GEOMETRIC GOPPA CODES ON FERMAT CURVES

ANTONINO GIORGIO SPERA

We consider a class of codes defined by Goppa's algebraic-geometric construction on Fermat curves. Automorphisms and decoding of such codes are investigated.

1. Introduction.

This paper is concerned with Geometric Goppa codes, nowadays also called algebraic-geometric codes, which were introduced by V.D. Goppa in 1977 ([5], [6]) using algebraic curves over finite fields. We construct a class of such codes associated with some Fermat curves. Precisely, if q is a prime power and \mathbf{F}_{q} denotes the finite field of order q, we take into consideration Fermat curves over \mathbf{F}_{q} of degree m with $q \equiv 1(\bmod 6 m)$. Such a curve \mathbf{C}_{m} is absolutely irreducible and smooth. The case where $m=\frac{q-1}{s}$, s is a positive integer which is divisible by 6 and (q, s) is a circular pair (see [1] and [10]), was considered by H. Kiechle in [10] where the \mathbf{F}_{q}-rational points were determined. We investigate, in section 3, the automorphisms of \mathbf{C}_{m} showing that each of them is defined over \mathbf{F}_{q}. Moreover we analyse the orbits of the automorphism group of \mathbf{C}_{m} on the \mathbf{F}_{q}-rational point set of \mathbf{C}_{m}. There are at

Entrato in redazione il 27 Febbraio 2003.

2000 Methematics Subject Classification: Primary 94B27, Secondary 11G20.
Key words:Code,Curve, Finite field, Automorphism.
Research supported by the Italian MURST (progetto 40% 'Strutture geometriche, combinatoria e loro applicazione").
least two orbits V_{1} and V_{2} which have order $3 m$ and $2 m^{2}$ respectively. Next, considering the rational divisors $D=\sum_{i=1}^{2 m^{2}} P_{i}$ and $A=r\left(\sum_{j=1}^{3 m} Q_{j}\right)$, where $V_{1}=\left\{Q_{1}, Q_{2}, \ldots, Q_{3 m}\right\}, V_{2}=\left\{P_{1}, P_{2}, \ldots, P_{2 m^{2}}\right\}$ and r is a positive integer, we obtain a linear code which admits an automorphism group of order $6 \mathrm{~m}^{2}$. Furthermore this group has a subgroup which is regular on $\operatorname{supp} D$. In section 4 , using the automorphisms of the code, we are able to embed the code as a left ideal of a group algebra in order to get an easy decoding of the constructed code.

2. Notations and basic results.

Let \mathbf{F}_{q} be the finite field of order $q=p^{l}$, where p is a prime number and l a positive integer. Suppose \mathbf{X} is an absolutely irreducible, non-singular, projective curve defined over \mathbf{F}_{q} and let $g(\mathbf{X})$ be its genus. We denote by $\operatorname{Aut}(\mathbf{X})$ the automorphism group of \mathbf{X} and by $A u t \mathbf{F}_{q}(\mathbf{X})$ the subgroup of $\operatorname{Aut}(\mathbf{X})$ of \mathbf{F}_{q}-automorphisms of \mathbf{X}.

It is known that $\operatorname{Aut}(\mathbf{X})$ always is finite if $g(\mathbf{X})>1$ (see [11]) and H . Stichtenoth proved the following result.

Theorem 2.1 ([16]). If \mathbf{X} is not the Hermitian curve and $g(\mathbf{X})>1$ then $|\operatorname{Aut}(\mathbf{X})| \leq 16 g(\mathbf{X})^{4}$.

Suppose m is a positive integer, $m>1$, which is relatively prime to p. The Fermat curve of degree m over \mathbf{F}_{q} is the projective plane curve \mathbf{C}_{m} defined by the homogeneous equation

$$
\begin{equation*}
X^{m}+Y^{m}=Z^{m} \tag{1}
\end{equation*}
$$

A Fermat curve of degree $q+1$ is called Hermitian curve.
Since p does not divides m, \mathbf{C}_{m} is easily seen to be absolutely irreducible and non-singular, so its genus is

$$
g\left(\mathbf{C}_{m}\right)=\frac{1}{2}(m-1)(m-2)
$$

Theorem 2.2. ([11]). Let $q=p^{l}, m \geq 4$ a positive integer with (m, p) $=1$ and \mathbf{C}_{m} the Fermat curves of degree m.
i) If $m \neq q+1$, then $\left|\operatorname{Aut}\left(\mathbf{C}_{m}\right)\right|=6 m^{2}$.
ii) If $m=q+1$, then $\left|\operatorname{Aut}\left(\mathbf{C}_{m}\right)\right|=q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right)$, $\operatorname{Aut}\left(\mathbf{C}_{m}\right)=$ Aut $\mathbf{F}_{q^{2}}\left(\mathbf{C}_{m}\right)$ and it is isomorphic to the projective unitary group $P G U\left(3, q^{2}\right)$.

Note that in the $i i$) case of the above theorem, \mathbf{C}_{m} is an Hermitian curve.
For a curve \mathbf{X} over $\mathbf{F}_{q}, \mathbf{X}\left(\mathbf{F}_{q}\right)$ denotes the set of \mathbf{F}_{q}-rational points of \mathbf{X} and $N(\mathbf{X})$ the cardinality of $\mathbf{X}\left(\mathbf{F}_{q}\right)$. The well-known Hasse-Weil bound states that

$$
\begin{equation*}
|N(\mathbf{X})-(q+1)| \leq 2 g(\mathbf{X}) \sqrt{q} \tag{2}
\end{equation*}
$$

\mathbf{X} is said to be a maximal curve if the upper bound in (2) is attained. It is known (see [13], [7]) that Hermitian curves are the only maximal curves of genus $\frac{1}{2}(q-1) q$ over $\mathbf{F}_{q^{2}}$. For some Fermat curves Garcia and Voloch gave in [4] an upper bound which is better than Hasse-Weil bound.

Consider the Fermat curve \mathbf{C}_{m} over \mathbf{F}_{q} and suppose that $q \equiv 1(\bmod 6 m)$. Then $\left(\mathbf{F}_{q}\right)^{*}=\mathbf{F}_{q} \backslash\{0\}$ has some element of order 6 m . If β is a such element, we set

$$
\begin{gathered}
V_{1}=\left\{\left(\beta^{6 i}, 0,1\right) \mid i=0,1, \ldots, m-1\right\} \cup \\
\left\{\left(0, \beta^{6 i}, 1\right) \mid i=0,1, \ldots, m-1\right\} \cup \\
\left\{\left(\beta^{6 i+3}, 1,0\right) \mid i=0,1, \ldots, m-1\right\} \text { and } \\
V_{2}=\left\{\left(1, \beta^{6 i+2}, \beta^{6 j+1}\right) \mid i, j=0,1, \ldots, m-1\right\} \cup \\
\left\{\left(1, \beta^{6 i-2}, \beta^{6 j-1}\right) \mid i, j=0,1, \ldots, m-1\right\}
\end{gathered}
$$

It easy to show that $V_{1} \cup V_{2} \subseteq \mathbf{C}_{m}\left(\mathbf{F}_{q}\right)$.
Now let $s \geq 2$ be an integer and q, as before, a power of a prime number. The ordered pair (q, s) is said to be circular (see [1]) if s divides $q-1$ and the subgroup Φ of $\left(\mathbf{F}_{q}\right)^{*}$ of order s satisfies

$$
|(\Phi a+b) \cap(\Phi c+d)| \leq 2
$$

for all $a, b, c, d \in \mathbf{F}_{q}$ with $\Phi a \neq \Phi c$ or $b \neq d$.
For example, it is known that the pair $\left(q^{2}, q+1\right)$ is circular for every prime power q. For more information and tables on circular pairs see [1]. For a circular pair (q, s), consider the Fermat curve \mathbf{C}_{m} of degree $m=\frac{q-1}{s}$. It was proved (see [9] and [10]) that if 6 divides s (and so $q \equiv 1(\bmod 6 m)$), then \mathbf{C}_{m} has exactly $n=2 m^{2}+3 m$ rational points over \mathbf{F}_{q}. More precisely, there was shown the following result.
Theorem 2.3. Let (q, s) be a circular pair, $m=\frac{q-1}{s}$ and suppose that 6 divides s. Then the set of \mathbf{F}_{q}-rational points $\mathbf{C}_{m}\left(\mathbf{F}_{q}\right)$ of the Fermat curve \mathbf{C}_{m} is $\mathbf{C}_{m}\left(\mathbf{F}_{q}\right)=V_{1} \cup V_{2}$.

Now we recall some basic facts about geometric Goppa codes (cf. [5], [12], [14]). Let \mathbf{X} be an (absolutely irreducible, smooth, projective) curve over \mathbf{F}_{q}. If $P_{1}, P_{2}, \ldots, P_{n}$ are n pairwisely distinct rational points of \mathbf{X}, let D be the divisor defined by

$$
D=P_{1}+P_{2}+\ldots+P_{n}
$$

and A be a rational divisor on \mathbf{X} with $\operatorname{supp} D \cap \operatorname{supp} A=\emptyset$. Moreover, if $\mathbf{F}_{q}(\mathbf{X})$ denotes the field of \mathbf{F}_{q}-rational functions on \mathbf{X}, set

$$
L(A)=\left\{z \in \mathbf{F}_{q}(\mathbf{X})^{*} \mid \operatorname{div}(z) \geq-A\right\} \cup\{0\}
$$

Here as usual, $\operatorname{div}(z)$ denotes the principal divisor associated with the function z. The geometric Goppa code $C(A, D)$ associated with A and D is defined by

$$
C(A, D)=\left\{\left(z\left(P_{1}\right), z\left(P_{2}\right), \ldots, z\left(P_{n}\right)\right) \mid z \in L(A)\right\}
$$

With this notations we have (see [12] or [14]) the following theorem.
Theorem 2.4. If $2 g(\mathbf{X})-2<\operatorname{deg} A<n$, then $C(A, D)$ is a q-ary $[n, k, d]$ linear code where $k=\operatorname{deg} A+1-g(\mathbf{X})$ and $d \geq n-\operatorname{deg} A$.

It is known that the symmetric group S_{n} acts on \mathbf{F}_{q}^{n} in the following way:

$$
\tau\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{\tau(1)}, a_{\tau(2)}, \ldots, a_{\tau(n)}\right)
$$

for every $\tau \in S_{n}$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbf{F}_{q}^{n}$. We define the automorphism group of the code $C(A, D)$ by

$$
\operatorname{Aut}(C(A, D))=\left\{\tau \in S_{n} \mid \tau(c) \in C(A, D) \text { for every } c \in C(A, D)\right\}
$$

The group $A u t \mathbf{F}_{q}(\mathbf{X})$ acts on the rational divisor group $\operatorname{Div}(\mathbf{X})$ of \mathbf{X} via

$$
\rho\left(\sum n_{p} P\right)=\sum n_{p} \rho(P)
$$

if $\sum n_{p} P \in \operatorname{Div}(\mathbf{X})$ and $\rho \in \operatorname{Aut} \mathbf{F}_{q}(\mathbf{X})$. So the stabilizer of A and D,

$$
\left(A u t_{\mathbf{F}_{q}}(\mathbf{X})\right)_{A, D}=\left\{\rho \in A u t_{\mathbf{F}_{q}}(\mathbf{X}) \mid \rho(D)=D \text { and } \rho(A)=A\right\}
$$

is a subgroup of $A u t \mathbf{F}_{q}(\mathbf{X})$ and each of its elements ρ induces an automorphism of $C(A, D)$ by

$$
\rho\left(x\left(P_{1}\right), x\left(P_{2}\right), \ldots, x\left(P_{n}\right)\right)=\left(x\left(\rho\left(P_{1}\right)\right), x\left(\rho\left(P_{2}\right)\right), \ldots, x\left(\rho\left(P_{n}\right)\right)\right)
$$

where $\left(x\left(P_{1}\right), x\left(P_{2}\right), \ldots, x\left(P_{n}\right)\right) \in C(A, D)$. Moreover, it was shown in [15] (see also [14]) the following result.

Theorem 2.5.

a) If $n>2 g(\mathbf{X})+2$, then $\left(\text { Aut }_{\mathbf{F}_{q}}(\mathbf{X})\right)_{A, D}$ is isomorphic to a subgroup of $\operatorname{Aut}(C(A, D))$.
b) If $g(\mathbf{X})=0, A>0$ and $\operatorname{deg} A \leq n-3$, then $\operatorname{Aut}(C(A, D))$ is isomorphic to $\left(A u t_{\mathbf{F}_{q}}(\mathbf{X})\right)_{A, D}$. So, being $A u t_{\mathbf{F}_{q}}(\mathbf{X})$ isomorphic to the projective linear group $P G L(2, q)$, any automorphism of $C(A, D)$ is induced by a projective linear map.

3. Fermat codes.

First we determine the automorphisms of a Fermat curve \mathbf{C}_{m} over \mathbf{F}_{q} in the case where $q \equiv 1(\bmod 6 m)$, showing that each of them is defined over \mathbf{F}_{q}. As in section 2, let $\beta \in \mathbf{F}_{q}^{*}$ be a element of order $6 m$ and consider the projective linear transformation σ associated with the matrix

$$
\left(\begin{array}{ccc}
0 & \beta^{3} & 0 \\
0 & 0 & \beta^{6} \\
1 & 0 & 0
\end{array}\right) .
$$

Suppose $P=(a, b, c)$ is a points of \mathbf{C}_{m}. We have that $\sigma(P)=\left(\beta^{3} b, \beta^{6} c, a\right)$ is on \mathbf{C}_{m} too. In fact, $\left.\left(\beta^{3} b\right)^{m}\right)+\left(\beta^{6} c\right)^{m}=a^{m}$ if and only if $\beta^{3 m} b^{m}+c^{m}=a^{m}$ if and only if $P \in \mathbf{C}_{m}$ being $\beta^{3 m}=-1$. So $\sigma \in \operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)$. Of course if α is the projective linear transformation that switches a and b in each point (a, b, c) of the plane, α is a \mathbf{F}_{q}-automorphism of \mathbf{C}_{m} and the group $H=\langle\alpha, \sigma\rangle$ is a \mathbf{F}_{q}-automorphism group of \mathbf{C}_{m}. Moreover, since α and σ have order two and three respectively, it is easy to see that $H=\langle\alpha, \sigma\rangle$ is isomorphic to the symmetric group S_{3}. Consider now the projective linear transformation $\gamma(i, j)$, $\mathrm{i}, \mathrm{j}=0,1, \ldots, \mathrm{~m}-1$, associated with the matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \beta^{6 i} & 0 \\
0 & 0 & \beta^{6 j}
\end{array}\right) .
$$

Since $\gamma(i, j)(P)=\left(a, \beta^{6 i} b, \beta^{6 j} c\right)$ if $P=(a, b, c)$, we have that $P \in \mathbf{C}_{m}$ if and only if $\gamma(i, j)(P) \in \mathbf{C}_{m}$. So

$$
L=\{\gamma(i, j) \mid i, j=0,1, \ldots, m-1\}
$$

is clearly an abelian group of \mathbf{F}_{q}-automorphisms of \mathbf{C}_{m} of order m^{2}. Since H normalises L and $H \cap L=\{1\}$, we get $\bar{G}=H L$ is a \mathbf{F}_{q}-automorphism group of \mathbf{C}_{m} of order $6 \mathrm{~m}^{2}$. Now by i) of the Theorem 2.2, we have that

$$
\begin{equation*}
A u t\left(\mathbf{C}_{m}\right)=\bar{G}=H L \tag{3}
\end{equation*}
$$

being $m \neq q+1$; so $\operatorname{Aut}\left(\mathbf{C}_{m}\right)=A u t \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)$. Therefore we get the following proposition.

Proposition 3.1. Let \mathbf{C}_{m} be a Fermat curve over \mathbf{F}_{q} of degree $m \geq 4$ such that $q \equiv 1(\bmod 6 m)$. Then $\operatorname{Aut}\left(\mathbf{C}_{m}\right)=\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)$.

With notations as above we set

$$
G=\langle\alpha, L\rangle .
$$

Let $\mathbf{C}_{m}\left(\mathbf{F}_{q}\right)$ be the set of \mathbf{F}_{q}-rational points of \mathbf{C}_{m} and suppose again that $q \equiv 1$ $(\bmod 6 m)$. Then $\mathbf{C}_{m}\left(\mathbf{F}_{q}\right) \supseteq V_{1} \cup V_{2}$ where V_{1} and V_{2} are as in section 2.

Proposition 3.2. Let q, m and \mathbf{C}_{m} be as in the previous proposition. Then $\operatorname{Aut}\left(\mathbf{C}_{m}\right)$ admits at least two orbits on $\mathbf{C}_{m}\left(\mathbf{F}_{q}\right)$, namely V_{1} and V_{2}. Moreover, G is a subgroup of $\operatorname{Aut}\left(\mathbf{C}_{m}\right)$ which is regular on V_{2}.
Proof. By (3) we have $\operatorname{Aut}\left(\mathbf{C}_{m}\right)=\bar{G}=H L$ where $H=\langle\alpha, \sigma\rangle$ and $L=\{\gamma(i, j) \mid i, j=0,1, \ldots, m-1\}$. Consider the point $P=\left(1, \beta^{2}, \beta\right) \in V_{2}$. Since $\gamma(i, j)(P)=\left(1, \beta^{6 i+2}, \beta^{6 j+1}\right)$ and $\alpha \gamma(i, j)(P)=\left(\beta^{6 i+2}, 1, \beta^{6 j+1}\right)=$ $\left(1, \beta^{6(m-i)-2}, \beta^{6(m-i+j)-1}\right)$ for every $\gamma(i, j) \in L \subset \bar{G}$, we have that V_{2} is contained in the \bar{G}-orbit $P^{\bar{G}}$ of P. Moreover the stabilizer \bar{G}_{P} of P is the subgroup generated by the automorphism $\sigma \gamma(m-1, m-1)$ which has order 3. So $P^{\bar{G}}=V_{2}$ being $\left|P^{\bar{G}}\right|=\frac{|\bar{G}|}{\left|\bar{G}_{P p}\right|}=\frac{6 m^{2}}{3}=2 m^{2}=\left|V_{2}\right|$. Now it is easy to see that the subgroup $M=\{\gamma(j, j) \mid j=0,1, \ldots, m-1\}$ of \bar{G} acts regularly on the points set $\Delta_{1}=\left\{\left(\beta^{6 i}, 0,1\right) \mid i=0,1, \ldots, m-1\right\}$ and so Δ_{1} and $\alpha\left(\Delta_{1}\right)$ are contained in the same \bar{G}-orbit of \bar{G}. But M is also regular on $\Delta_{2}=\left\{\left(\beta^{6 i+3}, 1,0\right) \mid i=0,1, \ldots, m-1\right\}$ and, as $\sigma\left(\left(\beta^{3}, 1,0\right)\right)=(1,0,1) \in \Delta_{1}$, we get V_{1} is contained in the orbit $Q^{\bar{G}}$ where $Q=(1,0,1)$. Further the stabilizer of Q is $\bar{G}_{Q}=T \cup S$ where $T=\{\gamma(i, 0) \mid i=0,1, \ldots, m-1\}$ and $S=\{\alpha \sigma \gamma(i, m-1) \mid i=0,1, \ldots, m-1\}$. So $\left|\bar{G}_{Q}\right|=2 m$ being $T \cap S=\emptyset$. Hence $\left|Q^{\bar{G}}\right|=\frac{|\bar{G}|}{\left|\bar{G}_{Q}\right|}=\frac{6 m^{2}}{2 m}=3 m$ and we obtain that $Q^{\bar{G}}=V_{1}$. Now the group $G=\langle\alpha, L\rangle$ is regular on V_{2} since $G \subseteq \bar{G}, \quad G \cap \bar{G}_{P}=1$ and $|G|=2 m^{2}$.

In the following for \mathbf{C}_{m} we always suppose that $q \equiv 1(\bmod 6 m)$. We now construct a class of geometric Goppa codes on Fermat curves which admit enough large groups of automorphisms. Consider the subsets of rational points V_{1} and V_{2} of \mathbf{C}_{m} and let $N=2 m^{2}$ and

$$
D=\sum_{i=1}^{N} P_{i}
$$

where $P_{1}, P_{2}, \ldots, P_{N}$ are the points of V_{2} in a fixed order. Further we consider the divisor $A=r \sum Q_{j}$ where the Q_{j} 's are the points of V_{1} and r is a positive
integer. Thus we have $\operatorname{deg} A=3 \mathrm{rm}$ and for

$$
\frac{m}{3}-1<r<2 \frac{m}{3}
$$

the geometric Goppa code $C(A, D)$ has parameters (see Theorem 2.4) N,k,d with

$$
k=3 r m+1-\frac{(m-1)(m-2)}{2} \text { and } d \geq m(2 m-3 r)
$$

In the following we will denote the constructed q-ary linear code $C(A, D)$ by $C(r, m)$.

Example 3.3. If we consider the Fermat curve \mathbf{C}_{4} defined over \mathbf{F}_{25}, then $C(r, 4)$ is a 25 -[32,10,20]-code for $r=1$ and a 25 -[32,22,8]-code for $r=2$. In the first case is not difficult to show that the following ten functions

$$
1, \frac{x}{y}, \frac{x}{z}, \frac{y}{z}, \frac{y}{x}, \frac{z}{x}, \frac{z}{y}, \frac{y^{2}}{x z}, \frac{z^{2}}{x y}, \frac{x^{2}}{y z}
$$

form a basis for the space $L(A)$. So it is possible to have a generator matrix for the code $C(1,4)$.

Theorem 3.4. If $m \geq 4$ and $\frac{m}{3}-1<r<2 \frac{m}{3}$, then the q-ary code $C(r, m)$ constructed on the Fermat curve \mathbf{C}_{m} admits an automorphism group of order $6 m^{2}$ which is isomorphic to $\operatorname{Aut}\left(\mathbf{C}_{m}\right)$. Moreover it has a subgroup acting regularly on suppD.
Proof. Let \mathbf{C}_{m} be the Fermat curve with $q \equiv 1(\bmod 6 m)$. By Proposition 3.1 $\operatorname{Aut}\left(\mathbf{C}_{m}\right)=\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)$ and, by Theorem 2.2, $\left|\operatorname{Aut}\left(\mathbf{C}_{m}\right)\right|=6 m^{2}$ since $m \geq 4$. Moreover by Proposition 3.2, $\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)=\left(\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)\right)_{A, D}$ since $\operatorname{supp} D=V_{2}$ and $\operatorname{supp} A=V_{1}$. Now, $N=2 m^{2}>(m-1)(m-2)+2=$ $2 g\left(\mathbf{C}_{m}\right)+2$ and so, by a) of Theorem 2.5, $\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)=\left(\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)\right)_{A, D}$ is, up to isomorphism, a subgroup of the automorphism group of $C(r, m)$. Now, by Proposition 3.2, the subgroup G of $\operatorname{Aut} \mathbf{F}_{q}\left(\mathbf{C}_{m}\right)$ is regular on $\operatorname{supp} D=V_{2}$.

Remark 3.5. We note that in the case where (q, s) is a circular pair with $s=6 s^{\prime}$ for some integer s^{\prime} and $m=\frac{q-1}{s} \geq 4$, then by Theorem $2.3 \mathbf{C}_{m}\left(\mathbf{F}_{q}\right)=V_{1} \cup V_{2}$ and so the q-ary code $C(r, m)$ constructed in the above theorem cannot be enlarged further.

4. Decoding.

In order to have an easy decoding for our codes, we will embed them into group algebras.
Let $C(r, m)$ be the code constructed in the previous section where $\frac{m-3}{3}<r<$ $\frac{2 m}{3}, m=\geq 4$ and $q \equiv 1(\bmod 6 m)$. Moreover consider the automorphism group G of $C(r, m)$ which is regular on suppD (see Theorem 3.4). The vector space \mathbf{F}_{q}^{N} is isomorphic to $\mathbf{F}_{q}[G]$ since $|G|=N$ being G regular on suppD $=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$. For every $i=1,2, \ldots, N$ let ρ_{i} be the unique element of G such that $\rho_{i}\left(P_{1}\right)=P_{i}$. Now we consider the \mathbf{F}_{q}-linear isomorphism $\phi: \mathbf{F}_{q}^{N} \longrightarrow \mathbf{F}_{q}[G]$, defined by

$$
\begin{equation*}
\phi\left(a_{1}, a_{2}, \ldots, a_{N}\right)=\sum_{i=1}^{N} a_{i} \rho_{i} \tag{4}
\end{equation*}
$$

for every $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbf{F}_{q}^{N}$. So we can identify our code $C(r, m)$ to $\phi(C(r, m))=\left\{\sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i} \mid x \in L(A)\right\}$. After this identification we have that G acts on $\phi(C(r, m))$ in the following way

$$
\begin{equation*}
\rho\left(\sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i}\right)=\sum_{i=1}^{N} x\left(\rho P_{i}\right) \rho_{i} \tag{5}
\end{equation*}
$$

for every $\rho \in G$ and $\sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i} \in \phi(C(r, m))$. Now we are able to prove the following
Proposition 4.1. The code $C(r, m)$ is, up to isomorphism, a left ideal in the group algebra $\mathbf{F}_{q}[G]$.
Proof. We will prove that $\phi(C(r, m))$ is a left ideal of the group algebra $\mathbf{F}_{q}[G]$. In order to show this it is enough to prove that $\rho \circ \sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i} \in \phi(C(r, m))$ for any $\rho \in G$ and $\sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i} \in \phi(C(r, m))$ where \circ denotes the multiplication in $\mathbf{F}_{q}[G]$. But

$$
\begin{equation*}
\rho \circ \sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i}=\sum_{i=1}^{N} x\left(P_{i}\right)\left(\rho \rho_{i}\right)=\sum_{i=1}^{N} x\left(\rho_{i} P_{1}\right)\left(\rho \rho_{i}\right) \tag{6}
\end{equation*}
$$

and if we set $\rho_{j}=\rho \rho_{i}$ then $\rho_{i}=\rho^{-1} \rho_{j}$ and so from (5) we get $\rho \circ \sum_{i=1}^{N} x\left(P_{i}\right) \rho_{i}=$ $\sum_{j=1}^{N} x\left(\rho^{-1} \rho_{j} P_{1}\right) \rho_{j}=\sum_{j=1}^{N} x\left(\rho^{-1} P_{j}\right) \rho_{j}=\rho^{-1}\left(\sum_{j=1}^{N} x\left(P_{j}\right) \rho_{j}\right) \in \phi(C(r, m))$ because of (4) and $\rho^{-1} \in G$.

Now we are able to give a easy decoding of $C(r, m)$ in the case where $p \neq$ 2. In fact in this case the group algebra $\mathbf{F}_{q}[G]$ considered above is semisimple by Maschke's theorem because of $\operatorname{char} \mathbf{F}_{q}=p$ does not divide $|G|=2 m^{2}=$ $2 \frac{(q-1)^{2}}{s^{2}}$. Thus any left ideal of $\mathbf{F}_{q}[G]$ is generated by an idempotent (see for instance [2]). Let $\phi(C(r, m))$ be generated by the idempotent e and consider its orthogonal idempotent $u=1-e$. An element $c \in \phi(C(r, m))$ if and only if $c \circ u=0$. If we define the syndrome as the map $S: \mathbf{F}_{q}[G] \longrightarrow \mathbf{F}_{q}[G]$ defined by $S(v)=v \circ u$ for every $v \in \mathbf{F}_{q}[G]$, we have that c is a code word if and only if its syndrome is equal to zero. In case $v=c+a$ with $c \in \phi(C(r, m))$ and a having at most

$$
\begin{equation*}
t \leq \frac{(d-1)}{2} \tag{7}
\end{equation*}
$$

coordinates different to zero (where d is the minimal distance of the code), then the syndrome is $S(v)=v \circ u=(c+a) \circ u=a \circ u$. But if \mathbf{A} denotes the set of vectors of $\mathbf{F}_{q}[G]$ with at most t coordinates different from zero, the restricted map

$$
S: \mathbf{A} \longrightarrow \mathbf{F}_{q}[G]
$$

is injective (see [3]) since if $a, b \in \mathbf{A}, S(a)=S(b)$ if and only if $a-b=$ $(a-b) \circ e$. Thus $a-b \in \mathbf{F}_{q}[G] \circ e=\phi(C(r, m))$. But the weight of $a-b$ is $: w(a-b) \leq w(a)+w(b) \leq 2 t \leq d-1$ by (6). So $a-b=0$ that is $a=b$. Therefore the error vector a, and so the code word c, is uniquely determined.

REFERENCES

[1] J.R. Clay, Nearrings, Genesis and Applications, Oxford Science Publications, 1992.
[2] Y.A. Drozd - V.V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin, Heidelberg, 1994.
[3] I. Damgard - P. Landrock, Codes and Ideals in Group Algebras, Preprint n. 12, Math. Inst. Aarhus Univ. (1986/87).
[4] A. Garcia - J.F. Voloch, Fermat Curves over Finite Fields, J. Number Theory, 30 (1988), pp. 345-356.
[5] V.D. Goppa, Codes on Algebraic Curves, (Russian), Dokl. Akad. Nauk SSSR, 259 (1981), pp. 1289-1290.
[6] V.D. Goppa, Algebraic-Geometric Codes, Math. USSR Izvestia, 21 -1 (1983), pp. 75-91.
[7] J W.P. Hirschfeld - L. Storme - J.A. Thas - J.F. Voloch, A Characterization of Hermitian curves, J. Geometry, 41 (1991), pp. 72-78.
[8] J.P. Hansen, Codes on the Klein Quartic, Ideals and Decoding, IEEE Trans. Inform. Theory Vol. IT-33, n. 6 (1987), pp. 923-925.
[9] W.F. Ke - H. Kiechle, On the Solutions of the Equation $x^{m}+y^{m}-z^{m}=1$ in a Finite field, Proc. Am. Math. Soc., 123 (1995), pp. 1331-1339.
[10] H. Kiechle, Points in Fermat curves over Finite Fields, Contem. Math., 168 (1994), pp. 181-183.
[11] H.W. Leopoldt, Über die Automorphismengruppe des Fermatkörpers, J. Number Theory, 56 (1996), pp. 256-282.
[12] C.J. Moreno, Algebraic Curves over Finite Fields, Cambridge University Press, 1993.
[13] H.-G. Rück - H. Stichtenoth, A Characterization of Hermitian function fields over Finite Fields, J. Reine Angew, 459 (1994), pp 185-188.
[14] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, Heidelberg, New York, 1993.
[15] H. Stichtenoth, On Automorphisms of Geometric Goppa codes, J. Algebra, 130 (1990), pp. 113-121.
[16] H. Stichtenoth, The Fermat curves in Characteristic p, Contem. Math., 225 (1999), pp. 123-129.
[17] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik, I, II, Arch. Math., 24 (1973), pp. 527544, pp. 615-631.

Dipartimento di Matematica ed Applicazioni,
Via Archirafi 34, 90123 Palermo (ITALY)
e-mail: spera@dipmat.math.unipa.it

