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GEOMETRIC GOPPA CODES ON FERMAT CURVES

ANTONINO GIORGIO SPERA

We consider a class of codes defined by Goppa’s algebraic-geometric
construction on Fermat curves. Automorphisms and decoding of such codes
are investigated.

1. Introduction.

This paper is concerned with Geometric Goppa codes, nowadays also
called algebraic-geometric codes, which were introduced by V.D. Goppa in
1977 ([5], [6]) using algebraic curves over finite fields. We construct a class
of such codes associated with some Fermat curves. Precisely, if q is a prime
power and Fq denotes the finite field of order q , we take into consideration
Fermat curves over Fq of degree m with q ≡ 1 (mod 6m). Such a curve
Cm is absolutely irreducible and smooth. The case where m = q−1

s , s is a
positive integer which is divisible by 6 and (q, s) is a circular pair (see [1] and
[10]), was considered by H. Kiechle in [10] where the Fq -rational points were
determined. We investigate, in section 3, the automorphisms of Cm showing
that each of them is defined over Fq . Moreover we analyse the orbits of the
automorphism group of Cm on the Fq -rational point set of Cm . There are at
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least two orbits V1 and V2 which have order 3m and 2m2 respectively. Next,

considering the rational divisors D = ∑2m2

i=1 Pi and A = r(
∑3m

j=1 Qj ), where
V1 = {Q1, Q2, ..., Q3m}, V2 = {P1, P2, . . . , P2m2} and r is a positive integer,
we obtain a linear code which admits an automorphism group of order 6m2.
Furthermore this group has a subgroup which is regular on suppD. In section
4, using the automorphisms of the code, we are able to embed the code as a
left ideal of a group algebra in order to get an easy decoding of the constructed
code.

2. Notations and basic results.

Let Fq be the finite field of order q = pl , where p is a prime number
and l a positive integer. Suppose X is an absolutely irreducible, non-singular,
projective curve defined over Fq and let g(X) be its genus. We denote by
Aut(X) the automorphism group of X and by AutFq

(X) the subgroup of
Aut(X) of Fq -automorphisms of X.

It is known that Aut(X) always is finite if g(X) > 1 (see [11]) and H.
Stichtenoth proved the following result.

Theorem 2.1 ([16]). If X is not the Hermitian curve and g(X) > 1 then
|Aut(X)| ≤ 16 g(X)4 .

Suppose m is a positive integer, m > 1, which is relatively prime to p.
The Fermat curve of degree m over Fq is the projective plane curve Cm defined
by the homogeneous equation

(1) Xm + Ym = Zm

A Fermat curve of degree q + 1 is called Hermitian curve.
Since p does not divides m, Cm is easily seen to be absolutely irreducible and
non-singular, so its genus is

g(Cm) = 1

2
(m − 1)(m − 2)

Theorem 2.2. ([11]). Let q = pl , m ≥ 4 a positive integer with (m, p) = 1
and Cm the Fermat curves of degree m.

i) If m �= q + 1, then |Aut(Cm)| = 6m2.
ii) If m = q + 1, then |Aut(Cm)| = q3(q2 − 1)(q3 + 1), Aut(Cm) =

AutFq2
(Cm) and it is isomorphic to the projective unitary group

PGU (3, q2).
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Note that in the ii) case of the above theorem, Cm is an Hermitian curve.
For a curve X over Fq , X(Fq ) denotes the set of Fq -rational points of X

and N (X) the cardinality of X(Fq). The well-known Hasse-Weil bound states
that

(2) |N (X)− (q + 1)| ≤ 2 g(X)
√
q.

X is said to be a maximal curve if the upper bound in (2) is attained. It is
known (see [13], [7]) that Hermitian curves are the only maximal curves of
genus 12 (q − 1)q over Fq2 . For some Fermat curves Garcia and Voloch gave in
[4] an upper bound which is better than Hasse-Weil bound.

Consider the Fermat curve Cm over Fq and suppose that q ≡ 1 (mod 6m).
Then (Fq )∗ = Fq\{0} has some element of order 6m. If β is a such element,
we set

V1 = {(β6i , 0, 1)|i = 0, 1, ...,m − 1}∪
{(0, β6i, 1)|i = 0, 1, ...,m − 1}∪

{(β6i+3, 1, 0)|i = 0, 1, ...,m − 1} and
V2 = {(1, β6i+2, β6 j+1)|i, j = 0, 1, ...,m − 1}∪

{(1, β6i−2, β6 j−1)|i, j = 0, 1, ...,m − 1}.
It easy to show that V1 ∪ V2 ⊆ Cm(Fq).

Now let s ≥ 2 be an integer and q , as before, a power of a prime number.
The ordered pair (q, s) is said to be circular (see [1]) if s divides q − 1 and the
subgroup � of (Fq)∗ of order s satisfies

|(�a + b) ∩ (�c + d)| ≤ 2

for all a, b, c, d ∈ Fq with �a �= �c or b �= d .
For example, it is known that the pair (q2, q + 1) is circular for every

prime power q . For more information and tables on circular pairs see [1]. For
a circular pair (q, s), consider the Fermat curve Cm of degree m = q−1

s . It was
proved (see [9] and [10]) that if 6 divides s (and so q ≡ 1 (mod 6m)), then Cm

has exactly n = 2m2 + 3m rational points over Fq . More precisely, there was
shown the following result.

Theorem 2.3. Let (q, s) be a circular pair, m = q−1
s and suppose that 6

divides s. Then the set of Fq -rational points Cm(Fq) of the Fermat curve Cm is
Cm(Fq ) = V1 ∪ V2.
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Now we recall some basic facts about geometric Goppa codes (cf. [5],
[12], [14]). Let X be an (absolutely irreducible, smooth, projective) curve over
Fq . If P1, P2, ..., Pn are n pairwisely distinct rational points of X, let D be the
divisor defined by

D = P1 + P2 + ... + Pn

and A be a rational divisor on X with suppD ∩ suppA = ∅. Moreover, if
Fq (X) denotes the field of Fq -rational functions on X, set

L(A) = {z ∈ Fq(X)∗ | div(z) ≥ −A} ∪ {0}.
Here as usual, div(z) denotes the principal divisor associated with the function
z. The geometric Goppa code C(A, D) associated with A and D is defined by

C(A, D) = {(z(P1), z(P2), ..., z(Pn )) | z ∈ L(A)}.
With this notations we have (see [12] or [14]) the following theorem.

Theorem 2.4. If 2g(X) − 2 < degA < n, then C(A, D) is a q-ary [n, k, d]-
linear code where k = degA+ 1− g(X) and d ≥ n − degA.

It is known that the symmetric group Sn acts on Fnq in the following way:

τ (a1, a2, ..., an) = (aτ (1), aτ (2), ..., aτ (n))

for every τ ∈ Sn and (a1, a2, ..., an) ∈ Fnq . We define the automorphism group
of the code C(A, D) by

Aut(C(A, D)) = {τ ∈ Sn | τ (c)∈C(A, D) f or every c ∈C(A, D)}.
The group AutFq

(X) acts on the rational divisor group Div(X) of X via

ρ(
∑

npP) =
∑

npρ(P)

if
∑

npP ∈ Div(X) and ρ ∈ AutFq
(X). So the stabilizer of A and D,

(AutFq
(X))A,D = {ρ ∈ AutFq

(X) | ρ(D) = D and ρ(A) = A},
is a subgroup of AutFq

(X) and each of its elements ρ induces an automorphism
of C(A, D) by

ρ(x (P1), x (P2), ..., x (Pn)) = (x (ρ(P1)), x (ρ(P2)), ..., x (ρ(Pn)))

where (x (P1), x (P2), ..., x (Pn))∈C(A, D). Moreover, it was shown in [15] (see
also [14]) the following result.
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Theorem 2.5.
a) If n > 2 g(X) + 2, then (AutFq

(X))A,D is isomorphic to a subgroup of
Aut(C(A, D)).

b) If g(X) = 0, A > 0 and degA ≤ n− 3, then Aut(C(A, D)) is isomorphic
to (AutFq

(X))A,D . So, being AutFq
(X) isomorphic to the projective

linear group PGL(2, q), any automorphism of C(A, D) is induced by a
projective linear map.

3. Fermat codes.

First we determine the automorphisms of a Fermat curve Cm over Fq in
the case where q ≡ 1 (mod 6m), showing that each of them is defined over Fq .
As in section 2, let β ∈ F∗

q be a element of order 6m and consider the projective
linear transformation σ associated with the matrix( 0 β3 0

0 0 β6

1 0 0

)
.

Suppose P = (a, b, c) is a points of Cm . We have that σ (P) = (β3b, β6c, a)
is on Cm too. In fact, (β3b)m)+ (β6c)m = am if and only if β3mbm + cm = am

if and only if P ∈ Cm being β3m = −1. So σ ∈ AutFq
(Cm). Of course if

α is the projective linear transformation that switches a and b in each point
(a, b, c) of the plane, α is a Fq -automorphism of Cm and the group H = 〈α, σ 〉
is a Fq -automorphism group of Cm . Moreover, since α and σ have order two
and three respectively, it is easy to see that H = 〈α, σ 〉 is isomorphic to the
symmetric group S3. Consider now the projective linear transformation γ (i, j ),
i,j = 0,1,...,m-1, associated with the matrix( 1 0 0

0 β6i 0
0 0 β6 j

)
.

Since γ (i, j )(P) = (a, β6ib, β6 j c) if P = (a, b, c), we have that P ∈Cm if and
only if γ (i, j )(P)∈Cm . So

L = {γ (i, j ) | i, j = 0, 1, ...,m − 1}
is clearly an abelian group of Fq -automorphisms of Cm of order m2. Since H
normalises L and H ∩ L = {1}, we get Ḡ = H L is a Fq -automorphism group
of Cm of order 6m2. Now by i) of the Theorem 2.2, we have that

(3) Aut(Cm) = Ḡ = H L

being m �= q + 1; so Aut(Cm) = AutFq
(Cm). Therefore we get the following

proposition.
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Proposition 3.1. Let Cm be a Fermat curve over Fq of degree m ≥ 4 such that
q ≡ 1 (mod 6m). Then Aut(Cm) = AutFq

(Cm).

With notations as above we set

G = 〈α, L〉.
Let Cm(Fq) be the set of Fq -rational points of Cm and suppose again that q ≡ 1
(mod 6m). Then Cm(Fq ) ⊇ V1 ∪ V2 where V1 and V2 are as in section 2.

Proposition 3.2. Let q,m and Cm be as in the previous proposition. Then
Aut(Cm) admits at least two orbits on Cm(Fq), namely V1 and V2. Moreover,
G is a subgroup of Aut(Cm) which is regular on V2.

Proof. By (3) we have Aut(Cm ) = Ḡ = H L where H = 〈α, σ 〉 and
L = {γ (i, j ) | i, j = 0, 1, ...,m − 1}. Consider the point P = (1, β2, β)∈ V2.
Since γ (i, j )(P) = (1, β6i+2, β6 j+1) and αγ (i, j )(P) = (β6i+2, 1, β6 j+1) =
(1, β6(m−i)−2, β6(m−i+ j)−1) for every γ (i, j ) ∈ L ⊂ Ḡ , we have that V2 is
contained in the Ḡ-orbit PḠ of P . Moreover the stabilizer Ḡ P of P is the
subgroup generated by the automorphism σγ (m − 1,m − 1) which has order
3. So PḠ = V2 being |PḠ | = |Ḡ|

|Ḡ P | = 6m2

3 = 2m2 = |V2|. Now it is

easy to see that the subgroup M = {γ ( j, j ) | j = 0, 1, ...,m − 1} of Ḡ acts
regularly on the points set 	1 = {(β6i , 0, 1) | i = 0, 1, ...,m − 1} and so 	1

and α(	1) are contained in the same Ḡ-orbit of Ḡ . But M is also regular on
	2 = {(β6i+3, 1, 0) | i = 0, 1, ...,m − 1} and, as σ ((β3, 1, 0)) = (1, 0, 1)∈ 	1,
we get V1 is contained in the orbit QḠ where Q = (1, 0, 1). Further the
stabilizer of Q is ḠQ = T ∪ S where T = {γ (i, 0) | i = 0, 1, ...,m − 1} and
S = {ασγ (i,m − 1) | i = 0, 1, ...,m − 1}. So |ḠQ | = 2m being T ∩ S = ∅.
Hence |QḠ | = |Ḡ|

|ḠQ| = 6m2

2m = 3m and we obtain that QḠ = V1. Now the group

G = 〈α, L〉 is regular on V2 since G ⊆ Ḡ , G ∩ Ḡ P = 1 and |G| = 2m2.
�

In the following for Cm we always suppose that q ≡ 1 (mod 6m). We
now construct a class of geometric Goppa codes on Fermat curves which admit
enough large groups of automorphisms. Consider the subsets of rational points
V1 and V2 of Cm and let N = 2m2 and

D =
N∑
i=1

Pi

where P1, P2, ..., PN are the points of V2 in a fixed order. Further we consider
the divisor A = r

∑
Qj where the Qj ’s are the points of V1 and r is a positive
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integer. Thus we have degA = 3rm and for

m

3
− 1 < r < 2

m

3

the geometric Goppa code C(A, D) has parameters ( see Theorem 2.4 ) N, k, d
with

k = 3rm + 1− (m − 1)(m − 2)

2
and d ≥ m(2m − 3r).

In the following we will denote the constructed q -ary linear code C(A, D) by
C(r,m).

Example 3.3. If we consider the Fermat curve C4 defined over F25, then
C(r, 4) is a 25-[32,10,20]-code for r = 1 and a 25-[32,22,8]-code for r = 2. In
the first case is not difficult to show that the following ten functions

1,
x

y
,
x

z
,
y

z
,
y

x
,
z

x
,
z

y
,
y2

x z
,
z2

xy
,
x 2

yz

form a basis for the space L(A). So it is possible to have a generator matrix for
the code C(1, 4).

Theorem 3.4. If m ≥ 4 and m
3 − 1 < r < 2m3 , then the q-ary code C(r,m)

constructed on the Fermat curve Cm admits an automorphism group of order
6m2 which is isomorphic to Aut(Cm). Moreover it has a subgroup acting
regularly on suppD.

Proof. Let Cm be the Fermat curve with q ≡ 1 (mod 6m). By Proposition
3.1 Aut(Cm) = AutFq

(Cm) and, by Theorem 2.2, |Aut(Cm )| = 6m2 since
m ≥ 4. Moreover by Proposition 3.2, AutFq

(Cm) = (AutFq
(Cm))A,D since

suppD = V2 and suppA = V1. Now, N = 2m2 > (m − 1)(m − 2) + 2 =
2g(Cm) + 2 and so, by a) of Theorem 2.5, AutFq

(Cm) = (AutFq
(Cm))A,D is,

up to isomorphism, a subgroup of the automorphism group of C(r,m). Now,
by Proposition 3.2, the subgroup G of AutFq

(Cm) is regular on suppD = V2.
�

Remark 3.5. We note that in the case where (q, s) is a circular pair with s = 6s ′
for some integer s ′ and m = q−1

s ≥ 4, then by Theorem 2.3 Cm (Fq ) = V1 ∪ V2
and so the q -ary code C(r,m) constructed in the above theorem cannot be
enlarged further.
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4. Decoding.

In order to have an easy decoding for our codes, we will embed them into
group algebras.
Let C(r,m) be the code constructed in the previous section where m−3

3 < r <
2m
3 , m =≥ 4 and q ≡ 1 (mod 6m). Moreover consider the automorphism
group G of C(r,m) which is regular on suppD (see Theorem 3.4). The
vector space FNq is isomorphic to Fq[G] since |G| = N being G regular
on suppD = {P1, P2, ..., PN }. For every i = 1, 2, ..., N let ρi be the
unique element of G such that ρi (P1) = Pi . Now we consider the Fq -linear
isomorphism φ : FNq −→ Fq[G], defined by

(4) φ(a1, a2, ..., aN ) =
N∑
i=1

aiρi

for every (a1, a2, ..., aN ) ∈ FNq . So we can identify our code C(r,m) to

φ(C(r,m)) = {∑N
i=1 x (Pi)ρi | x ∈ L(A)}. After this identification we have

that G acts on φ(C(r,m)) in the following way

(5) ρ(
N∑
i=1

x (Pi)ρi ) =
N∑
i=1

x (ρPi)ρi

for every ρ ∈G and
∑N

i=1 x (Pi )ρi ∈ φ(C(r,m)). Now we are able to prove the
following

Proposition 4.1. The code C(r,m) is, up to isomorphism, a left ideal in the
group algebra Fq [G].

Proof. We will prove that φ(C(r,m)) is a left ideal of the group algebra Fq[G].
In order to show this it is enough to prove that ρ◦∑N

i=1 x (Pi)ρi ∈ φ(C(r,m)) for
any ρ ∈ G and

∑N
i=1 x (Pi)ρi ∈ φ(C(r,m)) where ◦ denotes the multiplication

in Fq[G]. But

(6) ρ ◦
N∑
i=1

x (Pi)ρi =
N∑
i=1

x (Pi )(ρρi ) =
N∑
i=1

x (ρi P1)(ρρi)

and if we set ρj = ρρi then ρi = ρ−1ρj and so from (5) we get ρ◦
N∑
i=1

x (Pi)ρi =
N∑
j=1

x (ρ−1ρj P1)ρj =
N∑
j=1

x (ρ−1Pj )ρj = ρ−1(
N∑
j=1

x (Pj )ρj ) ∈ φ(C(r,m)) because

of (4) and ρ−1 ∈G . �
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Now we are able to give a easy decoding of C(r,m) in the case where p �=
2. In fact in this case the group algebra Fq[G] considered above is semisimple
by Maschke’s theorem because of charFq = p does not divide |G| = 2m2 =
2 (q−1)

2

s2 . Thus any left ideal of Fq [G] is generated by an idempotent (see for
instance [2]). Let φ(C(r,m)) be generated by the idempotent e and consider its
orthogonal idempotent u = 1 − e. An element c ∈ φ(C(r,m)) if and only if
c ◦ u = 0. If we define the syndrome as the map S : Fq [G] −→ Fq [G] defined
by S(v) = v ◦ u for every v ∈ Fq[G] , we have that c is a code word if and only
if its syndrome is equal to zero. In case v = c + a with c ∈ φ(C(r,m)) and a
having at most

(7) t ≤ (d − 1)

2

coordinates different to zero (where d is the minimal distance of the code), then
the syndrome is S(v) = v ◦ u = (c+ a) ◦ u = a ◦ u. But if A denotes the set of
vectors of Fq [G] with at most t coordinates different from zero, the restricted
map

S : A −→ Fq[G]

is injective (see [3]) since if a, b ∈ A, S(a) = S(b) if and only if a − b =
(a − b) ◦ e. Thus a − b ∈ Fq[G] ◦ e = φ(C(r,m)). But the weight of a − b is
: w(a − b) ≤ w(a) + w(b) ≤ 2t ≤ d − 1 by (6). So a − b = 0 that is a = b.
Therefore the error vector a, and so the code word c, is uniquely determined.
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[17] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktio-
nenkörpers von Primzahlcharakteristik, I, II, Arch. Math., 24 (1973), pp. 527–
544, pp. 615–631.

Dipartimento di Matematica ed Applicazioni,
Via Archirafi 34, 90123 Palermo (ITALY)

e-mail: spera@dipmat.math.unipa.it


