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Maximal extensions of a linear functional
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ABSTRACT. Extensions of a positive hermitian linear functional ω, defined on a dense *-subalgebra A0 of a topo-
logical *-algebra A[τ ] are analyzed. It turns out that their maximal extensions as linear functionals or hermitian linear
functionals are everywhere defined. The situation however changes deeply if one looks for positive extensions. The
case of fully positive and widely positive extensions considered in [2] is revisited from this point of view. Examples
mostly taken from the theory of integration are discussed.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, we continue the analysis, undertaken in [2], [3] of the possibility of extending
a positive hermitian linear functional ω, defined on a dense *-subalgebra A0 of a topological
*-algebra (in general, without unit), with topology τ and continuous involution ∗, to some
elements of A. Moreover, we resume the notion of positive regular slight extension that closely
reminds the construction of the Lebesgue integral or Segal’s construction of noncommutative
integration [16].

If we take, for instance, as A the *-algebra of Lebesgue measurable functions on a compact
interval X of R with the topology of convergence in measure, and A0 := C(X) is the *-algebra
of continuous functions on X , then the Lebesgue integral ωL provides an extension of the Rie-
mann integral on A0, which we regard as a positive linear functional on A0. This extension is
not unique as the literature on Integration Theory shows (think of Denjoy, Perron or Henstock-
Kurzweil integrals see e.g. [7, 8, 1]). Thus, in an abstract set-up it makes sense to consider
extensions enjoying appropriate properties. As in [2] and [3], the starting point is the notion of
slight extension, which is treated for general linear maps in Köthe’s book [6]. As application of
the developed ideas, we report interesting results concerning infinite sums (see [2]).

In this paper, after showing that maximal extensions of linear functionals are necessarily
everywhere defined, we revisit widely positive, fully positive and absolute convergent exten-
sions already discussed in [2] and prove several new features that emerge from the discussion.
Applications to extensions of Riemann integral on continuous functions are also examined.

We will adopt the following definitions and terminology. If A is an arbitrary *-algebra, we
put

Ah = {b ∈ A : b = b∗}, P(A) =

{
n∑

i=1

a∗i ai : ai ∈ A

}
.
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Elements of Ah are called self-adjoint; elements of P(A) are called positive. Clearly, P(A) ⊆ Ah.
A linear functional ω, defined on a subspace D(ω) of A, is called

hermitian: if a ∈ D(ω) ⇔ a∗ ∈ D(ω) and ω(a∗) = ω(a), for every a ∈ D(ω);
positive: if ω(b) ≥ 0, for every b ∈ D(ω) ∩ P(A).

Throughout this paper, we denote by ω a positive hermitian linear functional defined on a
dense *-subalgebra A0 of a topological *-algebra A[τ ], with continuous involution ∗.

2. MAXIMAL EXTENSIONS

The problem of finding extensions of ω to larger subspaces of A has, in some situations, easy
solutions, namely when ω is τ -continuous or equivalently, closable [3, 17, 19], as discussed in
the Appendix. For this reason, we will only consider the case of nonclosable i.e., discontinuous
ω and we denote by Gω the graph of ω:

Gω = {(a, ω(a)) ∈ A0 × C; a ∈ A0}.

The linear functional ω is closable if Gω , the closure of Gω , does not contain couples (0, ℓ) with
ℓ ̸= 0. It turns out that a linear functional is closable if and only if it is continuous (see the
Appendix). Let Sω denote the collection of all subspaces H of A× C such that

(g1) Gω ⊆ H ⊆ Gω ;
(g2) (0, ℓ) ∈ H if, and only if, ℓ = 0.

If ω is nonclosable, i.e. Gω contains pairs (0, ℓ) with ℓ ̸= 0, then Gω /∈ Sω . To every H ∈ Sω ,
there corresponds an extension ωH , to be called a slight extension of ω, defined on

D(ωH) = {a ∈ A : (a, ℓ) ∈ H}
by

ωH(a) = ℓ,

where, from (g2), ℓ is the unique complex number such that (a, ℓ) ∈ H . Moreover, by applying
Zorn’s lemma to the family Sω , one proves that ω admits a maximal slight extension.

Remark 2.1. The construction relies on the fact that if a /∈ A0 and (a, ℓ) ∈ Gω , then H := Gω ⊕
⟨(a, ℓ)⟩ ∈ Sω and we can construct the extension ωH . Now if a′ /∈ D(ωH) and (a′, ℓ′) ∈ Gω , then
H ′ := H ⊕ ⟨(a′, ℓ′)⟩ ∈ Sω and we can construct a new extension ωH′ . Continuing in this way, at the
end (i.e. invoking Zorn’s lemma), we will find a maximal extension of ω.

Using the same notations of Köthe’s book [6], we put

Kω := {a ∈ A : (a, ℓ) ∈ Gω, for some ℓ ∈ C}.
The following propositions hold [2, 3, 6].

Proposition 2.1. Let ω be nonclosable. If there exists m ∈ C such that (a,m) ∈ Gω , then (a, ℓ) ∈ Gω

for every ℓ ∈ C, hence Gω = Kω × C.

From this (see Remark 2.1), follows the next:

Proposition 2.2. If ω is nonclosable and A0 is a proper subspace of Kω , then ω admits infinitely many
maximal extensions.

Furthermore,

Proposition 2.3. For every maximal extension ω̆ of ω, D(ω̆) = Kω .

Corollary 2.1. An extension ω̆ is maximal if and only if D(ω̆) = Kω .
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Remark 2.2. A stronger consequence actually comes from previous results. If ω̂ is an extension of ω,
and a ∈ Kω \ D(ω̂), then for any fixed ℓ ∈ C there exists a maximal hermitian extension ω̆ of ω̂ such
that ω̆(a) = ℓ; so we can choose arbitrarily the value that an extension takes at a.

To construct hermitian extensions (see [2, 3]), we define Hω as the collection of all subspaces
H ∈ Sω for which the following additional condition holds

(h3) (a, ℓ) ∈ H if and only if (a∗, ℓ) ∈ H ,
and then we proceed like in the case of the construction of slight extensions. In [2], it is proved
that all maximal hermitian extensions share the same domain. More precisely:

Proposition 2.4. Every ω admits a maximal hermitian extension ω̆ which is, at once, a maximal exten-
sion so D(ω̆) = Kω . Moreover, if ω is nonclosable and A0 is a proper subspace of Kω , then ω admits
infinitely many maximal hermitian extensions.

Remark 2.3. Let ω1 be a hermitian extension of ω and let a ∈ Kω \D(ω1). If we want to extend ω1, so
that ω2 is a hermitian extension of ω1, in general we cannot choose arbitrarily the value ω2(a). Indeed
let a = b+ ic with b = b∗ c = c∗, and suppose b /∈ D(ω1). Then we can choose arbitrarily the real value
ℓ1 ∈ R so that ω2(b) = ℓ1. Now if c /∈ span{D(ω1), b}, then we can choose arbitrarily the real value
ℓ2 = ω2(c), but if c ∈ span{D(ω1), b}, then the value ℓ2 is already fixed. The same argument can be
made in the case c /∈ D(ω1).

3. SOME INTERESTING SITUATIONS

3.1. Extensions of the Riemann integral. Let X = [0, 1], A be the *-algebra of Lebesgue mea-
surable functions on X , τ be the topology of convergence in measure, A0 = C(X) be the *-
algebra of all continuous functions on X and ω be the Riemann integral i.e.

ω(f) :=

∫ 1

0

f(x) dx.

It is well-known that the Riemann integral is nonclosable. To see this, let us consider the se-
quence

(3.1) hn(x) :=

{
2n(1− nx) if 0 ≤ x ≤ 1/n,

0 if 1/n < x ≤ 1.

Then hn → 0 almost everywhere and hence in measure, but∫ 1

0

hn(x)dx = 1, ∀n ≥ 1.

Recall that we have defined

Gω = {(a, ω(a)) ∈ A0 × C; a ∈ A0}.
We will prove the following:

Theorem 3.1. Let ω be the Riemann integral on a compact interval I ⊆ R. Given g ∈ A, then
(g, ℓ) ∈ Gω , for every ℓ ∈ C. Hence Gω = A× C, thus Kω = A.

Proof. We can suppose, without loss of generality, that I = [0, 1] so we can use the previous
sequence (3.1). As A0 is dense in A, then there exists a sequence (fn) ⊆ A0, such that fn → g,
and we put λn := ω(fn). Fixed ℓ ∈ C, let αn := ℓ − λn. Then αnhn → 0, fn + αnhn → g and
ω(fn+αnhn) = ω(fn)+αnω(hn) = λn+ℓ−λn = ℓ, ∀n. Then (g, ℓ) ∈ Gω , hence Gω = A×C. □

From Proposition 2.2, Proposition 2.3, Proposition 2.4 and Theorem 3.1, it follows the next
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Theorem 3.2. Let ω be the Riemann integral on a compact interval I ⊆ R, then ω admits infinitely
many maximal hermitian extensions with domain the whole algebra and any maximal hermitian exten-
sion of the Riemann integral has the whole algebra A as domain.

Example 3.1. Let ω be the Riemann integral on [0, 1], hn given by (3.1) and let c(x) : [0, 1] → C be
the following function:

c(x) :=

{
0 if x = 0,

1/x otherwise.

Then c ∈ A \D(ω).
Let fn(x) : [0, 1] → C, n ≥ 1, be the following sequence of functions:

fn(x) :=

{
n2 x if 0 ≤ x ≤ 1/n,

1/x otherwise.

Then fn → c pointwise and hence in measure, fn ∈ A0, ∀ n ≥ 1 and

ω(fn) =

∫ 1

0

fn(x)dx = 1/2 + log(n).

Fixed ℓ ∈ C, let αn := ℓ − ω(fn) = ℓ − (1/2 + log(n)). Then αnhn → 0, fn + αnhn → c, and
ω(fn + αnhn) = ω(fn) + αnω(hn) = ℓ, ∀n. Since fn + αnhn ∈ A0 ∀n, then (c, ℓ) ∈ Gω and so, for
any ℓ ∈ C, there exists a maximal hermitian extension ω̂ of ω such that ω̂(c) = ℓ.

Remark 3.4. The previous Example 3.1 first shows explicitly the construction used in Theorem 3.1,
pointing out that any a ∈ A is in Kω ; then, by Remark 2.2, it shows that, if a /∈ D(ω), then ∀ℓ ∈ C
there exists a maximal hermitian extension ω̆ of ω such that ω̆(a) = l. We note that even if c(x) ∈ P(A),
we can choose ℓ < 0. This shows that the previous construction could be inappropriate for most useful
situations. As we will see later, we will be able to construct maximal positive extensions of the Riemann
integral but, it is possible to prove that there are not positive extensions ω̂ of the Riemann integral such
that the function c(x) is in the domain of ω̂ (see Example 5.2).

3.2. The case of infinite sums. Let S denote the complex vector space of all infinite sequences
of complex numbers. S is a *-algebra if the product a · b of two sequences a = (ak), b = (bk),
k ≥ 1, is defined componentwise and the involution by a∗ = (ak). Let us endow S with the
topology defined by the set of seminorms

pk(a) = |ak|, a = (ak) ∈ S.

Let S0 denote the *-subalgebra of S consisting of all finite sequences in the sense that a =
(ak) ∈ S0 if, and only if, there exists N ∈ N such that ak = 0 if k > N . We define

ω(a) =
∞∑
k=1

ak, a = (ak) ∈ S0.

The symbol of series is only graphic since all sums are finite. This functional, which is obviously
positive hermitian, is nonclosable. To see this, let us consider the sequence of sequences (an) =
((an,k)) ⊆ S0 with, for n ≥ 1,

an,k := δn,k (the Kronecker delta).

For fixed k, clearly limn→∞ an,k = 0. Hence an → 0 as n → ∞ and, applying ω, we get

ω(an) = ω((an,k)) = 1, ∀n ≥ 1.



202 Fabio Burderi, Camillo Trapani and Salvatore Triolo

We observe that any convergent series which converges to l ∈ C, can be “rewritten” as a se-
quence of sequences (an) ⊆ S0, with an → 0 and ω(an) → l, as n → ∞. Indeed, given the
series c1 + c2 + c3 . . . converging to l, we define (an) = ((an,k)), for n ≥ 1, as follows:

an,k :=

{
cn+1−k if k ≤ n

0 if k > n.

Clearly ((an,k)) ⊆ S0 and ω((an,k)) = c1+ c2+ · · ·+ cn. Since the series is convergent, for fixed
k, an,k → 0 as n → ∞ and, finally, ω((an,k)) → l as n → ∞.

The next proposition shows that in this case Kω is not a proper subset of the algebra.

Proposition 3.5. Let S and ω be as above. Then S0 is a dense subalgebra of S and Kω = S.

Proof. See Proposition 4.2 of [2]. □

Now, it seems interesting to us to show another example in which Kω coincides with the
entire algebra A. Starting with a subalgebra of S and changing the topology with a finer one,
we will find a new topological *-algebra S1. Then, taking the closure of S0 in S1, we will
obtain the required algebra A ⊆ S1.

We point out that in the following we will adopt notations that are not the usual ones. Let us
consider the subalgebra S1 ⊆ S of all bounded sequences x = (xk), endowed with the norm

∥x∥∞ = sup
k

|xk|.

Then S1 is a topological (precisely, a Banach) *-algebra with S0 ⊆ S1. In [2], it is shown first
that the closure of S0 in S1 is the algebra A := {(ck) ∈ S1 : |ck| → 0 as k → ∞}; then it
is shown that ω is a nonclosable positive hermitian linear functional defined on S0 (a dense
*-subalgebra of the topological *-algebra A); finally it is shown (see Proposition 4.10 of [2]) that,
even in this case, Kω = A.

4. THE DOMAIN OF MAXIMAL EXTENSIONS

As seen in Theorem 3.2 for the case of the Riemann integral and in Proposition 3.5 for the
infinite sums, all maximal extensions of a nonclosable linear functional have the same domain.
The following theorem generalizes this statement to the abstract case.

Theorem 4.3. Let ω be nonclosable. Then Gω = A× C. Hence Kω = A.

Proof. As ω is nonclosable, then there exists a net (aα)α∈Γ ⊆ A0, such that aα
τ→ 0 and ω(aα) →

l ∈ C, with l ̸= 0. Now let b ∈ A. Since A0 is a dense subalgebra of A, there exists a net
(bα)α∈Γ ⊆ A0, such that bα

τ→ b: indeed, since A is a topological vector space, we can choose as
unique set of indices Γ, the class of all neighbourhoods of 0, directed by inclusion. Now, since
l ̸= 0, there exist subnets (aγ) ⊆ (aα), (bγ) ⊆ (bα), γ ∈ Γ1 ⊆ Γ, such that:

• aγ
τ→ 0;

• ω(aγ) ̸= 0, ∀ γ;
• bγ

τ→ b.
Let λ ∈ C and, for each γ, let λ′

γ := λ − ω(bγ) ∈ C. We assert that there exists a monotone
function h : Γ1 → Γ1, such that

λ′
γ · ah(γ)

τ→ 0.

Indeed if λ′
γ = 0 we put h(γ) = γ; otherwise, for every neighbourhood U of the origin, U ′ :=

1/λ′
γ U is still a neighbourhood of the origin, so there exists γ′ ≥ γ such that aγ′ ∈ U ′, and
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therefore λ′
γ · aγ′ ∈ U . Now, since aγ

τ→ 0, put h(γ) := γ′, we have λ′
γ · ah(γ)

τ→ 0. Since,
obviously, ω(ah(γ)) → l then:

λ′
γ

ω(ah(γ))
· ah(γ) → 0.

Hence:

(4.2)
λ′
γ

ω(ah(γ))
· ah(γ) + bγ → b

and

(4.3) ω

(
λ′
γ

ω(ah(γ))
· ah(γ) + bγ

)
=

λ− ω(bγ)

ω(ah(γ)
· ω(ah(γ)) + ω(bγ) = λ, ∀γ.

Therefore (3.1) and (4.2) imply that ∀b ∈ A, and ∀λ ∈ C, (b, λ) ∈ Gω , from which the statement
follows. □

By Proposition 2.4, the analogue of Theorem 3.2 is the following:

Theorem 4.4. Let ω be nonclosable. Then ω admits infinitely many maximal hermitian extensions
with domain the whole algebra A and any maximal hermitian extension of ω has the whole algebra A as
domain.

5. WIDELY POSITIVE AND FULLY POSITIVE EXTENSIONS

We have proved that all maximal extensions of a nonclosable linear functional ω are defined
on the whole algebra A. This leads to a significant simplification on the the notion of widely
positive and fully positive extension introduced in [2]. By Theorem 4.3, the definitions can be
lightened and, in this way, several new developments emerge.

Definition 5.1. Given ω, we define Pω as the collection of all subspaces K ∈ Hω satisfying the follow-
ing additional condition

(p4) (a, ℓ) ∈ K and a ∈ P(A), implies ℓ ≥ 0.

Since ω is positive, then Pω ̸= ∅ and Gω ⊆ K ⊆ A for every K ∈ Pω . To every K ∈ Pω , there
corresponds a hermitian extension ωK of ω, defined on

D(ωK) = {a ∈ A : (a, ℓ) ∈ K}

by
ωK(a) = ℓ, a ∈ D(ωK),

where, from (g2) of Section 2, ℓ is the unique complex number such that (a, ℓ) ∈ K. By (p4),
ωK is a positive hermitian extension of ω. We observe that A0 ⊆ D(ωK) ⊆ A as vector spaces.
Since Pω satisfies the assumptions of Zorn’s lemma, we have the following:

Theorem 5.5. Every positive hermitian linear functional ω admits a maximal positive hermitian exten-
sion.

Definition 5.2. Let ω̂ be an extension of ω defined on the domain D(ω̂) with A0 ⊆ D(ω̂) ⊆ A. We say
that ω̂ is fully positive if ω̂ is positive and D(ω̂) ⊇ P(A).

For a, b ∈ Ah, we define
a ≤ b ⇔ b− a ∈ P(A).
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Remark 5.5. Let ω̂ be a hermitian extension of ω, a ∈ D(ω̂) and c ∈ Ah. If b := ±(a − c) ∈ Ah,
then ω̂(a) ∈ R. Indeed if b ∈ Ah, then a = c ± b ∈ Ah and so, by the hermiticity of ω̂, ω̂(a) ∈ R.
Moreover if ω̂ is a positive hermitian extension of ω and a, c ∈ D(ω̂) ∩ Ah with a ≥ c, put b := a− c,
then b ∈ P(A) ∩D(ω̂), so ω̂(a) = ω̂(c) + ω̂(b) ≥ ω̂(c). Hence ω̂ is monotone on D(ω̂) ∩ Ah.

If ω̂ is a positive hermitian extension of ω and c ∈ Ah, then by Remark 5.5, we can introduce
(see [2]) the following notations that will use both to characterize the elements for which it
is possible to find a positive hermitian extension and, given such an element, the values this
extension may assume.

µc,ω̂ := inf {ω̂(a) : a ∈ D(ω̂), a ≥ c},
where we put µc,ω̂ := +∞ if the set in the right hand side of the definition is the empty set;

λc,ω̂ := sup {ω̂(a) : a ∈ D(ω̂), a ≤ c}.

Definition 5.3. Let ω̂ be a positive hermitian extension of ω and let

(5.4) K‡
ω̂ := {c ∈ P(A) : λc,ω̂ is finite}.

We say that ω̂ is widely positive if ω̂ is positive and D(ω̂) ∩ P(A) = K‡
ω .

The following statements hold (see [2]).

Lemma 5.1. Let ω̂ be a positive hermitian extension of ω and let c ∈ P(A). Then 0 ≤ λc,ω̂ ≤ µc,ω̂ .

Theorem 5.6. Let ω be nonclosable, ω̂ a positive hermitian extension of ω and c ∈ K‡
ω̂ with c /∈ D(ω̂).

Then, ∀ γ ∈ R such that λc,ω̂ ≤ γ ≤ µc,ω̂ , there exists a positive hermitian extension ω1 of ω̂, such that
c ∈ D(ω1) and ω1(c) = γ.

Theorem 5.7. Let c ∈ P(A) \ K‡
ω . Then there is no positive hermitian extension ω̂ of ω such that

c ∈ D(ω̂).

In the following examples, we use the notation introduced in Section 3.1.

Example 5.2. Let us consider again the function c(x) : [0, 1] → C

c(x) :=

{
0 if x = 0

1/x otherwise
,

and let, like in Example 3.1, fn(x) : [0, 1] → C, n ≥ 1 be the sequence

fn(x) :=

{
n2 x if 0 ≤ x ≤ 1/n,

1/x otherwise.

If ω is the Riemann integral on [0, 1], then ω(fn) = 1/2 + log(n) and 0 ≤ fn(x) ≤ c(x), ∀x ∈
[0, 1], ∀n ≥ 1. Since ω(fn) → +∞, as n → ∞ then, by definition, λc,ω = +∞, so there is no positive
hermitian extension ω′ of Riemann integral such that c ∈ D(ω′).

Remark 5.6. The previous Example 3.1 shows that if we impose to an extension ω̂ the constraint to be
positive, differently from the case of Theorem 3.2, the domain of the extension is, in general, a proper
subset of the algebra A: D(ω̂) ∩ P(A) ⊊ P(A). In particular, the following result holds true.

Theorem 5.8. There are no fully positive extensions of the Riemann integral.

Remark 5.7. We note that in the case of the Riemann integral with c ∈ Ah, λc,ω and µc,ω correspond
to the lower and upper Riemann integral, respectively.
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Let us now consider the following function c1(x) : [0, 1] → C:

c1(x) :=

{
0 if x ∈ Q,

1/x otherwise.

From the density of Q follows that λc1,ω = 0, so c1 ∈ K‡
ω ; but, since of course c1 is not Lebesgue

integrable, then we have proved the following:

Theorem 5.9. The Lebesgue integral (as an extension of the Riemann integral on A0) is not widely
positive.

At this point one might ask whether there exists any extension of the Lebesgue integral
which is widely positive. From [2] (see Remark 3.15) it follows that, if ω1, ω2 are positive her-
mitian extensions of the Riemann integral ω, with D(ω1) ⊆ D(ω2), then K‡

ω2
⊆ K‡

ω1
⊆ K‡

ω .
Hence given ω1 the Lebesgue integral on [0, 1], since the previous function c1 ∈ K‡

ω , if we prove
that c1 /∈ K‡

ω1
, then we will have proved the following:

Theorem 5.10. There are no widely positive extensions of the Lebesgue integral, considered as an ex-
tension of the the Riemann integral on A0.

Proof. Let ω1 be the Lebesgue integral and let gn(x) : [0, 1] → C, n ≥ 1 be the sequence

gn(x) :=

{
0 if 0 ≤ x ≤ 1/n ∨ x ∈ Q,

1/x otherwise.

Then ω1(gn) = log(n) and 0 ≤ gn(x) ≤ c1(x), ∀x ∈ [0, 1], ∀n ≥ 1. Since ω1(gn) → +∞ as
n → ∞, by definition, λc1,ω1 = +∞, and so c1 /∈ K‡

ω1
. From this, the statement follows. □

Corollary 5.2. There are no widely positive extensions of the Henstock-Kurzweil integral.

On the other hand since the Lebesgue integral belongs to the family Pω of Definition 5.1, by
Zorn’s lemma, there exists ω̆, a maximal positive hermitian extension of the Riemann integral
that is actually a positive hermitian extension of the Lebesgue integral. Hence the existence
of ω̆ shows that even if a positive hermitian linear functional is a maximal extension, it is not
necessarily widely positive. In other words, we have proved the following:

Proposition 5.6. Given a positive hermitian linear functional ω, there are maximal positive hermitian
extensions of ω that are not widely positive.

Now, we want to analyse the case where we start from the the Lebesgue integral.
Notation: From now on, ω is the Lebesgue integral on a compact interval I of R and A0 :=
L∞(I) ⊆ A is the algebra of all measurable functions which are essentially bounded on I .

Theorem 5.11. Let I ⊆ R be a compact interval. Then the Lebesgue integral ω on I is widely positive.
Hence any positive hermitian extension of the Lebesgue integral is widely positive.

Proof. By Lemma 3.19 of [2], we will just prove that K‡
ω ⊆ D(ω) ∩ P(A). Let c ∈ K‡

ω , then
λ0 := λc,ω < +∞. Since K‡

ω ⊆ P(A) and c is measurable, then c is the limit of a sequence (bn)
of simple functions such that bn ≥ 0, with (bn) increasing and bn ≤ c, ∀n ≥ 1. Since simple
functions on I are Lebesgue integrable, then ∀n ≥ 1, bn ∈ D(ω), with ω(bn) ≤ ω(bn+1). Then
the limit λ̄ := limn ω(bn) exists and, by definition of λc,ω , λ̄ ≤ λ0 < +∞. Hence

lim inf
n

ω(bn) = lim
n

ω(bn) < +∞;

so, by Fatou’s lemma,

ω(c) = ω(lim
n

bn) = ω(lim inf
n

bn) ≤ lim inf
n

ω(bn) = lim
n

ω(bn) = λ̄ < +∞.
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Hence c is Lebesgue integrable with ω(c) ≤ λ̄. □

From Example 5.2, we have the next

Corollary 5.3. There are no fully positive extensions of the Lebesgue integral. In particular, the
Lebesgue integral is not fully positive.

From Corollary 5.3 and from Theorem 5.11, it follows the next interesting:

Remark 5.8. Let ω̂ be an extension of the Lebesgue integral and let a ∈ D(ω̂) \ A0, then a /∈ P(A).

Finally, we recall (see [3]) that the Henstock-Kurzweil integral is a positive extension of the
Lebesgue integral that is not maximal, so (see [2]) we have:

Theorem 5.12. There exists a maximal positive hermitian extension of the Henstock-Kurzweil integral.

Returning to the general case, let A be a *-algebra. We say that A has the property (D) if, for
every a ∈ Ah, there exists a unique pair (a+, a−) of elements of A, with a+, a− ∈ P(A) such
that

(D1) a = a+ − a−;
(D2) a+a− = a−a+ = 0;
(D3) (λa)+ = λa+, ∀a ∈ Ah, λ ∈ R+;

then we put
|a| := a+ + a−.

If A has the property (D), one has:

|a| ∈ P(A), ∀a ∈ Ah.

We remind that a positive hermitian linear functional ω̄ defined on a subspace of A is called
absolutely convergent if for all a ∈ D(ω̄) ∩ Ah, a+, a− ∈ D(ω̄), and so |a| ∈ D(ω̄).

Several examples that guarantee the existence of absolutely convergent extensions, are given
in [20]. Now, we state the following theorem and corollary (see [2]).

Theorem 5.13. Let ω̆ be an absolutely convergent extension of ω. If ω̆ is widely positive, then ω̆ is a
maximal absolutely convergent extension of ω.

Corollary 5.4. Let ω̆ be an absolutely convergent extension of ω. If ω̆ is fully positive, then ω̆ is a
maximal absolutely convergent extension of ω.

CONCLUDING REMARK

The problem of extending the Riemann integral defined on continuous functions is prob-
ably as old as the Riemann integral itself. In [2] , [3] and in the present paper, this question
has been cast into an abstract framework, looking for extensions of a positive hermitian linear
functional ω, defined on a dense *-subalgebra A0 of a topological *-algebra (in general, without
unit), with topology τ and continuous involution ∗, to a larger family of elements of A. Sev-
eral particular cases have been discussed in those papers; among them positive regular slight
extension arouse interest since it closely reminds the construction of the Lebesgue integral or
Segal’s construction of noncommutative integration [16]. We have first proved that there are
maximal extension of the Riemann integral defined on the whole *-algebra of Lebesgue mea-
surable functions on a compact interval, and then this result has been shown to hold also in the
abstract case for certain functional. Of course there is a price to pay for this: for instance several
familiar properties of the integral are missing for this maximal everywhere defined extension
(e.g., positivity). In the end, our reader may legitimately wonder how does this extension of
the integral work. This aspect is matter of further investigations.
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APPENDIX A. A DIFFERENT APPROACH

The proof of Theorem 4.3 might be modified using a different approach [13]. The starting
point is observing that the closability and continuity are equivalent. Let V be a complex topo-
logical vector space with topology τ (for short, V [τ ]). Let ω be a nonzero linear functional
defined on V . We collect some elementary (and well-known) facts.

Lemma A.2. The following statement hold:
(a) The range ω(V ) coincides with C.
(b) The kernel Ker ω of ω is a proper maximal subspace of V .
(c) Ker ω is either closed or dense in V [τ ].
(d) ω is continuous if, and only if, Ker ω is closed in V [τ ].
(e) If θ is another nonzero linear functionals on V , Ker ω = Ker θ if, and only if, θ is a multiple

of ω.

We consider the graph of ω, i.e.,

Gω = {(x, ω(x)) ∈ V × C}.

The functional ω is said to be closable if one of the two equivalent statements which follow is
satisfied.

• If xα → 0 w.r. to τ and ω(aα) → ℓ, then ℓ = 0.
• Gω , the closure of Gω , does not contain couples (0, ℓ) with ℓ ̸= 0.

It turns out that in the case of linear functionals closability and continuity are equivalent. As a
consequence, a discontinuous linear functional is never closable.

Remark A.9. So far, we have considered the case of functionals that are everywhere defined on V .
Suppose that Y is a dense subspace of V [τ ], and let ω be a linear functional on Y . As stated before, if
ω is closable in Y it is continuous on Y and then it extends by continuity to the whole space V and, of
course, the extension is continuous.

On V ⊕ C define Ω(a, ℓ) = ω(a)− ℓ. It is easily seen that Ω is a linear functional on V ⊕ C.

Lemma A.3. Ω is continuous on V ⊕ C if, and only if, ω is continuous on V .

Proof. Let Ω be continuous and let (xα)α∈Γ ⊆ V be a net converging to x ∈ V . Then ω(xα) =
Ω(xα, 0) → Ω(x, 0) = ω(x); i.e., ω is continuous. Conversely, assume that ω is continuous and
that (xα, λα) → (x, λ). Then xα → x and λα → λ. Hence,

Ω(xα, λα) = ω(xα)− λα → ω(x)− λ = Ω(x, λ).

□

Proposition A.7. If ω, defined on V , is discontinuous, then Gω is dense in V ⊕ C.

Proof. By Lemma A.3, Ω is linear and discontinuous then its kernel is dense in V ⊕C. It is easily
seen that KerΩ = Gω . Thus Gω = V ⊕ C. □

Proposition A.8. Let V be a vector space and W a proper subspace of V . Then, for every x ∈ V \W ,
there exists a linear functional ω on V such that ω(y) = 0 for every y ∈ W and ω(x) = 1.
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Proof. Let x ∈ V \ W then the span C · x is a subspace of V with W ∩ C · x = {0}. Then on
W ⊕ C · x we can define ω(y + λx) = λ; then, ω(y) = 0, for every y ∈ W and ω(x) = 1. If {ej}
is a Hamel basis of W , we can find linearly independent vectors {hk} of V \ W ⊕ C · x such
that {ej} ∪ {hk} ∪ {x} is a Hamel basis for V . It is now sufficient to define ω(hk) = 0, for every
k. □

Let V0 be a dense subspace of V [τ ] and ω a linear functional defined on V0.
A linear functional ω̂ defined on a vector subspace D(ω̂) of V is called an extension of ω if

V0 ⊆ D(ω̂)

ω̂(x) = ω(x), ∀x ∈ V0.

In this case, we write ω ⊆ ω̂. It is clear that ω ⊆ ω̂ if, and only if, Gω ⊆ Gω̂ . If ω is continuous on
V0, it has a unique continuous extension to V . In what follows, we will consider the case when
ω is discontinuous (equivalently, nonclosable) in V0.

As in Section 2, an extension ω̂ of ω is a slight extension if Gω̂ ⊆ Gω. We denote by Sω the
collection of all subspaces H of V × C such that

(g1) Gω ⊆ H ⊆ Gω ;
(g2) (0, ℓ) ∈ H if, and only if, ℓ = 0.

Sω is nonempty, since it contains Gω and each H ∈ Sω defines an extension ωH as follows

D(ωH) = {x ∈ V : (x, ℓ) ∈ H}
ωH(x) = ℓ.

It is clear on the other hand that every slight extension ω̂ of ω defines a subspace H ′ ∈ Sω .
Namely, H ′ = G(ω̂). By Proposition A.7, it follows that Gω = V0 ⊕ C. The density of V0 in V

implies that V0 ⊕ C is dense in V ⊕ C. Then, we conclude that Gω = V ⊕ C. Therefore, the set

Kω = {x ∈ V : (x, ℓ) ∈ Gω, for some ℓ ∈ C}
coincides evidently with V . From these considerations, it follows also that every extension ω̂ of
ω is a slight one.

As discussed in Section 2, the existence of maximal extensions of ω can be proved by using
Zorn’s lemma. Let ω̆ denote a maximal extension of ω. Then as proved in [2] D(ω̆) = Kω . Thus,
in conclusion,

Proposition A.9. An extension ω̆ of ω is maximal if, and only if, D(ω̆) = V .
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