained on synthetic and URL data, and in
a too marked dependency of LBF on the classifier performance. Such a dependency is
likely to be mitigated instead in the other two filter variants by the usage of the ini-
tial BF (SLBF) and by the fine-grained classifier score partition (ADA-BF). DTs even
amplify this behavior: for the reasons explained in “The considered classifiers” sec-
tion, its scores are strongly quantized and on this hard task we found they do not
span the whole range [0, 1] (most leaf scores are concentrated around 0.5), fostering a
nearly flat FPR for both LBF and ADA-BF. As a general tendency, SLBF outperforms
both LBF and baseline of one order of magnitude in FPR with the same space amount,
and ADA-BF when using weaker classifiers, or when a higher budget is available. We
suspect the latter case is due to overfitting in the partitioning of classifier codomain
ADA-BF operates, which is more deleterious when the classifier performance is not
excellent, as it happens for DNA data. As a consequence, here the classifiers leading
to the best empirical FPR values are the most complex, differently from hard synthetic
data, where the key set was smaller (and consequently also the space budget was
smaller). In particular, the best choice for these data are NN-500,150 and NN-125,50,
which, as an additional motivation to employ them, can be also further compressed
using specific techniques recently emerged [63]. In other words, we can conclude that
too simple classifiers are useless or even deleterious on hard datasets, see for instance
SVM-based filters, that never improve the baseline.

Reject time

Table 6 provides the average per-element reject time of all learned filters, taken across
all the query sequences and space budgets that we have used in our experiments.
They are expressed as percentage increment (or decrement) of the time required by
the baseline. A first novel and interesting feature which emerges is that learned BF are
sometimes faster than the baseline, which in principle is not expected, since learned
variants have to query a classifier in addition to a classical BF. Our interpretation is
that this can happen for two main reasons: (1) the adopted classifier is very fast and
also effective, hence allowing in most cases to skip querying the backup filter; (2) the
key set is very large, thus requiring a large baseline BF, whereas a good classifier can
allow to sensibly drop the dimension of backup filters, thus making their invocation

Fig. 7  Empirical false positive rate of LBF (left), SLBF (central), and ADA-BF (right) filters on DNA data. On the
horizontal axis the different budgets configurations. Dotted blue line represents the baseline classical Bloom
filter. Same legends as in Fig. 6

Page 21 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

much faster. See for instance the case of DNA data, where most learned filters are
faster that the baseline, with most classifiers.

Another intriguing behavior concerns the reject time of ADA-BF, often the worst
architecture in terms of this metric. We believe it depends on the more complex proce-
dure used in order to establish whether or not to access the backup filter—an exception
is represented by DT-based filters, where, as apposite to other classifiers, the ‘anoma-
lous’ score distribution moves the optimal number of groups learned towards the lowest
values, and the resulting filters are faster. Indeed, such a procedure is subject to tuning,
which in turn can yield less or more complex instances of the filter. As evident from our
experiments, such a strategy does not always payoff.

Finally, we discuss the relationship between the inference time of the classifiers and
the reject time of the learned Bloom filters, an aspect completely overlooked in the lit-
erature. In particular, from our experiments it emerges that the classifier inference time
cannot be considered as a proxy for the reject time of the induced learned Bloom filter,
and accordingly it is to be considered in the choice of the classifier only when classifiers
exhibit very similar classification performance.

Indeed, we can observe that the order of the inference time of classifiers (Table 4) is
often inverted with regard to the reject time of the corresponding filters. For instance,
SVM is always the fastest classifier, but in some cases RF-based filters are faster (e.g.,
LBF and SLBF on synthetic data). This behavior is not so immediate to explain, and
might be related to the following discussion. The accuracy of the classifier can impact on
the false negative rate of the filter, and consequently on the number of false negatives to

Table 6  Learned Bloom filters average reject time, expressed as ratio between learned filter and
baseline BF reject times (whose time in seconds is in parentheses)

Positive (resp. negative) values indicate that the learned filter is slower (faster) than the baseline. The best configurations
are highlighted in bold. Results are averaged across test queries and the filter space budgets considered. We remark that for
DNA experiments another machine has been used w.r.t. synthetic and URL data (see “Hardware and software” section)

Classifier LBF SLBF ADA-BF

Synthetic Data ( 1.364 · 10−5)

 SVM 18.4 6.1 151.2

 DT −1.1 − 1.2 1.3

 RF −11.1 − 17.5 112.8

 NN 106.9 54.1 159.3

URL Data ( 3.259 · 10−5)

 SVM 22.6 3.7 3.9

 DT − 1.4 − 1.4 −1.1

 RF 6.6 7.1 9.7

 NN 43.9 49.6 35.3

DNA Data (4.817 · 10−5)

 SVM − 12.5 −11.7 35.9

 DT −1.1 − 1.3 1.3

 RF-10 1.4 − 20.6 32.0

 RF-100 19.8 − 7.4 40.6

 NN-7 −5.0 − 12.0 25.8

 NN-125,50 −3.6 − 7.5 25.2

 NN-500,150 −1.9 − 11.6 39.2

Page 22 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

be stored in the backup filter/s (as well as on the reject time of the backup filter). There-
fore, to optimize the reject time of a learned BF one can reduce the inference time of the
classifier and/or reduce its false negative rate (that is, lowering the size of the backup
filter). As an example, on synthetic data RFs outperform SVMs (Fig. 2), their inference
time is one order of magnitude higher than SVMs (on average), but all the learned filters
it induces have a lower reject time than the SVM-based counterparts (cfr. Table 6).

Guidelines
We summarize in this section our findings about the configuration of learned variants
of Bloom filters, given a prior knowledge of data complexity and available space budget.

Data Complexity and Classifier Choice. With reference to Fig. 8, and recalling from
“Reject time” section that the classifier inference time is not a proxy for the filter reject time,
although it is natural to choose a fast classifier among several ones having comparable classi-
fication power, our recommendations are as follows. First, it must be evaluated how complex
is the dataset, e.g. in our experiments easy ( F1v ≤ 0.35 ) and hard (otherwise). Choosing the
classifier is relatively straightforward on easy datasets: independently of the space budget, it
is always more convenient to select simple classifiers. We found linear SVMs to be the best
choice on datasets having almost linear separation boundary ( a < 0.1 ), and the smallest/sim-
plest NNs are advisable to be used in the remaining cases of this category.

Conversely, the space budget becomes more discriminant for the classifier choice on
hard datasets. Within the budget given by (1), we can distinguish two extreme cases for
hard datasets: those having a relatively small set of keys, and accordingly a small budget,
and those having instead a large key set and a high budget. When the budget is small, for
instance like it happens in more complex synthetic data, the following considerations
hold: (1) the choice is almost forced towards small (and potentially inaccurate) classi-
fiers, being the larger ones too demanding for the available budget; (2) a (linear) SVM is
to be excluded, due to the increased difficulty of the task; Therefore, among the remain-
ing classifiers, we recommend the use of small NNs, which in our experiments were the

Fig. 8  Recommended guidelines for choosing the classifier in a learned BF

Page 23 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

most succinct model among the best performing ones (cfr. Fig. 2). On the other hand,
when the budget is high (as with DNA data) our findings suggest to learn more accurate
classifiers, even if this requires the usage of a considerable budget fraction. Therefore,
we suggest to invest a significant part of the budget in a complex model (in our experi-
ments, the most complex NNs) that will better fit the available data. This is motivated
by the following facts: (1) the gain related to higher classification abilities allows to save
space when constructing the auxiliary BFs of the learnt filters, and to consequently have
a smaller reject time (cfr. “Data classification complexity versus learned filters perfor-
mance” section); (2) too poor classifiers induce the learned BFs to perform even worse
than their classical counterpart (see Fig. 7); (3) the availability of a big amount of data
allows to train complex classifiers more effectively [64].

Learned Bloom Filters Choice. With regard to the choice of the learned BF to be
applied, we recommend the suggestions depicted in Fig. 9. In presence of complex or
noisy data, use a SLBF, in view of its ability to exploit even classifiers having a poor
performance. In the remaining situations, the required reject time becomes discri-
minant. Since ADA-BF often exhibits the highest reject times, if a fast learned BF
is required, SLBF should be preferred over ADA-BF, otherwise ADA-BF is a better
choice (confirming previous literature results).

Conclusions and future developments
The present study proposes an experimental evaluation that can guide in the design
and validation of learned Bloom filters. The key point is to base the choice of the
classifier to be used in a learned Bloom filter on the space budget of the entire data

Fig. 9  Recommended guidelines for choosing the learned BF type

Page 24 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

structure, as well as on the classification complexity of the dataset in input. Our
experimental approach has unveiled behaviors of learned Bloom filters neglected by
previous studies, including: (1) how robust are the current learned filters for the pro-
cessing of datasets of increasing complexity: indeed, only the “easy to classify” sce-
nario has been considered in the Literature so far; (2) how robust are the learned
filters with regard to noise injection in input data: our methodology revealed that
the efficiency ranking of learned Bloom filters emerged in previous studies must be
revised in presence of noisy data; (3) how crucial and discriminant is the selection of
the classifier in terms of false positive rate, size and reject time of the learned Bloom
filter. We have summarized such novel insights within a “Guidelines” section to help
practitioners in suitably designing learned Bloom filters for their applications.

A potential limitation of such results is that they might be dependent on the consid-
ered data; nonetheless, this is somehow inevitable due to the nature of learned data
structures. Finally, we point out that the societal impacts of our contributions are in
line with general-purpose Machine Learning technology. Natural extensions of this
research are the following. As already remarked, we have complied with an experi-
mental setting coherent with the state of the art. We can also consider the scenario
in which the desired false positive rate is fixed (instead of the overall filter size) and
one asks for the most succinct pair classifier-filter (instead of the lowest false posi-
tive rate). Moreover, in his seminal paper [28], Mitzenmacher has shown that learned
Bloom filters can be quite sensitive to the input query distribution. Yet, no study is
available to quantify this aspect. Our methodology can be extended also to those
types of analysis and work in this direction is in progress. Finally, as outlined in the
Introduction, the multi-dimensional case has received very little attention, and it
deserves further investigations.
Acknowledgements
We would like to thank Z. Dai and A. Shrivastava for having provided us the dataset used in [29].

Authors’ contributions
DM, RG and MF conceived the study, designed the experiments and discussed the results. They also were major con-
tributors in writing the manuscript. DR, GF and MF performed the experiments. All authors read and approved the final
manuscript.

Funding
This work has been supported by the Italian MUR PRIN project “Multicriteria data structures and algorithms: from
compressed to learned indexes, and beyond” (Prot. 2017WR7SHH). Additional support to RG has been granted by Project
INdAM—GNCS “Analysis and Processing of Big Data based on Graph Models”. DM, DR, GF and MF acknowledge the sup-
port of the APC central fund of the University of Milan.

Availability of data and materials
The source code, data, and/or other artifacts have been made available at https://​github.​com/​Raimo​ndiD/​LBF_​ADABF_​
exper​iment.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interest
The authors declare that they have no competing interest.

Received: 11 May 2023 Accepted: 14 March 2024

https://github.com/RaimondiD/LBF_ADABF_experiment
https://github.com/RaimondiD/LBF_ADABF_experiment

Page 25 of 26Malchiodi et al. Journal of Big Data (2024) 11:45 	

References
	1.	 Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N. The case for learned index structures. In: Proceedings of the 2018

international conference on management of data. SIGMOD ’18. New York: Association for Computing Machin-
ery, 2018. p. 489–504. https://​doi.​org/​10.​1145/​31837​13.​31969​09.

	2.	 Wu Q, Wang Q, Zhang M, Zheng R, Zhu J, Hu J. Learned bloom-filter for the efficient name lookup in informa-
tion-centric networking. J Netw Comput Appl. 2021;186:103077. https://​doi.​org/​10.​1016/j.​jnca.​2021.​103077.

	3.	 Kirsche M, Das A, Schatz MC. Sapling: accelerating suffix array queries with learned data models. Bioinformatics.
2020;37(6):744–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa9​11.

	4.	 Mitzenmacher M, Vassilvitskii S. Algorithms with predictions. In: Roughgarden T, editor. Beyond the worst-case
analysis of algorithms. Cambridge: Cambridge University Press; 2021. p. 646–62. https://​doi.​org/​10.​1017/​97811​
08637​435.​037

	5.	 Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2000.
	6.	 Freedman D. Statistical models?: Theory and practice. Cambridge: Cambridge University Press; 2005.
	7.	 Amato D, Lo Bosco G, Giancarlo R. Standard versus uniform binary search and their variants in learned

static indexing: the case of the searching on sorted data benchmarking software platform. Softw Pract Exp.
2023;53(2):318–46. https://​doi.​org/​10.​1002/​spe.​3150.

	8.	 Amato D, Giancarlo R, Lo Bosco G. Learned sorted table search and static indexes in small-space data models.
Data. 2023;8(3):56. https://​doi.​org/​10.​3390/​data8​030056.

	9.	 Amato D, Lo Bosco G, Giancarlo R. Neural networks as building blocks for the design of efficient learned indexes.
Neural Comput Appl. 2023;35(29):21399–414. https://​doi.​org/​10.​1007/​s00521-​023-​08841-1.

	10.	 Ferragina P, Frasca M, Marinò GC, Vinciguerra G. On nonlinear learned string indexing. IEEE Access.
2023;11:74021–34. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32954​34.

	11.	 Ferragina P, Vinciguerra G. The PGM-index: a fully-dynamic compressed learned index with provable worst-case
bounds. PVLDB. 2020;13(8):1162–75. https://​doi.​org/​10.​14778/​33891​33.​33891​35.

	12.	 Ferragina P, Lillo F, Vinciguerra G. On the performance of learned data structures. Theor Comput Sci.
2021;871:107–20.

	13.	 Kipf A, Marcus R, van Renen A, Stoian M, Kemper A, Kraska T, Neumann T. Radixspline: a single-pass learned
index. In: Proceedings of the of the third international workshop on exploiting artificial intelligence techniques
for data management. aiDM ’20. New York: Association for Computing Machinery; 2020. p. 1–5.

	14.	 Kirsche M, Das A, Schatz MC. Sapling: accelerating suffix array queries with learned data models. Bioinformatics.
2020;37(6):744–9.

	15.	 Maltry M, Dittrich J. A critical analysis of recursive model indexes. Proc VLDB Endow. 2022;15(5):1079–91. https://​
doi.​org/​10.​14778/​35103​97.​35104​05.

	16.	 Marcus R, Kipf A, van Renen A, Stoian M, Misra S, Kemper A, Neumann T, Kraska T. Benchmarking learned
indexes, vol. 14; 2020. p. 1–13. arXiv preprint arXiv:​2006.​12804

	17.	 Marcus R, Zhang E, Kraska T. CDFShop: Exploring and optimizing learned index structures. In: Proceedings of the
2020 ACM SIGMOD international conference on management of data. SIGMOD ’20; 2020; p. 2789–2792.

	18.	 Boffa A, Ferragina P, Vinciguerra G. A “learned” approach to quicken and compress rank/select dictionaries. In:
Proceedings of the SIAM symposium on algorithm engineering and experiments (ALENEX); 2021.

	19.	 Bloom BH. Space/time trade-offs in hash coding with allowable errors. Commun ACM. 1970;13(7):422–6. https://​
doi.​org/​10.​1145/​362686.​362692.

	20.	 Leskovec J, Rajaraman A, Ullman JD. Mining of massive data sets. 2nd ed. Cambridge: Cambridge University
Press; 2014. https://​doi.​org/​10.​1017/​CBO97​81139​924801.

	21.	 Almeida PS, Baquero C, Preguiça N, Hutchison D. Scalable Bloom filters. Inf Process Lett. 2007;101(6):255–61.
	22.	 Melsted P, Pritchard JK. Efficient counting of k-mers in DNA sequences using a Bloom filter. BMC Bioinf.

2011;12(1):1–7.
	23.	 Zhang Z, Wang W. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level. Bioinformatics.

2014;30(12):283–92. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu288.
	24.	 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a

distributed storage system for structured data. ACM Trans Compute Syst. 2008;26(2):1–26.
	25.	 Broder A, Mitzenmacher M. Network applications of Bloom filters: a survey. In: Internet mathematics, vol. 1, 2002.

p. 636–646. http://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​summa​ry?​doi=​10.1.​1.​20.​98
	26.	 Crainiceanu A, Lemire D. Bloofi: multidimensional Bloom filters. Inf Syst. 2015;54:311–24. https://​doi.​org/​10.​

1016/j.​is.​2015.​01.​002.
	27.	 Zeng M, Zou B, Kui X, Zhu C, Xiao L, Chen Z, Du J, et al. Pa-lbf: prefix-based and adaptive learned bloom filter for

spatial data. Int J Intell Syst. 2023;2023.
	28.	 Mitzenmacher M. A model for learned bloom filters and optimizing by sandwiching. In: Bengio S, Wallach H,

Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in Neural Information Processing Systems,
vol. 31. Red Hook: Curran Associates; 2018. p. 1.

	29.	 Dai Z, Shrivastava A. Adaptive Learned Bloom Filter (Ada-BF): Efficient utilization of the classifier with application
to real-time information filtering on the web. In: Advances in neural information processing systems, vol. 33,
Red Hook: Curran Associates, Inc.; 2020. p. 11700–11710. https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​file/​86b94​
dae7c​6517e​c1ac7​67fd2​c1365​80-​Paper.​pdf

	30.	 Vaidya K, Knorr E, Kraska T, Mitzenmacher M. Partitioned learned Bloom filters. In: International conference on
learning representations; 2021. https://​openr​eview.​net/​forum?​id=​6BRLO​frMhW

	31.	 Liu Q, Zheng L, Shen Y, Chen L. Stable learned Bloom filters for data streams. Proc VLDB Endow.
2020;13(12):2355–67. https://​doi.​org/​10.​14778/​34077​90.​34078​30.

	32.	 Fumagalli G, Raimondi D, Giancarlo R, Malchiodi D, Frasca M. On the choice of general purpose classifiers in
learned Bloom filters: an initial analysis within basic filters. In: Proceedings of the 11th international conference
on pattern recognition applications and methods (ICPRAM); 2022. p. 675–682.

https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1016/j.jnca.2021.103077
https://doi.org/10.1093/bioinformatics/btaa911
https://doi.org/10.1017/9781108637435.037
https://doi.org/10.1017/9781108637435.037
https://doi.org/10.1002/spe.3150
https://doi.org/10.3390/data8030056
https://doi.org/10.1007/s00521-023-08841-1
https://doi.org/10.1109/ACCESS.2023.3295434
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3510397.3510405
https://doi.org/10.14778/3510397.3510405
http://arxiv.org/abs/2006.12804
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1093/bioinformatics/btu288
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.98
https://doi.org/10.1016/j.is.2015.01.002
https://doi.org/10.1016/j.is.2015.01.002
https://proceedings.neurips.cc/paper/2020/file/86b94dae7c6517ec1ac767fd2c136580-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86b94dae7c6517ec1ac767fd2c136580-Paper.pdf
https://openreview.net/forum?id=6BRLOfrMhW
https://doi.org/10.14778/3407790.3407830

Page 26 of 26Malchiodi et al. Journal of Big Data (2024) 11:45

	33.	 Dai Z, Shrivastava A, Reviriego P, Hernández JA. Optimizing learned bloom filters: How much should be learned?
IEEE Embedded Syst Lett. 2022;14(3):123–6.

	34.	 Ali S, Smith KA. On learning algorithm selection for classification. Appl Soft Comput. 2006;6(2):119–38.
	35.	 Cano J-R. Analysis of data complexity measures for classification. Expert Syst Appl. 2013;40(12):4820–31. https://​

doi.​org/​10.​1016/j.​eswa.​2013.​02.​025.
	36.	 Flores MJ, Gámez JA, Martínez AM. Domains of competence of the semi-naive Bayesian network classifiers. Inf

Sci. 2014;260:120–48.
	37.	 Luengo J, Herrera F. An automatic extraction method of the domains of competence for learning classifiers

using data complexity measures. Knowl Inf Syst. 2015;42(1):147–80.
	38.	 Patgiri R, Biswas A, Nayak S. deepbf: Malicious url detection using learned bloom filter and evolutionary deep

learning. Comput Commun. 2023;200:30–41.
	39.	 Malchiodi D, Raimondi D, Fumagalli G, Giancarlo R, Frasca M. A critical analysis of classifier selection in learned

bloom filters: the essentials. In: Iliadis, L., Maglogiannis, I., Castro, S., Jayne, C., Pimenidis, E. (eds.) Engineering
application of neural networks—24th international Conference—EAAAI/EANN 2023—León, Spain, June 14-17,
2023—Proceedings. Communications in Computer and Information Science, vol. 1826; 2023, p. 47–61. Springer.

	40.	 Wegman MN, Carter JL. New hash functions and their use in authentication and set equality. J Comput Syst Sci.
1981;22(3):265–79. https://​doi.​org/​10.​1016/​0022-​0000(81)​90033-7.

	41.	 Carter JL, Wegman MN. Universal classes of hash functions. J Comput Syst Sci. 1979;18(2):143–54. https://​doi.​
org/​10.​1016/​0022-​0000(79)​90044-8.

	42.	 Broder A, Mitzenmacher M. Network applications of Bloom filters: a survey. Internet Math. 2004;1(4):485–509.
	43.	 Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B (Methodol). 1958;20(2):215–32.
	44.	 Duda RO, Hart PE. Pattern classification and scene analysis. New York: Willey; 1973.
	45.	 Cho K, van Merriënboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: Encoder–

decoder approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statisti-
cal Translation. p. 103–111. Association for Computational Linguistics, Doha, Qatar; 2014. https://​doi.​org/​10.​
3115/​v1/​W14-​4012. https://​aclan​tholo​gy.​org/​W14-​4012

	46.	 Morik K, Brockhausen P, Joachims T. Combining statistical learning with a knowledge-based approach: a case
study in intensive care monitoring. Technical Report; 1999.

	47.	 Zell A. Simulation neuronaler netze. habilitation, Uni Stuttgart, 1994.
	48.	 Haykin S. Neural networks: a comprehensive foundation. Upper Saddle River: Prentice Hall PTR; 1994.
	49.	 Bruzzone L, Serpico SB. Classification of imbalanced remote-sensing data by neural networks. Pattern Recogn

Lett. 1997;18(11):1323–8. https://​doi.​org/​10.​1016/​S0167-​8655(97)​00109-8.
	50.	 Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Boca Raton: Chapman & Hall/

CRC; 1984.
	51.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
	52.	 Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data.

In: Proceedings of the 24th International Conference on Machine Learning. ICML ’07. New York: ACM; 2007. p.
935–942. https://​doi.​org/​10.​1145/​12734​96.​12736​14

	53.	 Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly imbalanced data using random forest.
BMC Med Inf Decis Mak. 2011;11(1):51.

	54.	 Lorena AC, Garcia LPF, Lehmann J, Souto MCP, Ho TK. How complex is your classification problem? A survey on
measuring classification complexity. ACM Comput Surv. 2019;52(5):1–34. https://​doi.​org/​10.​1145/​33477​11.

	55.	 He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84. https://​doi.​
org/​10.​1109/​TKDE.​2008.​239.

	56.	 Rahman A, Medevedev P. Representation of k-mer sets using spectrum-preserving string sets. J Comput Biol.
2021;28(4):381–94. https://​doi.​org/​10.​1089/​cmb.​2020.​0431.

	57.	 Solomon B, Kingsford C. Fast search of thousands of short-read sequencing experiments. Nat Biotechnol.
2016;34(3):300–2. https://​doi.​org/​10.​1038/​nbt.​3442.

	58.	 Chor B, Horn D, Goldman N, Levy Y, Massingham T, et al. Genomic DNA k-mer spectra: models and modalities.
Genome Biol. 2009;10(10):108.

	59.	 Elworth RAL, Wang Q, Kota PK, Barberan CJ, Coleman B, Balaji A, Gupta G, Baraniuk RG, Shrivastava A, Treangen
TJ. To petabytes and beyond: recent advances in probabilistic and signal processing algorithms and their appli-
cation to metagenomics. Nucleic Acids Res. 2020;48(10):5217–34. https://​doi.​org/​10.​1093/​nar/​gkaa2​65.

	60.	 Raimondi D, Fumagalli G. A Critical Analysis of Classifier Selection in Learned Bloom Filters—Supporting Soft-
ware. https://​github.​com/​Raimo​ndiD/​LBF_​ADABF_​exper​iment. Last checked on May, 2023; 2023.

	61.	 Dai Z. Adaptive Learned Bloom Filter (ADA-BF): Efficient Utilization of the Classifier. https://​github.​com/​DAIZH​
ENWEI/​Ada-​BF. Last checked on November 8, 2022; 2022.

	62.	 Python Software Foundation: pickle—Python object serialization. https://​docs.​python.​org/3/​libra​ry/​pickle.​html.
Last checked on May 17, 2022 (2022)

	63.	 Marinò GC, Petrini A, Malchiodi D, Frasca M. Deep neural networks compression: a comparative survey and
choice recommendations. Neurocomputing. 2022. https://​doi.​org/​10.​1016/j.​neucom.​2022.​11.​072.

	64.	 Raudys S. On the problems of sample size in pattern recognition. In: Detection, pattern recognition and experiment
design: Vol. 2. Proceedings of the 2nd All-union conference statistical methods in control theory (1970). Publ. House
“Nauka”.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.eswa.2013.02.025
https://doi.org/10.1016/j.eswa.2013.02.025
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/W14-4012
https://doi.org/10.1016/S0167-8655(97)00109-8
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1145/3347711
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1089/cmb.2020.0431
https://doi.org/10.1038/nbt.3442
https://doi.org/10.1093/nar/gkaa265
https://github.com/RaimondiD/LBF_ADABF_experiment
https://github.com/DAIZHENWEI/Ada-BF
https://github.com/DAIZHENWEI/Ada-BF
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1016/j.neucom.2022.11.072

	The role of classifiers and data complexity in learned Bloom filters: insights and recommendations
	Abstract
	Introduction
	Classical and learned Bloom filters
	Experimental methodology
	The considered classifiers
	Measures of classification complexity
	Data generation

	Experiments
	Datasets
	Hardware and software
	Selecting optimal classifiers and learned Bloom filters

	Results and discussion
	Performance of classifiers
	Overall results analysis
	Preliminary observations on the classifiers to be retained

	Performance of learned Bloom filters
	Data classification complexity versus learned filters performance
	Reject time

	Guidelines
	Conclusions and future developments
	Acknowledgements
	References

