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Preface

We present an extensive introduction to quantum collision models (CMs), also known as
repeated interactions schemes: a class of microscopic system-bath models for investigating
open quantum systems dynamics whose use is currently spreading in a number of research
areas. Through dedicated sections and a pedagogical approach, we discuss the CMs
definition and general properties, their use for the derivation of master equations, their
connection with quantum trajectories, their application in non-equilibrium gquantum
thermodynamics, their non-Markovian generalizations, their emergence from conventional
system-bath microscopic models and link to the input-output formalism. The state of the
art of each involved research area is reviewed through dedicated sections. The article is
supported by several complementary appendices, which review standard concepts/ tools
of open quantum systems used in the main text with the goal of making the material
accessible even o readers possessing only a basic background in quantum mechanics,

The paper could also be seen itself as a friendly, physically intuitive, introduction to
fundamentals of open quantum systems theory since most main concepts of this are
treated such as quantum maps, Lindblad master equation, steady states, POVMs, quantum
trajectories and stochastic Schrddinger equation.
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Introduction and historical notes

The last two decades or so have seen the compelling emergence and
subsequent consolidation of a set of research arcas that today usually go
under the joint name of quantum technelogies [1]. This is the idea of taking
advantage of some distinctive features of quantum mechanics - such as
the superposition principle and entanglement - for devising a plethora
of novel, potentially groundbreaking, applications. These include tasks
such as quantum computing, quantum cryptography, quantum sens-
ing, quantum metrology, quantum simulation, quantum imaging. As a
paradigmatic instance (also in light of our goals here), harnessing “quan-
tumness” in order to challenge longstanding thermodynamics bounds
such as the Carnot efficiency so as to engineer more efficient thermal
machines is a possibility that i being more and more investigated these
days in the lively field of guantum thermodymamics [2-6],

The above scenario in particular gave momentum to the study of an
old, but always topical, quantum mechanics problem: the dynamics of
a system in contact with an external environmoent, namely a so called
open quantum system [7-9]. In some respects, this problem arises from
the hope to find an irreversible-dynamics analogue of the Schridinger
equation that governs quantum systems coupled to a large bath (masfer
equation). No truly general master equation is known to date except for a
restricted, although conceptually prominent, class of dyvnamics known as
Markovian dynamics; and a very few others, It is likely that this formidable
problem may even be unsolvable as in general the system’s degrees of
freedom can get entangled with the bath in such a way that one cannot
give up keeping track of the environment dynamics, or at lkeast a portion
of it. In various contexts such as quantum thermodynamics, this may
even be desirable e.g. in order to study energy or entropy exchange
between system and bath, which requires describing the latter as well.
In practice, especially when running experiments, “looking” at some
environment is inevitable. A measurement on the system of interest, for
instance, requires to make it interact with an external probe which is
then analyzed [10, 1],

On a methodological ground, tackling system-bath dynamics at a
microscopic level is in general a very hard task, which necessarily
demands for appropriate models. Traditionally, the standard scheme is
to decompose the bath B into a contingum of normal modes (defined by
its free Hamiltonian) and let them interact with the system 5 according
to some physically-motivated coupling model [7, 5.
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Figure 1.9: Collizivn paodel persus comperfiosal sysfem-baify model, Inoa oollision model {a)
iz bath is made oul of a lange, discrete, colbection of sraller unibs (amcillas) with sohich
the open system 5 interacts (collides) one at a time. In a conventional system-bath
model (b, mstead, the bath typacally comprises a comtinuum of normal modes and S
interacts with (generally) all of them at any time,

The last few years have yet seen a growing use of a less conventional
class of system-bath models known as quantum collision models (Chs) or
repeated interaction schemes, Inits most basic formulation [see fig. 1.1(a)], a
CM model imagines the bath B as a large collection of smaller subunits
(ancillns) with which the open system 5 interacts — one at a time -
through a sequence of pairwise, short unitary interactions {collisions).
Arguably inspired by the famous Boltzmann's Slesszablansatz [12] and
first adopted in the study of optical masers and weak continuous
measurements, quantum CMs are currently spreading across research
fields such as quantum non-Markovian dynamics, quantum optics and
quantum thermodynamics (where they have become now a standard

approach).

Compared to the conventional system-bath modeling mentioned before,
CMs differ in many respects. Two hallmarks in particular stand out. First,
they are intrinsically discrete: continuous time is effectively replaced by
a step number (although the continuous-time limit is often taken in
the end) and the bath is thought as a discrete collection of elementary
subsystems instead of a continuum as usual. Second, as schematically
pictured in Fig. . L1, in contrast to standard models where 5 at each
time interacts with (generally) all the normal modes, in CMs (at least
memoryless ones) 5 crosstalks with a single little portion of bath at a
time. This in a way decomposes the extremely complex system-bath
dynamics into simple elementary contributions, a traditionally effective
strategy in Physics,

To our knowledge, the first appearance of a quantum CM in the literature
dates back to the 6s through a paper by J. Rau [14]. Later on in the S0s,
CMs appeared in seminal works on weak mersirements by C. M. Caves and
G J. Milburn [15-17]. CMs are indeed a natural microscopic framework
for introducing this important class of weak quantum measurements [ 100,
L] because, taking a metrological viewpoint, ancillas can be seen as
a large collection of “meters” each of which being measured after the



collision. More or less in the same years, Javanainen and Meystre [15-20]
developed the theory of micromaser whose basic setup features flying
atoms that one at a time interact with a lossy cavity mode, This can
be seen as a physically intuitive implementation of a CM with atoms
embodying ancillas which undergo collisions with 5 (the cavity mode).

A hallmark of the CM approach is viewing the system-bath dynamics as
a sequence of loo-body unitary collisions, This is very similar in spirit to a
cornerstone of quantum information processing (and generally quantum
technologies) |21], namely that two-qubit gates (assisted by one-qubit
gates) are sufficient to carry out universal quantum computation, and
was probably the reason why CMs gained renewed attention in the early
2000s. V. Scarani ef al.in 2002 approached the thermalization of a qubit
(twoelevel system) due to collisions with a bath of qubits as a quantum
task whose goal is taking 5 to a Gibbs state no matter what state it
started from ("quantum thermalizing machine”) [22, 23]. At about the
same time, A. Brun [24] used a CM made out of qubits and the language
of quantum information to study basic concepts of quantum trajectories,
including the stochastic Schridinger equation, connecting as well to the
aforementioned weak measurements.

Around the beginning of 2010s, a strong (still ongoing) interest arose
in attacking quantum non-Markovian dynamics and defining on a firm
basis the meaning of {non-)Markovian evolution in quantum mechan-
ics [25-28]. CMs are an ideal playground in this respect as was shown by
Ryvbar, Filippov, Ziman and Buzek [29], who demonstrated that CMs can
simulate any indivisible dynamics of a qubit, and by Ciccarello, Palma
and Giovannetti |30] who added ancilla-ancilla collisions to a basic CM
to derive a completely-positive non-Markovian master equation.

In the same years, the field of quantum thermodynamics was emerging,
prompled by a number of questions calling for manageable microscopic
maodels. Due to their simplicity and the possibility to describe system-
bath coupling non-perturbatively, CMs are a quite natural tool in this
framework so that it is hard establishing when they were used for
the first time. A comprehensive quantum thermodynamics theory of
CMs (repeated interaction schemes) was presented in 2017 by Strasberg,
Schaller, Brandes and Esposito [31]. In this context, CMs are actually
seen mostly as a resource to harness in order to design machines
with enhanced thermodynamic performances, possibly powered by
genuinely quantum features. A paradigm in this respect came from an
influential 2003 paper by Scully, Zubairy, Agarwal and Walther [32],
which considered a single-bath thermal machine made out of a stream
of three-level atoms flying through a cavity.

Having in mind a readership of physicists, even those armed with
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only a basic background in quantum mechanics, here we present a self-
contained introduction to quantum CMs theory, including overviews of
the state of the art and recent developments.

While to our knowledge this is the first, fully dedicated, comprehensive
review on CMs, we note that there are some papers and PhD dissertations
which introduce to certain aspects of CMs [ 24, 33-39], Dedicated sections
on CMs can be found in the review on non-Markovian dynamics in
Ref. [27] and the review on irreversible entropy production in Ref. [40].
We also quote a recent perspective on the topic [41].

Finally a disclaimer. The present review does not cover mathematical
aspects, for which we point the interested reader to Ref. [42] and
references therein.



Outline and structure of the
paper

The body of the paper is organized into six big sections (each in turn
structured in a number of subsections): Basic collision model (chapter 4),
Equations of motion (chapter 5), Quantum trajeclories (chapter 6), Non-
cquiilibriiom quasttum thermodynantics (chapter 7), Non-Markovian collision
models (chapter B) and, finally, Collision miodels from coroentional models
(chapter 9). As sketched in fig. 2.1, the paper’s central Sections are
chapters 4 and 5 with which each of the other sections is directly
connected,

Fisu:n_- 21 Sbrl.rl'lrn'l!_r r.lu'p:r;'rrr. Tha Irh:u;l:,.' ool thi= paper n:r:mpr.igw'-i 1% hig SRS,
numisered from 4 o 9, chapters 4 and 5 ane the central ones, o which all the otheers
are dipectly limked o

Each of these six big sections is wrilten with a quite pedagogical attitude.

In particular, we note that - similarly to a textbook - there intentionally
appear very few references in order not to distract the reader from the
main line of discussion. In the same spirit, in order not to interfere with
the main discussion, references to previous equations or sections often
appear between brackets like “(see Section xxx)” or “[see Eq. (o)™, Also,
a large use of fostnotes is made, which supply extra details, explanations,
comments and disclaimers. Each big section, from 4 to 9, ends with a
dedicated State of Hhe art subsection, reviewing relevant literature related
to the topic of the corresponding section.

We begin with a preliminary technical section (chapter 3), which is
intended to provide a sort of reading guide. The main conventions
underpinning the notation we use are explained along with the (relatively
few) acronyms appearing throughout the paper.

i E:I.‘l’hl,“l’ill criberiom is that
a referenoe is given if a cer-
bain property is used in the
main text but not proven

{mor in the appendioes)
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chapter 4 defines the most basic CM section 4.1 focusing first on the open
dynamics of 5 section 4.2 and then also that of ancillas in 4.3. Next, in
4.4, we discuss Markovianity, a property of utmost importance for CMs
and open quantum systems theory in general. Thereafter (section 4.5)
after introducing inhomogeneous CMs, we discuss a generalized no-
tion of Markovian behavior called CP divisibility (where CF stands
for “completely positive”). Some paradigmatic CMs are presented in
section 4.6 {all-qubit CM) and section 4.8 {cascaded CMs). A major issue
when dealing with open dynamics, Le. the convergence fo a steady state
(if any), is discussed in section 4.7. We close with section 4.9 which
studics the tensor-network structure of the joint system-bath state at
each step.

chapter 5 deals with the derivation of equations of motion for both
states and expectation values of observables. The basis is the second-
order expansion of the collision unitary operator with respect to the
collision time (section 5.1), resulting, in finite-difference equations of
motion having the structure of discrete Lindblad master equations and
ensuing dynamical equations for expectation values (see section 5.2). The
Lindblad structure can be proven based on the spectral decomposition
of the ancilla’s initial state (see section 5.3) or solely in terms of bath
maments (see section 5.4), the analogous of the latter being next worked
out for expectation values as well in (section 5.5). We then show in
(section 5.6) how the intrinsically discrete dynamics can be turned into a
continuous-time one through coarse graining, The prominent example
of micromaser is then discussed in the extensive (section 5.7). The
possibility to define a strict continuous-time limit Af — 0 by introducing
a diverging coupling strength is studied in (section 5.8). We close with
a section devoted to multiple baths (section 5.9) and one deriving the
master equation of cascaded CMs (section 5.10).

chapter 6 discusses quantum trajectories and weak measurements, these
being important general topics that are naturally introduced in the CM
language. The starting point (section 6.1) is to view ancillas as probes
and study how measurements of these condition the dynamics of 5.
This framework is used in the following section 6.2 to introduce the
impaortant general concept of PFOVM (Positive Operator-Valued Measure).
We then focus on a specific dynamics in the all-qubit CMs, which is used
to introduce the concept of quantum jumps (section 6.3), the stochastic
Schridinger equation (section #.4) and, finally, how averaging over
all trapectories returns the Lindblad master equation (section 6.5). We
conclude in {section f.6) by deriving the stochastic Schradinger equabion
for a general interaction Hamiltonian, at the same time highlighting the
role of the bath’s first and second moments.

chapter 7 is dedicated to non-equilibrium quantum thermodynamics,



beginning with the definition of quantum thermalization section 7.1 and
discussing next the important instance of a system thermalizing with a
bath of quantum harmonic oscillators {section 7.2) and the connection
between thermalization and energy conservation (section 7.3). There
follow instances of non-equilibrium steady states with baths at different
temperatures (section 7.4). The intrinsic ime dependence of the system-
bath Hamiltonian, a major distinctive feature of CMs, is analyzed in
section 7.5. Following this, we present one by one the computation
of relevant thermodynamic quantities like: the change of systkem free
energy section 7.6, that of ancillas or heat section 7.7 and work section 7 8.
We then derive the non-equilibrium version of the st and 2Znd law of
thermodynamics (sections 7.9 and 7.11, respectively) and discuss the
Landauer’s principle in section 7.12. The energy balance of some of the
previously introduced instances is studied in 7.10.

chapter 8 deals with non-Markovian CMs. Three basic classes are
introduced, where each arises from the introduction of a memory
mechanism into the basic memoryless CM of chapter 4: ancilla—ancilla
collisions (section 8.1), initially-correlated ancillas section 8.3, multiple
svstem=-ancilla collisions section 8.4, section 8.2 shows the derivation
of a fully CPT non-Markovian master equation based on the class in
section 8.1, A further class, the so called composite CMs, is presented in
section 8.5 and illustrated in a paradigmatic instance. We close with the
demonstration that, so long as the open dynamics is concerned, ancilla-
ancilla collisions can be mapped into a composite CM (section 8.6).

The last chapter Y deals with the relationship between CMs and con-
ventional system-bath models (see 1.1). The two descriptions are shown
to be equivalent pictures in the case (recurrent in quantum optics) that
5 is weakly coupled to a continuum of bosonic modes (field). All the
steps of the mapping are illustrated in detail in Sections 9.1, 9.2, 9.3,
9.4 and 9.5, Occurrence of Markovian behavior depends on the field's
initial state (see 9.6). This is then specifically illustrated for the vacuum
state leading to spontancous emission (see section 9.7), thermal states
yvielding Einstein coefficients (section 9.8), coherent states and optical
Bloch equations section 9.9, These are all special cases of a general master
equation, fully defined by the field’s first and second moments, which
holds for Gaussian white-noise field states section 9.10, Non-Markovian
dynamics can occur for non-Gaussian initial states such as single-photon
wavepackets section 9.11. Finally, we explain the link to the input-output
formalism that is broadly used in quantum optics (9.12). We conclude
in chapter 1) with a discussion of future prospects and open questions
about quantum CMs,

In order to help the reader, in addition to the aforementioned reading
guide in chapter 3, there are a number of appendices. Those from A to
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F have a tutorial scope and recall basic notions: density matrices (A1),
various entropic quantities (A.2), quantum maps (A.3), the dynamical
map {(A.4), the Stinespring dilation theorem (A.5) and the Lindblad
master equation (A.6). There follow technical sections featuring mostly
proofs of properties used in the main text (appendices A7 and A.12).



Reading guide

Hats are used throughout to identify all the operators, except density
operators and the identity operator |, When appearing, the identity
operator is frequently used without subscripts, the {subjsystem it refers
to being often clear from the context. If an operator acts trivially on a
subsystem, e.g. 04 @1g, then the identity operator is generally omitted.

Uisually, join! states (generally represented by density operators) of the
system plus bath are denoted with letter o, while p and n are used
for the reduced state of the open system $ and a single bath ancilla,
respectively.

Letter & but with a hat is also used for spin operators such as . and
' .

The eigenstates of ; are denoted with [0} and |1}, having respectively
cigenvalues —1 and +1. We point out that this choice does not follow
the usual convention in the quantum information literature, where [0}
(|1}) corresponds 1o eigenvalue +1 (=1). The rationale of this choice is
that, in many cases, we deal with a ground and an excited state so that
|0} and [1) are understood as the state with zero and one excitations,
respectively.

Superoperators, including quantum maps, are denoted with capital
(usually calligraphic) letters and the argument is shown between square
brackets, e.g. di|z]. The symbol of composition of quantum maps is
most of the times omitted, thus

MA5] = (Mo M)o] = &[4]0)).

Arguments of partial traces are shown between curly brackets,
Anti-commutators are denoted as [.4" §|+ = AR + BA .
W use units such that i = 1 throughout.

In some contexts such as Section 9, in order to avoid making the
notation cumbersome, dependencies on a continuous variable are shown
through a subscript (as is usually done with discrete time vanables),

thuse.g. f; = f(f).
The tensor product symbaol @ is often omitted.

The ancilla index usually appears as a subscript, ¢.g. 1y stands for a state
of ancilla n.

3.1 Acronyms and
some lerminal-
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Time dependencies, where time is often embodied by the (discrete) num-
ber of steps, can appear as subscripts or superscripts, which generally
depends on the quantity or subsystem they refer to or on the considered
conbext.

We generally do not use the same symbaol for different purposes depend-
ing on the context/section. Some exceptions are vet unavoidable (given
the considerable size of the paper), e.g. “M" stands for the number of
baths in Section 5.9 while in Section 8.5 it denotes the memory coupled
to 5.

3.1 Acronyms and some terminology

CM = “Collision model”

ME = “Master equation”

CI'T = "Completely positive and trace-preserving”

MM = “Non-Markovian”

“Qubit” = Two-level system (quantum bit), formally equivalent to
a spin-1/2 particle.



Basic collision model

4.1 Definition

Consider a quantum svstem with unspecified Hilbert-space dimension
called 5 (open system) coupled to a quantum bath B. By hypothesis,
the bath is made out of a large collection of smaller identical subunits
(amcillas) labeled by an integer number n. It 15 assumed that 5 and B
start in the joint state

Tp=m@neana--- (4.1)

with pip the initial state of 5 and n the initial state common to all ancillas
[see Fig. 4.1{a)]. Here, oy, pp and 1 are (generally mixed) density matrices
(see Adl) Note that op is a product state: neither correlations between 5
and B nor between ancillas are present.

By hypothesis, as sketched in Fig. 4.1(a) and (b), the entire dynamics takes
place through successive collisions, namely pairwise short interactions
each involving 5 and one ancilla of B. Collision 5-1 (i.e., between 5
and ancilla 1) occurs at step n = 1, then 5-2 at step n = 2, then 5-3
and so on. Importantly, each ancilla n collides with 5 only omce (at the
corresponding step n).

The dynamics of an elementary collision is described by the time
evolution unitary operator

L'}.u = j[]-f-,.-l-:'.llz', L‘IJ ) ':"L::l

with Al the collision duration, s (I,) the free Hamiltonian of § (nth
ancilla) and V), the 5-n interaction Hamiltonian. Note that, although
only the ancilla subscript appears, Vy, acts on both 5 and n, and so does
.

4.1.1 Conditions for Markovian behavior

Among the series of assumptions introduced so far that define the CM,
three in particular stand out:

(1) Ancillas do not interact with each other ;
(2) Ancillas are initially uncorrelated ;
i3) Each ancilla collides with 5 only once.
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Hypotheses (1)=(3) crucially underpin many major properties of Chs,
in particular those related to Markovian behavior. Is worth pointing out
that the essential meaning of (3) is to rule out sequences of collisions
such as 5-1, 5-2, 5-3, 5-1, 5-2, ... , while dynamics like 5-1, 5-1, 5-2, 5-2,

- can be seen as not violating (3) provided that one simply redefines
the collision as a double collision with the same ancilla.

® i )
{a) ;. 2 & ¥ Uy
gaad- -

LR

(k)

[ c:r? [d) comelased .
@00~ 10000

Figure 4.1: Basic collision model, {a): First collision: the pairwise unitary th i= applied on
5 and ancilla 1 (initially in stale py and r), respectively ). At the end of the collision, 5
is in state . (b): Second collision: unitary [y & applied on § and ancilla 2 (initially
in stabe gy and 1, respectivedy ), (c): Cuaniom circuil representtiomn of thie first bao
M steps. Each wire represents a subsystem (5 or an ancilla), while each rectangular
bow is a two-body quantum gate (collision unitary). {d): Correlations: 5 and all of the
ancillas it already collided with are jointly correlated, while cach ancilla which still
has to collide with 5 i yet in the initial state 7 (hence uncormelated with 5 and all the
memaining ancillas)

4.2 Open dynamics and collision map

After i collisions, Le. at step n, the joint system—bath state reads

= L o

o = Uy - Ty o} ---0F . (4.3)

In passing, we note that this dynamics can be represented [see Fig. 4.10c)]
as a quantum circuit [21] where each wire stands for a subsystem (5
or an ancilla) while each rectangular box is a two-body quantum gate
(collision unitary L,,).

By replacing o with the uncorrelated state 4.1, Eq. 4.3 can be expressed
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i =L-I.1--rf:h Poth i',lr;ﬂ':ﬁ: MaelTnez "
= (O« (O (Dipam O ) mald) ..l sz =- . (44)

In the last identity we used that U, acts on § and 1, hence it commutes
with any . with m # n, We sce that, up to step n, ancillas m with
m > it play no role and we will thus ignore them in the following,

Tracing off the bath, the corresponding state of the open system 5 is

Pu =Trafan} = Try - Tr {0y}
=Ty "Iﬂ" Tra {ﬂ:-rrl lﬂ.pur;:ﬂ,*% r;rzﬂ;!- ---:q,..ﬂ:} . (4.5

with Try the partial trace [see Eq. A2} over the mith ancilla and where
we used that Tr, and U, do not imvolve ancillas different from n. We
next express eq. (4.5) in the compact form

pu =€ |- |€|€|p]]]] = &"[pol. (4.6)

where we defined the quantum map (see A3) on 5
¢’ = Elp] =Try {L'},. (P ® i) ﬂj} (collision map). (4.7

We will henceforth refer to 4.7 as the collision map : the knowledge of map
& allows to determine the state of 5 at the end of a collision, ', for any
state p prior to the collision. Note that map ‘€ depends on the unitary 4.2
describing each collision (in turn depending on Hg, Hy and Vy) as well
as on the ancilla’s initial state n. As a property of utmost importance in
CMs theory, the form of 4.7 ensures that & is a completely positioe and
trace-preserving (CFT) map (see A.3). The essential reason behind this
property is that, before the 5-n collision starts, § is still uncorrelated
with ancilla n [see Fig. 4.1(a), (b) and (d)] this being a consequence
of assumptions (1)=(3) in 4.1.1. The breaking of even only one of these
generally brings about that the initial and final states of 5 in a collision
are no longer connected to one another by a CPT map as we will discuss
extensively in Sechion 8.

Thus Eq. 4.6 states that, when looking only at the open system 5, n
collisions correspond to # applications of collision map € on pg (initial
state of 5). We immediately see that Eq. 4.6 entails

" Mot that subscript i is used here with different although related meanings. For 5 - B
and 5 states, such as o, and py, it refers o the ime step. For single-ancilla states,
such as T, it imdacates which ancilla th stabe refers b,

Map € does not depend
O 1 SiNce We ane assum-
img, a fully homogeneous
mvodel (same inital state
for all ancillas and =ame
collision wnitary LU, ), This
assumphion will be nelased
im Seectiosn 4.5,

The coowverse holds as
well, Le, Eq. 4.8 implies

Pn = &"|pu]. Bgs. eqs. (4.6)
and (4.B) are thus equiva-
et
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cilla evolution,

14 | 4 Basic colliston model

fm = %{Prr-l]- {4.8)

Eq. 4.8 in fact governs the entire open dynamics and, as will become
clearer in Section 5, it can be regarded as the discrete analogue of a
time-local master equation (see Ad6). In particular, it shows that the state
of 5 at the current step depends only on that at the previous step. This
means that the dynamics keeps no memory of past history: if we are given
state Py but we do not know what happened to § up to step -1, the
entire future evolution at any step i = n can be predicted from 4.8,
This property no more holds for non-Markovian CMs to be discussed in
Section 8. Yet, the Markovian nature of a basic CM has a tremendous
conceptual relevance for all CMs, including non-Markovian ones, as will
become clear in the development of this paper.

4.3 Ancilla dynamics

While, as shown above, the open dynamics of 5 is relatively easy to work
out, deriving the full bath dynamics is generally far more challenging
(see however Section 4.9). Although not directly coupled, indeed, ancillas
that already collided with 5 get correlated with each other [see Fig. 4.1(d}].
However, if one i1s concerned only with the simgle ancilla dynamics (as is
often the case) this is simply obtained from Eq. 4.3 by tracing off 5 and
all the remaining ancillas. The result is similar to the collision map 4.7
except that the partial trace is now over 5 (instead of n)

n, = Trs{lnpa-1qulil}, {4.9)
Thereby, the collision with 5 transforms the ancilla state as

e =g, (1] (4.10)
with

g = dl,ly = Trs |L‘:, (@) ﬁ;| . (411)

Eq. 4.11 defines a CT'T map on the ancilla, showing that this evolves at
each collision somewhat similarly to 5. Yet, at variance with 4.8 which
can be determined once for all given U, and n. map 4.11 does depend
parametrically on the current state of 5. Thereby, to work out 1), we need
to keep track of the open dynamics of 5 (i.e. p, ). Note that after colliding
with 5 the ancilla’s state no longer changes [due to conditions (1)—{3) in
4.1.1), hence 4.10 fully specifies the single-ancilla dynamics. Al the next
steps, however, the correlations between the ancilla and the rest of the
syvstem (both 5 and other ancillas) generally change [see Fig. 4.1(d)].



4.4 Markovnmity |

4.4 Markovianity

It is convenient to introduce the dynamical map (see A4))
F]‘H = Iﬁlﬂl“”“! i [4.12:'

which, given the initial state pp, returns the state of 5 at any step n, The
dynamical map (in fact the propagator of the open dynamics) depends
on the collision unitary 4.2 and the initial state of ancillas. It is ensured
to be CP'T since 5 shares no initial correlations with the bath.

In terms of the dynamical map Ay, Eq. 4.6 is simply expressed as
Ay ="8€", (4.13)

showing the exponential dependence of Ay on the collision map €. It
immediately follows that, for any integer m between (0 and n,

Ao = Ao-m A (4.14)

This is the discrete-dvnamics version of the so called semigroup property
(see A6). It states that, like for any group (in the mathematical sense), the
composition of dynamical maps produces another legitimate dynamical
map. Here, the prefix “semi” comes from the fact that dynamical maps are
generally non-unitary and thus cannot be inverted [see A3 (physically
this means that they describe irreversible dynamics).

The semi-group property is another equivalent way to express the
memoryless nature of the dynamics [already stressed below Eq. 4.8
if we know the state at an intermediate step m, Py, no matter what
happened at previous steps, we can determine the following evolution
up to a final time .

4.5 Inhomogeneous collision model and CP
divisibility

50 far we assumed that the entire model is homogeneous: the ancilla’s
initial state 1) was assumed to be the same for all ancillas [cf. eq. (4.1]]
and so was the collision unitary 4.2. Accordingly, the open dynamics
resulted from repeated applications of the same map 4.7 [recall eqgs. (4.6)
and {4.13)]. This homogeneity assumption, made mostly for the sake of
argument to better highlight general propertics, can be relaxed straight-
forwardly. By still maintaining the assumption of initially uncorrelated

15
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ancillas (a constraint which we will relax i Section sections 5.3 and 9.11),
the initial state 4.1 can be generalized as

o = po () (4.15)

with 1y not necessarily the same state for all ancillas, while in the
collision unitary 4.2 ﬂﬁ, I:i',,, 1:’,, can be different for different values of n.
Accordingly, the system's collision map 4.7 is generally step-dependent
and we thus rename it €', Correspondingly, the dynamical map 4.13 is
generalized as

Ap =Bl g, (4.16)

The semigroup property 4.14 is replaced by the more general
Ay = Wy o Py {4.17)
holding for any integer 0 < m < n. Here, we defined map
Dy, o, = Bl gl (g2 m), (4.18)

which, being a composition of CPT maps, is also CI'T (this can be easily
shiownl).

Eq. 4.17 is the discrete version of a property called “CP divisibility" [9].
This is in fact the statement that the open dynamics can be divided
into a sequence of elementary CPT maps which generally need not
be the same. In the special case that they are the same, we recover
the semigroup property 4.14. Fulfillment of CP divisibility has been
proposed as a quantitative definition of Markovian behavior that is more
general than the traditional Markoviamity associated with the semigroup
property [26, 43]. In this sense, the inhomogeneous CM defined above
can still be considered to be Markovian, an assessment in agreement
with the fact that conditions (1)-{3) of 4.1.1 are still matched.

4.6 All-qubit collision model

To illustrate more concretely some of the concepts introduced so far,
wi next present one the simplest instances of CM which we will refer
to repeatedly in this paper as the “all-qubit CM". The open system 5
isa “gubit” (two-level system), whose Hilbert space is spanned by the
orthonormal basis {0}, [1}} with &; [0y == |0} and &; |1} = |1}, where
da (@ = x,y,z) are the usual Pauli spin operators. Ancillas are also
qubits, each with orthonormal basis {|0}, . |1}, ] (eigenstates of d5;,
Le. the z-component of the nth ancilla spin operator). We assume for
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simplicity no free Hamiltonsan for both 5 and ancillas, ie. As = Ay =0,

and consider the (homogeneous) system-ancilla coupling Hamiltonian

Vy = gl B +d_ @A) +g, 0, 80;, (4.19)

where in cach term the first (second) operator acts on S (nth ancilla) and
with
i o= -#m +idy,) = |0){1], {4.200)

the usual spin ladder operators. The cigenstates of Vi are [00Y, |11} and

W) = L (110} + [01)) (4.21)

with eigenvalues ¥, ¢: and g = ¢, respectively (we use the short
notation |ab} = |ads|bg).

Hence, the collision unitary 4.2 for this class of CMs explicitly reads

U, = e~ 22M (|00} {00] + |11} {11])

+ cos(gAf) (10} {10] + [01) (01]) = i sin(gAL) (G5 + G-G4)
(4.22)

where we omitted an irrelevant phase factor ¢*% and all tensor product
symbols,

Although the all-qubit CM at first may appear somewhat artificial, there
are realistic physical scenarios (see Sechion %) where it provides an
accurate description of the dynamics (especially in the case g, = 0).

4.6.1 Partial swap unitary collision

An important special case is when U, reduces to a partial swap, this
being a recurrent collision unitary in the CM literature.

Let us first define the SWATD unitary operator Sy as the operator such
that )
Snlords lde = I)s[), (4.23)

for any pair of states |-|.L'::| and |x). In line with the notation used for 'I.-"'ﬂ
and Um. only the ancilla index appears in the subscript of S (et recall
that it acts on both 5 and ancilla). Note that

5.5, =1. (4.24)

Thus operator f':,.,. is both Hermitian and unitary.

Ulsimg cigenstates
amd  cigenvalues  of
Ve, O, i spectrally
decomposed  as g =

oA (|00} (00|

+ 10 1]+

P lg_'l."l.l'r,l,rl:l{wll +
AR ey e e
mext expand [} and then

vise Uk o @i

= |10 (|
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Operator Sy thus swaps the states of 5 and the ancilla. Note that
definition 4.23 applies even if 5§ and ancilla i are not qubits, the essential
requirement being that they have the same Hilbert space dimension.

A partial swap is a generalization of the SWAL defined as

0, = ¢ = cos 01— isin0d, (4.25)

where angle & (such that 0 £ 8 £ nf2) measures the amount of
swapping. For 0 = 0, {1, reduces to the identity corresponding to a
fully ineffective collision, For I} = n/2, instead, the collision has the
maximum effect, swapping the states of the interacting systems.

4.6.2 Partial swap in the all-qubit CM

In the case of the all-qubit CM (5 and ancilla n are both qubits), E':,.,
leaves |00} and |11} unchanged while |01} and |10} are turned into one
another. [t is then easily shown that the SWAP operator can be expressed
in terms of the identity and Pauli operators as

Se=d{l+d-8,). (4.26)

The partial swap unitary 4.25 occurs in the all-qubit model for g: =
2 /2 [ef. Eq. 4.19], corresponding to the Heisenbery exchange interaction
Hamiltonian )

t=da.. (4.27)

Indeed, up to an irrelevant phase factor, the corresponding unitary 4.22
has the form 4.25 with 5, given by 426 and 0 = gAL.

4.6.3 Reduced dynamics of 5 and ancilla

Take all ancillas initially in the same state 1, = [0}, (0] [<f. Eq. 4.1]. Using
basis {|0), , |1}, } to carry out the partial trace over each ancilla, the
collision map 4.7 is worked out from 4.22 as

P =Elpl = KopK! + K, pK?, (4.28)
where the Kraus operators Ky = , (k| 0,00, (see A.3) explicitly read

Ko = e7"% ) (0] + ' cos(gAr) 1) (1] (4.29)

Ky = —ie'®™Mgin(gAt) d_ .
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Any qubit state has the general form

_ (et} {““?fl}):[p []
P ({HPH}} (0] pr [0} e 1-p {4.30)

with0 < p < Land (1 - 2p) + 4|c]* < 1 (to ensure that cigenvalues of
i are positive). Entries ¢ and p are routinely called “coherences” and
“populations”, respectively,

Flugging 4.30 into 4.28 yields

Eﬂ-.':'-z{:'.a'.ﬂ.l' Ip phig:Ad cos|gAl) ¢

¢ =%lpl= (r UM cos(ght) et (1-p) +5in3|:gm'}p] . 183)

which is an alternative way to represent the collision map 4.28, The effect
of the map, as can be seen, is to multiply the coherences ¢ by a factor
eH8:M cos( pAt) and populations p by cos®(gAt). In light of Eq. 4.6, the
state of 5 at step # is thus given by

n A Cy
pn=%"[p] = (i.“ ,_F") (4.32)
with _
Pu = cos™(gAN P, cu=e" ="M casgAl) C . (4.33)

This entails the following: provided that |cos{gAt)| < 1, no matter
what state 5 started from (i.e. regardless of © and p), the coherences and
populations vanish for m — oo meaning that 5 asymptotically ends up in
state (1) ;. This is a rather extreme example of non-unitary, Le. irreversible,
open dynamics, which can be pictured as a transformation mapping the
entire Hilbert space of 5 into a single point representing the asymptotic
states |0} ..

By replacing eqs. (4.22) and (4.32} into 4.10 for 1), = |0}, {0, we get that
the state of ancilla n# after colliding with 5 is given by

# ] dﬂ
w=i 4 W
with
m, = sin®(gAt) cos®™ g Al) p {4.35)

dy = —isin|gAt) cos™ V(g Ar)elisndt o

Note that, as n grows up and for |cos{gAt)| < 1, g, — [0y, (0] =
Nn, Namely, after a sufficient number of steps, ancillas basically no
longer change their state after colliding with 5. This is consistent with

19
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the comvergence of 5 to |0} since the collision leaves state [0} [0},
unaffected, i.e. U, j00)., (00] LI} = |00}, (00].

4.7 Steady states

As discussed, Eq. 4.32 shows that for, | cos{ gt )| < 1, § eventually ends
up in state |0} g, ie. pu — p* = [0)5 {0]. Once 5 reaches this state, this
will be not be affected by collisions with ancillas. In these cases, we say
that p* is a steady or stationary state for 5.

In the language of quantum maps (see A.3), a steady state p° is a fixed
paint of the collision map, i.e.

Elp'l=p"  (sleady state). (4.36)
This expresses the fact that p* is unchanged by the collisions, no matter
how many (since we also have €"[p"] = p* for any n). Note that, in
general, map € could admit more than one fixed point, e, many steady
states can exist. When only one steady state is possible (as in the previous
instance), i.e. there is a unigue fixed point, we say that the collision map
is ergodic.

Actually, the instance in the previous subsection fulfills a stronger prop-
erty in that p,, — p" for any initial state py,. In the language of quantum
maps, in such cases map & is said to be miving. A paradigm of mixing
processes s thermalization (which will be discussed in Section 7.1),
enforcing S to end up in the Gibbs state at the reservoir temperature
no matter what state it started from. Importantly, note that a necessary
— but not sufficient — condition for a map to be mixing with respect to
a steady state p° is that this be a fixed point i.e. fulfill 4.36]. A more
stringent necessary condition, although still insufficient, is that p* be the
ortly fixed point, namely (see above) the collision map must be ergodic
(if there were two or more fived points, mixingness clearly could not
OCCUr).

A simple paradigmatic instance where ergodicity, hence mixingness,
does nol take place is the all-qubit CM for gAl = 7 and g; = 0. The
corresponding collision map 4.31 then is

"=Elpl= F i ‘ a7
p=elpl=(", =) (437
This leaves populations unaffected, while coherences change sign.
Clearly, any mixture of |0} {0] and |1}5 (1] {(zero coherences) is a fixed
point of map & |cf. Eq. 4.36). Notably, there exist initial states giving rise
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to a dynamics where 5 never reaches a steady state. For instance, obsery-
ing that & [|£) (2]] = |¥) (¥| with |£) = fsuu} + [1}) (eigenstates of
), we see that if pp = [+) {+] then 5 will indefinitely oscillate between
states |+ (1 even) and |=) (n odd).

We finally mention a special type of mixing dyvnamics called guirrntum
homogenization, which occurs when & is mixing with steady state p° such
that p* = 1) for any initial state 5 of ancillas. Note how this definition
poses the constraint that 5 and each ancilla have the same Hilbert
space dimension {(and moreover that all ancillas start in the same state).
Physically, the intuitive idea behind quantum homogenization is that,
since the bath is made out of a huge number of identical subsystems,
if 5 "talks” long enough with them then its state will more and more
look like that of ancillas until becoming homogeneous with these, It
can be shown [22] that in the all-qubit CM quantum homogenization
occurs when the collision unitary [y is a partial swap [cf. Eq. 4.25]
corresponding to the Heisenberg exchange interaction 4.27.

4.8 Cascaded collision model

The basic CM of Fig. 4.1 comes with an intrinsic anidirectionalify: 5
explores the bath along a specific direction (say from left to right as
in Fig. 4.1). Eemarkably, if we let 5 be multipartite in such a way that
each ancilla collides with one subsystem of 5 at a time, then the above
unidirectionality yvields an interesting effect.

To see this, let 5 comprise a pair of subsystems, 51 and 53. By hypothesis,
ther collision with each ancilla consists of two cascaded sub-collisions (see
Fig. 4.2): n collides first with 5 and only afterward with 5. Accordingly,
the collision unitary reads

Uy = Uz ally . (4.38)

The remaining hypotheses of the basic CM in Section 4.1 are unchanged.
Aldready at this stage, it is clear that there exists an asymmetry between
5y and 55 since U does change if 1 and 2 are swapped (as “] n and Ug__..,
generally do not commute), The open dynamics of 5y is indeed quite

different from that of 5;, as we show next.

We first note that, just like in the basic collision model, the foind system
5 undergoes a fully Markovian dynamics according to [of. Eq. 4.7]

o = Elpnal = Tra {Qaulhy o poame 07,08, } (4.39)

21
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(b)
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Figure 4.2: Casouded collision mioded. The open system 5 is made out of two subsystems,
5y and 5. At each collision, the ancilla imeracts firsf with 55 {unitary [:F._...J anad
ondy mfteruand with 53 {umitary (I3 4 ). Thus the collision consists of two time-ordered
sarb-rollssions armdhg o thar codlisiom I.I:|1i1‘.:l!'_5|' I!j.., = ﬂz_..l.h_.-ﬁubs:ﬂu,‘rn 5y alm-_ux
cellides wiith “fresh™ ancillas (still in the initial state g), while 5; codlides with *recycled”
ancillas that already imteracted (and got correlated]) with 5

We next ask whether or not the same statement holds for the reduced
dynamics of 51 and 5; (whose reduced states will be respectively denoted
as e and P2 ). Let us start with 5¢: tracing off 5z in 4.39 yields®

i =TF.E{FHI =Trzlry iﬂln‘ﬂl,n fa—1Tm ﬂ:_n ‘:'r:'.,.
=1r3lr, if_-.l'jl,, Pr-11]n ﬂ;n . (4.40)

Since Tra{. ..} does not act on either 5 or ancilla #, it can be moved to

the right of
prn =Try {fﬁ,.. Traf -1 Hin L'IL.! =T, {L"h,., Lt} = Elpraal,

where we introduced the usual collision map 4.7, Thus 5; evolves exactly
as if 52 were absent, entailing in particular that its dynamics is Markovian,
This occurs because 51 always collides with “fresh” ancillas that are still
in the initial state i |see Fig. 4.2{a)]. Once the ancilla has collided with 5,,
the following collision with 5; cannot affect the reduced state of 5.

In contrast, since it collides with “recycled” ancillas that already collided
with 5;, the dynamics of 5; dowes depend on that of 5,. Indeed, if we
now trace off subsystem 5y from Eq. 4.39 we get

e = TrTry {ﬂ-:.ﬂﬂi.rl Pii—1Tn E[:,nﬂ;.il

= Try [Erz_.. 17y | Giyn po-1ne 07, L"I-L,’ L (44

2 W use that TraTr, E-L.r!.n*’E;..:' & TraTry o] simoe if {[ka, kod 1= an orthonormal

basis of system 2-r used o compute TraTrg |, . | another legitimate basis o perform
this trace 1= 1&;_"*’1, l.'.:ll |:I'I.H.'.‘I“ that the trace can be carmsed out n any basis).
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At least two features stand out. First, the state of 53 is affected by the
previous subcollision (the one involving 51). Second, upon comparison
with py 5, we see that pz , does moel evolve according to a CI'I' map. This
15 because, after the first sub-collision but before the second one starts,
Sz is in general already correlated with ancilla n. Indeed, even if 5, and
52 start in a product state, very soon they will get correlated during
the collisional dynamics due to their interaction with the common bath
of ancillas. Thus, as soon as ancilla n has finished colliding with 5, it
establishes correlations with both 5; and 5.,

To summartze, in a cascaded CM, the two subsystems jointly undergo a
Markovian evolution. The reduced dynamics of 5; s Markovian as well
and completely insensitive to the presence of 52, Instead, the reduced
dynamics of 52 depends on that of 5 and 15 generally non-Markovian
since it cannot be divided into a sequence of CPT maps. This asymmetry
in the mutual dependence of the two reduced dynamics reflects the
intrinsic CM umidirectionality (causal order) that we discussed above.

The next subsection (connecting CMs with matrix product states theory)
is not indispensable to access the remainder of the paper. As such, it
could be skipped by the uninterested reader.

4.9 Collision models and Matrix Product States

We have previously focused on the reduced dynamics of either 5 or an
ancilla. Here, we will consider the joint dynamics of 5 and all ancillas
showing that it enjoys interesting propertics.

Starting from state 4.1, as the collisional dynamics proceeds, mulbipartite
correlations are established so that the joint system evolves at step n
into a generally entangled state having the generic form

Wad = D Cotybuok, la by koo, ke)
|I_.|:l|,.-.,.*_||

(4.42)

with {|a}} denoting a basis of 5 and {|k,}} a basis of the rth ancilla.

We will show next that state 4.42 can be expressed ina computationally
advantageous form. The basic idea is to view the expansion coefficients
oy ks, .k, (2ach labeled by it + 1 indexes) as a rank-(n + 1) tensor and
decompose it into 1 tensors each with the smallest possible rank.

For the sake of argument, we will refer to the basic CM of Section 4.1
and assume that a = 1,2,.. ., ds with ds the Hilbert space dimension
of 5, while k,, takes integer values from 1 to d 4 with d 4 the dimension

An entangled state B a
stabe which s not sepa-
rable, 14 such that the
cornespomdimg density ma-
trix cannod be expressed
as o mixture of prodoct
status. For bipartite sys-
temns, a8 separable  stabe
reads an2 = ; pyp @l
with X, p; = 1 {this natu-
rally generalizes o N sys-
beermies .

Here, |} and |ky ) respec-
Hvely stand for Ja), and
- |.'i|5]1.l' mwala b bhat
will be used again later on

in the paper.
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of each ancilla. We consider an initial pure state oo = [Wa) {Wal, which
without loss of generality can be written as

[Wa) =1, 14,12, ...} (4.43)
At the end of the first collision, the point state reads

[y = O %)

Flakyla kL Lyelnls..) (444

J'I:.h

- EU“'] b, by, 13, 13,3
il.L"

where we plugged in the identity operator Is @ Iy expressed in terms of
basis |a, k1) and defined

Ul = (o, k| Oy |, 1) (4.45)
This is a rank-3 tensor of dimension ds % ds % da due to dependence on
the three indexes a, o' and k.

.‘.‘| i. ’.‘J |||! k:q ‘c

gtep 1 BEp £ 12

Figure 4.3; Temsor-netoork represenlintivn of the joinf CM dymirsnics. The point state at
sbep 1 is generally defined by the rank-(an + 1) tensor c. 6, lof. Eq. 4.42]. This can
be decomposed into one rank-2 tensor of dimension ds ® dy (leftmost square) and
i — 1 ranik-3 bensors each of dimensiom d'_u. 5 n.l'_.,, - l:f_{ {:qu:r[::u with thres lfgu] with
ds {d ) the Hilbert space dimension of 5 (ancilla). A joined keg (each link between
nearest-neighbor squanes) represents an index contraction. The skeps it = land n = 2
are also shown for comparison,

1.:151'115 this, the joint state at the end of the second collision, W) =
LIz |9}, can be worked out as

W = 57U Oz fav, K, 1z, - )

v ky
= UM S, k) (o, kal D, 12) @ [k @ s, )
‘tkl ||'k1
= E E U!lll'lth::izLal frklakh I];. [ l}
thl |l'l‘=
(ZU‘]E Usa )1'1 ky, k2 13:..) (4.46)
i i::| l::t

For n = 3, analogous steps lead to

W)= 3, (Zu'*”b'h'um’ )I-t“.h.-’rz.ka.'la.---}- (4.47)
JI",*|,"‘=,‘.‘:| £ril
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Fimally, at the nth step, we get 4.42 with each coefficient given by

RO Tl I 3 IR s A (4.48)
L] Aty |

Thus, as schematically sketched in Fig. 4.3, we get that the rank-(n + 1)
tensor Oy 4y, 4, can be decomposed in terms of # = 1 rank-3 tensors of
dimension ds X ds % da and one rank-2 tensor of dimensions ds X da.
Interestingly, each of these low-rank tensors [of. Eq. 4.45] corresponds
to a single collision: Eq. 4.48 thus reflects the decomposition of the
overall complex system-bath dynamics in terms of elementary two-
body unitaries. This way of expressing the multipartite 5-bath state is
very close to the so called matrix product states decomposition [44—46]. The
idea 15 that reducing to low-rank tensors with small enough dimension
(if possible) allows to limit the computational complexity of the problem
(with clear advantages for numerical simulations of the dynamics). A
collisional dynamics typically has such features in that, as shown, the
dimension of each rank-three tensor is bounded in terms of the Hilbert
space dimensions of the open system 5 and a single ancilla these being
often small.

4.10 Basic collision model: state of the art

Throughout we considered each collision to be described by a well-
defined unitary. One can vet consider random wunitary collisions. These
were investigated in Ref. [47], where it was shown that 5 reaches the
same asympiotic state which would be attained for repeated random
collisions with a single effective ancilla of suitable dimension,

A more general and formal treatment than 4.3 of the ancilla dynamics
was carried out in the context of so called mom-anticipatory quantum
chanmels with memory |48). Similardy to cascaded CMs (see Section 4.8),
this dynamics features an explicit causal ordering of the ancillas, which
reflects the different times at which these interact with 5.

The Markovianity notion based on divisibility discussed in Section 4.5
is featured in the review paper Ref. [49], where CMs are used as an
effective way to visualize the memoryless properties characteristic of
quantum Markovian processes.

A thorough treatment of mixing channels and fixed points mentioned in
Section 4.7 can be found in Ref. [50]. Note that the properties of mixing
CPT maps which we referred to are directly connected with the concept
of forgelful channels introduced in 2005 by Kretschmann and Werner [51]

within the general framework of memory quantum communication lines

The rank-2 ensor is Lrl:l'lr.
which derives om the
rank-3 irnsor 4.45 I'.IF' l'i.'l:'ﬂ'l_p;

o i,
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(reviewed in Ref. [45]). These models describe the evolution of an ordered
collection of quantum information carriers, which sequentially interact
with a common reservoir. In this context, if the reservoir asymptotically
loses track of its initial state for a growing number of carriers then the
resulting transformation is said to be “forgetful”, Accordingly, from the
point of view of the bath ancillas, any CM featuring a collision map €
that is mixing can be seen as a special instance of forgetful channel.

Quantum homegenization (see Section 4.7) was first considered by Zi-
mian, Stelmachovie, Buzek, Scarani and Gisin in Ref. [22], where they
introduced a so called “universal quantum homogenizer” this being
in fact an all-qubit CM such that p, — 1 for any pp and 1. A related
paper [52] carried out a detailed analysis of the nature of correlations
(in the form of entanglement) between S and the bath of ancillas that
are established during the collisional dynamics [of, Fig. 4.1(d)]. We also
note that quantum homogenization was studied also in the more general
case that 5 is a composite system (spin chain) colliding locally with a
bath of ancillas [53].

Carscaded CMs (Section 4.8) were first introduced in 2002 by Giovannett
and Palma [54, 55] mostly with the goal of defining a simple microscopic
framework underpinning cascaded master equations (which will be
discussed in detail in Section 5.10).

Connections between CMs and matrix product states (for a friendly
introduction see e.g. Rets. [45, 46]) can be found in papers dealing
with the more general framework of non-Markovian dynamics, see
e.g. Ref. |56, 57] (which we will discuss in 8.7) and Ref. [55].



Equations of motion

A hallmark of CMs 1s their discrele nature, which is indeed a major
reason why these models are useful. Yet, most dynamics in Physics
are intrinsically continuous or, better to say, conveniently approached
through a continuous-time description, allowing to write down an
associated differential equation of motion.

When it comes to open quantum systems, a relevant equation of motion
is the so called master equation (ME) governing the time evolution of the
open system state p (much like the Schridinger equation does for closed
syatems). In some applications, such as quantum thermodynamics (see
chapter 7, it is yet often convenient working with a specific dynam-
ical equation for the expectation value of an observable of concern
(c.g. energy). Accordingly, in this section we will introduce both kinds of
equations of motion (although they are tightly connected to one another
of course),

In the last part of the present section, we will in particular revisit the
instances of CMs introduced in the previous section with the aim of
providing the corresponding ME for each.

5.1 Equations of motion for small collision
time: states

In light of an eventual conversion of the discrete collisional dynamics into
a continuous-time one, such that {, = Al s turned into the continuous
time variable {, the collision duration Al must approach zero.

With this in mind, we are interested in the approcimated expression
of the collision unitary in the regime of small i.'l'.lllllill:il:tlﬂ e, We thus
consider the basic CM in section 4.1 and replace U, with the small-At

approximation

Oy = 1= i(Hy+ V,)At = § V2A2, (5.1)
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This ypothesis will be par-
tially relaxed in section 7.5,

Mot that eq. {5.3) is not re-
stricted o the memoryless
CMs= specified by assump-
toms (1-3) bm 400 (L. the
CM which we refer o in
the present section). In par-
ticular, it remains valid for
imitially cormelated ancillas
{5z section 8.3,
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where Hy is the total system-ancilla free Hamiltonian'
Hy = Hs + H, . (5.2)

Note that 5.1 is of the 2nd-order in V, but of the Ist order in Hs and

Hp. This is in fact due to a hypothesis of the CM that we are making;:
secomd-order tevms in At that are not quadratic i V,, are negligible. The

rationale of this assumption, requiring in fact that Hs and 1, be much
weaker than Vi, will bevome clear later on.

Accordingly, at each collision, the pint 5-bath state oy, evolves according,
for
ﬂ,"_l‘n - —rll.'?ﬂ + ﬁln-rﬂ'" | .El" + {l}p (™ 1:':1 = i[fﬂfr Ty I...J ﬂ.t: ‘5-3]

with Ag, = g, =04 and | , ]s the anti-commutator. We dropped
third-order terms in Af and, in line with the aforementioned hypothesis,
all second-order terms but those having a quadratic dependence on V.
eq. (5.3) has a central role in CM theory.

eq. (5.3) can be equivalently arranged solely in terms of commutators as

Aoy = —i [HD + F'm an | At - % “}m | Fl'l'r ITHJ]IMI! . (5.4)
an alternative expression which is useful in some contexts.

We next focus on 5§ and the #th ancilla. Before colliding, they are in the
prroduct stabe oy @ fy (see section 4.1} The collision changes their joint
state according to

Adgy e = T
,_E_i:.. = —i [Ag+ Vi, Pt Tl + (T, pucy 1 Va = 3172, paa ule),

(5.5)
with Agsy = gy = pu-1 1. This equation, which simply follows from
5.3 by tracing off all ancillas not involved in the collision and dividing
cither side by Al, underpins memoryless Chs,

Mote that eqgs. (5.3) and (5.5) also hold for the general inhomogeneous
CM in section 4.5, in which case Hs, Hy, V,y and Nn are understood as

generally dependent on step n.
To get a closed equation for the reduced dynamies of 5 we trace off the

" Note that this lowest-order expansion relies on treating the S-ancilla Hamiltonian as
tme-independent. If not, an additonal 2nd-order berm would appear in the expansion
a5 1% Ihr.-r.:uu.-ul:q.-q- (48) 10 E"I-']Fl:l’.‘l.‘“:'"!-l’.'l.' alsn Risf I.F-Irf}.
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nth ancilla in 5.5, obtaining

Apa
Al

(5.6)
withAp, = pr—ra-1 = Trg{Apgs |- Note that, since Apy, = (€ - .5) [pa-1]
with .7 the identity map on §, eq. (5.6) in fact represents the short-time
expression of the collision map € [cf. eq. (4.7)].

By tracing off 5 (instead of ancilla #) in eq. (5.5), a similar discrete-time
equation of motion can be obtained for the change of ancilla’s state
Ary = 1y = 1y due to the collision with 5 (see 4.3). This reads

Arty
Al

{5.7)
Eq. 5.6 (discrete-time masker equation) and eq. (5.7) are finite-difference
equations that govern the reduced dynamics of 5 and ancilla n, respec-
tively, at the discrete times £, = nAf. We will show shortly (section 5.3)
that these equations are in the so called Lindblad form (see A.6).

5.2 Equations of motion for small collision
time: expectation values

While all the above equations of motion descnbe the evolution of states,
one may be interested in the evolution of the expectation value of a
given I‘]hEEn'ﬂbiE (), denoted as {Iﬁ:l-,, = Tr”i_-lf"nnl (at this stage wo
allow ) to generally act on the joined system, i.e. 5 plus all the ancillas).
The general change of the expectation value Ay =(O)y — (O, at
each time step reads

MOy = Trsp{A0y o4y} + Trsa{Oy Acy) (5.8)

with AQy, = O, —0, . The former and latter terms respoctively describe
the contribution due to an intrinsic time dependence of operator O (if
any) and that due to the evolution of state 0,. For a ime-independent
observable, only the second term can contribute.

Plugging eq. (5.3) in 5.8 and exploiting the cyelic property of trace, we
find that the rate of change of (O} is given by

MOy, A0,
A\ A

where on the right hand side {...) = Trgg{... 0,1}

) +i ([ + T, O+ At (7, OV, - 172, 0)), (59)

= _IIH!;""TJ‘JIII:FH f]‘H}.-F-'.u ]I"|'MT1"J|“'}.I.| fla-11ln f'rjl_'-lfll'-'rs.-ﬂn 1IIHI4l

=_i1ﬁn+1.r5{ﬂ:rﬂu L}.-i'?rl]'l"l'!l-f-rri{l::lﬂn 11n L‘-"H_%II:'E_IFH. inle}-

This is sometimes calked
“stroboscopic evelution” in
that we ane nob interested
in the dynamics at amy pos-
wible instant bautonly at reg-
ular miervals of duration
AL,
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Alternatively, expressing Aady in the form 5.4, we get

ALOY,, i {ﬂ{”}n}
Al

. +i (o + ¥y, O1) = At ([0, [V, O} (5:20)

5.3 Lindblad form

The initial ancilla’s density operator state 1), can be spectrally decom-

posed (see Al) as

e = 2 Pk [Kdn k] (5.11)
k
with £ pr = 1. Replacing this in 5.6 vields
ﬂ ¥ L - a
II::;I = -1 IH_I‘;+TF11{1}¢| Mnts Pu 1I+Z {L“"FJM ]E:i‘ - i“__ﬁ:“Ltk._ 1]
%
5 (5.12)
with jump operators Ly given by
Liw = Pr n (k| Valk) VAL . (5.13)

Here, |k} and |k} are eigenstates of i [cf. eq. (A1)]. Note that operator
Try{Vy g} appearing in the commutator is Hermitian.

eq. (5.12) has the form of a discrete Lindblad master equation (see A.6).
An analogous reasoning, this time based on the spectral decomposition
of Py, shows that eq. (5.7) is also in Lindblad form.

The Lindblad form essentially arises because both 5 and the ancilla
evolve at each step according toa CPT map that can be expanded in Kraus
operators [see egs. (4.7) and (4.10)]. We stress that this crucially relies on
the fact that 5 and each ancilla are uncorrelated before colliding (their
initial state py, 1y 15 factorized), which is guaranteed by assumptions
(13-(3) in 4.1.1.

5.4 Reduced equations of motion in terms of
moments

. (5.12) relies on the spectral decomposition Al of the ancilla’s state,
whose calculation could be impractical in some cases. We derive next
an alternative form of egs. (5.6) and (5.7} in terms of first and second
moments of the bath / system operator entering the coupling Hamiltonian
'i:",,, which is both technically advantageous and conceptually important
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in that it pinpoints the essential quantities controlling the reduced
dyvnamics of either subsystem.

The system-ancilla coupling Hamiltonian can be always decomposed as

E:}I'I' - Z Epr‘{;-ﬁq- ¢ (5.14)

with g, generally complex coefficients and AulBy) a set of (generally
non-Hermitian) operators on 5 (ancilla) subject to the constraint V, = V)
(index n is omitted in ancilla operators).

Let us define first and second moments of 5 and ancilla as

'l:.ﬂl"ip} - Trrr‘:-"iv"a:pf}rr—lh
{E"’EF} -} ‘IIFH{EUEP]]” I' "

(A} = Tro{Aypaa .

(By) = Try{Bunu}. (5.15)
Note that the moments of A, are calculated on the current state of 5,
-1, to be updated after each collision. Regardless, both moments of
5 and ancilla have an intrinsic dependence on step 1 when the CM
15 inhomogeneous (see section 4.5; e.g. when ancillas are prepared in
different states).

In terms of the moments just defined, the contributions to the discrete
ME 5.6 can be decomposed as

-l-fn{l}n rIH!' = Zﬂu{ﬁv}jr:

Tru{l}nﬂﬁqﬂt}u} = ZS"'SH{EPE"}",:PF"EP’
F

(5.16)

T-"H"c'rjafi'#-l fals} = ZHDEF{E‘FEJI} |:"-u..-"1rJ Pr-1ls -

Wi

Analogous expressions are worked out for eq. (5.7) in terms of moments
of A,'s calculated on state py,_y.

To summarize, Eq. 5.6 can be written as

Apy Lo
‘L = —i|Hs + HE, paa] + Dslpn-al (5.17)
with
H; rTrIT'[i:rrli'i'l'll - E b {ﬂﬂ}jl’r (5.18)

¥

I:"':'.'illf'-'la- 1| = E ?'vp{-ﬁpﬁr}{jkﬂn-]-ﬁ# . %[fij..l-"'il.'rf:'n-iiﬂn
Vil

[t can b shown that there
always exists a decompo-
sition such that A, = Al,
B, = B and g, = g Yet,
wie prefer allowing for gen-
crally non-Hermitian oper-
ators since this is the natu-
ral form of many uswal in-
teractions (g, atom-ficld
interachions, in which case
A, and A, are ladder oper-
afors)



This bhaolds only at the
nth step, At any  ofher
step,  since  ancilla  w®
does nol chanmge its state,
A{DL YA = (AD, /AL,
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while eq. (5.7) as

Tr" = =i [Hy + H., iin] + Dulia] (5.19)

with
Ry = Trs{Vapaa} = 3 20 (A6, (5.20)
Dulnal = 2 vl A AN B pu By — HBLBy, puls). (5.21)

o

and where the rates appearing in the dissipators ¢ and @0, are given
by
}'1]: = 3&-3,. m v {5.12]

We see that the S-bath interaction brings about bwo main effects on the
reduced dynamics, One is the appearance of an extra Hamiltonian term

(Fi% and H},) that adds to the free Hamiltonian (Hs and Hy, respectively),
Hamiltoman ﬂf;, taken alone, would change the reduced dynamics of
5 without yet aﬂl’fcq;'ri ng its unitary nature, despite the S-bath coupling
(and similardy M}, with respect to ancilla ). The other effect, embodied
by dissipator “s (S8, ), instead causes nen-umiltary dynamics.

Finally, note the explicit appearance of a Af factor in the rates 5.22,
which will be shown later to have consequences on the passage to the
continuous-time limit,

5.5 Equations of motion for expectation values
in terms of moments

In the {frequent) case of observables acting only on 5 or ancilla, also the
equations of motion in section 5.2 can be simply decomposed in terms
of simple moments.

For an operator on 5, in eq. (5.8) ¢ can be replaced with p so that, in
light of egs. (5.17) and (5.18), we get

ﬂ.{lﬁg} -
A

{.af:s;, +i{[fs,Gs]) 41 3 gu(B) (A, Os))
- Z ]Jpp{ﬁﬂﬂv}{jpaﬁjr = i [.-"i}:.r'i..: E"!."-I-I‘I} :

I.-'il

{5.23)

Likewise, in light of egs. (5.19) and (5.21), the expectation value of an
operator on ancilla n evolves at the nth step as
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ALO, AD L @ . =\ rH
L b m*)Huu,,n,;}Hzp; guldu ) (B, Ou)

+ E ]'rp{jpjv}iﬁpi}n Ev = %Iﬁpﬁv: fjn'h::' ' (5.24)
i

On the right hand sides of egs. (5.23) and (5.24), expectation values
of operators on 5 are computed on state p,-; and those on the ancilla
on fx. Note that here subscript 1 must be intended as the ancilla
index, not the ime step. Accordingly, the changes are understood as
A, = O - 0" " and likewise for A{(, ), where each subscript
denotes the time step.

5.6 Continuous-time limit via coarse graining

S0 far wie have considered finite-ditference equations of motion, which
reflects a stroboscopic description of the dynamics at the discrete times
te = nAl with At short enough that [, can be replaced with its 2nd-
order expansion in Al Cleardy, if one observes the system evolution
on a time scale much larger than At, then the dynamics will look like
effectively ime-continuous.

This is illustrated in a simple case study in fig. 5.1, where the open
dyvnamics of the all-qubit CM of section 4.6 is considered for g. = 0
with 5 initially in state —JE[IH}H + |1}5) and each ancilla prepared in |0},
Making Al too large (compared to g7') results in a generally abrupt
change of the state of 5 after each time step, which rules out a continuous
interpolation [see 5.1(a)]. This change is instead negligible by setting a
small collision time Af in a way that, for evolution times much longer
than Al, the dynamics will appear effectively continuous [see 5.1(b)].

Accordingly, if the collision time 1$ small and for evolution times much
larger than Af, one can replace the elapsed time (after n collisions)
tw = nAl with a continuous time variable, i.e. f,, — I, substituting at the
same time the incremental ratio in eq. (5.17) with a continuous derivative,
Afn dp ; o

fn=nll — 1, AT — X ( coarse graining) . (5.25)
Of course, all the discrete functions depending on the step number
n (such as pgy_1) become now continuous functions of time f. This
procedure is carried out after choosing a short enough but finite collision
time Al (coarse graining time) which is then kept always fixed [which
sets rates 5.22]. This coarse graining procedure turns the finite-difference
ME into a continuous-time ME. A prominent instance is the micromaser
dyvnamics, which we will discuss in the next subsection. In physical

33
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terms, the coarse-graining procedure means that we give up keeping,
track of the dynamics in fine detail {i.e. on a time scale shorter than Af)
and are happy with a coarse description on a small but finite time scale
At.

We point out that different choices of Al (but still small) will result in
grnerally different rates 5.22, hence the coarse-grained ME and associated
dynamics are Al-dependent. Notably, as rates 5.22 are proportional to Af,
if this is very short then the dissipator S5 will become in fact negligible
with the only effect of the bath reducing to Hamiltonian I:I:i [ef. egs. (5.17)
and (5.18)]. In this extreme regime of ultra-short collision times, the
open dynamics is thus unitary.

LT r———y
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Figure 5.1: Contimwous-Fone il of the collisional dynranics. We consider the all-quibit
CM in section 4.6 for g. = 0 with the ancillas prepared in n, = |0}, (0| and 5
mitially in g} = #un}_H + [13) [thus p = ¢ = 1/2 according to eq. (4.30]. The
probability to find 5 still in the initial state [survival probability) at the wth step is
gaven by (dalpa el = H1+cos" (A [of. eq. (4.33)]. This is plotted in paned (a) for
gt = (187, while in paned (b) we set gAd = 1077 (the inset shows the first 20 steps).
Clearly, the dymamics cannot be approcimated as contimsous im the case (ad due bo the
generally non-negligible change of pe at each step, 8t = gy = Nobe that setting
an ultra-short collision time, eg. gA = 107" not shown here), and keeping the same
total simulated Hme M, Af as (a) or (b) would yield {go]pelind = 1.

5.7 Micromaser

The micromaser [59] is a system of utmost importance in CMs theory
as it is an experimental setup whose dynamics is, in fact by definition,
deseribed by a CM. The paradigm of micromaser features a lossy cavity
pumped by a beam of atoms which drive the cavity field into a lasing-like
state.? More specifically, as sketched in 5.2(a), a flux of Rydberg atoms
gjected from an oven is directed through a velocity selector toward a
high-finesse cavity where the atoms interact resonantly with a single
normal mode of the cavity (the interaction with the other modes is
off-resonant and thus can be neglected ). In the ideal model, the atomic

2 This is the reason for the name “micromaser”, where "maser” s infended as “mi-
cromanve loser” singe the r.'l.vi!r I:ruquu'lcr & in the ramg oo oA
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beam is monochromatic (fived velocity) and the rate of injection r is low
enough that the atoms cross the cavity one by one (Le. there are never
two atoms in the cavity at the same time).

We have therefore a CM dynamucs with 5 embodied by the cavity mode
and ancillas by the flying atoms. In realistic conditions, atoms can be
assumed as non-interacting and initially uncorrelated with each other,
hence assumptions (1}-(3) in 4.1.1 are all satisfied meaning that the
dynamics is described by a basic Markovian CM. For simplicity, we will
neglect the cavity loss so that the atomic beam is the only environment
driving the cavity open dynamics, The interaction between the nth atom
and the cavity mode is well-described by the Jaynes and Cummings (JC)
model [59] in which a two-level atom {qubit) with ground state |0},
excited state |1}, and energy spacing wy [see 5.2(c)] couples to a cavity
maode of frequency .

()

s®| | -
o
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= ] kil
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" “ abom CEeTy e
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Figure 5.2: Micromuser. (a): Basse mbcromaser setup. Aboms ane beated inan oven fon
the: befth. As atoms are ejected from the oven, a velocity selector ilters only those of
desired velocty i Each sedecied atom then travels at speed § osvands the cavity (of
length L) until it crosses it (bl Characteristic imes, If L is the cavity length, each atom
imberacts with the cavity mode for a time 7 = /L. Since 7 £ AF, whore A is e time
bertwieren o consecubive alomic injeciions, there are mever bwio aboms in the cavily
at the samee b ACEnIng that the d}'n.ﬂ.mil:.-l = n..lhn-.:“:r described h}r a basac CMl
(atoms intersct with the cavity mode one at a time). In the interaction picture, during
the interval [by—y + 7, 5| when the srth atom is out of the cavity, the system does not
chamge its stabe, (c): Abomic and caviby-mode levelds iovolved the interaction,

On resonance (o, = al.), the JC Hamiltonian reads E‘H- = FIH + FL, + 1:",,
with
}}5 ="-':'ﬁ+5.- ":Irr = i O 1}“ =,ﬁ'{ﬁﬁn| "‘ﬁiﬁn } P
(5.26)
where d and " are bosonic annihilation and creation operators of the
mode such that |4, 8] = 1 while (as usual) §,. = &), = [0),(1] are
pseudo-spin operators of the nth atom.

It is convenient to move to the inferaction picture with respect to the
free Hamiltonian Hy = Hg + H,. Accordingly, the field and atomic

35
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operators are transformed as § — de ™, Gpe — Fpee®™ ! in a way
that the coupling Hamiltoman V,y is unaffected. We note that EXpansion
5.1 trivially holds here simply because the free Hamiltonians of 5 and n
are zero in the interaction picture,

For the sake of argument, let us assume a constant atomic injection
rate r = 1 /AL Here, Al is the time elapsed between two consecutive
injections in terms of which we discretize time as ty = nAl, hence At
embodies the CM time step [see 5.2{b]].

It can be shown that the collision unitary at each step [of, eq. (4.2)] takes
the form [60]

Ou=exp |~igr (i Gue+d"Ga- )| = & 11), 11+ 10, (01— (8 G +'8 G-)

where for convenience we defined the nonlinear field operators

X i g B _ Ssin {gT‘ﬁid—l}
=|:-m1{§.;r\‘u+1], ‘H":c{m{g?\ﬁ:}, 8= — i

Here, 7 is the time spent by each atom inside the cavity which is generally
shorter than the injection time Al [see 5.2(b)).

Let the atoms be prepared each in the same incoherent superposition of
ground and excited states

e = (1= p) 10} 0] + p 1) 1] (5.27)

with p a probability. Then the collision map, which fully describes the
cavity open dynamics [cf. eqgs. (4.7) and (4.8)), is given by

r-lﬂ =%|-P|T"|] = Tr,,. {GH 'JJ'I-l J?[*I:]- =
(1= pH &y G+ 88 p, 88+ p (B E+8"8p,y 88
(5.28)

with Try the trace over the nth flying atom.,

5.7.1 Master Equaﬁnn of micromaser

We note that, in the interaction picture, Hs = Hy = 0 while Vi is just the
same as in the Schridinger picture (thus time-independent).

Using eq. (5.26), index v in the expammn 5.14 here takes values v =
+while A = At = 4, B. = = dy and g, = g. In light of
eq. {5.18) and given the initial stal:E 5.27, the only non-zero moments
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of ancilla (i.e. atomic) operators entering the finite-difference ME 517
are (013_5, 10y = (1]3,3_11) = 1 (the first-order Hamiltonian F, is zeno
since first moments vanish). Taking next the coarse-grained continuous-
time limit |ef. eq. {5.25)], one finds the ME |cf. eq. {(5.17)]

j=(1=-p)l {ﬁpa* a-}|ﬁfﬁ,;:|]+p1'(E*p.ﬁ—%iﬁﬁ',;al} ., (5.29)

where we defined the rate I' = giﬁ. For 7 = Al, this reduces to the
simpler expression I' = g?Al,

Eq. 5.29 shows that atoms in the excited state [1) act as an incoherent
pump (gain) on the cavity mode (corresponding to jump operator §'),
while atoms in the ground state (jump operator ) deplete the cavity
(loss).

We note that a full micromaser deseription must account for fluctuations
affecting the injection rate and, notably, cavity damping between atomic
transits (neglected above). In such a case, we have an interesting example
of a quantum system {cavity mode) in contact with tue baths, namely
the atomic beam plus the external environment into which the cavity
leaks out. Indeed, the cavity field steady state depends crucially on the
balance between gain {due to the atomic pumping) and losses (due to
cavity leakage). This leads to an extremely rich physics in the nonlinear
strong-coupling regime g7 = 1, where trapping states can arise. In
general, the micromaser can produce non-classical light.

5.8 Continuous-time limit by introducing a
diverging coupling strength

As discussed in section 5.6, the coarse-graining procedure returns a
continuous-time ME with Al-dependent rates |cf. eq. (5.22)], where At
15 small but finite.

In some contexts, one may want to define a rigorous mathematical limit
At = 0 yielding a continuous-time ME where any dependence on Al is
lost. Clearly, in order for this ME to feature a non-vanishing dissipator
g (see final remarks of section 5.6), the price to pay is introducing
At-dependent coupling strengthis) ¢, These must diverge in such a way
that rates 3, (hence @) keep finite [cf. eq. (5.22)]. Yet, this may still be
msufficient to get a well-defined continuous-time limat as illustrated by
the next example.

Consider the all-qubit CM (cf. section 4.6) with g. = g. Using eq. (4.19),
index 1 in the expansion 5.14 here takes values v = £, 2 while A = Al =

T achileves this, a slight gen-
eralization of sechon 5.1
is required since the in-
jection Hme Af {Hime step)
here com be generally Larger
than the oollision Hme
1. This leads o 508 bat
with rales v, redefined as
You = Rely 1AL

In this regime, operators
5.27 entering L, cannot be
approsimated as linear as
e alwmae,
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0., Az = 8z, B- = B! = Gy, B: = Gz and g2 = g: = 2 [ef. eqs. (5.17)
and (5.18)]. Since r, = |0}, (0|, the only non-zero moments of ancilla
operators entering the finite-difference ME 5.17 are (0]d,:|0} = -1 and
(Gg_dye|0) = 1. Hence, the first-order Hamiltonian and dissipator
lct. eq. (5.15)] explicitly read

J:.I':I = —g i, {5.30)

DBslpul = ¥ (6= pur 04 = F020_, pals) + ¥ (52 pra1 52 = pra)
where we set [cf. eq. (5.22)]
¥ =g'At. (5.31)

In order for the dissipator to survive the Al — 0 limit one can define a
diverging coupling strength as

g m ﬁ (diverging coupling strength) . {5.32)
Such a scaling ~ 1,:"".!"3!_ of the coupling rate is a distinctive feature of
many quantum CMs,

However, while eq. (5.32) fixes the issue of the vanishing dissipator, it
has a potential drawback. Indeed, as the coupling strength is also the
characteristic rate of the 1st-order Hamiltonian H;; |ct. eq. (5.300], its

divergence may cause r?; to diverge as well for At — 0.

Thereby, in general, in cases such as the present instance the introduction
of a diverging coupling strength does not allow to perform a well-defined
continuous-time limit fulfilling the double constraint that the dissipator
i I:I; must remain finite. Whether or not such a problem arises depends
on the system-ancilla coupling Hamiltonian V as well as the initial
ancilla’s state. For instance, if in the considered example we set g. =0
and ¢ = 1Al [cf. eq. (4.19)] then of course ﬁ; = () for any Af. Thus,
in the limit At — 0, the finite-difference Eq. 5.17 is turned into the
wiell-defined continuous-time Lindblad ME

p=ylo-pd, - HE..-.'L,;!E..] § (5.33)

which is identical to the well-known ME describing sportaneons emission
of a two-level atom. This is not accidental: in chapter 9, we will show
that the all-qubit CM with the diverging coupling strength 5.32 (leading
to this ME) can be directly derived from a microscopic atom-field model
(see in particular section 9.7 discussing the field vacuum state).

As anticipated, however, also the initial state of ancillas matters. For
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instance, considering the above example for ¢ = /3 /A and g. = 0
but with the ancillas now initially in g, = |+}, {(+| will result again
(for At — 00} in a diverging Hamiltonian in this case given by !{'3; =

\.":.-fﬂr ' .

It is natural to ask whether ensuring that Ff; = (0 i% the only way for
l'?; not to diverge (for Al — 0) due to 5.32. We show next that both F.I':
and the dissipator can remain finite if one allows for the ancilla’s state
itself to depend on Af. As a representative example in the all-qubit CM,
consider the initial ancilla’s state i, = |1}, (x| with

1
1+ o P (10 + anVAF 1) (5.34)

X3y =
where ay is generally complex. Setting again g = \,I'}',Fﬂ.i and g. = 0,
the only non-zero ancilla moments [cf. eq. (5.15)] in this case are {§,_) =
(Fus )" = an VAL and {§y-Gne) = 1, where we neglected terms of order
At or higher. These entail the 1st-order Hamiltonian and dissipator

!:f; = gland_ +ay0:), Dslpa] =7 (6- pac1 04 — 3]0, puals) -
(5.35)
Meither I'-f:: nor @ depends on Af, hence both remain finite for AF = (0
This happens because the VAl on the denominator of the coupling
strength is canceled by that coming from the initial state with the latter
not affecting the dissipator to leading order.

In the case a, = A" with A > 0, by taking the continuous-time
limit of 5.35 we get the ME

p=—i|gAle™™ 5 +e™a,),p| +y (d-pd, - HBE-,pl) .
(5.36)
This generalizes 5.33 to the case where a driving Hamiltonian is added.
This ME is equivalent to the well-known optical Bloch equations describ-
ing the evolution of an atom driven by a classical oscillating field while
undergoing spontaneous emission at the same time [61].

The assumption that we made of having a Af-dependent ancilla state
may appear somewhat artificial. In chapter 9, we will show in detail
that state 5.34 arises from an initial coherent state of the electromagnetic
fietd.

Before concluding the discussion on the continuous-time limit, it is
worth noting that a diverging coupling strength |cf. eq. (5.32)] allows
the condition underying expansion 5.1 (i.e. Hs, H, much weaker than
'i-"',.,J to be satisfied for At short enough.
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In the tollowing subsections, we will consider equations of motion
for two important collisional dynamics: multiple baths and cascaded
CMs.

5.9 Multiple baths

In many realistic problems, the open system is in contact with many
baths at once. Accordingly, it 1s useful to define CMs where 5 collides
with M = 1 baths of ancillas, as shown in fig. 5.3(a) for the case of two
baths (M = 2). Ateach step, 5 collides with M ancillas, one for each bath

= 1,.... M. To make contact with previous theory, it is convenient
to view the CM as featuring a single bath of M-partite ancillas, each
initially in state

M= @la @@y +xn . (5.37)

1'?{1] qlll}

nea- o

L P
” (5)
(a) . (b)
B8

f.rl:ijc p '[,.'-rE‘l] -
E'a} ﬁ,{EJ .

Figure 5,3 Collision omodel spitly fov batles of ancillas, (a): System 5 collides with beo
baths of ancillas, labebed with 1 and 2. This CM can be ﬁmmll;rmm as basie Ch [see
4.1) where each ancilla is bipartite and initally in state 7" & 7™ + ¢ {in the panel
A = ). (b): Same as (o) except that now system $ is itself bipartite, comprising
subsystems 51 and 5z, Colliions with ancillas of bath § imvolve only subsystem 5,

Here, 1y is the reduced state of ancilla of bath i = 1,.. ., M. Note we
allowed ancillas of different baths to share initial correlabions described
by term 1o, Thus when the M baths are uncorrelated, 11" = 0,
The interaction Hamiltonian reads

Op= P04 PP 4o s DM iy 09 = S oAb, (538

whore as usual we expanded each 1:-'",.1,“ {coupling Hamiltonian between
5 and an ancilla of bath {) in the form 5.14. Here, B,; is an operator
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acting on the ancilla of bath 1 while Ay is an operator of 5 which we
allow to be generally i-dependent. Note that V', can be written as

V=3, guidwb - (5.39)

This is still of the form 5.14 with the role of index v now embodied by the
double index (v, i), henee all the theory in sections 5.4 and 5.5 applies
with the replacements v — (v, i), g — (g, j).

[corr)

For uncorrelated baths, ie. yp = 0|l eq. (5.37)], all crossed second
maoments of the bath factorize as

BBy = (Byh(B.)  for iz (5.40)
with {.[?I,,,.-} =Tri{ E,.,-r,l.-}. This implies that when all the first moments

vanish, ie. (B} = 0 for any i and 1, so do all the crossed second
moments. In this case, based on egs. (5.17) and (5.18), we get that

Apy
At

M .
= > B, [pa-1] (5.41)
i=1

with ‘:'n:? the dissipator that would arise if 5 were in contact only with

bath 1. We can thus say that the dissipative effects of uncorrelated baths
are additive. We point out that this holds as well (for At short enough)
when {B,:) e YAl since in such a case 5.40 can be neglected. This can
happen with states like 5.34 as we discussed in section 5.8,

For correlated baths, namely yleore) o 0 [ef. eq. (5.37)], crossed second
moments are generally non-zero. An interesting consequence of this
occurs when S itself is made out of M subsystems 5y, ..., 55 such that
the collisions with ancillas of the ith bath involve only subsystem 5; [see
fig. 5.3(b}]. In this case, therefore, operator Ayiin eq. (3.3%) acts only on
5i. Then, based on 5.18, we see that the dissipator entering the ME will
in particular contain terms of the form

s {Eylfﬁrr'}t_j.qiru '1'|';'.|"|i' - %Iﬂnﬂjﬁpn fln ||1} fIJF J' = I . {5.42::'

These represent incoherent interactions between subsystems 5; and 5
mediated by the baths. Thus, correlations between the baths enable the
establishment of correlations between the subsystems of 5 even if these
are not directly coupled.

41



Mste that this is indeed the
cmly berm i 545 which s
st imweariant mnder the ex-
change 5+ 5. Instead,
it transforms as ®y, —
_i.‘.n

42 | 5 Equations of motion

5.10 Cascaded master equation

As another important instance, we next derive the ME of the cascaded CM
of section 4.5, Recall that the collision unitary is given by [cf. eq. (4.35)]
L.I'rr = Lllln-Lr] n With Ll'i. n describing the sub-collision with subsystem
5 (see 4.2). Equivalently, one can think of a single collision with a
i'fr:l'l{"-ﬂ':’il.'-'-l.'ﬂrfﬁl‘f interaction that reads

5.43
0y, {5.43)

ﬁ]ln € [tn-1,ta—r + AE[2]
Valt) = { P [ty + A2 5

with i-"";_,, the interaction Hamiltonian between # and 5; such that

l‘Ir-,.. = ¢ Y ¥ Thus V. suddenly switches from Vi to Vay after the
first subcollision.

The framework that we developed previously (in particular sections 5.1
and 5.4) holds for a ime-independent Wy, hence it cannot be directly
applied for deriving the ME. We thus start over by expanding each sub-
collision unitary ﬂ'jﬂ to the second order in Al /2, eventually discarding
terms of order higher than ~ At*. This yields the overall collision unitary

w = anlhg = B0 (Vi + Vo) A1 = (307, + 103, + U Vi) A12,

(5.43)
with Al’ = Al f2 Note that this is not invariant under the swap 1 < 2,
which is due to the intrinsic CM unidirectionality discussed in sechion 4.8,
To gain a better physical insight, we note that 5.44 can be equivalently

arranged as

=

2

Vi, Van|) 88— 3 (P20 + Ve) 17

{(53.45)
Mow observe that, if each ancilla collided with 5 and 53 af once during
the time At’, then one would get the usual colhision unitary 5.1 (for
Ab — Al') with the natural replacement ﬁ,,. — 'I.:"h, + 1:"3,,. This matches
all the terms in 5.45 but the unitary contribution coming from the effective
Hamiltonian ¥, Hence, the intrinsic system’s unidirectionality, due
to the fact that ancillas collide first with 5; and then with 52, is fully
condensed in the appearance of the effective Hamiltonian !I'L,H To work
out the ensuing ME of 5, let us expand '.-" m A5 i-"|, g = E,,.g,,..-{ E
lcf. eq. (5.14)]. Plugging this into 5.45 and pr{mn:l.mg analogously o
sections 5.1 and 5.4, we get the discrete ME

L":,. =:i—1'{i-71..+fr'3,+i"”7'

ﬂ - -
% = =i [Hg + HE, pa1] + Bslpy] (5.46)
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with
A= g (BYA,
'{-i;' =Try Iﬂlﬁi"’u"l " i"? E E:- E;.I {IETJ E,u]} jl,u-'il.:' (5.47)

IE'Sjlr'l'r Ii—z .’frﬁpﬁf{ﬂ B,..-} {-’q- T l""L ‘i Il'q' J'1-1-':.F;'|'l 1] }

Wil

where we set gf = 2,/2 and defined the collective operators Ay =
j.,.hfi:.,.- Here, FI':I and hg have the same form as eq. (5.18) with .-';1,. MW
intended as collective operators. Notably, the second-order Hamiltonian
i‘gn upon partial trace results in an effective colwrent coupling between

5, and §; (mediated by the ancillas) described by Hamiltonian A2
We point out that this is an effective second-order Hamiltonian of S, in
contrast to .F.I': [this being the analogue of the Hamiltonian in eq. (5.15)],
which in particular explains the notation we adopted.

As a significant example, let each ancilla be a qubit initially in state |0},
with F, w Of the form

l:l:l'.n' = V{%_;{Anllﬁr“' +.|'il:-l:}|-|-} i {5.4‘3:'

Then the only non-vanishing ancilla moments entering the ME are
{ﬁﬂ-"iﬂ 1.} = 1. Thi."i- :f'ilf'].d?!l

AL =0
HY = F(iAzA] - iA1AY)
Dslpu1l =y [Apas AT 1A', pu i)y (5.49)

with A = A, + A3, hence in the CTL we end up with the ME

p=—i| JiAAL - i &Y, p| + y (ApAt-1|A'A.p] ). 550)

5.11 Equations of motion: state of the art

Explicit derivations of the Lindblad master equation through the
continuous-time limit of a CM were given in Ref. |24, 62]. See also
Ref. [63] by the same authors of Ref. [62], which includes a general char-
acterization of decoherence channels of a qubit and their implementation
via suitably defined Chs.
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The dynamics most intuitively associated with a CM is arguably the
disstpative interaction of a system with a dilute gas of particles (ancillas).
In such a case, the time between two next system—ancilla collisions is
random, at variance with the assumption of time-periodic collisions {(one
foreach At) made in our discussion, Yet, as shown in Ref. [64], a Lindblad
ME can be worked out in this case as well even with strong collisions,
the associated rate 3 (entering the dissipator) being now the number of
collisions per unit time (similar CM and ME appeared in Ref. [65]). Note
that, if the gas particles are quantum then a CM description relies on
approximating their motion as semiclassical. Ref. [66] showed that this
is equivalent to the low-density, fast-particle limit of a fully quantum
treatment.

The micromaser theory (cf. section 5.7) was first introduced by Javanainen
and Meystre [18-20]. Works that use explicitly the CM approach in
particular for deriving the cavity field's master equation are e.g. Refs. |67,
tH]. An introduction to micromaser can be found in the textbook by
Moeystre and Sargent [61]. See also Ref. [60], which includes the master
equation. Basics of cavity QED and JC model, which we referred to in
section 5.7, can be found e.g. in the textbook by Haroche [59]. Issues
closely related to the continuous-time limit via diverging coupling
strength (see secthion 5.8) were carefully investigated in Refs. [36, 69] (see
also a previous paper by Milburn [70]). Particular attention was given to
the regime of ultra-short collision times yielding a unitary dynamics (as
we discussed). This paradigm of unitary CM was proposed to carry out
indirect quantum control |71] and universal two-qubit quantum gates in
spintronics systems [72].

Cascaded master equations like 5.50 were independently introduced
in 1993 by Carmichael [73] and Gardiner [74] using the input-output
formalism [61]. They were later derived through a CM in Refs. [54,
55] {introducing an internal bath dynamics as well) although with a
treatment somewhat different than the one in section 5.10. Note that,
for the sake of argument, we considered only a bipartite system 5. The
generalization to more than two subsystems is straightforward, leading
to an interesting many-body Hamiltonian Fi';;'. Multipartite cascaded
CMs can be advantageously applicd to work out MEs of complex
cascaded networks where interference effects can occur [75, 76]. From a
more general perspective, cascaded systems are currently receiving large
attention in quantum optics also due to recent experimental realizations
of chiral emission (e.g. in photonic crystals or fibers) [77].



Quantum trajectories

The possibility of interpreting the Lindblad master equation as the result
of an ensemble average of different stochastic quantum trajectories, each
corresponding to a particular sequence of measurement outcomes on
the erwironment, is a pillar of open quantum systems dynamics with
important applications in various fields such as quantum optics and
quantum transport [7, 10, 11, 59, 78],

Quantum trajectories emerge very naturally from a CM as soon as omne
immagines to measure each ancilla right after its collision with 5. This
and related concepts are the subject of the present section.

6.1 Collision model unraveling

Let us come back to the basic CM in section 4.1 and assume for the
sake or argument that § and ancillas are initially in the pure states ||_1".:.:}
and {|xu}}. respectively (thus n, = |1a) {1xl)- Accordingly, the initial
joint state is ap = [Wa) (W] with [Wa) = |{0) @y [xa).! At step n, this is
turned into

[Wad = O -~ O oo Dead =+ L) - (6.0)

Let now { |k, ) } be a single-ancilla orthonormal basis. Using the basis com-
pleteness, Eq. 6.1 can be equivalently arranged by putting Ty, [k} (K|

in front of each collision unitary U, as

[Wn) = (‘?‘“‘n}{k"l) Uy ... {; [ka) {h|]ﬂ’ |0} Lx1) -+~ |xm)
=320 30 (lhd Gkl ) - (1) Ga ) ) L) = L)
iky L
(6.2)

Each ancilla state | 1w ) can now be moved I:J_thu left and placed to the im-
mediate right of the corresponding unitary Uy, while kets k). kg )
can be moved to the right of (). This allows to artange [W, ) as

':r'*r.l} [y o= lka) -
i6.3)

Wot =35 (kal U L) - (el G Le)
[ ky

¥ I thee present section, we use o compact natation such that | 1q ) = |1s ), (and simalarly
for bras). Thes comvenbion ﬁimp-]iFiL-.mﬂwﬁmmliﬂm withwou .ll':l'u.'l'in!.;_ t'].lril::,.'.
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Figure 6.1 Quarthiom Prafeciories in Bie all-qubdt collision model. Like the basic COM of
4.1, ancillas are prepared in @, |0} (thus uncorrelated) and S, initially in state |+},
collides with each sequentially, After the collision [shown in panel (a)], the ancilla gets
correlated with 5 and (prioe to the next collision) is measured in the basis {J0,), |1, 4]
(b). If pasteoma: 0 is recorded () no jump takes place and the state of 5 is only slightly
affected, Instead, if outcome | is recorded (d) then 5 abruptly jumps to state |0), Note
that, im either cose, the ancilla s eventually unoormelated with 5, this being left inoa
pure stabe. We assumed that ancilbas from 1 o s - 1 were all messuned i 0.

Each sandwich on the left of |[r'-'|:|:|I is effectively an operator on 5

Ry, = (k) Oy [} {6.4)

in terms of which eq. (6.3) 1s compactly expressed as

W= 33 (R, Re,
k, ks

Note that operators 6.4 are generally non-unitary. Thereby, the state of 5
between brackets {. . .) is not normalized. We thus rearrange eq. (6.5) in
the equivalent form

I;'u}} |y}« - [Kn) (6.5)

W)= VPw ( l'|l'U}]tk;+ ka) . (66)
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6.1 Collision model unnroeling

with

Piyte = | Ky =+ Kiy Jio) IF = {4 EI, RI_ o Ky Jira)
(6.7]
where 34, -+ Zi, Pr—4, = 1. Here, we used that Eq. 6.4 defines a set of
Kraus operators (see A.3) which thus fulfill £, _ E;_E._ =1

The above shows that the CM dynamics can be seen as an average
over a (very large) ensemble of “histories” that result from projective
measurements on the ancillas.

Right after colliding with 5 [see fig. 6.1(a)], each ancilla is measured in
the basis { |k b} [cf. Eq. 6.2] and the measurement outcome recorded, as
sketched in fig. 6.1{b). If this takes the specific value k,,,, then operator EE..,
is applied on 5. A specific sequence of measurements results {ky, ..., kq}
thus r.:laztermlr-:ﬂi a particu lar history (realization), at the end of Whu;'h
5 is in state Ry, --- Ky, |t,-rn} {up to a normalization factor), this history
oocurring with Pr-rﬂ:mhlhlj.' Pk, Remarkably, in each history, the state
of 5 remains pure at each step.

Note that the dynamics of histories does depend on the measurement
basis {|kw}}. Different choices of this basis will result in different

unravelings of the same average dynamics (using a common jargon).

What we called histories so far usually go under the name of guantum
trajectories. The way the system evolves in a specific quantum trajectory
15 said comditional dymamics: which Kraus operator 6.4 is to be applied on
5 at each step is conditioned to the specific outcome of the measurement
on the ancilla {recall that in quantum mechanics measurement is an
intrinsically stochastic process). A quantum circuit representation of the
conditional CM dynamics is shown in fig. 6.2

" ) I— L
i .

th |D= U:E &

2 { )=

Uz e

Figure 6.2: Quantum cincuit represendation of @ CM conditional dymarics. Compared
to a basic CM {unconditional) dynamics [see 4.1(c)], each ancilla undergoes a pro-
jective measurement right after it collided with 5. The double wire indicates thar
the measurement suloome can be encoded as classical information [21]. The usasal
OM {unconditional) dynamics can be equivalently seen as an ensemble average over
all possible conditional evolutions, vach comesponding to a possible sequence of
masUrement uboomes,
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48 | 6 Ceartum brajectories

6.2 POVM and weak measurements

The above framework, when the interaction of 5 with each ancilla is
very weak, in fact defines the conoept of weak sreasirements in quantum
mexchanics.

Introductory textbooks to quantum mechanics usually describe measurne-
ments on a quantum system in terms of an orthonormal basis [k} ], each
being the eigenstate of a certain observable with associated eigenvalue
k (assume for now that these are non-degenerate). According to the
wavetunction collapse axiom, a measurement with outcome k projects 5
(initially in state hl*}} in the eigenstate |k} with probability py = |{F.'h,|'.'}|3.
In the density-matrix language, this is expressed (and generalized at
the same time) by saving that the act of measurement forces the state of
5 to transform as

ﬁh.ﬁ'ﬁi
—ll
Pk

p with 3 M =1, (5.8)
I

whose associated probability is given by
Py = Trsiﬁﬂ}} : (6.9)
Here, T is the projector onto the cigfm:pam of eigenvalue k.2 The fl*"!.

are a set of orthegenal projectors, ie. [l = m.ym. Measurements of
this kind are called Von Neumann measorements.

One can now define a generalized quantum measurement as
Ky pﬂ:

J
i Fi

with Zﬁ" =1, where ]nl;; = R;Rl x (.10
Kk

the associated probability being py = I'r;{lnlﬂ:ll. Here, the ﬁt"ﬁ are
a set of positive operators (due to the constraint pe = 0), which are
not constrained to be orthogonal (at variance with Von Neumann
measurements discussed before). Such a generalized quantum measure
is usually referred to as positioe operator-talued measure (POVM).

Upon comparison of 6,10 with the framework discussed in the last
section, it should be clear that measuning each ancilla after the collision
effectively performs a sequence of POVMs on 5, one at each step. In
this sense, the collisional dyvnamics 1s like continuously “watching™ the
system. More specifically, when the system-ancilla coupling is weak [as

21 k is non-degenerate, B = [k} {k]. Also, note that the expression of py was obtained
from Tr{ll; plly ) by using the cyclic property of trace and I’]i = [N (as I 2
projechor).



6.3 Quambim brajectories in e all-gubit collision model and quantum fumps

we assumed in chapter 5, f, Eq. 5.1] one talks about weak measiremients.

The essential idea is that, instead of abruptly interrupting the dynamics
through an instantaneous Von-Neumann measurement, one performs a
gentle measurement that is yet diluted in time, Nevertheless, oceasionally,
this may still result in sudden changes of state (quantum jumps), as
shown in the next section.

6.3 Quantum trajectories in the all-qubit
collision model and quantum jumps

To illustrate the framework in a concrete case, consider the (by now
usual) all-qubit model of section 4.6 for g: = Dand g = /'y /Al There,
we had already computed the Kraus operators 6.4 in the ancilla basis
{10x} . |1n}} [see Eq. 4.29]. Assume that, right before a collision, qubit 5
is in a superposition state {10} = ¢ |0} + ¢ 1) with [epl® + |1 ]* = 1 (we
omit the step index # for a while). The collision with ancilla i and a
subsequent measurement on 1 in the basis {|04) , [1a)} with outcome
0, ) projects 5 into the (unnormalized) state

Roly) = (10} (0] + cos ypr (1) (11 [0} = col0) + cosy/yAE e 1),
{6.11)
and, if the measurement outcome is |1y}, into the (unnormalized) state

By = {-;‘ sin VAL |0 {1|} o) = =i sinyTAE ¢ [0} . (6.12)

Ll i i@ SR e %
= . @] ot ich

?3 14 LT |
BT} [ 1 :_I:
.E-:l. L L illi

1 Arllinr- B8 T4 .

‘] W wm BN BE D KE dm M KR 0 N @0 KR KR

LiS T n L

Figure 6.3: Four samplad quantum trajectorses in the all-qubit collision model of
section 4.6 for g.=0and g=yy (Al |cl. Eq. 4.1%] when S starts in state [+ )5 and ancillas
are all prepared in j0, ), cach being measured in the basas {0, . (1.} } right after the
collision with 5. We prlut the survival pn:hul:rili'r}- |-I:+||:|'-'._:l11.ag..|:iru|t thr.-s.l'r.-p nuember i,
where each bue (red) dot stands for the measirement outooms: [0 ) (|15} In each case,
the survival probability tends to |(+ 00 [F=1/2 witnessing that 5 eventually converges
to [0}, Throughout we set HN:@:D.I. The plots were obfained through a simple
Monte Cardo simulation, where probabilities £.13 are updated at each step and used to
randomly select a measurement outcoms and hence the corresponading state in Eq. 604,
Mo jumip ocours in majeciory (B, which exhibits a smooth expomential diecay,

These outcomes oocur with probabilities pg = I:::r'll E:Ekwl}, which are
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explicitly worked out as
po = |cal® + cos? yAl for2,  py =sin? yyat o (6.13)

(note that we correctly get po + 11 = 1). Accordingly, the normalized
version of eqgs, (6.11) and (6.12) reads

Rolg)  col0) +cosyyBiei |ty Ry  —isinyyaie 0} _
Kl I Vo © IRl Vi

0}

(6.14)
up to an irrelevant phase factor in the last identity. Thus both Ky and R
have the effect of enhancing the |0)'s component of |u::l This entails that
hlr,,} asymptotically converges to |(0). Therefore, we get that S5 eventually
ends up in |0} (cf. section 4.7) even along single trajectories.

eqs. (6.13) and (6.14) can be used to simulate quantum trajectories through
a random number generator. Some samples are shown in 6.5, where we
plot the survival probability {+|¢, ) {y'n|+} for gAF = ylrﬁ.l'_ = (1.2 when
5 starts in state |+}. Trajectories typically exhibit a continuous evolution,
corresponding to repeated measurement outcomes |0 ) [recall sketch
in 6.1ic)] interrupted by a sudden jump when outcome |1, } is recorded
[recall sketch in fig. 6.1(d)]. In the latter case, 5 abruptly collapses to
|0} in agreement with .12 (signaled by the survival probability which
jumps to 1/2) and then no longer changes its state. The precise step at

:anw just the :r}T-irﬁ which a jump occurs is unpredictable [e.g. compare jumps in fig. 6.3{a),

o s st iy 5,308, ic) and (d)]. Note that jumps may even not occur at all, as in fig. 6.3(b)

where no ancilla 1s detected in [1,4).

IfF A - ;.;" bioth  out-

i weill E'.I:'I'H,‘-I'..']]l}l' pro=
duce a sudden change in
the states of 5 s ia cleay The reason wh}' in the considered example only outcome 11n} produces

from eqa. (6.11) and (6.12). a sudden jump is that we set a relatively short collision ime such that
gAt = 1, Indeed, in this limit, eqs. (6.11) and (6.12) reduce to

Rolt) = col0+(1 = dyat) e 11y, Rali) = ~i F VAL 1 |0} , (6.15)
the associated probabilities being
po=1—yAl e}, po= yallaf. (6.16)

We see that outcome |0, ) is very likely and, when occurring, it causes a
tiny shrinking of the |1}'s component. In contrast, outcome |1, ) is rather
unlikely. However, if occurring, it causes a dranahic change of the state
of 5 which is projected to |(0) altogether in one shot.
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6.4 Stochastic Schridinger equation

As seen thus far, dunng the conditional dynamics the state of 5 remains
pure all the ime. However, its evolution is generally non-deterministic
due to the occurrence of quantum jumps. In the previous instance,
we saw that outcome |1, causes a sudden jump, in contrast to |0}
producing only a small change in the state of 5, We would like now both
these behaviors to be incorporated into a single equation that governs
the sfocistic ime evolution of state ||=|'.'}, like the usual Schridinger
equation does for conventional unitary (deterministic) dynamics. We
next show how to achieve this for the CM and associated coupling
Hamiltonian V,, considered in the previous section when 5 starts ina
pure state (a generalization will be presented in section 6.6).

To this aim, we first express the low-order expansion of the Kraus
operators [scf, eq. (6.11}-6.12] in the more compact form

Rolyy = (1= dpard,a ) Jp), Rilyy=-iyyVara_|y), (6am

(we used that 3,510 = ;1) and 5_|¢} = ¢ |0)), the associated
probabilitics being

m=l=-pa=y{d.a.)Al, (6.18)
where (§,d_)={1| ,5_|dr).
The normalized state of 5 for cach measurement outcome 15 thus

[pnaa} = {i - byAt (3,6- -{Sm‘r_n} [y {for 0,

3 [¢a)

) = ——== (for 1,)  (6.19)

A0}

The corresponding changes in the state of 5, Ald, )
read

L

Aln) = -3y AHF G- —{F.8-)) ¢a) (for O,)

Algn) = (—

—|l =11

- I] | } (for 14) (h.20)

We next define a binary random pariable AN, which can take on values 0
or 1 with probabilities pg and py, respectively. Clearly, (AN = AN and
AN =0-pg 4+ 1-p; = py. Hence, in light of Eq. 6.18,

AN = (ANE = py = y (&,5_) At (6.21)

Using 1/¥] —x =1+ x/2,
thee normalization factor
of By} [d eqe (6.07)
and (RIB)] is 1/yf =
1+ S(3,.0.AF MNeglect-
img terms in AP, we thus
get the frst Wlentity in
f19. Absay, note that, m the
1y cose, we could simply
wrile ||-|I"|l|-|-|::I |I:|}



This comftimuous-time fmit
corresponds to the one dis-
cussedd in sectwon 5.8 [in-
dewd the coupling strength
wias chosen here in agree-
ment with Eq. 5321
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The meaning of AN should be clear: AN = 1 when outcome 1, is
recorded and 5 thereby evolves as in the second identity 6.20. Now, we
combine together the two increments 6.20 as

Alin) = ~1yAt (3.8 —(3.8_)) ) + (—n—”—_— - |] i) AN
yi{ded_)
(6.22)
When AN =0, A|, ) reduces to that for outcome Dy, When AN = 1,
instead, we would get the sum of the two possible increments. However,
for Al short enough (as we are assuming), the term ~ AN dominates
[plots such as those in 6.3 could have been generated using Eq. 6.22].

Now, we naturally take the continuous-time limit Af — 0, obtaining

VAdd_)

d ) = =3y (B8 —(F.0-0) o) dr +

S |) ) AN, (6.23)

where e ——
dN =(dN)P =y (@5} dl, (6.24)

Eq. 6.23 fully describes the stochastic evolution of 5 and indeed usually
goes under the name of stochastic Schridinger squatiom. Note that, in
contrast to the usual (deterministic) Schridinger equation, this is highly
nonlinear. An equivalent way to write it is

a0y = =ifp ld dt + L (&85 4 dt ﬁ—"—l] vy dN
) =il o)+ 2 oo+ | 1] )
(6.25)
where
Aypr = —i% &, (6.26)

is an effective non-Hermitian Hamiltonian.

6.5 Unconditional dynamics: recovering the
master equation

Based on the discussion in section 6.1, the ensemble average of .23,
namely the average over all possible outcomes of the random variable
d N, must return the Lindblad ME (recall sections 5.3, 3.4 and 5.8). To
prove this, we first work out the density-matrix version of Eq. 6.23, The
differential increment of p = |¢+) (i is

dp = (|9) (¥]) = (ale)) (9

Hlg)d (| +dy)d (gl ©27)



6.6 A more general stochastic Schrddinger equation

As a point of utmost importance, note that, although of second order
with respect to dur, the last term must be retained since (dN )2 is in fact
of first order in dt [cf. Eq. 6.24]. After plugging 6.23 and its bra in d :r"}
and d {1y}, respectively, we replace dN and (dN P with their common
average 6.24. To first order in dl, this yields as expected the Lindblad
ME {see A7 for details)

dp =y {ﬁ_pﬁ,, - % Iﬁ;,ﬁ_,pL}aﬂ :
which we formerly derived in a different way in section 5.8.

Consistently with the previous terminology (see end of section 6.1), any
reduced dynamics discussed in chapters 4 and 5 - in particular that of 5 -
is referred to as unconditional dynamics, In real experiments, unconditional
dyvnamics are usually not directly measurable but rather inferred by
averaging over a large enough number of quantum trajectories. In this
sense, although inherently stochastic, quantum trajpectories reflect more
closely the experimental reality. In contrast, the unconditional dynamics
has a somewhat more indirect relationship with experiments but is fully
deterministic,

We mention that the connection with the Lindblad master equation
just discussed has major computational applications in that it provides
the basis for the widely used guantum jump method or Monte Carlo
warte function |59, 78-80]. This allows to work out the dynamics of
open quantum systems, especially of large dimension, by keeping track
of their wavefurnction over simulated quantum trajectories (and then
averaging), thus bypassing the computationally demanding use of the
density matrix.

6.6 A more general stochastic Schrédinger
equation

Consider again the general (Markovian) CM in section 5.4 with cou-
pling Hamiltonian 5.14 [which we assumed in the derivation egs. (5.17)
and {5.19}]. The low-order collision unitary 5.1 then explicitly reads

Uy =0-i 3, gvAcBotrt -} 3 gvguAvA,ByBy AP {6.28)
T Vi

For simplicity we do not consider free Hamiltonian terms, which would
simply result in an additional term ~ Al {(we come back to this point at
the end).
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For the sake of argument
and o better highlight the
physics, as dom through-
ok this Sechon, we will
ke assuming that both
the system and ancilla ini-
ial states are pure, The ex-
tensson o mined stabes i
straightforward.

The two quantities be-
tween brackets are eas-
iby showm o be muhaally
adjoint bgv recalling that
o 3‘,..'1.. » B Hermitian.
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We will restrict to qubit ancillas (imitially uncorrelated as usual), each
prepared in state [y, ). We .'.||5n assume that first moments of the bath
vanish [recall Eq. 5.15], i.e. {H Y= Ly |B,,.|Ex,,} = [ for all v and n.

Based on section 6.1 [see in particular eqs. (6.4) and {6.5)], the nth
collision transforms the state of 5 and ancilla 1 as

o |yw-1) Ixwd = Ko fyrm-1) 10n} + Ky [@rua} Nad . (6.29)
where, combining eqs. (6.4) and (6.28), operators Ky are given by
Ri = (klxa) 0+ KA+ K700, (6.30)

with

B =i % getklBulxa) A, B =-1% gogy (RIBBulan} AA, .
¥ VH

(6.31)
From now on, we drop index n. We consider next the case that k =10, 1
with | 1) = [0}, Le. we measure the ancilla in a basis whose an clement
is just the initial state |y). This together with our initial assumption
(B,} = 0in particular vield

(kixh = dunl, Ky'=0, (OB.B,1x) = @IBAQIBI0), (11BB.lx)

where to compute the second moments we inserted |0 {0] + [1} {1] =1
between B, and B,,. Thereby

K = -4 3 g (01BINA, 3 gu(1IBI0A,, KP =0, (6.32)
¥ W

e o]
where we suitably defined an operator i on 5.

Putting together all the above and setting g, = 'y /Al we conclude
that
By=1-31'Cat, By =-iL VAt (6.33)

with associated probabilibies
pr=l-pp= {i:*!:} A, (6.34)
where the jump operator [ is given by
L=vat]=3 y7 (I, J0A,. (6.35)

In the example of section 6.4 [see in particular eqs. (6.17) and (6.34)],

0,



6.7 Quantum trafeclories: shafe of the art

E=-,,|Trr..

Since the structure of Kraus operators 6.33 is identical to 6.17, the
reasoning followed in section 6.4 can be formally repeated leading to the
peneral stochastic Schrddinger equation [cf. eqs. (6.23) and (6.24)]

d |y = =3 (Lo L =L L Yy |y) dt + ~1||w) dN,  (6.36)

(L)

where dN = m = {E.J:“,I dt. In the common case where an ex-
ternal drive or local field is applied on 5 one simply needs to add
the extra term —IH,-.; ||;|!-:|- dl, where Hamiltonian I:'IH could generally be
time-dependent.

6.7 Quantum trajectories: state of the art

We already mentioned in the Introduction the seminal works by Caves
and Milburn (see in particular Ref. [17]). Therein, each ancilla is modeled
as a quantum harmonic oscillator which gets displaced due to the
interaction with 5. Measuring the resulting displacement implements
a POVM. The corresponding unconditional dynamics i1s described by
a characteristic ME, whose dissipator (when 5 is a harmonic oscillator
itself) has the form Ss|p| = =K|1, [£, p]] with K > 0 and £ the position
operator [17]. A bipartite generalization of this collision model (with
additional feedback) has been used more recently in some gravitational
decoherence theories to construct a classical channel that accounts for
Newtonian interaction |81, 52]. These are enitically reviewed in Ref. [36],
which encompasses as well a gencral presentation of metrological
aspects of CMs (another one can be found in an introductory section of
Eet. [35]).

A significant part of the discussion we developed relies on the seminal
paper by Brun [24] already mentioned in the Introduction. At varance
with Caves and Milburn, Brun emplovs qubit ancillas taking advantage
of the quantum information approach [21].

It is important to note that in the considered instances we always
measured the ancillas in a basis containing the initial state |1, ). If this
is not the case, then two different outcomes could have comparable
probabilities [unlike e.g. Eq. 6.34 where pg < py]. The treatment in
section b.6 up to Eq. 6.31 would still apply, but the stochastic Schridinger
equation would be different. A case of this kind is presented in the Brun's
paper and shown to lead to a quantum state diffusion equation [24].
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We point out that micromaser (see section 5.7) is a setup enabling direct
measurement of the state of each ancilla (embodied by a flying atom).
The related statistics of detections thus supplies informations on the
cavity ficld and has been extensively studied, soe e.g. Refs. [83].

Finally, we mention that the collisional picture of quantum trajectories
can be profitably applied to quantum steering [54] and engineering
of quantum jump statistics [55]. Important applications to stochastic
quantum thermoedynamics and quantum optics will be discussed in
sections 7.13 and 9.13, respectively.



Non-equilibrium quantum
thermodynamics

We now address the thermodynamics of quantum CMs in non - equi-
librium transformations, this being arguably the area in which CMs
(also known in this context as repeated inferaction schemes) occur most
frequently. As the beld is growing fast, the related body of literature
15 already considerable enough that several relevant topics cannot be
covered here, Thus, given the pedagogical attitude of our paper, the
present section aims to provide the reader with some basic tools for
applving CMs in quantum thermodynamics problems. A number of
topics that we do not discuss, ¢.g. exploiting CMs as a resource for
improving thermodynamic performances, are mentioned in the state of
the art 7.13 and related references supplied therein.

Before formulating general definitions and laws, we discuss a specific
bt quite paradigmatic non-equilibrium process: the relaxation to an
equilibrium state.

7.1 Relaxation to thermal equilibrium

In section 4.7, we introduced mixing collision maps, namely those
dynamics such that 5 reaches a state p* no matter what inihial state it
started from (i.e. py, — p" for any pg) . If s0, then p* is necessarily the
only possible steady state, i.e. the unique fixed point of the collision
map (&[p*] = p°). It is natural to ask whether, by converging to p°, 5
inherits some intensive property of the bath, The most natural one is
temperature: if the bath is in an equilibrium state at a given temperature,
will 5§ asymptotically end up in a Gibbs state at the same temperature?
In other words, we wonder whether 5 will thernalize with the ancillas.

We can formally define thermalization in terms of a basic CM (df. sec-
tion 4.1) where each ancilla is initially in the Gibbs state (henceforth
referred to as thermal state)

g~ FHu
r.h"l' = E

7.0

with f§ = 1/(KT) the inverse temperature and £y = Try {¢ F7} the
partition function. We say that thermalization occurs when p, — p° for
any g such that the asymptotic state ¢* is a thermal state of 5 at the
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|k} (for  k=0,1,2,...)
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Hence, e =
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same temperature as each ancilla, Le.

¢ ~PHs
s

’1' = (7.2)
This definition can be generalized in many ways. For instance, one can
conceive a generalized thermalization whose steady state is given by
7.2 but f generally differs from the bath’s one. If so then equilibriam is
never reached. Another possibility is that 5 ends up in a thermal state
like 7.2 even though the bath is not in a thermal state (this would again
entail lack of equilibrium),

7.2 System thermalizing with a bath of
quantum harmonic oscillators

A typical instance to illustrate thermalization is the basic CM in section 4.1
in the case that ancillas are quantum harmonic oscillators (with associ-

ated bosonic ladder operators fy and 5} such that [E... E}] = By ). The

free Hamiltonian of § (ancilla 1) is i'-'i'q—-ﬁ oA . A H:In—ruuﬁ [}, while
for the interaction Hamaltonian we take '.-"ﬂ— q.ll‘ll JAL {f’a !J,, + H.c.). The

nature of A+, which are ladder operators of § fulfilling [Hs, Ay |=2apA..
will b left unspecified for a while.

Each ancilla is initially in the Gibbs state [of. Eq. 7.1]

erw

M = 7.3)

with {I.lr}FI the basis of Fock states. Recalling egs. (5.17) and (5.18), we
see that H; = 0 while the dissipator is given by

'Elfl-_q“:,., 1l =y {FHI!::‘I.HE‘IJ'H :;i. —%[-":
y{BbaAspuaA- -} A

-l'i. .lPH 'I.] ]+
A peal). @A)

Replacing E.E; = !?,T,!:H + 1 and introducing the thermal number of
excitations

o 2 i ‘i ' el "1- " s 1
"n:-u - {bnbn} 7 Truihn'l-"rr 'r|||';l rl"l‘""il =1 v F.E:I
the dissipator is written as
E"‘i[ﬂﬂ JI"'} [ﬂ fn L-"’lq _ET .-f}u I.]I:H'

yolAypaad %[ s Praile) (7.6



7.2 Systemn Hernmalizing with a bath of quantum harmonic oscillators

where we defined the emission and absorption rates

]'I' - ]P{Eulp""l_'r Fe = :I"ﬁ.Hlu. {?_?:l

This is a well-known master equation describing a system in contact
with a thermal bath, where we can recognize the Emstein coefficunts [B6]
Ag = 7 (spontaneous emission rate) and By = i, (stimulated
emission/absorption rate). These are related to rates 7.7 according
to y_ = Ag + Bg and y, = Bg. Note that eqs. (7.5) and (7.7) entail

L2 o pbon (7.8)
y-

This identity connects rates (associated with relaxation, thus a non-
equilibrium process) to temperature (defined for equilibrium states).

Similar conclusions hold when ancillas are qubits (instead of harmonic
oscillators), Le. H, = woiy. 0, and ¥, = 5 7Al {j.ﬂ.... + H.r.}. The
resulting ME dissipator is identical to 7.6 except that the thermal number
of excitations of each ancilla is now given by i, = 1/{e**+1) [instead of
7.3]. This is just ME 5.29 which we encountered in section 5.7, describing
the cavity dynamics of a micromaser with the atomic population given by
P = iy and for T = Al, ¢ = +/y/Al (where in that case § is a harmonic
ascillator such that A_ = A' = ). Note that this rules out atomic initial
states such that p > 1/2, Le. that cannot be regarded as thermal states at
any temperature {unless one defines a negative temperature such that
f < 0).

Maostly for the sake of argument, in all the forthcoming instances we will
refer to the case that § is a qubit (ancillas being still harmonic oscillators),
thus we will set A, = d,.

In the basis {0}, |1}} of 5, ME 7.6 translates into a pair of differential
equations for the excited-state population p and coherences ¢ [recall

Eq. 4.30], which read
p=yill=pl=p-p. é=—1{ysty-)e. (7.9)
Under stationary conditions the derivatives vanish, yielding ¢ = 0 and

1
iyt

Using 7.8 this means that, regardless of the initial state, 5 eventually
ends up in

P (7.10)

e ~fiHs 1 = [

10)s (O + ——= s 1], 1Y

P Tre jeFHs 1 T Tte P
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namely the thermal state at the same temperature of ancillas (defined
by f). Thus thermalization occurs.

Although very common, the thermalization process considered here
regards a specific class of systems. In the next section, we consider a
general situation where S and ancillas are unspecified, shedding some
light at the same time on the reason why thermalization may take
place.

7.3 Thermalization and energy conservation

Occurrence of thermalization depends, in particular, on the form of
system—ancilla Hamiltonian, For example, let us consider the last instance
r::f the previous section and simply add a detuning to 5 such that
Hs = {wp + 8)d:0-. The ancilla thermal state 1, and rates 7.7 are
unaffected by & and thus ME 7.6 continues to hold unchanged, hence
5 still asymptotically converges to 7.11. Yet, this is nof the thermal state
of 5 at the ancilla temperature, thus thermalization now does not take
place.

An important necessary (although generally not sufficient) condition
for thermalization to occur is that collisions be energy-conseriing. This
means that s + F,, (total free Hamiltonian of § and nth ancilla) is a
constant of motion in the nth collision, ie. it commutes with the collision
unitary

[(s, Fs + Ha] =0, (7.12)
This 15 because if this s true then the S-ancilla state
ll-_ﬁH:u l._l‘l"-Hn
B +H,) )
7s ] Z. oo g (7.13)

15 cleardy unaffected by the nth collision. It follows that state 7.2 s a fixed
point of the collision map (Le. a steady state), this being a necessary
condition for thermalization as we discussed in sections 4.7 and 7.1.

Based on the form of the collision unitary [cf. ogs. (4.2) and (5.1)], energy
conservation can be equivalently expressed as

[V, Bs + Al = 0. (7.14)

In the example mentioned at the beginning of this subsection, when
& # 0 7.14 does not hold thus thermalization cannot occur,

Physically, conservation of Hs + H, means that if the free energy of 5
decreases then that of the colliding ancilla grows by exactly the same
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amount (and viceversa). This intuition can be made formally rigorous
as follows.

Let us first define an eigenoperator A, of Hs with eigenvalue w, as an
operators on 5 fulfilling

IH!{.‘. .I'il_] = "'uh,j-,- s t?.15_:|
Likewise, eigenoperators u-ff:l’,, are defined as
“-.F.q.. ﬁlpl - _H-?pﬁp :?-].EFJ

with ', the associated cigenvalues. Here, ﬁ.,. and E‘,. are defined as
dimensionless operators. Note that the values taken by index v in
eqgs. (7.15) and (7.16) are generally different.

Now, for given As and f,, it can be shown (see A8) that the most
general class of interaction Hamiltonians Vi, satisfying 7.14 has the form

V=54, (ﬁiz B, +A,B}) with w,=w,. (7.17)
¥

It can be immediately checked that 7.17 fulfills 7.14.

Many coupling Hamillonians appearing throughout this paper can be
recognized as falling within this class. Note that ¥y, # 0 only provided
that there exist eigenvalues common to both FAs ad A,. To make clear
the physical meaning of 7.17, it suffices to consider a generic cigenstate
IE}y of H; with energy E and note that H |E} is another eigenstate
but with energy E — w, while .-TI |E} is an eigenstate with c':g.mp'alm
E + w. Analogous properties hold for B,. Thereby, according to Vi, if 5
undergoes a transition [E;} — |E¢) changing its energy by the amount
a = Ey = E; then the ancilla will make a simultaneous transition with
energy change —w. For instance, in section 7.1, if 5 is a qubit making
the transition [0} — |1} with energy gain oy then a harmonic-oscillator
ancilla can only decay from a Fock state |k} to [k = 1) losing the same
amount of energy ay.

The general ME corresponding to interaction 7.17 can be calculated
in terms of the ancilla’s moments [see section 5.4 and Eq. 5.17]. Since

N is a thermal state (mixture of eigenstates of Fy), each 8, (in light

of the aforementioned properties) has vanishing expectation value.

Thus ﬁ; = (1 [cf. Eq. 5.18]. Regarding the dissipator g, we note that

7.15,
Hl-..l'q| = ﬂ[%h —ﬂ"| e

Hence, Hgd, |E)
A A5 |E) - c.ru:L IE)
EA,|E} = and.|E) =
[E - ul.-MrIE:I- shivaring
that Ay IE} is vigenstate of
Hs. The property for A? is
proven likewise by noting
that |Hg AY] = anAl.
Note  that AdE) o
ALIEY) could be zemx
g for a qubit of Hamil-
bmvian g |13 (1] we have
a. |0y =a, 1 =0
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(BB} = (BLBLY = 0 for all v and v, Thetefore,
E'I'SIPH 1] =Z ]’r,L"{EwEE}EJ‘irPH Ii"il.,t-' = l:ilﬁ:-ﬁ’ilrr i'n 1]| I+
o

E -,I"I",I-"'{ f'r:j:-]”:j:rhu- I"'il-"' " %fjgr‘i:, -1 ]-l- ). (718)

|_|__|_|r

7.4 Non-equilibrium steady states with baths
at different temperatures

We have dealt so far with a non-equilibrium process where however 5
eventually ends up in an equilibrium state. We next consider a dynamics
where 5 never attains equilibrium although it reaches a (non-equilibrium)
steady state. This is the simultaneous interaction with many thermal
baths at different temperatures, which is a paradigmatic dynamics to
illustrate e.g. thermal conduction, where it is known that 5 can reach
an effective thermal state at a temperature which is a weighted average
of those of the reservoirs. CMs are very effective in handling multiple
baths as discussed in section 5.9,

We thus focus on a CM comprising M = 2 baths of ancillas labeled
with 1 and 2 as shown in fig. 5.3(a). Ancillas of bath i = 1,2 are in a
thermal state ') = g}’ with inverse temperature fi; [cf. Eq. 5.37 for
,[:,m"l' = {I] where in general fi; # 2. The coupling Hamiltonian ruling
each collision has the form 5.39. As in the instance in section 7.1, we
assume that first moments vanish for each bath, i.e. (B} = 0. Henee,
(= Tig[p] with [ef. Eq. 5.41]

@slp] =2y Ip] + 2ol (7.19)

where B is the dissipator that would arise if 5 collided only with
ancillas of bath i.

As an illustrative instance, fully in line with section 7.1, we model each
ancilla of bath 1 as a harmonic oscillator of frequency ay initially inoa
thermal state like 7.3 with inverse temperature fi;, The coupling with
S has the same form as in section 7.1 with coupling strength /v /AL
Note that 5 and all ancillas. have the same frequency ay in a way that, if
Vs were zero (meaning that bath 2 is decoupled from 5), then 5 would
reach thermal equilibrium with bath 1 {(and viceversa).

Duae to 7.19 we see that the dissipator is analogous to 7.6 under the
replacements 3. = v} with the effective emission and absorption rates
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given by
Ve = ﬂ"+ ;u*f'. {7.200

where
yl =y (@ 4 1), YW=y ad® with ;=P -1, 721

As the ME is formally identical to that in section 7.1, 5 asvmptotically
converges to an effective thermal state of the form 7.11 with inverse

temperature fig ¢ given by

R (31 + ya)elFrtfaln — o, pfrst - g pliain
log = = —log
Y+ o Yz (ePrn = 1] 4 (o0 1)

(7.22)
This entails that fi. sy is generally different from both §y and §; (confirm-
ing that a non-equilibrium steady state is reached), reducing to iy for
12 = land to f§; for 7 = 0. Thermal equilibrium is retrieved when the
two baths have the same temperature, in which case 7.22 predicts (as
expected) forr = f1 = fa regardless of 4 and y;.

ﬁ«rr=ﬂ—m

Sinee CMs can keep track of the bath dynamics in a relatively straight-
forward way, they are an advantageous tool for calculating the rate
of change (or flux) of thermodynamic quantities in non-equilibrium
transformations (such as thermalization) even beyond the weak coupling
regime [i.e. when the collision unitary cannot be approximated with the
lowest-order expansion 5.1]. The general definition and caleulation of
these, as well as the basic laws governing them, will be a main subject of
the following subsections.

7.5 Time dependence of the total system-bath
Hamiltonian

Wi allow the free Hamiltonian of the open system 5 to be generally
time-dependent. This allows to encompass situations where 5 is subject
to an external classical drive such that one or more parameters of Fis
can be deterministically modulated in time according to an assigned
pﬂﬂnuinl. For instance, in the CM considered in section 7.1, we could
have H(1) = aglAg ) |e){e], describing a time-modulated detuning with
Ay some smonth function of time defining the protocol. We also assume
that the characteristic time over which Hsit) changes is much larger than
At, hence during the nth collision we can approximate Hslt) = J'-“.|'1.F"II S0
that I-is becomes step-dependent.

We write down i ana-
gz of 7.8 under the re-
placements § —+ f ¢ and
¥z — ¥ and then solve
foor o r

More im0 dietail, I'.ir” Can
it b disfined as the ime
awverage aof sty during
thee th time mberval.
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Accordingly, the total 5-bath Hamiltonian at an arbitrary time | has the

general expression
Hsa(t) = As(t) + Ay + V1), (7.23)
with the (Hme-independent) bath Hamiltonian given by

fly = 3\, 7.24)

and the 5-B coupling Hamiltonian by
Pit) = 3 0ult) Vu, (7.25)

where 8,(t) = 1 for t,_; = | < |, and zero otherwise.

Notably, besides the possible ime dependence coming from Hsif), the
total Hamiltonian has an intrinsic time dependence due to the sudden
replacement of the bath ancilla interacting with 5 at times | = {,. This
time dependence, due to the periodic switching (on and off) of the
interaction with ancillas, is a distinctive feature of CMs not present in
conventional microscopic system-bath models. This generally introduces
a contribution to the work as we will see in section 7 8.

7.6 Rate of change of energy of 5

We generally define the internal energy (or quEly energy) of 5 as the
quantum expectation value E5 = {Ag) = Trs{Hsp}. Since in general
both the operator Hs itself and the state of S evolve in time, the change
of Eg at each step has two contributions

AEs = Trs{AHs pua} + Trs{Hs Apa) (7.26)

with Afs = A — A" (subscripts between brackets denote the step
number). Using Eq. 5.23, in terms of the usual decomposition 5.14 of V),
the rate of change of Eg at each collision (i.e. during the time interval
fu-1 = | < Iy) is generally given by

AEs _ [:Mg

Al Al }ﬂZ:&rw{Bk}{lﬂnﬂslHE yop{BuBu} (A HsA, 1 [AAL, Asly).

(7.27)
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7.7 Heat flux

Analogously to 5, the energy of the nth-ancilla is defined as £, = {]‘J‘.}-

As ancillas are uncoupled to one another, £, can change only during
the mth collision. Accordingly, AE, at the nth step is also the change

of encergy of the entire bath B, Le. AE, = ﬂ.E:.;I'. This in fact gives the
exchanged heat whose definition reads

60 = —AEY = —AE, . (7.28)

Therefore, using Eq. 5.24, the heat flux (exchanged heat per unit time) is
given by

ME'

(7.29)
(note that, unlike Hs, H,, is ime-independent).

7.8 Work rate

Work is the contribution to the change of total energy Esg = {HEHJ‘
due to the time dependence of the total Hamiltonian operator f.IgH{HI
[cf. Eq. 7.23]. Thus a natural definition of the work performed in each
time step fy—) <t < Iy reads

SW = Treg {Afsg 0,1) (7.30)

with Afisy the change of operator s in the considered time interval,

Emcl. the only time-dependent terms in H-.,J_.IIE] are (in general) HE.U:I
and V(1), we can split &W into a pair of corresponding terms

SW = 6W, + Wi (7.31)
with

SWy = Trs {AHs pu-1}, Wy = Tren (AT 0,4}, (7.32)

where subscript d stands for “drive” (we used that J'?,-: acts only on 5).

Here, 8W, is the contribution due to the time dependence of 'Ir-"l[f} We
call it smitching work since, physically, it is the work (generally) requined
for replacing an ancilla which completed its collision with a fresh one.

MNow a subtle but relevant issue arises since the time derivative of E:,U )
[ct. Eq. 7.25] is singular at times | = {,, (for any n). At these imes, V(i)

==i Z v {-‘qv}{[ﬂw Hrl i]" Z ’1'y(jp£r}{-§pﬁn Er“é Iﬁpjpr F‘uh}
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Figure 7.1: Redefratim of e i slep, (a): The interaction with andcilla m (yelloss amea) is
swibched on at timne by and then torned off at i, = Feog & A, ot which time intesaction
Fiier i3 switched on (green). To correctly take into account the work required for the
swibching (if any ), we redefine the G mbervad as oy, e — [Eaon + £, 0y + £] with
& == 0%, (b} The redefined Bma step im furn can be split indo a pair of consecufive

inbervals: [fa-y + £, 0s = ] (interval ) and |t; = £, 1y + £] {interval ). In I, Vit) = ¥,
{constani). During I, instead, V(i) jumps as Vy = Vo at b = |y,

undergoes the instantaneous switch i-""',., — Tr:',,.. 1~ To take this switch into
due account, all the changes throughout must be intended as computed
over the Hme interval [f,_y + £, 1, + ¢] as sketched in 7.1(a) with the
understanding that & — (", As the singularity of 7.23 at time | = I,
comes only from V1), this slight change of time interval does not
affect all the thermodynamic quantities other than 5W,,, (in particular
OWi) with the only exception of £, = {ﬂ';} which will be analyzed in

section 7.9,

Now, the redefined time step |1, + £, 1, + £] can be conveniently de-
composed intoa pair of consecutive intervals [see 7. 1(b)]: [ty + £, bq = €]
(interval I) and [t, — £, Ly + £] (interval 11). As V(!) is constant all over
interval |, the switching work W, is performed only in the very
short hrm.- interval 11 [within which F{.I'} undergoes the sudden jump
i-",.. V1] Accordingly, the switching work is correctly worked out
as bW, = 'E'r‘gg{['l.:':I1 i1 = f’,ﬁltﬂ—r”-. More explicitly, using that \T",.H
and V, respectively involve ancillas mand n + 1, we get

BWoie = Trs et {Ves1 Putinsr} = Trsn (Vi osa}. (7.33)

where g5, (cf. section 5.1) is the joint state of 5 and ancilla n right after
they collided with one another.,

7.9 First law of thermodynamics

Dhuring a single collision, the dynamics of 5 and the involved ancilla is
governed by the total Hamiltonian

H;_-.;-u Hg + H... + |-" (7.34)

Since operators I:IH and 1;:' are time-independent, ﬂﬁml ﬂ.H; Making,
now the replacements l[ﬂHmu,-:l- = AEg + AE, + Trg {l-"' Afig ) and
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lef. Eq. 7.32] {Afs) = Wy, we get
AEs = 80 + Trs. {Va Apse} = Wy, (7.35)

where we used {(AFl ;1) = (AFs) = Wyand AE, = -8Q [cf. Eq. 7.28].

To connect the last identity with the switching work, in Eq. 7.33 we
replace gsp = Py-17n + Apsy oblaining

oW =Trg g I{':'u i1 Paflrin I‘ —Trgy “:".l.l Pa=11w f—Trgy “}.u I':'I{J:GH! .

w3
Combining this with 7.35 and recalling the definition of H. |cf. Eq. 5.18]
and total work 7.31, we finally end up with the Isf b of thermodynamics

AEs + AE; = 00 + oW, (7.37)

where AEs + AE; can be identified as the total energy change of 5 when
also the bath-induced Hamiltoman f-f; 15 accounted for.

The analogous law for instantaneous rates/ fluxes (in the continuous-time
limit) reads Es + EL = Q + W.

An important case ocours for energy-conserving interactions [see sec-
tion 7.3 and eq. (7.14), 7.34]. In this case, in the absence of drive Le. for
aWy = 0, we get [As, Acar] = ~[An, Acanr]. Hence,

AEs =80, (7.38)

This formalizes energy conservation in thermodynamic terms: energy
lost (gained) by 5 is absorbed from (released to) the bath of ancillas in
the form of heat. Note that 7.37 in this case reduces to ﬁE"s = AW,
namely the work (done by some external agent) for switching on and off
the interaction with ancillas is entirely converted into extra energy of 5
which adds to E5. This work yet vanishes for interaction Hamiltonians
and ancilla states such that Tr,, {'l:",1 Me} = 0, as in section 7.1.

7.10 Qubit coupled to baths of harmonic
oscillators

To illustrate the thermodynamic quantities introduced so far and the
Ist law, let us reconsider the CM of section 7.1 when 5 is a qubit and
each ancilla a quantum harmonic oscillator. Since the interaction is
energy conserving, Eq. 7.38 holds. Moreover, 8Wy = 0 (no drive) and
Tra{Vina} = 0, hence AE; = 0. Consistently, the switching work
vanishes since, using Eq. 7.37, W, = AEg-AQ = (. Thus overall no

This s reasonable since
(¥ =in fact the conribu-
tion to the change of ()
coming from a step de
pemdenoe of aperator Hﬁ
|cf. e (5.18) and (7.32)).
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work 1s performed. Hence, in this thermalization process, Eq. 7.38
cotncides with the 1st law.

Using Eq. 7.29 or the opposite of 7.27, after simple calculations we get
thiat in the continuous-timae limit the heat flux s given by

i
-E =y [+ A -p)-y-p]- (7.39)

where the introduced the excited-state probability p = {(6.d-} = 1 -
{F_d.) and the PI‘I'.“'.-I!JIJEI]." defined rabtes 7.7. Using Eq. 7.9, we get as
expected that Q = app = E; We see that the heat flux undergoes an
exponential decay (in magnitude) until it stops when S reaches thermal
equilibrium,

]"-]cxl,_. as in the 'I:l-l;'glnmng of section 7.3, we add a detuning to 5 such
that H~. = (g + 0)F,8_. As the wulutmn u:l' P is just the same, heat flux
7.349 is identical. However, since now |H+.. H',,| =0 l,'::'l no longer matches
Es. Indeed, applving Eq. 7.27 in the continuous-time limit vields

EE = (e +8) s (1= p) = y-p] . (7.40)

Upon comparison with 7.39, this shows that E ; differs from I.:l whenever
& # 0. Their difference, using the Ist law 7.37 and HZ, = 0, is the switching
work per unit time

W =Es-Q=68[r(1=-p)=2-p| . (7.41)

This provides the complete energy balance at each instant, showing that
in order for 5 to reach the asymptotic state work must be performed by
an external agent.

Node that, in the situation just analyzed, f = Oentails Q = Es = Wi = 0,
meaning that no energy flux occurs throughout the system once the
steady state is reached. This is true regardless of & since yo(1-pl—y.p =
il

Differently from the case just seen, let us now illustrate an instance
featuring an uninterrupted heat fux. This is the dynamics of sechion 7.4
featuring system 5 1s contact with two baths at different temperatures, in
which case (as explained at that time) the open dynamics of 5 is formally
the same (5o that 5 reaches a steady state) except that the absorption
and emission rates are replaced by y. — 34 [cf. egs. (7.20) and (7.21)].
Thus in particular

o=yl = p)=7op, (7.42)
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Accordingly,

L

f:m[;{n—p]—:%pl : (7.43)
Instead, the heat Alux of bath 1 [cf. Eq. 7.29] is given by

d .

% = Gk |JI?I“_F}_TMFJ 2 (7.44)

Since )} = }r't” * ]'1:' we get the energy balance

dihy +dl'-'.?z _ dEs
dt dt dt

(the switching work vanishes). This embodies a continuity equation for
heat [see fig. 7.2].

- @ @ -
(R
L)

-0 @ B -

Figure 7.2: Slationary heat ([T i o OM weifh teee hafes, System 5 collides with bwo baths
of thermal ancillas, one at temperature Ty one ot Ty with Ty 2 T;. In general, the
continuity equation for heat current reads () + O = Eg, meaning that the net energy
envtering vxiting from the dashed rig R s balance |:|.'||.-1:|'|..'.|.1'|E|.' of ereTgy ok 5. As
stationary conditions are reached, the energy of 5 no longer changes and a permanent
heat curment Ly = =L flowes from the hot o the oold bath.

(7.45)

Asymptotically, Es = 0 so that
dy _  d0s
s (7.46)

showing that stationary heat current flows from one bath to the other.
In these conditions, by deducing from 7.42 the steady value of p and
using 7.20-7_21, we get the heat current

ifl'.;_'] " _.l.fl'.;'z _ Fi)z2 {ﬁ] - '-r!}
dt di 1+ Y2+ Aty + i)

(7.47)

As expected, for ity > A thatis Ty > T, {}1 > () meaning that heat flows
from bath 1 towards bath 2.
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7.11 Second law of thermodynamics

Each collision changes the joint state of 5 and the involved ancilla, which
evolves from py_ /s (uncorrelated) to pgy (generally correlated). The
relative entropy of these two states, which we call entropy production X
for reasons that will be clear shortly, fulfills

L= &losa |l Pa-1u) 20, (7.48)

which simply follows from the property that relative entropy is always
non-negative (see A.2). If, due to the interaction during the collision,
psy is a correlated state then it must be different from the initial state
Pr-1 @ Tn, entailing £ > 0. Thus the strict positivity of £ witnesses
establishment of system-ancilla correlations at each collision.

It can be shown' that £ can be split into the two contributions

L=Jsu + 800,  nu) 2 0, (7.49)

where ¥, stands for the mutual information {see A2) of 5 and ancilla
n at the end of the collision, while (i [| n, ) is the relative entropy (see
A.2) between the final and initial states of the ancilla. Now, since 5 and
n are initially uncorrelated (mutual information zero), we have

Fon = ASs + Ay (7.50)

with ASs = &(p,) — S(p,_1) and AS, = &(n) — Sirn,) the change
of entropy of 5 and ancilla, respectively. Here, we used that the 5-n
dynamics during the collision is globally unitary, hence it cannot change
the entropy of the joint state, i.e. ASg, = 805, ) = Slpa-10.) =0

While the above holds for any ancilla state 1, we now focus on a thermal
bath of ancillas, i.e. we take 1y = ny [cf. Eq. 7.3]. In this case, recalling
Eq. B.4, the second term of 7.49 is given by,

S(ngy | o) = =Tr{a log o — i logn, } = -A8, - g6Q.  (7.51)

Replacing eqgs. (7.50) and (7.51) in Eq. 749, we end up with the 2nd law

I This is worked out as

Blgss || pu & nn) =Tr{ps: loggsa ) = Tr|ps, log ps 8 x| =
Tripse 108 0sa ) = Trip. logp. ) = Trin, logn,} =
Tr{psa logosa b = Tr{p. bog pa § = Trin, logn.} .

Mow, adding and subtracting Trim, log i | vields (o5, § pn @ o) = F s} -
Trim, bog i} + Tring bogal} = F{og} + S0, || ne) = 0.
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in the form
Adg = 00}, (7.32)

which in terms of nstantaneous rates (in the continuous-time limat)
reads &s = f Q.

In particular, note that we get an identity connecting a thermodynamic
quantity to an information-theoretical one. Hence, production of entropy
in {the thermodynamics sense) results from creation of system-ancilla
correlations as well as perturbation of the ancilla thermal state (caused
by the interaction with 5).

We point out that the above derivation of the 2nd law for each time step
relies crucially on having used a CM, this allowing to decompose the
bath into distinct uncorrelated units which 5 interacts with one at a time.
In particular, we exploited that 5 at each step is inihally uncorrelated
with the involved ancilla and this is still in the respective thermal state.
The analogue of Eq. 7.49 for the entire bath B holds only if it is referred o
the entire evolution up to the considered step (iLe. replacing {, 1 — Iy).
This is because S is uncorrelated with all the ancillas and these are all in
a thermal state only at the initial time | = fp [see fig. 4.1{a) and {d}]. From
this viewpoint, it is remarkable that we got inequality 7.52 connecting
the entropy change of system 5 with the heat exchanged with the full
bath B. This highlights particularly well a major advantage of emploving
a collisional description of non-equilibrium processes,

7.12 Landauer’s principle

Let us define & = —& and I:j = =} in a way that A% represents the
decrease of entropy while 0 > 0 is positive when heat flows from 5 to
B. Then 7.52 vields

f80 = AR, (7.53)

This is the quantum version of the so called Landaver’s principle [57],
stating that the heat dissipated into the bath is lower-bounded by the
entropy decrease of system 5. It entails that, in order to decrease the
entropy of the open system so as to gain more information about it (see
Au2), a linite amount of heat must be dissipated into the reservoir, In
the continuous-time limit, the corresponding statement in terms of heat

flux and instantancous entropy decrease per unit time reads IﬁQ > &,

As an illustration, consider once again the CM analyzed at the beginning
of section 7.11 The dissipated heat per unit time is given by the opposite
of 7.39. The entropy instead reads 55 = =(1 = pllogp = plogp (we

|
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assume zero coherences ¢ for simplicity ). Hence, 5;5 = =filog { I—;ﬂ} and
we get

ﬁii—§=JJ(ﬁ:L|u+it'ngl_Fp)[1[1+.:-|'5-='n;p—li. (7.54)

Both factors between brackets on the right hand side change their sign
when p becomes greater than 1/(1 + &™), meaning that the product is
indecd non-negative at any time f.

7.13 Non-equilibrium quantum
thermodynamics: state of the art

The definition of thermodynamic quantities and derivation of thermo-
dynamics laws are largely based on Refs. |31, 88, 89] (see also Ref. [90]
where some aspects concerning the use of CMs in quantum thermo-
dynamics are discussed). Note that Eq. 7.49 was first derived for bath
thermal states in Ref. [91] and then generalized in Refs. |31, 92

We present next an overview of the quantum thermodynamics literature
focusing on works that make explicit use of a collisional approach (our
concern being mostly the methodological relevance for CMs theory).

The use of a CM to gain insight into the thermalization of a quantum
system (see Sections section 7.1, section 7.2,section 7.3) appeared in a
seminal work published in 2002 [23] (related to Ref. [22] mentioned in
4.10). This linked together dissipation, fluctuations (by deriving a CM-
based version of the luctuation—dissipation theorem [93]) and maximal
system=-ancilla entangling power. Notably, the CM approach allowed
the authors to explicitly show how, due to entanglement, a dissipative
(thus irreversible) process can result from a jointly unitary system-bath
dvnamics (see also Ref. [%4]). Roughly in the same period, a similar
CM was used by Diosi, Feldmann and Kosloif [95], where however the
point dynamics is made irreversible by randomizing identities of the
ancillas.

Deviations from thermalization, in particular because of lack of energy-
conserving interactions (see section 7.3), were investigated in Refs. [96-
98]

In the context of resource theories, Ref. [99] introduced a resource theory
called “elementary thermalization operations”™ (ETOs) and showed that
Markovian ETOs are closely linked to memorvless Chs. Ref.  [100]
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instead studied almost thermal operations by relaxing the constraint of
having identical ancillas all in the same thermal state.

Since only the reduced state of 5 is involved in the definition of thermal-
ization, an interesting question is whether or not 5 can share correlations
with the ancillas even after reaching thermalization. Strong evidence
that 5 gets asymptotically uncorrelated with the bath was provided in
Ref. [101].

Note that not only a CM can model thermal baths, but can even imple-
ment an effective thermometer as proposed in Kefs. [102, 103] showing
that collective measurements on the ancillas can provide quantum

metrological advantages (an extension to stochastic collisions has been
recently put forward in Ref. [104]) .

A class of problems where the collisional approach is very helpful are
non-equilibrium dynamics in the presence of multiple, usually thermal,
baths (sev sections 5.9 and 7.4). A standard case typically features a
multipartite open system 5 [cof. fig. 5.3(b)] comprising a generally large
number of subsystems {5, ..., 5x } which are coupled to one another
(modebed e.g. as a spin chain) |85, 59, 105-109], Note that switching work
(see section 7.8) was first identified in a system of this kind by Barra in
Ref. [88] and then further investigated in Refs. |31, 89],

As seen in section 5.9, uncorrelated multiple baths typically result in MEs
of the form 5.41 featuring only local dissipators. The thermodynamic
consistency of such local MEs (regardless of the way they are derived) was
disputed [110], In this context, Ref. [89] considered a CM with multiple
baths and coupled subsystems yielding a local ME, By highlighting,
the key role of switching work (see section 7.8), full consistency with
both laws of thermodynamics (see Sections Sections 7.9 and 7.11) was
demonstrated.

Note that, while the baths are commaonly assumed to be uncorrelated,
Eef. [111] studied how inter-bath correlations affect thermal machine
performances. This corresponds to a CM with multiple baths where in
Eq. 5.37 x3'"" # 0, resulting in ME terms that couple the subsystems to
one another [of. Eq. 5.42]. The corresponding ME can then be arranged in
termss of collective jump operators as first demonstrated in Ref, [112]. The
effect of correlated ancillas was also recently studied in the derivation of
quantum Onsager relations via a collision model [113],

Multiple baths naturally enter thermal machines (see next) as these
usually operate between reservoirs at different temperatures.

In 2003, Scully, Zubairy, Agarwal and Walther [32] proposed a heat
engine based on the micromaser setup of Sections section 5.7 with
the difference that each thermal atom is a three-level system featuring
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a nearly two-fold-degencerate ground state (doublet). They showed
that coherences stored in the doublet can work as an added control
parameter to extract work from a single heat bath with some features
unattainable by classical engines |32]. This established a paradigm of
proposed engines /thermal machines whose working principle exploits
some genuine quantum property (such as entanglement) [114-121).

CMs have become a routine descriphion tool to investigate thermal
machines, mostly in the quest for quantum-enhanced performances [122-
127] and / or with the aim to explore quantum non-Markovian effects (see
8.7). Note in particular the possibility of using CMs to model processes
with partial thermalization, which was investigated in Refs, [128-1340],

A topical research line is investigating thermodynamics laws in the
presence of nen-fermal reservoirs, mostly motivated by the hope that
bath in non-classical states could enable improved thermodynamic
performances, Ref. [131] considered a CM with each ancilla prepared in
a thermal state with added coherences of the order of ~ \EEI' quite like
state 5,34 in section 5.1. A bound was derived demonstrating explicitly
that the consumption of bath quantum coherences can convert heat into
work on 5. Ref. [132] showed that coherences in the energy basis can
both enhance (or deteriorate in some cases) the performance of thermal
machines and let them operate in otherwise forbidden regimes, Ref, [133]
showed that coherences in the bath can cause a thermalization to an
apparent temperature which could be spectroscopically inferred [123].

A major class of bath quantum states with promising thermodynamic
advantages are squeczed states. A broadband (white-noise) squevczed
reservoir can be simulated via a CM featuring identical harmonic
oscillator ancillas each prepared in the same one-mode squeezed state,
which could be implemented through an array of beam splitters as
proposed in the 90s in Ref. [134] (see also section 9.10). Such scheme
can b generalized by considering non-identical ancillas cach imitially
in a squeezed-thermal state (50 as to encompass a thermal reservoir as
a special case). Baths of ancillas prepared in squeezed-thermal states
were used in Refs, [135-137).

The collisional approach to the Landauer’s bound for fluxes (see sec-
tion 7.12) was introduced in Bef. [138], where a major focus was exploring
the bound when 5 is part of a larger multipartite system which causes
deviations from the Markovian behavior. One of the considered case
studies was the cascaded configuration of Sections 4.8 and 5.10, where
the dependence of heat fluxes in the transient regime on intra-system
correlations was formerly studied in Ref. [139]. We also note that, al-
though not explicitly connected with CMs, a pertinent basic reference
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on the Landauer’s principle adopting the language of quantum maps is
a 2014 paper by Reeb and Wolf [144].

An intensively investigated topic in quantum thermodynamics is the
possibility to define thermodynamic quantities and non-equilibrium
laws at the level of single quantum trafectories (instead of unconditional
dynamics as assumed throughout the present section) in a way that the
resulting thermodynamics acquires an intrinsically stochastic nature
(see the recent review in Ref. [141]). As discussed in chapter 6, CMs are
the natural microscopic framework for describing quantum trajectories,
which explains their use as an advantageous tool in studies of stochastic
igueanfiom thermodynanmeics [92, 142-148].

A major appeal of CMs in quantum thermodynamics (and beyond) is that
they allow relaxing the standard weak-coupling assumption and thus
exploring the “ultra-strong” coupling regime where counter-rotating
terms cannot be neglected as done e.g. in Refs. |89, 149-151],

CMs can be used to introduce decoherence for extending flucfuations
Hreorems to quantum mon-uritary transformations |152].

Although not discussed in section 7.8, the work on 5 can be seen as
resulting from collisions with a bath of ancillas in the case that the
unitary collision s approximated to first order, resulting only in ﬂ';
[cf. Equations (5.17) and (5.18)]. This was used for proposing a definition
of work independent of the 5 free Hamiltonian [153]
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Non-Markovian collision
models

>0 far wie have been focusing on memaoryless (Le. Markovian) CMs, Yet,
an important application of CMs is the description of mon-Markowian
(NM) dynamics. This will be the subject of the present section.

Corresponding to assumptions (1)-{3) (cf. 4.1.1) underpinning the basic,
Markovian, CM (see 4.1.1), one can identify three main classes of NM
extensions of Chs:

(i) CMs with added ancilla—ancilla collisions;
(1) CMs with initiallv-correlated ancillas;
(i) CMs with multiple collisions.

It is understood that each class relaxes the corresponding hypothesis
in section 4.1 without breaking the other two. Of course mixed cases
relaxing two or all of the hypotheses are also possible, an instance being
the so called composite CMs (which will be introduced in section 8.5)
which have connections with both classes (1} and (3).

In the following, we introduce each of the above three classes discussing,
some relabed basic properties.

8.1 Ancilla—ancilla collisions

Introducing ancilla-ancilla collisions is physically motivated since it
natural to think that ancillas can generally interact with one another. In
its (arguably) simplest formulation (see 8.1), such a CM is obtained from
the basic CM of section 4.1 by adding extra pairwise ancilla-ancilla (AA)
collisions between system-ancilla (SA) collisions. As sketched in 8.1, the
CM dynamics starts with a standard collision between 5 and ancilla 1
(unitary J'_-.|'|‘.|. Then ancillas 1 and 2 collide together {unitary 'I-':-ru}. This is
followed by an SA collision between S and ancilla 2 (unitary (), then an
AA collision 2-3, then 5-3 and so on. As a key feature, AA collisions are
interspersed with SA collisions: for instance, prior lo the collision with 5,
ancilla 2 interacts with ancilla 1 (with which 5 is correlated due to the
previous collision). As a result of this AA collision, 5 and ancilla 2 are
thus already correlated before collision 5-2 starts. Hence, regarding the
open dynamics of 5, the second step (ending with 5-2 collision) cannot
be described by a CPT map and so cannot all the remaining steps. The
CP-divisibility condition [cf. Eq. 4.16] thereby does not hold, making the

dynamics non-Markovian.

8.1 Ancilla=ancilla
collisions . ... 77
B.2 MNon-Markovian
master equation
in the presence
of ancilla—ancilla
collisions . . . . Bl

B.3 Initially-
correlated an-

B.5 Composite colli-
sion models . . 89

8.6 Mapping ancilla-
ancilla collisions
into a composite
collision model 93

B.7 Mon=Markovian
callision models:
state of the art . 94
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Calling, Waa-1 the unitary describing the AA collision between ancillas
i =1 and n, the joint 5-B dynamics is given by

o = L - O 0 aa () (0 -« L (0) (8.1)
with the step unitary (1} defined as
0 = UaWony (lor n22), 0 ={l, (8.2)

hence (except for n = 1) (I}, describes an AA collision followed by a
5A one. This can be contrasted with Eq. 4.3 holding for a basic CM. As
usual, we take as initial state 0q = py @y 1] featuring no correlations.

® ©
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Figure 8.1: Nor-Markordar collision model wili ancille-ancilla ooflisions, Just likie the basic
CM of 4.1, all ancillas are imitially uncorrelated and in the frst step 5 collides with
ancilla 1 {a), getting correlated with it (not shown bere). Yet, before 5 collides with
it =2, ancillas 1.and 2 collide together (b). As a result of this AA collision, 5, ancilla
1 and amcalla 2 are i-l;rinll:.-' cormelatid (o). Moww, 5 collides with 2 (d) with which it is
howarver correlated already beforr collision 5-2 starts. Collistons with ancillas o = 3
are obtained by Heration

To understand the main features of the open dynamics entailed by this
CM, it is helpful to take each AA collision unitary in the form of a partial
SWAP [ef. Eq. 4.25]

lIlI;rrr.l:-1 - ﬁ i+ ﬁ_ﬁ"._”_ i (5.3)

with g = 1 —p, where we recall that unitary 5” 1= .§;I_r_| (cf. Eq. 4.23]
swaps the states of ancillas n — 1 and ». Here, the swap probability p
can be regarded as a measure of the effechiveness of AA collisions.

Forp = 0, 1"'-|.’rrl,,_1 = |, thus AA collisions are fully ineffective. We



8.1 Arcilla=mcila collistons | 79

retrieve in this case the standard memoryless CM |cf. section 4.1] where
5 undergoes the usual Markovian dynamics given by

m = 'ﬁﬁlfh:} (8.4)
with & the usual collision (CPT) map |k Eq. 4.7].

Let us now study the other extreme case p = 1, when I.""I.",.,I,,..j is just a
swap and AA collisions have the maximum effect. First note that the
unitary transformation defined by Su.n-1 turns an operator acting on 5
and n into its analogue on 5 an ancilla n — 1

*ﬁ.'-'n.u 1= §ru| laﬁ.ugum- I :_'E-El.]

Using this and 52'1511 = |, the overall unitary at step n = 2 can be
arranged as

-[}; It 53‘1{11 [5;.511FU1§3|Q| ﬁnfﬂguu;ﬂmlﬂ. s;;ul ,
(8.6)
whiere we used that g;,.ﬂ-,-gu = ﬂ‘q’, [due to Eq. 8.5].

Upon iteration, at step n
ﬂ;“j; =§1..I"'§rr l,n.zgu‘n 1&[’. (8.7

Thereby, we get that the CM dynamics can be equivalently seen as the
usual collision between 5 and ancilla 1 vet repeated n times, followed by
a sequence of AA swaps. This property, along with the assumption that
ancillas start all in the same state 1, allows to work out the evolution of
5 as (see AY)

.ﬁ'" = ?HIP“I = Tf: I_I':.r]";m l‘h I':r?"'} ; I_E-.H-:I

This can be contrasted with the case p = () [see Eqg. 8.4] which, since 1,
i% the samee for all ancillas, can be wiithen as

pu = E"[pa] with Elp]=Tr{h pm U]} = F[p]. (8.9)

Interestingly, from a formal viewpoint, maps eqs. (8.8) and (8.9) differ
for the fact that, while in 8.8 the exponentiation to power n involves the
collision unifary, in 8.9 the exponentiation is instead over the collision
map (i.e. the exponentiation is carried out after the partial trace).

Physically, Eq. 8.5 describes just the same open dynamics which 5 would

undergo if it were interacting all the time with the same ancilla. Notably,

adophing such a viewpoeint, even Eq. B.9 could be seen as resulting from
an everlasting interaction with the same ancilla, yet with the crucial

In the case n = 3,
we et R =
TR =
[h832(52,4007) =
815423, where
W uised that

r‘gx,l-;.'l-.t:lf;l!t[f'ﬂ:ﬁ:_:]=-§i.l [}:5-!.1 ;
Ly and (52.1532F = I,

Incheed,
[f],., = P L (s

{with 1y = /AL a5 usuaal).
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difference that the ancilla state is periodically resef bo 1y at each time step
At.

The reason why, when p = 1, the open dynamics eftectively results from
a non-stop interaction always with the same ancilla [cf. 5.8] is easily
grasped. As pictured in 8.2, at the end of collision 5-1 [see 8.2(a)], 5 and
ancillas 1-2 are in state g5 3 @ 92 with pg ;) a correlated state. Swap ﬂm i%
now applied [see 8.2(b)], vielding

S2.1051 @ MaSs1 = ) @052, (8.10)

which transfers altogether the joint 5-1 state to 5 and ancilla 2, while
1 returns to state i uncorrelated with 5 and 2 [see 8.2(c)|. This entails
that the 5-2 collision [see 85.2(d)] is seen by 5 (open dynamics) just as
if the collision with ancilla 1 resumed and then continued up to time
f = k., We paint oul that, while the above in particular implies that 1
and 2 swap their respective reduced states (during the AA collision),
this alone would not be sufficient for Eq. 8.8 to hold. The transfer of
system=-ancilla correlations from 5-1 to 5-2 brought about by 510 15
thus essential. Analogous considerations apply at any step with 5-n
correlations transferred o 5 and ancilla n + 1.

: ﬁ _: 7Y
(a) Ulé X (b) %._zﬂe-ﬂ
(o F [2) [ )~ K 'nm L]"'
SRR i B
[""ﬁi"'”g o
(© Eu! (d) E
1 gl b 1 wau 1 2 wen
no{d) €8

Figure B.2: Fully ssoupping wncilli-ancillo collisions, The unitary describing each AA
collision s a full swap, '5!'.-._;.1 = Bt At the end of the first SA collision (), aswap s
applied on ancillas 1 and 2 (b). Thereby, in particular, state 17, is transferned to ancilla 2
with 1 thus returning to the inibial skake g (ch, Achually, it s e joint {(oormelated ) skabe of
5 amd | which is tramsformed albegether o 5 and 2 {c). Thas, in berms of open dymamics,
it i just as if the first 5A collision resumed with the same anclla, lasting a further Hme
At until ¢ = ty (d).

It is worth stressing that the mapping into a continuous interaction with
the same ancilla does not hold for the jeimt dynamics. A major appeal of
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the CMs with ancilla-ancillas collisions as defined here is that the open
dynamics can be analytically described, as will be shown in sechion 8.5
by connecting these models with composite CMs. Moreover, under an
appropriate redefinition of AA collisions, one can even work out a closed
ME for 5 as discussed next,

8.2 Non-Markovian master equation in the
presence of ancilla-ancilla collisions

In the previous CM when AA collisions are full swaps (p = 1), the
dynamics is strongly mon-Markoodeer, Formally, this is because there is
no way of decomposing map 58 into a sequence of CPT maps, one

for each step, thus the CP divisibility condition 4.16 is not satisfied.

To understand the physical reason behind NM behavior, think of a
continuous coherent interaction between 5 and another system A. If this
dynamics were memoryless, the knowledge of the reduced state p(t')
at an mtermediate time V', such that t5 < " < §, would be sufficient for
determining the evolution of p between ' and { {if the Hamiltonian is
known). This cannot be the case as duning the evolution the two systems
are generally in a correlated state psal(l) such that p(f) = Tra{psalt)}}):
knowing only pif ) does not allow reconstructing the joint state o501 ).

To sum up, if p = 0, to get oy it is enough knowing the state of 5 at the
previous step and apply map € = 7, i.e. py = F1lpa—1]. In contrast, if
P = 1, we need to know in which state 5 ultimately started at | = 1 and
apply map F,, ie. p, = Fy|pp). We might expect these two evolutions
to be special cases of a recurrence rule, valid for any swap probability p,
expressing py generally in terms of pg, ., ... 0 Prop in2 way that, as p
tends to 1, the number of previous steps which py in fact depends on
grows up. Unfortunately, it is not possible to work out such a closed
relationship unless one introduces a little modification in the CM, as

shimam mext.

First of all, it is convenient to introduce a compact formalism for unitary
operators and partial traces expressing them as quantum maps

WU[a] = Qal?, Fla]=Tria], (8.11)
where Fean be any subsystem of the joint system which state o generically
refers to (here U is intended as a generic unitary ). For instance, in terms
of 8.11, the usual open dynamics of a basic CM of Section [cf. section 4.1]
could be expressed as

i'rr = '3,1 L "ﬂ'| '1'.-" biam '&l’.l[ﬂ'".] = ﬁ.-, &I" - 'ﬂ] wjll.'lnl [H].I:I

Mot that the same stabe-
ment applies to the dynam-
ics of ewch singgle collision
cvien for a basic memory-
less CM. Yet, this lasts only
a shvort lene Af, so that on
ot scale Far langer than
A the dymamics is Marko-
Vi,

Despite we wse the same
=ymbaol, map 5 here is dif-
ferent from map 9, intro-
duced in 4.3
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fany Jy commutes with Wyegn ). When AA collisions are added, cach
Uy is replaced by Uy Wy m-1-

It is immediate to check that an AA collision in the form of a partial
swap |cf. Eq. 8.3] is described by the map

r!irllr..n—lli'-'l = + P-E"rr,n—lﬂ'—'_“n.n-!l + ﬁ I'-’r'gn.rr—lli- ; (8.13)

The aforementioned modification of the CM with partial swaps consists
in remaoving terms ~ +ffp, namely we replace 5.13 with the new map

Wom1=q-F +pSpa - (8.14)

This is a well-defined CPT map, having 71 and /F Sn.u-1 as Kraus
operators (see AL3). Note that, while the removal of such terms affects
the collisional dynamics, all the salient features discussed so far hold. In
particular, map Wy .1 swaps the states of ancillas with probability p or
leawve them unchanged.

To get a closed ME for py,, we note that the joint state at each step evolves
%

Oy = W (§F + pSup1) 0wl = § Unlogal + p WaSinaloual
(8.15)
for n = 2 and oy = Wy oal,

For n = 2, we explicitly get o2 = g Uz [oq] + p Uz 824]04]. Replacing
next ¢y = Uy|op] only in the second term yields

ap = Uz [oq] + p U2 8 Wylon] = g Uz [y ]+ pUslmo] . (8.16)

» where we used the identity 8y p-1 Uy-1 = Wylyn-1 along with the

‘:H.l i

invariance of the initial state o under any swap of ancillas (see section 8.1).
Motably, Eq. 8.16 is now arranged so as to feature only powers of ;.
We can accomplish an analogous task at step n = 3 starting from
ay = q Uz |oz] + p Uz 8,4]0z] Similardy to what done in the previous
step, we replace o2 with 8.16 anly in the second term, obtaining

d3 =i Us|oz] + gp Uabs 2Uz|o1 | + pzﬂjEuﬂ%[ﬂql =
q (Haloz] + pUs[o ) + p U oal, (8.17)

which now features only powers of U5,

Upon induction, at the nth step we get

-l )
Oy :qZp-"]‘il!{,lr.rn_fl + p*9 Aay] , (8.18)
=1
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containing only powers of Uy, {collision unitary corresponding to the
last SA collision). Note that the larger the power of U, the older is the
state it acts on. This property is remarkable since, given that i, does
not act on ancillas different from the nth one, the trace over all ancillas
vields an equation formally analogous to 8.18 with o, replaced by p,

and each power U, by map ¥ [cf. Eq. 8.8]

n—f
pa=q O, P 'Fi pai] + P Falpol. (5.19)
I|.r'|

As promised, we thus end up with a closed equation for the reduced state
of 5, which holds for arbitrary swap probability p. The corresponding
dvnamics interpolates between the memaoryless case for p = 0 and the
strongly WM dynamics for p = 1 [cf. Eq. B8], For arbitrary p, note that,
due to the exponential weights p/~! and p*~!, the current state is more
affected by the latest steps. This formalizes the property that the system
keeps memory of its past evolution, whose memory length ranges from 1
(Markovian case occurring for p = (1) to n (strongly NM case occurring
forp =1).

Most remarkably, by defining a memory rate I through p = ¢ 7% in

a way that, for Al < ', p = 1 — TAl, one can convert Eq. 5.19 into a
corresponding ME in the continuous-time limat {see A10) which reads

:
= rf dt'e T F() | plt—t)] + e F () pol - (8.20)
i
Here, F (i ) is the continuous-time version of map 8.8,
This kind of integro-differential non-Markovian MEs are called memory-
kernel MEs. Independently of its derivation as the continuous-time limit

of an intrinsically CPT discrete dynamics, it can be shown that Eq. 8.20
correctly entails a continuous-time CI'T dynamics for any I' = 0 [30].

8.3 Initially-correlated ancillas

Consider the basic CM of section 4.1 where the imitial state of the ancillas
15 generalized as

M
PB= ) P X (8.21)
=1
where probabilities {p,, } fulfill E:=lp,.1 = 1 while

Koo = Nut ® Nz ® _ .. . (8.22)

This s obfaimed by e
placing in  the defini-
tiom |of. Eq. BE] U, =
[I.-lﬂm_ll-n'u':ln - r-:ﬂ"qul'.'
with (1) = e~ 1Fart furith
fn — 20
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Here, {)mn } are an arbitrary set of M states of ancilla n, When all the
Pm's but one are zero, we recover the memoryless CM [cf. Eq. 4.1]. In
the general case, however, 8.21 is a not a product state and thus describe
initially correlated ancillas [see panel (a) of 8.3]. After n collisions, the
point initial state oo = pp @ pp evolves into (cf. Eq. 4.3)

M
On=3 pula--Oipo® ym O} --- 08 (8.23)
m=1
The corresponding open dynamics of 5 is given by

M M
Pr= meTrs{un-..ulpu@Im u_:ru” = Epmﬂmth
m=1 ni=|

(8.24)
where
Apen = (B)" (8.25)
with the CP'T map &, defined by
p' =Byl =Tra [:f,.,;: | - L-.I':l . (8.26)

The evolution is thus a mixiure of M dynamics, each described by a
dynamical map Age (cf. 4.4) with associated collision map . As
shown by 8.25, each Aws alone describes a fully Markovian collisional
dynamics [ef. Eq. 4.13].

According to 8.24, the dynamical map of the present collision model

reads

M
Au= 2 Pm A - (8.27)
m=

Remarkably, while each Awy can be divided into elementary CPT
collision maps [cf. Eq. 8.25] thus being Markovian [cf. 4.4] this is
generally not possible for Ay despite it results from a seemingly innocent
mixture of Ay, s, This is best illustrated with a simple counterexample,
which is discussed next.

i

L TR . i) PP o
L) L) LY L )= -|E 00

[ 2] [Eati B0 ]

Figure B.3: Nov-Markovion collision model anify initally-correlated ancilles, Before interact-
ing with 5, ancillas are initially correlated with one other (a). Thereby, after colliding
with amcilla 1, 5 gets correlatind with all the bath ancillas. Thus each collizion (starbing
from e second ane} s generally not describsed by a CPT map on 5, making ihe
dymamics non-Markovian,




8.3 Inittally-correlated ancillas

Consider the all-qubit CM [see section 4.6] with the ancillas starting in
the correlated state

Pu=p 00 g 00| +q 11 (11, (8.28)

where |ii---} = @y |i}, with i = 0,1 and with p = 1 — g a probability.
Assuming that 5 starts in state |[1)g, at the end of the first collision the
joint state reads

o =p (0 [10)s; QU] ) 100+ .. (00--1+

i [L'hill}s] {11|L‘:,*} 1 ey | S (8.29)
Taking for simplicity ¢. = 0 [cf. Eq. 4.19] and based on 4.22, we have

(I, 110y, = cos{gt) 1yg [0}, — i sin{gat) |0)g 1),
U 11)gy = 1) 1), (8.30)

By replacing these in 8.29 and tracing over ancilla 1, we get the reduced
state of 5 and ancillas 2,3, ...

Trifoi) =p ([1hs (1] + 57 [0)5 (D)) @ |00~ -)p.. {00--+| +
gl (1] @ 1)y (114 , (8.31)

whore we sed ¢ = l:nﬁ[gﬂ.t] and s = sin|gAf).

For0 < p < 1, this is a correlated state between 5 and all ancillas 2.3, .. . .
This means that each collision starting from the second one is generally
not described a CPT map. It follows that the overall dynamical map Aq
does not satisfy the CP-divisibility condition 4.16, which witnesses the
non-Markovian nature of the dynamics.

We note that, since a dvnamics like 8.26 15 a mixture of Markovian
dvnamics, if each of these admits a continuous-time limit then one
can work out as many Lindblad master equations i, = %w|p] having
a form like Eq. 5.17. Solving these, the overall dynamics then results
from the mixture of the respective solutions p(t) = X pmpwl!). Due to
non-Markovianity, however, pif ) generally cannot be expressed as the
solution of a well-defined Lindblad master equation.

It is worth pointing out that, while state 5.21 is not entangled as it
is a mixture of product states,' the essential conclusions on the non-
Markovian nature of the dynamics apply to entangled states as well as

ik, o such stabe can still feature non-classical correlations m the form of so called
cpueantum diseord [154].
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is for instance the case of single-photon wavepackets to be discussed in
sechion 9,11

8.4 Multiple collisions

Another mechanism for introducing memory in a CM is allowing each
ancilla to collide with S at many distinet, non-consecutive, steps, instead
of only one [as in the basic CM of section 4.1]].

e ® s wid
‘DEO0BOE- TBEDB06 O-
stop o1
(c) I__lr'_:- B - E [::}m

Figure B.d: Mow-Markooman collison mivdel ot sooe-local collfisions. Like in a basic CM,
ancillas are non-interacting and imitially uncoreelated. Yet, system 5 interacts with the
bavth mow-focally in the following sense: at the mith step, 5 collides at once wiith ancillas
i — o and i (Bi-local collision). As a major consequence, ancilla m collides with e
wysbem ftice this first tire at sbep i {a} and then aﬁ.ﬁ.‘n at stiep i + d (). Thus o is twe
defay between the two collisions with the same ancilla. Before the second collisson
starts, amcilla i and 5 ane already correlated so that the CP-divisibility condition 4.17
s ot hold, making the dynamics WM, MNotice that, until step v = d=1 (c}, no
memory effect can ocour as each ancilla underwent at most one collision with 5 [the
dstied squane in (¢} is & phantom ancilla].

A :-i:i.l'l!'lFll: instance i1s a CM featuring a sequence of collisions like
E{I .IEEZ.lL}.'E.Iﬂl ia-'l-iﬂ.'lial.l R

such that 5-1 collision takes places every three steps.

While several possible multiple-collision schemes can be conceivied (see
also B.7), here we focus on CMs with ron-local collisions that naturally
arise in quantum optics dynamics where delay times (light retardation)
are non-negligible, The paradigm of such dynamics is shown in 8.4:
at each step, 5 simultaneously collides with many ancillas (two in the
simplest case, as in the figure). More in detail, at the nth step, 5 collides
with ancillas n =  and d, where d is an integer such that d = 1 [see
B.4(a)]. Accordingly, at step n 4+ d, the collision will involve ancillas n
and n + d [sec S.4(b)]. It follows that a generic ancilla labeled with n
collides with 5 fwice: the first time at step n and then again at step n + d.
The resulting collisional dynamics is evidently non-Markovian: before
the second collision starts (step n + ), 5 is already correlated with
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ancilla n due to the first collision (step n), hence the dyvnamical map
will generally not fulfill the CP divisibility condition [cf. Eq. 4.17]. As a
paradigmatic, analytically solvable, instance consider the usual all-qubit
modlel of section 4.6 with Hq = f, = 0and the interaction Hamiltonian
describing the nth collision now replaced by

Vi) = & 8, (B +¢%804) + M (832)

Here and throughout the present subsection, superscript “(n )" refers
to the time step. For completeness, we allowed for a phase shift o
between the couplings to the two ancillas. As initial state, we take 5
in state |1} and each ancilla in state |0}, Thus the joint initial state is
W) = [1)5 @ [0,

Defining the total number of excitations as N = 1)l + L 1), (1] we
note that this is conserved at all steps since I'I.-'""', NI (. The cigenspace
of N with eigenvalue N = 1 (single-excitation sector) is spanned by
leg) = [1)g @ |0}, (excitation on 5) and |ewe) = |05} Buwam [0} B |1}
(excitation on ancilla m”). Thereby, since [#1%) = Jeg), the joint dynamics
remains at all steps within the single-excitation sector. Accordingly, the
joint state at step n can be expanded as

a™ esh + Z AL feh

grinty = (8.33)

In terms of excitation amplitudes a'™ and A, the initial state [}
reads a'” = 1 and ;l::' = [} for any m. For formal convenience, we
will assume that the excitation amplitudes are defined also for negative
values of the step index i, Eakmgva]ma‘"ﬁ'" =1, i::ﬁm
The evolution of the joint state at cach step reads |"'l-"[""+”'} = s fptaty

where the collision unitary is defined by (, = ﬂpl—i'l:'['”m‘ with V,,
having the form 8.32.

At short enough Af (we limit the analysis to this regime only), we expand

(41 to the 2nd order in 7 and then apply it to 8,33, Projecting the
resulting state on [e5) yields a recurrence relation for amplitudes a'™

and A", which reads

”1.I1|-1] = ﬂ_[rr'l ™ }'ﬂf ﬂ_lul s

iyyALe A, . (8.34)
Here, we used that rli:” = (I since, at step n, the nth ancilla is still in
the initial state |1}, [see 8. 4a}]. Our goal is expressing r.LL"_:IJ in terms
of {a'™'} %o as to end up with a closed equation for {a'™'} (which fully
describes the open dynamics).

= () (for any m ).

Since mowre than one ancilla
colfides with the sy=iem at
ciach shep, we can lomger
use a commion imdex for la-
beling the colliding ancilla
and Frmae st

Cuie W the specific ype
of calculations mvolved, in
this subsection we define
the generic step as the time
imterval between times |,
and Fyay, instesd of 6
amed fy as wsually done
throughout the paper. This
helps keeping notation rel-
atively light,
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Considering first the case n 2 d, note that ancilla 1 — d collides with §
the first time at step # = d and then at step 1. Thus the corresponding
amplitude at step n — d + 1 cannot change any more until step n

(m—al+1}p

LR {ar=1} L
Ll Ll RN Lo (8.35)

Amplitude 1™ can be worked out, similary to a'**" in Eq. 8.34, by
applying the collision unitary I_-.I',.,._d.” to |"-1""""'i’:|- and projecting next to
|1 -4} This yields

Il:lli:-dlh-l] = =i ,J_.ar ﬂjl -} + %Jlﬂ; A iﬂ_:fl Z {3.36:

Due to Eq. 8.35, this coincides with .-1:' 'J s0 that Eq. 8.34 becomes
gt _ gl o ~vAl a't™ - rit il -J]J

where the kerm ~ r'l:f_ ;.b was neglected being of order ~ AP We thus
get

Anl™
A

where Aa'") = g'" ) o pinh

= —pa'™ = ye®a™ D for n24d. (8.37)

We are left with the case () < n < d. For these values of n, Eq. 8.34 misses
the last term because of the initial conditions [see below Eq. 8.33], thus
reducing to Aa'™! Al = —palh,

To sum up, we thus conclude that the dynamics of 5 is governed by the
finite-difference equation

Aa® | =pa'™ for <d
i ={ ya i P

At —yp alt = ppltgi-) fo0r p>d

We can understand this equation as follows. Until step n = d = 1 [see
#.4(c)]. each ancilla undergoes at most one collision with 5: in this
initial stage, the dymamics is identical to a memaoryless basic CM with
a'! undergoing a standard exponential decay just like for spontaneous
emission [cf. Eq. 5.33]. Step n = d is the first featuring an ancilla
undergoing a second collision with 5 (this is ancilla m = 1). From this
step on, thereby, memory effects come into play as witnessed by the
presence of term ?

In the continuous-time limit, such that f, —  and dAf — Twith 7 a
characteristic delay time, Eq. 838 is turned into

& = =ya(l) - ;u-z'"l'*ul_'l = TNt = 1), (8.39)
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which is a so called delay differential equation [here Gix) =1 for v > 0
and 2{x) = 0 otherwise].

8.5 Composite collision models

Besides the three non-Markovian generalizations of CM discussed so far,
each constructed so as to directly break one of the assumptions (1}-(3) in
4.1.1, there is a further natural scheme to endow a CM with memaory.

.........

® @ ®
S| (b) @ - ®

Vara: €3

-000- ~B0- -~80-

)

Figure 8.5 Compaosife coliision wmoefel. The composibe system 5 |see panel {a}] is made
ouil of sulbsystoms & (the open system under study) and M (" mwemory ") System S
undergoes collisions with the ancillas (ust like ina memoryless CM) which however
involve only subsystern M. Before each M-ancilla collision [see panel {c}], & and M
collide with one another |sec {b)] through unitary Tgat, hence ihey are gemerally
correlated. Due to these correlations, the open dynamics of & cannot be divided mto a
sequence of CI'T maps, one for sach step, and is thus non-Markivian, In contrast, the
I;|._I|l'l"l.:I'.'l11.ii:!li- of 5 fie, & pluu M= h,ll!].r Markowian sinde mas correlations with ancilla i
exists praoe bo e J:I'_H,, corlliskiom,

Consider a memoryless CM where 5 is bipartite as sketched in 8.5(a).
Its two susbsviems are & and M, the latter referred to as the “memory”.
The former, namely &, 18 the epen siystem we are concerned with. By
hypothesis, ancillas collide only with memory M [see fig. 8.5(a) and
(c}] through unitaries Utn. Between two next collisions, however, §
undergoes a collision with M described by unitary g |see fig. 8.5(b)].
Now, while the reduced dynamics of 5 is of course fully Markovian,
s0 is not that of & which will be generally correlated with M before
each internal collision (. More explicitly, if gy, is the (generally
correlated) state of § and M at the end of collision EIM',,_L. the state of
& at step n is given by®

Pu = TrpTry {0 Usina {];"‘;” & Nn I'.:I'::Ml:r* ) (5.40)

This is not a CPT map on & because unitary I_-.I'.q..l.ui':l!,-:m acts on a state

featuring correlations between & and M-n (since J_:rl’.‘h;“ 15 not a product

state).

X in the F'I'l.!lllL'I'l.‘I' saurbsas b, (L denotes the stabe of & ot S
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We see that in this dynamics the effective environment in contact with &
in fact comprises the ancillas plus M. Only the former are shll “fresh”
when colliding with 5. In contrast, M is continuously recycled, thus
keeping memory of the evolution at previous steps, Note that, in contrast
to &, the reduced dynamics of 5 is always fully memoryless (in this
specific respect similarly to the cascaded CM of section 4.8). One can thus
describe the non-Markovian system & as "embedded” into the Markovian
system 5, in line with a common jargon in the open quantum systems
literature, Indeed, this way of endowing a dynamics with memaory
ultimately is a typical one in the theory of open quantum systems. We
also note that, as anticipated, a composite CM does not originate from
breaking a single hypothesis among (1)-(3) (see beginning of the section).
Indeed, as the effective bath seen by & comprises in fact both M and
ancillas in a way that M could be seen itself as an additional ancilla, we
could say that both hypotheses (1) and (3) do not hold (since M keeps
interacting with the other ancillas and because 5 collides with M more
than once). We will yet see in the next subsection that, so long as only
the open dynamics is concerned, one can establish a precise mapping
between CMs with ancilla-ancilla collisions and composite Chis,

In order to express the open dynamics in terms of the compact notation
for unitaries and partial traces defined in Eq. 811, let us define the
collision map on M (corresponding to the M-n collision) as

M. )= Traflun ... @0alll, ) = FoUkta] ... @l (BA1)
Accordingly, the initial state of 5 after »# steps turns into
Pr = Tag (M Ugpg)" [po @ mal © (8.42)

where the leftmost partial trace returns the final reduced state of & (we
assumed that the system starts in state 5y = pg 8 g Sy )

As an illustrative instance, consider a qubit &, a memory qubit M
and a bath of qubit ancillas, whose pseudo-spin ladder operators are
respectively denoted as i3, dug and {Gps ). The §-M and M-ancilla
collisions are described by unitaries

i - mp||—r'ifmm]}, O = expl-iVandt]]  (843)
with
Vet = G0 0m-+8-0ms)s  Vn = ¢ (FateFn-+oM-0us). (8.44)

Both unitaries 8.43 conserve the total number of excitations N = [1)5(1]+
[13aa{1] + X, |1}, (1]. Accordingly, if all ancillas and M are initially in
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state |01 and & is in state |1}, a reasoning analogous to that in section 8.4
[around Eq. 8.33] entails that the joint state at each step necessanly has
the form

Ay = ™ |egh o+ B lepg) + i AT ey (8.45)
m=]

where, in analogy to section 8.4, |e;} with 1 = &, M, m is the state where
subsystem i is in the excited state |1} and all the others in [0}, Here, the
subscript on each amplitude denotes the time step,

Using Eq. 4.22 with the replacements g: = Oand 5 — M, the effective
representation of unitary Lspg in the present dynamics reads

Ulsa = [00) g (00] + cos(GALN[10) gy {10] + |00 )50 (01])  (B.46)
— 1 5in GAN]|0T ) gag C10] + [10) 454 40113,

wht-ru we used that state |11} is never involved in the dynamies. The form
of Uy is identical provided that G is replaced by ¢ and &M — Mn.

Based on Eq. 8.45, applying Ua Usa on [0} yields for a'™ and
") the recurrence relation (see Appendix A.11 for details)

{mi im=1} ) C —ic8
{ Eﬂnl )=D‘( ;ln--l;l ] with D = —i% ;:—: . (8.47)

where for brevity we set ¢ = cos{gAl), s = sin[gAl), C = cos{GAL),
§ = sin{GAL), The solution of this equation is simply given by

(5@ )= 5m) (548

with a'” = 1 and g = 0.

‘Ill . : I..-....Ii- ='

d ¥ F%_'n,ﬂ"r' i

iat i X B |h| [
mw

Figuire 8.6 Dhyanenrics of a composile oollision model. Sysbem &, memory M and all ancillas
are qubits, while the collision unitaries have the form B.43. Inibally, & s in the excited
state with M and vach ancilla in the ground state. Each pamed shows gy = Ja'™']? with
the cormesponding g = (5P in the inset. Throughout we set g = ' G/AL The first
three panels [{al-(c}] report the dynamics in the case G = 1 for AF = 2 {a), At = 1 (b)
amd AF = L1 [}, while in pamie] (d) we set G =001, 48 =001,

In 8.6, we plot the evolution of the excited-state population of & and M,
respectively denoted with py = |a"™ [ and py = |52, for g = +/3/Al
and ¢ = 1 [panels (a)}-{c}], G = 0.1 (d), where energies are expressed

9
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in units of 1 = g%Al. As At decreases, the curves become more and
more continuous as shown (for the case G = 1) by panels (a}-{c). We see
that when G is large [(a}{c)], & and M keep exchanging an excitation
which eventually leaks out and gets dissipated into the bath of ancillas,
In particular, & undergoes damped oscillations, exhibiting revivals
which fade away tor i large enough. For & small enough, however, the
excitation of & monotonically decays and no revivals show up, while py
reaches a maximum and then decays. In the latter regime (small G), the
interaction of M with ancillas dominates over the 8-M coupling so that
as an excitation is transferred from & o M this is immediately released
into the bath before being reabsorbed by &.

The above behavior is analogous to the dynamics of an atom coupled
to a lossy cavity mode, a longstanding paradigm of non-Markovian
dynamics [54]. Specifically, the regimes of damped oscillations [see
fig. 8.6(a}-(c)] and monotonic decay [see B.6(d)] respectively correspond
to the so called strong and weak coupling regimes of cavity QED. This
link with cavity-QED dynamics can be formulated as an explicit mapping
if we assume

GAl « pAt =1 (8.49)

and expand accordingly the overall unitary for short At as [cf. eq. (B.43)-
B.44]

Uspallpgn = 1= i(Vpe + Viga)it = 302 AP, (8.50)

This expression is now identical to Eq. 5.1 of section 5.1 with Ay = Vim
and VH = 'I-"M,. It follows that the coarse-grained ME of the composite
&-M system 1s given by [cf. egs. (5.17) and (5.18)]

pane=—1 [G(F Fpm-+0-Fate ) pam ]+ (Fa-pasadare =3 [Fanedn-. pamle)

(8.51)
where as usual 3 = g*Af. This is the bipartite ME of a two-level atom
coupled to a leaky cavity mode initially in the vacuum state, Now, if ()
[j#(t]] is the excited-state amplitude of & (M) at time £, it can be shown
(see Appendix A.12) that ME 8.51 is equivalent to the pair of coupled
equations

=-iGf, fi=-iGa-L§p. (8.52)
Solving the latter equation for f{f ) and replacing in the former yields
the integro-differential equation

¢
= - G?f dt' e ¥ Va(r),
0
whose solution is

aft) = e |cos (&) + & sin (4] wffﬂrﬁ:,hﬂz—i}'z (8.54)

(8.53)
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8.6 Mapping ancilla—ancilla collisions into a
composite collision model

In section 8.1, we saw that the open dynamics of a CM with fully-
swapping ancilla-ancilla (AA) collisions reduces to a continuous inter-
action between 5 and the same ancilla. Note that this can be seen as a
special case of a composite CM with the memory trivially decoupled
from the bath. Accordingly, one could guess that, when it comes to
arbitrary AA collisions, the open dynamics is effectively described by a
suitably defined composite CM. We will show next that this s indeed
the case and, remarkably, it 1s true no matter the form of AA unitaries.

Let Ry = Wait,ullsn - < - Wa2l0saWa 1 sy be the unitary describing the
joint dynamics at the nth step. Unitaries Ry then fulfill

Ry = Wi allsy Ryy. (8.55)

Let us also define for convenience a pairwise unitary on ancillas n and
n—1as

W‘ =] —En,rr le'l'l'l 1 (8.56)

with Sy the usual swap operator.

At step n = 2, we can arrange the total unitary as

Rl — wﬂ.lﬁﬁlﬁl,lﬂﬁl - I'EI3-,-'.I!.§L1‘:IHI'§L'I lﬁtl.'l-ﬂﬂ

(8.57)
where we expressed Us; in terms of Ls; via 8.5 and used definition
B.56.

At step n = 3, using Equations (8.55) and (8.57), we get

R = Wy allgaWa 252, 05y W3 , gy
= Wi 3520 saWy 555 105 F:H'El.ﬂ_-::.

Now, recalling that 0 5,,,., = 5,.,{., |1:|'rr | WE move swap 51,| to l‘hn
left until it is placed to the right of 53 2. This turns ngw’ into (s Ii-‘ln“.JI ”
henoe we get

Ry = Wﬂ‘;a.z'gz.!ublwﬂuﬂwg sy =
By induction, al step n
R = Waarn(Sna-15n1m-2 oo Sl s W) U W),

To get the reduced dynamics of 5, we evolve the initial state via unitary

= Wsa52als Wi,ﬂsa ‘

= Wyl 53205253 2)0Wa 2521 005 ﬁ’h sy

Wi 3083252, ilU:qu s W sy .

oo Ui Wy Uy
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Ry and trace off the ancillas as usual. In doing so, we add a further
.'g,,..h_,., to get another W' operator and move all the swaps to the left.
Due to the partial trace, the sequence of swaps is eventually eliminated
=0 that we end up with

pn=Tr12_afRupo® 14 R} = (8.58)
Ty ... T W, UstW, U1 W .. U)W st [po B 1]

where as usual W gy and W] | are respectively the unitary maps associated
with [s) and W) | [ef. Eq. 8.11]. This open dynamics is identical to that of
a compaosite CM as can be seen more explicitly by introducing a collision
map on ancilla 1 as 8 = 5,9 , so that Eq. 8.58 can be written as

Pr =Ty (MUy)" [po@m) (8.59)

Upon comparison with Eq. 8.42, we see that the open dynamics is
indeed that of a composite CM where ancilla 1 embodies the memory.
In this equivalent picture, the original SA collision unitary turns into
the unitary describing the collision internal to the composite 5-1 svstem,
while the original AA unitary now embodies the collision describing
memory-ancilla collisions.

The fact that it is enough to consider a single ancilla in order to get
a composite system jointly undergoing Markovian dynamics clearly
follows from the pairwise nature of each AA collision. For instance, if
between two next SA collisions there occurred AA collisions overall
involving Hrree ancillas, then the composite Markovian system would
comprise fwo ancillas (besides 5), Thus the size of the effective composite
system somehow measures how big is the portion of bath which we
have to keep track in detail in order to describe our non-Markovian
open dynamics, This effectively illustrates a distinctive feature of many
non-Markovian dynamics, namely the impossibility to trace off the entire
bath dynamics even if one is interested solely in the open dynamics.

8.7 Non-Markovian collision models: state of
the art

Mon-Markovian CMs with ancilla—ancilla collisions (see sections 8.1
and 8.2) were first introduced in Refs. [300, 155] in the form of incoherent
partial swaps [cf. 8.14] alongside ME 8.20. CMs of the same class but with
unitary ancilla-ancilla collisions, typically in the form of partial swaps
|ctf. Eq. 8.3], were considered in Refs. [156~159] mostly with the goal of
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investigating the relationship between non-Markovianity and system-
environment correlations (and changes in the bath state). Notably, this
type of CMs are a convenient tool to introduce non-Markovian effects in
quantum thermodynamics studies (see chapter 7}, which was applied
in particular to investigate the Landauer principle of section 7.12 in the
presence of baths with memory [ 160-162], the temperature dependence of
non-Markovianity [163], quantum engine performances [164, 165] and a
non-Markovian generalization of quantum homogenization (see Section
section 4.7) |166], Remarkably, collisional dynamics with ancilla-ancilla
collisions can be experimentally implemented in all-optical setups [167,
168]. While most of these works considered qubits, continuous-variable
versions of CMs with ancilla—ancilla collisions were proposed and
studied in Ref. [169], featuring multipartite ancillas (environmental
blocks), and Ref. [170], where both beam-splitter-like and two-mode-
squeezing ancilla-ancilla interactions were investigated. It is also worth
mentioning that ME 8,20 stimulated the study of a corresponding class
of well-defined memory-kernel MEs [171-177].

A CM with initially-correlated ancillas (see section 8.3) was introduced
in Ref. [29]. The authors showed that any CI'T map on a qubit 5 can be
simulated by a CM where 5 collides with quints {i.e., three-level ancillas)
initially prepared in a suitable, generally correlated, state, This includes
the so called indivisible quantum channels [178], namely CPT maps that
cannot be decomposed into infinitesimal CPT maps, thus violating in
particular Eq. 4.17. The link discussed in section 8.3 between correlated
ancillas and mixtures of dynamical maps was extensively studied in
Ref. [179] within a broader framework connected with concepts such as
eternal CP indivisibility [180] and pictorially illustrated through Pauli
maps (see also Ref. [181]). Note that in a condensed-matter scenario it is
natural to consider ancillas as coupled spins described by a many-body
Hamiltonian and, as such, initially correlated [182]. While one might ex-
pect that for growing inter-ancillary correlations the dynamics becomes
more and more non-Markovian, correlations alone are vet insufficient
to ensure non-Markovian behavior which indeed depends as well on
the specific features of system=ancilla interaction. This was shown by
Bernardes ef al. [183] in terms of the non-Markovianity measure of
Ref. [43] and then experimentally tested in all-optical [184] and NMR
settings [185], The CM in Ref, [183] was used as well to investigate the
relationship between coarse-graining time and correlation time [156]. A
collisional dynamics with initially-correlated ancillas was also experi-
mentally implemented through the IBM Q Experience processors [1687].
We also quote the use of such class of CMs in Ref. [188] investigating
the relationship between CI* divisibility and non-Markovianity.

CMs with multiple collisions (see section B.4) were proposed as a
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paradigm of non-Markovian quantum chain [1589] {see also Ref, [190])
and recently applied in the study of quantum Markov order [191] and
quantum cooling [192].

The derivation of Eq. 8.38 follows Ref. [193]. The equation is usually
derived without resorting to the collisional approach, see e.g. Refs. [194,
195]. Note that the phase ¢ which we included for completeness in the
coupling Hamiltonian 8.32 significantly affects the emission,

This class of CMs with multiple, non-local, collisions were introduced in
guantum optics by Refs. [56, 196 which considered quantum emitters
under a continuous drive |a dynamics considerably more involved than
Eq. 8.38). Ref. [56] showed that the problem can be efficiently solved
numerically using Matrix Product States (MPS), while Ref. [196] pro-
posed an elegant diagrammatic technique mapping the non-Markovian
dynamics of the emitter into the Markovian dynamics of a cascade of
fictitious emitters. An algorithm for describing non-Markovian quantum
trajectories based on such CMs was proposed in Ref. [197], while a
thorough comparison between the collisional and MIPS approach to time-
delaved quantum optics dynamics was recently carried out in Ref. [57].
We note that this class of CMs with non-local collisions describe the
dynamics of so called giant atoms [195] (a new paradigm of quantum
optics) in the regime of non-negligible time delays [199].

Another type of CMs with multiple collisions was considered in Bef. [200]
(see also [201]) considering an open system 5 undergoing random col-
lisions with a two-ancilla bath. At each step, both the ancilla colliding
with 5 and the collision unitary are selected randomly. It was found that
the purity of 5 as well as bipartite and tripartite entanglement reach
time averaged equilibrium values characterized by large fluctuations.

Composite collision models of section 8.5, whose theory was formulated
in Ref, [2(12], are used as a versatile tractable model for investigating non-
Markovian problems [58, 138, 162, 163, 203, 24|, including generalized
versions where each subsystem is in contact with a different bath of
ancillas [109]. The descriptive power of composite CMs {generalized to
multiple baths) was studied in Ref. [205], where it was shown that they
can simulate efficiently the Markovian dynamics of any multipartite
open quantum system, i.e. with an error and resources (in terms of stee
and number of memory systems M) that scale polynomially with the
size of 5 and simulation time,

The mapping of a CM with ancilla-ancilla collisions into a composite
CM (see section 5.6) was introduced in Ref. [206]). In Ref. [155], the
mapping was further developed and used for defining the concept of
“memaory depth”. These works consider unitary ancilla-ancilla collisions,

vet even when these are incoherent partial swaps (as in section 8.2) a
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mapping into a suitably-defined composite CM s still possible as shown
in Ref. [2(7].






Collision models from
conventional models

We saw in section 5.7 that the micromaser is naturally described by a
CM. The micromaser is an instance of engineered, intrinsically discrete
dynamics. In the present section, we discuss another major scenario (com-
mon in quantum optics) that admits a CM description. The paradigmatic
model is a system 5 - in typical cases a cavity mode or atom(s) - cou-
pled to a white-noise bosonic field (we clarify later what “white-noise”
means),

The present section is conceptually important in that it shows how
CMs are related to conventional system-bath microscopic models. The
latter ones typically describe the bath as a continuum of modes which
interact with 5, in general, all af the same time [see L1(b)]. This is in
stark contrast with (memoryless) CMs [see 1L1{a)], where 5 interacts
with the bath units (ancillas) one at @ fime (a major reason why CMs
are an advantageous theoretical tool). Another key difference between
the two frameworks is that, while in a CM the total Hamiltonian of
5 and all the ancillas is intrinsically time-dependent (as we discussed
in particular in sections 7.5 and 7.8), conventional microscopic models
usually feature a Hme-independent total Hamiltonian. The latter case
matches the physical expectation that, since 5 and the bath form a
closed system, no intrinsic time-dependence is expected o arise in
the total Hamiltonian. These issues (in particular) will be clarified in
what follows, from which the CM will emerge as an effective pictune to
study a dynamics originally formulated in a conventional microscopic
madel. Motably, this will provide physical intuition about a number of
properties of CMs postulated on a rather abstract ground in sections 4.1
and 5.1

9.1 White-noise bosonic bath and
weak-coupling approximation

Let § be a quantum system of frequency wy coupled to a continuum
of bosonic modes [ (field), whose normal-mode ladder operators b
and !TI:, fulfill the commutation rules |ﬁu.,}1"1_.| = {{awr=ar), |h"n., 5,,.r| _
IFIF':] = (1. The total Hamiltonian reads

A=Hs+Hs 4V (9.1
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with
(L

ns - m."..-i'r,.-‘-. " f.hr _ f deo (g + ) EL Eu.

\,’_Jf da A*I:I + A b } (9.2)

The § operators A and A* could be fermionic or bosonic, the essential
requirement being only that A is an eigenoperator of Hs, Le. [Fs, A] =
-.ra:'u..-’: [cf. Eq. 7.15]. Three major features of the Hamiltonian model 9.1
stand out:

{a) The coupling strength is w-independent {wl‘utr: cuuplmg}
(b} V does not contain counter-rokating terms ~A be.., !J:,;
ic) Frequency o takes values on the entire real axis.

TN

bath specium I g | I bagh specEnem
B oW :
T ! i F
] L @0, Lt
frequency of 5

Figure %.1: Sketch of imolved fraquencies. Here, ap 8 the fequency of 5 while the bloee
strip represents the spectrum of normal I'mminclui o the bath (Le. the Geld F; we

consider a single frequency band for simplicity). The open system 5 significantly
couples only bo fickd modes with fregquency lying within & narmow window of width
centered at g, Accordingly, once can exbend the field spectram o the entire w-axis
(light blus strip) by introducing Bchitious modes (inchading in particular frsguencies
ar < O}

These are all idealizations: in reality, the coupling depends on o, counter-
rotating berms are present and o is lower-bounded. The validity of (a)-{(c)
relies on the weak coupling approximation, namely the weakness of 5-
B interaction (a usual situation, e.g. in quantum optics).! Because of
it, 5 undergoes a significant energy exchange only with field modes
whose frequency « lies within a narrow window around ar of width
~ ¥ such that y = wy (see 9.1). Accordingly, it makes no difference if
the coupling rate at any frequency @ is replaced with its value at amw,
which we called /'y /21 in Eq. 9.2, at the same time extending integrals
over & to the entire real axis (see 9.1) by introducing in particular
negative-frequency fictitious modes (these remain uncoupled to 5 in
fact). Moreover, counter-rotating terms rotate fast compared to the time
scale 3! and are thus discarded (rotating wave approximation or RWA).
Mote that, for self-consistency, introduction of negative frequencies and

! For a derivation of Hamiltonian % 1-%_2 through the weak-coupling approsimation
o L !lu.ppm'rdi:l. Aof Red. [199].
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EWA must be performed fogefher: without the latter, an unphysical
resonance at &' = —ay would arise.

9.2 Time modes

Instead of normal modes (ladder operators !:.,.:I, the bosome bath can be
equivalently represented in terms of time modes (henceforth all integrals
are intended to run from —oo to o)

b, =% f dar b e, (9.3)

which are thus related to b, through Fourier transform. As is casily
checked, tme maodes fulfill bosonic commutation rules

B, BL] = 815 —57), [, bl =B, B8] =0, (9.4)

Despite having dimensions of ime, $ should be regarded for now as just
a label and ime modes as an alternative way to represent the field (the
connection with true time ! will become clear shortly).

9.3 Interaction picture

In the interaction picture with respect to Hy = Hs + Hy, ladder operators

transform as A—Ae 9 and b, — Bae~ "W g0 that the joint S-field
state o evolves as & = =i [V}, o] with

Vi = 7 At by + Heeo (9.5)

hence, in the interaction picture: (i) time modes are non-interacting with
each other, (ii) at time [, 5 only couples to the ime mode Byws ® By Note
that (i} and (ii) strongly recall, respectively, assumptions (1) and (3) of
4.1.1, representing in fact a continuous version of these,

A consequence of the interaction picture is that f’, becomes fime-
dependent, hence the time evolution operator (propagator) is given

by

i Jl;:JF'l}HI

=S (9.6)

with § the time-ordering operator.

In the Schridinger pic-
bane, time mosdes do oo
b fo o ot hier sinee H
clearly cannot have a ding-
dmal farm when expressed
in terms of time maodes
{masdie thaat these are mo nor-
mmal modes).



W assuma: that §/ A is an
integer. 1F mot, the error

commitbed becomes negli-

gible for vanishing Af.

This perturbative expan-

sion of the propagator is

known as Magnus expan-

=ion | 208
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9.4 Time discretization and coarse graining

Let us next consider a mesh of the time axis defined by t; = nAtf with n
an integer and ta = 0. In terms of this mesh, the propagator 9.6 can be
split as

W= O lly,  with O, =Fe 0™ @

We take a time step much shorter than the characteristic interaction time,
ie, Af = !, This allows us to expand each [, to second order in Af,
which vields

Oy = 1= i(P + P At - 40248 (9.8)

with

Iy Iy ]
v,,:#jr- ds ¥, , v;:zg-,_[ :u;[ ds' [V, Vol (9.9
m=1 n=1 m-1

9.5 Emergence of the collision model

It can be shown (see Appendix B of Ref. [199]) that term V) gives
negligible contribution for Al short enough. Thus each clementary
unitary 9.8 reduces to

Oy =1-i V&t = 10248, (9.10)

where, using Eq. 9.5, Vs has the explicit form

v, = .JE [.i*ﬁ,, + ,-iﬂ;} . (9.11)
where we defined "
by= ﬁjl dt by. (9.12)
It is casily verified that fr,, fulfill standard bosonic commutation rules
(B, BY) = B s [Buibwe) = [BE, B8] = 0. (9.13)

This is precisely the basic CM of section 4.1 in the case that each ancilla is
a gquantum harmonic oscillator of frequency ap. A number of comments
fol Lo,

(1) Note how the characteristic 1/ VAL dependence of the coupling
strength = which we assumed repeatedly in this paper (see e.g. see-
tion 5.8) - here in fact results from the model’s white coupling
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lef. Eq. 9.2] combined with the need for well-defined bosonic
commutation rules of the E,'ﬁ-

(2) The CM arises in the interaction picture [recall Eq. 9.5], which
explains the ime-dependent nature of the collisional Hamiltomian,

(3} The interaction picture is key in order for 5 to collide with a new
ancilla by at each ime step and for the ancillas to be mutually non-
interacting. In the Schrisddinger picture, 5 would be interacting all
the time with the same ancilla and the ancillas would be coupled
to one another (reflecting an analogous properties of continuous
time modes).

(4) Among the three hypotheses in section 4.1 which ensure lack of
memory, the CM that we derived fulfills (1) and (3). Whether or
not (2) holds (initially-uncorrelated ancillas) depends on the field
initial state, as shown next.

9.6 Initial state of ancillas and condition for
Markovian dynamics

We assume throughout that 5 and the bosonic bath are initially un-
correlated, that is ag = pp @ py. The field initial state py is usually
expressed in terms of the continuous normal modes (frequency domain)
or through the time modes (Hme domain). Thus, in order to derve the
corresponding initial state of ancillas, one first needs to express py in
terms of modes !‘r,r. At this point, we observe that, for an unspecified Af,
modes I;,., in Eq. 9.12 clearly embody only part of the field degrees of
freedom. This can be formally seen by Fourier-expanding by can in each
tme interval [f, 1. 14| a8

(5= 54 'n
=¥, Zﬁ,{:}#r-"ﬁ“b,,& with Bug= r dt ¢! Ff,
Wim = b fras =) ol

[recall that B5(l) = 1 inside interval y-1 € | < 1p while B4(1) =0
elsewhere]. Here, ladder operators i:,,lk are defined so as to obey bosonic
commutation rules, |Fn,h5:.i.] = OOk aes [ Burie] = 0. Note that
for k = (0 we retrieve ancillas’ modes 912, that 1s E., | I;,,_n- It is casily
shown that modes E,, Jgn contain only field frequencies o that diverge
in the limit Af = (1 [38]. Accordingly, it is reasonable to assume that for
all practical purposes these modes remain always unexcited, that is one
in fact always deals with field initial states of the form

pr = pe (30 G 0% 4 (0], (9.15)

LI

Commutation rules 913
crucially rely on having in-
corporabed a factor 1 'l."@
im the definition of by
[ef. Eq. 9.12].



Moate that the E.pl:l:rl.r:l.i.l'i'l..:l-
tion according to which
e E;.I-n A -
cacited all the Hme s
consistent witkh egs, (5910
and (201) where only
TI'I-!IIE'II."E-EH = Eu,ﬁ AP pear,

In passing. this justifies
the convention bo define
(1} such that J:]1} =
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threaeghout the paper,
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where py stands for the state of modes E,, = by p (Our ancillas) while
|0} & is the vacuum state of each mode by, 5.

Based on the above, the initial state of ancillas (modes EH} is generally
inferred from py (initial state of the bosonic bath) by decomposing the
field into modes by, through the inverse of transform 9.3 followed by
9.14 (or only the latter when py is already expressed in terms of time
modes).

Notably, besides properties (1) and (3) of 4.1.1 (always matched as
discussed before), property (2) will be fulfilled whenever py is such that

P =) 1

n

{condition for Markovian dynamics) (9.16)
with 1, the initial state of mode by. In this case, the emerging CM is
memoryless (see sections 4.1 and 4.5). It turns out that condition 9.16 is
fulfilled by a number of relevant classes of field states, some of which

are illustrated next.

9.7 Vacuum state

The field vacuum state [vac) is defined as the state such that b, [vac) = 0
for any . Sinoe the analogous statement clearly holds for time modes,
Eq. 9.14 entails that E‘lm* |wac)y = 0 for any 11, k. Hence, pg is of the form
9.16 = meaning that the dynamics is Markovian - with

= 10}, 40] . (9.17)

In the case that 5 is a qubit, namely A=d. [cf Eg. 9.2], conservation of
the total number of excitations 6,0+ X, EI' E!,.- entails that the state of
each ancilla must lie in the subspace -ipannnd by the pair of Fock states
03, and [1}, with |1}, = B! jvac). Thus ancillas behave as effective
gubits. We thus recover the all-qubit CM of section 4.6 (when g. = Oand
each ancilla is prepared in |0} }, which we used in particular to derive
the spontancous-emission ME 5.33.

9.8 Thermal states

Formally, a thermal state of the bosonic bath at inverse temperature
B =(KT) " would read
F-la —ﬁf:l_r

pr = (9.18)
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with Z = ]‘,—I{‘--ﬁl':l'r] the field partition function. In our case, replacing
I‘J",r with the expression in Eq. 9.2 would yield an unphysical thermal state
due to the absence of a lower bound of the field spectrum. To get around
this difficulty, it 18 customary to make the brute-force approximation
consisting in replacing ﬂf in 9.18 with

ol
I'-I'; x H'n-f der !::, . P (9.19)

i

Upon comparison with ﬂf in Eq. 9.2, we see that this is equivalent
to stating that the field normal modes are perfectly resonant with 5
(neglecting the dispersion). This again relies on weak coupling according
to which only field normal modes within a narrow bandwidth around
atp (ef. 9.1) exchange a significant amount of energy with 5. Under
approximation 4.19, by noting that f:!-u! E:, Eu. is the total number of
bosonic excitations, which can be equivalently expressed as Jrﬂ‘f Ef Er =
S bt by g [of. Eq. 9.14], we have

,z-‘E-Fﬂ'quJn'ﬁlﬁr - E-1E-F~1|J'-JI'F.' b =

Z-1gPanEasb] bus _ ) A fomb] hos {9.20)
ik

i

with Z, s = Try s {e PPuab=2}, Thereby, Eq. 916 holds with
I = 27 e Pouhib, (9.21)

It follows that 5 is governed by the same finite-temperature master

equation that we obtained in section 7.1 to describe thermalization. Unlike section 7.1, here an-
ciltas do ot have a foe
Hamilionian sinee i the
interaction pictune chosen
above the only Hamilto-
riar terem is that describing
9.9 Coherent states s el Interaction, Y.
Hve redusced dynamics of §
is the samme as in soction 7.1
. ; . I s thir 5 il -
A generic coherent state of the bosonic bath field has the form py = F|:;u:ﬂ the :ur:ri?la T-:'rﬁl
la} (x| with state are identical.
[ oo o B e B} For a discrete  bosonic
s ol F b2 ]
vag) P2e) s reiiiete sk
with a,, the pulse shape in the frequency domain. The standard — ent state !I:H the  furm
continuous-wave case occurs for i, o« oo = wy) with wy the drive |=5:'-"""‘F'["l b.'_“.lll"] g ;=
frequency. The state can be equivalently expressed in terms of ime ﬂp|EJ{|:,ﬁ:—n;5,I [vaed,
modes as whose Bq. 902 mepre-
[t b}l | sents  the  continuous
fvach, (4.23) vesrsion [BA].

i) =

|ex) = &



Hmictly speaking. when 5
is a qubit each ancilla
behaves as an effective
three-level system (with
Hillsert space  spanned
by {10a)  1Ta}, [2a}}) due
o the possible transibon
[Nk [La) == [0} E2q ). Yt
im e limit of short Af, this
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companed o |Og) [1,) —
[1sd |14} sinoe the |1,)%s
component of stabe 9,26 is
of order = YAF =0 that
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tively the ground and ex-
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where a; = 1/¥V2n [ dw aue ™" encodes the pulse shape in the time
domain. By decomposing b, through Y.14, the exponent of 9.22 becomes

(9.24)

la -5 -
fn't {mﬁf —H.r.] =33 [f dt mr"ﬁ']bzlk ~H.c..
i da-1

Accordingly, condition Y.16 for Markovian dynamics is matched for
s = |'|:trr:|'|-p {”nlp where

. fu
) = e® VIR VEE b 10y with o, = f diay  (9.25)
L

(it is the mean value of a; on interval [£y_q, £ )

Thus each ancilla is initially in a (single-mode) coherent state of ampli-
tde a, VAL (note the YA-proportionality). For At small enough this
can be approximated to the lowest order as

10}, + v VAL |1 }n} ;

(49.26)
which is normalized to the first order in Af (here [k, ) = (B4 vk [vac)).
We thus retrieve state 5.34, which we considered in section 5.8 for the
all-qubit CM showing that it leads to optical Bloch Eqgs. 5.36.

= il“"l:l"u S '_ﬂ.'ﬂ e
) &k = e |

9.10 General white-noise Gaussian state

By definition, a Gaussion state of the field is fu]if,r apﬁ::lfmd by the knowl-
edge of first and second moments {b } and {b b, ¥, {!:I !r,a} with l[ B E
Tred... prl. For d-correlated second moments, namely e.g. {b,b, ) o
S(t = 1), pr is a so called while-nodse Gaussian state. The standard way
to express its general form is [10]

(dB) = pedt, (Bt aBy =N, @BidBy=Mdt. (9.27)

with N z 0 and where fiy and M are complex coefficients subject to the
constraint |M|* = NN + 1). Here, M measures the amount of squeezing
of the field, while 48, = _,Irr“ﬂ ds b, is the so called quantum noise
increment fulfilling the commutation rule [dB,, d87] = dt [following
from |!-11,I;I.| = ol —'})]. Thus Eq. 9.27 gives first and second moments of
noise increments at the same time, while those at different imes vanish
imeaning, in particular, that time modes are initially uncorrelated).
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Using “.12 this entails that first and second moments of ancillas are
aiven by

(B} = B VAL, (B} b} = b N, (Bubuw)=bawM  (9.28)

with fiy the mean value of fi; on the nth interval. Second moments vanish
for n # n', guaranteeing that condition 2.16 holds, Corresponding to
the continuous field state [ef. Eq. 9.27], here N is the average number of
excitations of each ancilla while M measures its squeezing.

The states discussed in the previous sechions are special cases of 9.25;

s =N =M =0 (vacuum), i = M =0 and N = i, (thermal state),

fun = @, N = |ty [* and M = 0 (coherent state) [recall definition 7.5].

In light of eqgs. (5.17) and (5.18), the above in fact provides the most
general master equation of 5 for an arbitrary white-noise Gaussian state
of the field. Note that the continuous-time limit [cf. section 5.8] is always
well-defined since (B} « VA [cf. Eq. 9.25].

9.11 Initially-correlated ancillas

There are a variety of field states such that condition 9.16 does not hold,
which makes the dynamics non-Markovian, The simplest instance is
probably a single-photon state like

%)y = f dt Wy b vac) , {9.29)

where W) is a photonic wavepacket. Using 9.14, the corresponding initial
state of the ancillas reads py = |[r'r:I-H {t| with

In
!'I!-'}R = Z Eﬁll“} wil h Oy = ﬁ f il ‘Pr ) {9-3':”
] Loy

which is a generally entangled, thus correlinted, state [of. section 8.3].

9.12 Connection with input—output formalism

The collisional picture of the dynamics (see section 9.5) was defined
above in terms of evolution of sfafes. Yet, one can let equivalently evolve
operators 5o that each collision is governed by the operatorial equation

iE,{r} = § [V, Bylt)] = -J'V@.im_

= (9.31)

Any twormode Gaussian
state oyy such that (B} =
{byBa) = 0 s necessarily
a product stake, i, 2 =
i @ yma (third- or higher-
wrdier cornelation functions
are Fero snce aossian
states are by defimition
fully specified by first and
second moments). This s
naturally generalized to
pire Lhan o modes,

In the present subsection,
Hime argumsenls appear in
the standard Form (ol as
subscripls of superscripis),
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where we used Eq. 911 Since At is very short we can replace the
derivative with Ak, [Af, where Ab,, = b,(t,;) = B, (t,_1) (recall that the
nth collision occurs in the time interval £, < ¢ < £,). This yields

Bulte) = Bultn) — i AE Alty.a). {9.32)

This equation can be understood by interpreting Blty-1) as an inprt
discrete field, whose interaction with 5 produces an oufput field IFruli..}.
Indeed, 9.32 can be seen as the discrete version of the central equation
underpinning the so called input-output formalism of quantum optics
(see eg. Ref. [10])

Flouy = flmdgpy — ;.ﬁ:j{” (9.33)

with b1(¢) and B¢} being the continuous limits of byt )/ VA
and by (1, )}/ VAL respectively,

9.13 Collision models from conventional
models: state of the art

The above derivation of the CM from the microscopic bosonic model is
largely based on Refs. [37, 38, 199] (see also Ref. [209]). In particular,
Ref. [199] encompasses the extension to a multipartite system 5 that can
couple to the field non-locally. This brings about a new feature in that,
relaxing the hypothesis that 5 is point-like (as assumed throughout in
the above), term f-‘; in the elementary unitary 9.8 has a contribution due
to vacuum fluctuations that vields an effective (second-order) induced
Hamiltonian for 5 [199]. In the case of systems each interacting with a
waveguide field at multiple coupling points (such as “giant atoms™ [195]
or oscillators in looped geometries [210]), this effective Hamiltonian can
be made decoherence-free [211]. This phenomenon was predicted in
Ref. [212] {through methods not based on CMs) and then experimentally
observed in a circuit-QED setup [213]. Mapping the dynamics into an
effective CM allows for a full-fledged interpretation of the physical
mechanism underlying such class of decoherence-free Hamiltonians,
which was shown in Ref. [211).

Note that, while for vacuum and coherent states (sections 9.7 and 9.9)
the field time bins naturally behave as effective qubits, this is generally
not the case (for instance for thermal or squeezed states). However, as
shown in Ref. [38], one can always replace the time bins with suitably
defined qubits yielding the same open dynamics of 5.
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In the model we considered, s 1% ime-independent. One can yet extend
the framework so as to account for an external drive on 5, an approach
that was successful in studying directional emission into a waveguide
from a quantum emitter subject to a pulsed laser [214].

Relying on its tight link with the input-output formalism (see 9.12), the
CM mapping was recently exploited to infer equations of motion and
input—output relations of cavity-waveguide systems [215, 216], carry
out quantum simulations of coherent light-matter interactions [217,
218], design qubit-oscillator eircuits for implementing quantum error
correction codes [219] and investigate non-equilibrium thermodynamics
(see chapter 7) in waveguide QED [220].

The CM mapping discussed here can be extended to a system 5 coupled
to the field at many points in the regime of non-negligible delays, This
results in non-Markovian CMs with multiple non-local collisions (see
section 8.4), which were applied in Refs. |56, 193, 196].

Due to the natural connection of CMs with quantum trajectories (see
chapter 6), another promising application of the collisional mapping are
non-Markovian extensions of photon counting and quantum trajecto-
ries (usually formulated for Markovian dynamics [10, 75]). Examples
are non-Markovian dynamics induced by single-photon states {see scee-
tion 9.11) [221-223], superposition of coherent states [224] and delayed
coherent feedback |57, 197].

We finally mention that, formally, even in the case of micromaser
(cf. section 5.7) one can define an effective quantum ficld whose the
two-level atoms are the corresponding quanta [225].
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Conclusions

In this paper, by adopting a pedagogical approach we presented the
theory of quantum collisions models (CMs), reviewing at the same time
the related state of the art. In line with 2.1, our discussion analyzed first
the basic properties of CMs in chapters 4 and 5 and then considered the
major arcas of application of CMs to date: quantum trajectories/weak
measurements (chapter 6), non-equilibrium quantum thermodynam-
ics (chapter 7). non-Markovian extensions of CMs 8 and white-noise
microscopic models (chapter %), the latter being recurrent in quantum
optics.

Besides those featured in the previous state-of-the-art sections, there
exist further interesting applications of CMs (and new ones keep being
proposed), One of these is guantum Darwinism |226-230], where a CM
description allows for a dynamical study of information spreading across
the bath. Very recently, CMs started being applied to quantum hiology
problems, mostly as a versatile tool for modeling decoherence including
non-Markovian effects (see chapter 8), In particular, Ref. [231] inves-
tigated quantum transport across a Fenna=Matthews-Olson complex,
while Ref. [232] studied decoherence of an avian-inspired quantum mag-
netic sensor. Other recent applications include: quantum classifiers [233]
simulation of the Unruh effect [234], quantum friction [235], information
scrambling [236], quantum batteries [237] and quantum metrology
[238).

Needless to say, while the paper dealt with well-established theory,
there are a number of problems which are still open some of which are
mentioned next.

chapter 8 introduced various classes of non-Markovian CMs. The rela-
tionships between these classes are still unexplored, e.g. whether or not
it is possible to map one class into another, which was proven only for
ancilla=ancilla collisions and composite CMs (see section 8.6), This is an
interesting question also from a fundamental viewpoint since it would
help clarifyving the relationship between scemingly different memory
mechanisms corresponding to the relaxation of one of assumptions

(I3} in4.1.1.

Another open issue concerns the derivation of CMs from conventional
microscopic models, which was carried out in chapter 9 only for bosonic
baths, The procedure we followed there does depend on the bosonac
commutation rules of the field, allowing to define in a relatively natural
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wity independent ancillas (in the sense that operators of different ancillas
are mutually commuting). A strictly analogous procedure for fermionic
fields would lead to non-commuting ancillas, hence a suitable non-
trivial extension is demanded. [t appears reasonable to expect that a
CM mapping exists also in this case since Markovian dynamics and
Lindblad master equations occur for fermionic baths as well, This
problem is arguably related to the definibion of input-output formalism
for fermionic fields [239],

While writing this paper, the interest in CMs keeps growing as e.g. wit-
nessed by regular submissions of preprints to the Los Alamos archive.
A natural question is to what extent the field of application of CMs
could be enlarged. Should one envisage such approach becomes one day
the conventional methodology? This is a non-trivial question to answer.
One of the key points is the ability of CMs to describe non-Markovian
dyvnamics. While research along this line is still in the carly stages, one
can expect (see e.g. sections 8.1 and B.6) that the higher is the degree
of non-Markovianity the larger will be the number of (effective) bath
ancillas one has to keep track with the same level of detail as the open
system 5 (see also Ref. [58]). Aside from the obvious difficulty to account
for many degrees of freedom, we note that at some point this might
even question the very nature of the collisional approach whose spirit is
reducing complex dymamics to a sequence of simple interactions. This is
well-illustrated by the instance in 8.4 to describe which we necded to
cope somehow with all ancillas at each step (which was possible only
because a single excitation was involved in the problem).

What appears by now well-assessed is that the collisional approach
performs extremely well in a number of problems such as derivation
of well-defined master equations, both Markovian and non-Markovian,
thie calculation of thermodynamic rates in non-equilibrium processes
iwhere handling conventional microscopic models is often beyond
reach), the physical interpretation of complex dynamics, the study of
non-Markovianity.

An interesting future direction would be to synergically combine Chls
or CM-inspired methods with other technigques (such as tensor network),
as recently done in Ref. [240).

On a merely pedagogical ground, we envisage that CMs could become a
standard strategy for introducing students to the basics of open quantum
systems theory, In this respect, note that our discussion dealt with most
main concepts of this field such as quantum maps, Lindblad master equa-
tion, steady states, POVMSs, quantum trajectories, stochastic Schridinger
equation, Stinespring dilation theorem. The required background is in

fact some familiarity with elementary quantum mechanics. Moreover,



developing a physical intuition of the various topics (e.g. the conditions
for the Lindblad master equation to hold) is facilitated compared to
conventional microscopic models (cf. A6).

We hope that the systematic settlement of the CMs theory that we tried
to carry out here could spur an increasing use of CMs among students
and researchers or at least stimulate a “collisional thinking” of open
quantum systems problems in addition o, or possibly in combination
with, other methods,
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Appendix

A.1 Density matrices

The most general state of a quantum system 5 is described by a density operator p (often
referred to as density matrix). This is a Hermitian, positive semi-definite operator of trace
one. As such, it can always be expanded ("spectrally decomposed”™) as

p= 2 pelvMrl (A1)

with p. = 0 (positivity’) and Trp = T, p, = 1 (normalization). Here, {|v}} are the
eigenstates of p, i.e. plv} = pofv} for all v, which form an orthonormal basis of the Hilbert
space of 5. When all probability p,. vanish but one, p reduces to a simple projector, in
which case we say that the state is pure. In all other cases, we deal with a mixed state. Whale
the usual description through kets is always possible for pure states, the density-matrix
language is indispensable for representing mixed states.

Spectral decomposition A.l expresses p as a mixture of orthogonal (pure) states. A density
matrix can however be alternatively expressed as a mixture of non-orthogonal states, for
instance a legitimate state for a qubit is p = 1/2J0540] + 1/2|+){+| with |+} = fﬁ—uﬁ} + |1},
where |01} and |+ are non-orthogonal. E

The density-matrix language is essential for describing subsystems. Assume that 5 is part
of a larger bipartite system, the other subsystem being E (no matter how big). Then, if o is
the joint 5 = E state, the state of 5 is given by the partial trace over E

p=Treo =2 glulolude. (A.2)
p

where {|p)e } is an arbitrary orthonormal basis of E (it is easily checked that this satisfies
the definition of density operator).

A.2 Von-Neumann entropy, mutual information and
relative entropy

Given a (generally mixed) state p the Vonr Newmann entropy is defined as [21]

&lp)=-Tr{plogpl. {(B.1)

' Rigorously speaking, this expresses non-negativity, but we will refer to this property as “positivity” o
ﬂ.impli.'l'}' |:|'u.-1.111|qu.:|1|;|.'.
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This is the natural quantum analogue of the Shannon entropy occurring in classical
information theory. This can be seen by spectrally decomposing p as in Eq. Al which
entails

&ipl=—3 pulogp.. (B.2)

Also, this shows that &(p) = U for any p. Specifically, entropy vanishes for pure states and is
non-zero for mixed states. This matches the picture of a mixed state as a statistical mixture
of pure states. For instance, consider the qubit state p = 1/20} (0] + 1/2[1}{1] = %l. This
can be interpreted by saying that we are fully ignorant about whether 5 is in [0} or |1}.
Entropy is a measure of such ignorance. Indeed, in the considerad instance, it takes its
maximum value & = log 2.2 In contrast, (|0} {0]) = 0 as we are fully sure that § is in the
pure state [0y. An important property of the Von Neumann entropy is that it does not
change under a unitary transformation, i.e.

Sfpj:.ﬂl:ﬂpﬂ'*:l iB5.3)

for any state p and unitary (1. This is immediately seen from ALl by noting that ﬁ’p (1 has
the same spectral decomposition as ¢ under the change of basis {|v)} ]} — (U |v}}.

The Von Neumann entropy underpins the definition of two useful quantities, quantum
relative entropy and quantum mutual information.

Unlike Von Neumann entropy which is associated with a single state, the quantum relatioe
entropy depends on a pair of states, say p and o', It is defined as

Slp |l p') = =Trip log p'} = 8(p) = Tr{p(log p - log p"}} . (B.4)

It can be shown that 8{p || p°) 2 0 (non-negativity) with S(p || p') = 0 if and only if p = p.
Eelative entropy is useful because it is a measure of the disfinguishability between two
quantum states. Notably, it is not symmetric under swap of states, i.e. 8(p || p") 2 S(p’ ||
p).?

Another entropic quantity is quantum mutual mformation, the quantum version of mutual
information (a longstanding measure of correlations). Given a pair of systems 5 and E, it is
defined as

Fop = Slpsh+ S{pe) — S(pse) (B.5)

with psg the joint state and pgigy = Tregd pse ) the reduced states. Mutual information
fulfills .Fs¢ = 0 with
Jeg =0 & PsE=ps @ PE . (B.6)

Thus .Fs¢ = ) witnesses the existence of 5-E correlations.

*This is the maximum value for a qubit. In general, for a system with Hilbert space dimension d, the
maximum entropy is 5 = logd (for a qubit, d = 2)
P This i= a reasson wihy relative entrogry cannut b v #o define 8 metric in the Hilbert sprace
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A.3 Quantum maps

Transformations of density matrices are described by quantum maps. A quantum map
transforms a state p into another state p’, which is expressed as p* = #M[p]. A major class of
quantum maps is that defined by

Ff:lh?f:ZEmpE:; with ZELE,"= . (C.1)

i

These are called completely positive and trace-preserving (CPT) maps *

The rightmaost expansion in C.1 is called Knris decomposition and K, the Kraus operators,
The Kraus decomposition (demonstrably) ensures that, if p is a well-defined density matrix,
then sois pf, The importance of CPT maps indeed relies on the fact that they deseribe
physically-legiimate transformations, e.g. due to a dynamical evolution or measurement,

i.e. they map physical states into physical states.

Note that, like any operator, a unitary transformation transforms a density matrix as
g’ = Upil" subject to (0 = 1, which is a special case of quantum map C.1 having
only one Kraus operator (1. Actually, a unitary transformation fulfills [0 = §as well,
while in general ¥, K E:fn # 1 this expressing the fact that a quantum map is generally
moH-unitary.

MNon-unitarity most notably entails that the scalar product of two states is not invariant
under a quantum map. The best instance to see this 1s probably the decay of a two-level
atom: the excited state |¢) eventually evolves into the ground state ig} while the ground
state is unaffected, Thus |¢) and |g) (which are orthogonal states) are both mapped into
the same state |;|;::I with the scalar product thereby changing from zero to one,

A.4 Dynamical map

If 5 is closed (decoupled from anything else) its state p evolves in time according to the Yon
MNeumann (or quantum Liouville) equation (recall that we seth = 1) # = —i[Hs, p]. Thisisin
fact just the Schridinger equation expressed in the density—matrix formalism. Accordingly,
the time evolution of p is umitary, py = L:I',-;m."f]';r, with g = e the time-evolution
operabor.

If 5 is open then its time evolution is generally mom-umilary. This can be soen in the case that
5 and E owverall form a closed system so that they jointly evolve unitarily as o = U oy U;f-
Hence, tracing off E, the state of 5 at time [ is given by

pr= 3kl O po @ pe OF Jude (D.1)
u

e do not discuss here the concept aol commplefe prsitavity, usang L] a4 the definitaon of & CF'T map.
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where we assumied that 5 and £ start in the uncorrelated state g = po @ pe. Replacing now
pe with its spectral decomposition pg = X3 palAde{A], p can be arranged in the form

a & ¥
pe = Adpol = 3 (V7 el G0 10Dk ) po  VPT edud G 13e) (D2)
wA 4

Eq. 1.2 defines the so called dymamical map: for any given initial state of 5, pp, Ay returns
the dynamically evolved state at time [, py. The dynamical map Ay can be seen as the
open=system counterpart of the time-evolution operator. Remarkably, by companng Eq. D.2
with C_1, we see that A; is a CPT map whose generic Kraus operator, labeled by the double
index (v, A), reads

Kop = ypa elul Uy A )e - (D.3)

A.5 Stinespring dilation theorem

We have just seen in A4 that, starting from an uncorrelated 5-E state, a global unitary
dynamics results upon partial trace in a CPT map on 5. According to the Stinespring
dilation theorem, the converse property holds as well: given a CI'T map M [cf. Eq. C1] one
can always find an ancillary system A, an initial state of A, p4, and a global unitary Us4
(acting on 5 and A) such that

= Mp)=Try {ﬂﬂp@’lﬂ T:EEA ; (E.1)

Note that in general there are infinite pairs (p.4, Uss) producing the same CPT map #
through E.1. We stress that the lack of initial correlations between 5 and A in Eq. E.1 15
essential for a CP'T map to emerge,

For more detailed treatments of the topics from ALl to A5 see eg. Refs, [21, 241).

A.6 Lindblad master equation

Consider the class of dynamical maps such that
A=A A (E.1)

for any f and !’ such that 0 < ' < |, (F1) is called semigrowp property and can be regarded
as a formal definition of a Markovian, Le. memoryless, dynamics.

It can be shown [7] that, if F.1 holds, then p = Ay|pyg] is the solution of a master equation
(ME) having the general form

d S B S
d_': = -i[®,pl+ 3y (LopLt - YELE,, ) ) (F2)



Ab Lindblad master equation | 123

with % a Hermitian operator and . 2 0 for each v, Here, L, are a set of operators on §
called jump operators. Eq. .2 is the so called Gonni-Kossakowski-Sudarshan-Lindblad
equation, more often referred to simply as Lindblad ME (or ME in Lindblad form).

A.b1 Mi:msmpic derivation from a conventional system-hath model

We ask under what physical conditions the Lindblad ME correctly describes the open
dynamics. Thus consider the generic system—-bath Hamiltonian

H=Hs+Hz+V. (E.3)

In the interaction picture with respect to I‘J'u = }‘J'g -I-!‘fg,theini.m 5-8 state evolves according
to the Von-Neumann equation & = —i [V}, o], Solving it formally yiclds

i
o =g —1i f dF [V, 8] (F4)
[
. Plugging this back into the Von-MNeumann equation one gets
da Yoo
e (Vi a0l = | db’[Vi, [V, apl]. (E5)
1

We assume no inihial correlations bebween system and enwironment, Le. op = py @ g,
where py and pg are respectively the initial reduced density operators of 5 and B, Also, we
assume Tr g[‘.-’,, ap)] = 0, which is the case e.g. when pg is such that iHH,pH] 0 {e.g. in the
case of a thermal state). Using these and tracing off the bath B in Eq. 5 yields

]
——f d' Try {m,m—,.r,-u} : (F.6)
i

Although system and bath start in a product state, as a consequence of their interaction,
mutual correlations between the two will build up. However if B is a reservoir (very large
number of degrees of freedom), one intuitively expects its reduced state to be little modified
by the interaction with the system. Accordingly, in Eq. F6 one can approximate

O = B Py, (E.7)

which is known as Born approvimation.® At the same time, we expand the interaction
Hamiltonian as V; = %, quﬁm.ﬁ,. (always possible), where Ay = st 4, eAs! and
B” = plHut B o1t ape 3 sot of operators on respectively S and B in the interaction picture
[ﬁ and E are Hermitian). With these replacements and the Born approximation F7, F.6

F“'I."Pl]i.l‘ltiml Hhak :||:||:l:r|.'rl|.1'm.'.|.li|.m 7 ik made unl':,r 1mn Eq. b rJ-L-IL-:rl:rli.rli.nJ.; thie reduced d}mmicﬁ- ol 5.
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takes the form

dp
d"' Eﬂpxk-’r dt’ Tfh{lﬂpiﬂpf,lﬂlprﬁﬂ ¢ e _|'.J]-|:I”

s Z Ep_’l{'r}r dt {l-“iprﬁw'ﬂr = ﬁvrﬁl‘jyr}{ﬁp!ﬁw'}
HaV e
HprAopAu = AupedaiBaba)) (F8)

where we defined v 5
{Evr’ﬂpr} - Trﬂ‘iﬁvr'ﬂpffjﬂ}'

For a large reservoir B, each two-time correlation function {ﬁp,ﬁﬂ-} is strongly peaked
around ! — I = 1, with 7, usually referred to as the correlation time. This entails that any
fluctuation in the bath state due to its interaction with the environment dies out on a time
scale of the order ~ 1. This time is typically very short, in particular when compared to
the evolution imescale of 5. Accordingly, in each integral over ¥ appearing in Eq. FS, we
can approximate

Pre = Py, (F.9)

which is known as the Markor approximution.

A.6.2 Secular approximation

For each A, we now conveniently define A, = Zp e A, N with g the projector onto
the vigenspace of Hs of cnergy E and where the sum runs over all pairs (E, E° 1 such that
E' =L = q. It is then easily checked H'Lnr.-"!.,, =y .-'!m. and, moreover, IH; .m.l -&-.-'1

It follows that, in the interaction picture, A,y = £, ¢ "' A,,,. Replacing this and F9 in
Eq. F.8 this can be arranged in the form

il . ’ _ ) _
-ﬁ = Z Zrm.r- i Vyular) {:‘I-FMPHL.. - ﬂ:..--"'i.uu'.l"l + H.c. (F.100)
LEN L

with
}"1'#‘.':"} = '[muﬂ‘.il‘.""m"i {E':fﬁ';,” ..;|.} r {F."J

where in the last integral we approximated the upper limit of integration with +oo since
Ihe integrand function (see above) decays with a characteristic time 7. For pyg such that
|H'ﬂr pi| = Uie.g. a thermal state), the above bwo-time correlation function actually depends
only on the time difference s and thus can be replaced with 8!, Bq.

The secular approximation consists in throwing away all counter-rotating terms in Eq. F.10,
Le. those corresponding to ar # o' This results in an equation with time-independent
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corefficients, which reads
I.TJ'? & a4 ay
== 33 yewlw) (AvupAl, — AL, Avup) + He. (F.12)

i w

A.6.3 Master equation in Lindblad form

Drefining next
Svwl@) = & (uwl@) = pinla))
Ywrla) = Yoprl) + 35, lar) =f ds e"* Try{BL(s)B. D)}, (F13)
Eq. F.8 takes the form
%-‘rf = —i|%, p] + 2| p| (F14)
with
# =3 > Suda)Al (@) A a) (F.15)
at P
ipl = 3 X yowle) (AvupAl, - 1AL Avepl. )

This master equation can be put in the standard Lindblad form F.2 upon diagonalization of
each matrix (i)

The above derivation of the Lindblad master equation from the Hamiltonian model F.3
follows standard textbooks, in particular Befs. [7, 78], to which the reader is referred for
further details. In the context of the present paper, it serves the purpose of illustrating
that the derivation of the Lindblad ME from a standard microscopic model is a relatively

involved procedure which requires a number of non-trivial approximations.



A Appendix

A.7 Lindblad master equation from the stochastic
Schridinger equation

Using eqs. (6.23) and (6.24), the three terms in Eq. 6.27 are worked out as

—.m—']ﬂ'}{ﬁm

dopdl—p{d, d)pdt, (G

[d|u}j |:I,| | —L (Go0_—{0.0- ‘,|I||..J::I (] df +(

Ed G pdt+ 53, 8 ) pdt +

'ﬁ.ll:l |1I ]

o} (d {w]) = -1 aN

W) (0] @2~ (3ad-Ddt +[y) (v (—,ﬁ -1
iF 4. (T

1|.l,_||:l| p dt—yladaypdt, (G.2)

=1 i.h.l ':r
( y{ded.) ] | (-..'{r.r.,n
—3*L=.J=Ll;d!—m _pdt - Tﬁv"._-ri_h‘ﬂﬁ' dt +yp{f, Gy pdt, (G3)
where in the second line of egs. (1) and ((.3) we replaced p = |||.'J} I::irfl and ne-
glected terms ~ di* and ~ dt AN [note that instead (AN ~ df]. Summing the three
increments, it can be seen that many terms cancel out in a way that we are left with
dp =y {E-p:’h - i [ﬁnﬁ_qu J it

~Lpddodt+ 53,5 ) pdr +

d fyr) o {y dN?

A.8 Equivalence between eq. (7.14) and 7.17

For simplicity, we assume here that both 5 and anclla n are fintte-dimensional systems (the
derivation can yet be easily extended to infinite dimension). Let us introduce the spectral
decompositions of Hg and H, as

Hs = > Ef;, 3=, (H.1)
i a

Hy = 3 eil,, =N, (H.2)
i i

where E; (¢;) is the generic eigenvalue of ff,; {!.f,.,] and ﬁ; {ﬁ:,:l the projector on the
corresponding eigenspace. Projectors associated with different energies are orthogonal,
L.

I, = 8(E; - Ep)L, T = o(E; - Ex )Y, . (H.3)
Here, we conveniently defined (1) as a function taking value 1 for ¥ = (land 0 otherwise.
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Accordingly, by denoting with Eq the cigenvalues of Hs + Fn this can be spectrally-
decomposed as
Be+H, = Z Eg ITE, . (H.4)

where ﬁ;" are the {complete) orthonormal projectors on the system-ancilla Hilbert space
defined by _
[g, = 2 ME; +ei — Ex) el . (H.5)
fod

Mow, wnhﬁen'e that the commutation between V,, and s + [, [cf. Eq. 7.14] is equivalent
o :.-thhng that V', can be spectrally decomposed in the same basis of projectors -[fl" } as

Hs + A, [cf. Eq H.4], ie.

Vo = @EF M, =Z$FF O(E; +£i—Erj|r1f5ﬁfl:, : (H.6)
Id
Here, in the last step we replaced [1% with H.5,

Consider now the operator defined by

SEj + e — (Ep + eI, @ T ¥, 1L 11 =
.I"..I"'.J'_-I"
3 5 v dEj+e-Ep) x (H.T)
il

5 BlEje + e~ (Ep + e @11 (ML @ M) I @ 11,
o

where in the last step we replaced Vi with HL6. This operator coincides just with V- Indeed,
using the orthogonality relations .3, the last expression can be arranged as

ZZ‘" SEj+ei—Ef)  x
ft

3 B(Ej + e —(Ej + e ))O(E — Ejdler — ei)(E; — Ep)dle; — ep) T, @ I}

[l O ol

=3 3 A dlEj+e - EQI @ T, = V), . (H.8)
i
Thereby, |
= 3 Ej+e;—(Ep + e T, @11, V, TT; @ 1T, . (L9
e A8

Plugging now Vy = £, g, ALB [cf. Eq. 5.14] on the right-hand side yields

Vi=3g. 3 ME —Ep+ei-ep) LA T @1, B (HL.10)

¥ j.,i'.l'.l"
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By defining A, = I.l_f; Al r'l_f;' for | < ', we note that it is an cigenoperator of s with
gigenvalue a, = E; — Ep [cf. Eq. 7.15]. Likewise, B, = [T, B, 115 with i < i* is an
eigenoperator of F-L, with eigenvalue w, = #; = ¢ [cf. Eq. 7.16]. Therefore H.10 is exactly of
the same form as 7.17, which completes the proof.,

A.9 Fully swapping ancilla-ancilla collisions: proof of
Eq. 8.8

Using Eq. 8.7, the reduced state of S at the rth step is given by

pw=Trys al(5a1 - Suctn-2Snn-1) OF po®®_ 1 D" (5 -t Setn-z <o - S21)} . (LD)
Taking now advantage of the homogeneity of 5, we can write

(Saz - SurmaSna) @M@ @S2 Sninabuna) = @@E--- B,

Replacing back in 1.1, this reduces to (we refer to a basis |k, kzh2 for computing the partial
trace)

pn = TriadSaadfpom m O*52,4) = Z{Eh*zt-ﬁi] 0 po g 12 U9 521 1ky, ka)
k. kg

3 e, Ba|OF py oy O ey, Ky = 5 (|0 g g OO [y = T {00 oy 1)
iy by k

where we used that 531]ky, k2) is another valid basis for computing the partial frace (this
being invariant under a change of basis). This completes the proof of Eq. 5.5

A.10 Ancilla—ancilla collisions: derivation of master
equation 8.20

By subtracting from Eq. .19 the amalogous equation for p,_y we get
n-3
Apa = (1 =p) 3 p ' FlApe + (0= plp" ' Fualml + Ap"'Fu)lpal. 01
=1

where, as usual, Ady = Ay — Ay with A a map or state. By expressing cach power of p in
the form of an exponential as p-" = ¢ T = 0T ith ¢ = jAl and likewise p® = ¢ Tt in
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the limit Af <& [ the three terms on the rght hand side of Eq. J.1 become

(1-p) £%2 pU-V%; [pu) = pr-r-i] i I‘fj = dp(t - 1)
.rl'h.l' - il -Iﬂr —f'll

r"'"'lﬁu e |
[ F}iu - (] =Te "8 [l

Ap"'E,) _p" R = p" B | e THRANR( 4 Al — e TR 4

Al Al Al dt

(e~ E(1)) .

Thus in the continuous-time limit, Eq. |.1 reduces to Eq. 8.20.

A.11 Composite CMs: derivation of the recurrence relation
8.47

From eq. (8.45) (for n — i — 1) and B.46 it follows
Ut = 100} 44, (00]+cos( gAY (10) g (1014101 gy, (01])=i sind g A J(IOT) g (10]10) 54, (011D,
(K.1)

Erﬂr'lﬂ {CHIH I}_‘-Sﬁm ll]lﬂ-.:"ft':ﬁm ”‘fSﬂ'm ””fﬁf:"" le::..lllvm}

i =1

ﬁn'-'l'ruﬂ-'i.lr'l Eqilu 'I:I}

{i:ﬂ'l" II—I.EIIT{" 1'3!1‘#}+IfCﬁ:"'1:_fl'Sﬂhl ”]lll.'r'l}

wi—]
+ 3 A lem) = (A = i5a™ My fey) . (K.2)
=]

Comparing with Eq. 8.45, we get the recurrence relation 8.47 for the excitation amplitudes
of & and M.

A.12 Composite CMs: derivation of linear system 8.52

By looking at Eq. 8.45 we see that, upon trace over the bath, the joint state of & and M has
the form

Psp = o [ 110) (10] + | [00) {01] + (e 3 |10 {01+ Hoc.) + (1=|ax, |~ *) [00) {00] .
(L)
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This remains true when ay — afl) and f, — S(1). Replacing psa(!) into master equa-
tion 5.51 this is turned into the coupled differential equations

Llal® = iGlap—a’p), £8P

—iGlap—a'fhyIpl, & (ap’) = —Faf+i [GllaP-1pP)] -

(L.2)
It is easily checked that these are indeed equivalent to 8.52 (eg. %laﬂz is obtained from
a*d = —iGa’f by adding to either side the respective c.c.). This completes the proof.
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