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Simple Summary: Commercial routes are reported as the main cause of biological invasions. Par-
ticularly, naval trade may accidentally bring several species to new areas where they are not native.
This is particularly evident for coastal areas, where most biological invasions occur. In our work, we
reported, for the first time, the presence of the ocellated skink, native to the largest Italian islands
(Sardinia, Sicily and surrounding islets in a port area of continental Central Italy). We collected several
individuals of this alien population and we sampled them for molecular analyses, comparing them
with those naturally occurring in Sardinia, Sicily and the Mediterranean basin, including individuals
accidentally introduced to peninsular Southern Italy. Differently from what previously suggested,
the nucleus in Portici (Southern Italy) may have originated from Sardinia. The intense cork trade
and touristic traffic between Sardinia and Southern Tuscany may have been responsible for the
introduction of this lizard also to Central Italy.

Abstract: The ocellated skink (Chalcides ocellatus) is a widespread lizard, naturally distributed between
the Maghreb and coastal Pakistan, with few insular populations in the Mediterranean coastal area.
Some populations of this species have also been recorded in peninsular Italy, Campania and Southern
Tuscany due to accidental introductions via touristic and commercial routes. In this work, we
conducted genetic analyses on mitochondrial DNA COXI, cytb and 16S mtDNA genes on a sample of
Italian insular and peninsular populations. Differently from what previously suggested, the nucleus
in Portici (Southern Italy) may have originated from Sardinia. The intense trade and touristic traffic
between Sardinia and Southern Tuscany may have been responsible for the introduction of this lizard
also to Central Italy.
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1. Introduction

Maritime transport supports 80% of the current global trade, a quarter of which
crosses the Mediterranean [1–3]. The increasingly heavy commercial traffic has required
considerable human movements and trade in goods, which have in turn promoted and
encouraged the alteration of the native distribution of many animal and plant species [1,2,4].
Ports and naval trade represent one of the main pathways of introduction and hubs of
alien and invasive species [2,3,5–7], being a strategic gate for access to the main tourist
areas and routes across coastal areas. In this context, over 600 municipalities in Italy
locate along the coastline, hosting 27% of the human population of Italy and constituting
a nerve center for both tourism and trade. Furthermore, Italy also holds the European
record for the number of alien species, including 30% of its terrestrial and freshwater
vertebrates [8]. Among those, the detection of alien reptiles has increased in recent decades
in coastal areas following the increased importance of reptiles as pets and, mostly, accidental
introductions with the brick, plant, and lumber trade [9,10]. Although most releases fail
to establish a reproductive population, as regarding only single individuals, many reptile
species have successfully colonized areas where there were historically absent. Human-
mediated dispersal has allowed several gecko species to reach most Italian regions even
far from the coastline (e.g., Hemidactylus turcicus, Mediodactylus kotschyi, and Tarentola
mauritanica) [11–14]). Two populations of Mediterranean chameleon (Chamaeleo chamaeleon)
occur in Southern Italy, due to multiple introduction events [15,16]. Similarly, the Brahminy
blindsnake Indotyphlops braminus is a semi-fossorial snake native to the Indo-Malayan
region, able to survive also inside pots [17]. This adaptability has allowed it to disperse
outside its native range through the international plant trade, with at least two populations
also in Italy, one in Sicily and one on Ischia island, Campania [17,18].

The ocellated skink (Chalcides ocellatus) is a widespread lizard species naturally oc-
curring throughout Northern Africa, Western Asia, and South-Eastern Europe [19,20].
Traditionally, the subspecies C. o. tiligugu is distributed throughout Italy, i.e., in Sicily
and Sardinia [10] and Tunisia [10,21,22]. Two other subspecies from Linosa (C. o. linosae)
and Lampedusa islands (C. o. zavattarii) are not genetically supported [23] and, thus, they
should be considered as invalid [10]. A small population is also present in the surroundings
of Portici (province of Naples), most likely as the result of an accidental introduction [24].
However, no information is available to confirm its actual origin. In spring 2021, a photo
showing two individuals of ocellated skink in Tuscany, Central Italy, was posted on Face-
book (Figure 1A), and solicited our attention to the origin of these animals. Other photos
followed and confirmed the species identification (Figure 1B,C).

Previous molecular phylogenetic inferences [19–21] include south-eastern Mediter-
ranean and northern African populations, with a few samples from the two Italian major
islands, Sicily and Sardinia. The recent findings of some samples from Peninsular Italy
(Piombino, Livorno and Portici, Naples) allowed us to investigate their genetic relationships
and to infer their origin.
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Figure 1. (A) the first photograph documenting the ocellated skink in Tuscany (© Ugo Preziosi); 
(B,C) individuals of this species found in the surroundings of Piombino port (province of Livorno, 
Central Italy, © Matteo Riccardo Di Nicola). 
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2. Materials and Methods 
2.1. Sample Collection 

In Tuscany, samples were collected in a crop area with small vegetable gardens in 
the Piombino municipality, i.e., in the immediate surroundings of the port and in Torre 
Mozza (Environment Ministry MATTM permits: 0065971, 18 June 2021; ISPRA: Prot. 
31076, 11 June 2021: Figure 2). 

Figure 1. (A) the first photograph documenting the ocellated skink in Tuscany (© Ugo Preziosi);
(B,C) individuals of this species found in the surroundings of Piombino port (province of Livorno,
Central Italy, © Matteo Riccardo Di Nicola).

2. Materials and Methods
2.1. Sample Collection

In Tuscany, samples were collected in a crop area with small vegetable gardens in
the Piombino municipality, i.e., in the immediate surroundings of the port and in Torre
Mozza (Environment Ministry MATTM permits: 0065971, 18 June 2021; ISPRA: Prot. 31076,
11 June 2021: Figure 2).

Skinks were searched in June to September 2021, following the monitoring pro-
gram [25]. Four pitfall traps baited with insect larvae were also employed. They were
checked twice a day to verify the presence of any animal fallen inside. Moreover, we also
provided a shelter inside and a small container with water to assure survivorship. Each
individual was sampled by cutting a small piece (1–2 mm) of the tail. This action does not
affect skink health, since this species, like others of the same family, is particularly prone
to autotomy, i.e., voluntary tail-loss allowing escaping for defense. Tissue samples were
preserved in absolute ethanol before genetic analyses. The sample from Portici was derived
from an individual found dead on a sidewalk. Further samples were previously collected
in other localities included in the skink range by some authors (Sicily and Sicilian Islands:
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Giuseppe Mazza, Matteo Riccardo Di Nicola and Francesco Paolo Faraone; Sardinia: Mat-
teo Riccardo Di Nicola and Sergio Mezzadri), and stored in absolute ethanol in museums
(sample MZUT R203, Linosa) or private collections (Table 1, Figure 2).
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Figure 2. Updated distribution (gray areas) of the ocellated skink in Italy and sites of sample origin
(from [10], modified): (1) Piombino; (2) Torre Mozza; (3) Portici; (4) Triscina di Selinunte; (5) Mazara
del Vallo; (6) Riserva dello Zingaro; (7) Ficuzza; (8) Siracusa; (9) Rocche del Crasto; (10) Pantelleria
island; (11) Linosa Island; (12) Serdiana; (13) Dolianova. One sample was analyzed from each place.

2.2. Molecular Analyses

Samples of C. ocellatus collected in Italy were sequenced and analyzed, whereas other
sequences of congeneric species (C. chalcides and C. viridanus) were employed as outgroups
(Table 1). All samples were preserved in 96% ethanol and genomic DNA was extracted
using QIAGEN Blood and Tissue kit (Qiagen Inc., Germantown, MD, USA), following the
manufacturer’s protocol. Mitochondrial DNA sequencing PCR amplification products were
obtained from three genes: the Cytochrome Oxidase I (hereafter, COXI), 12S mitochondrial
gene (hereafter, 12S) and Cytochrome b (hereafter, cytb). The primers used are described in
Table 2.
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Table 1. Samples of Chalcides ocellatus and outgroups (C. chalcides, C. viridanus) included in our analyses, locality of collection, coordinates, amplified genes and
GenBank accession numbers (COXI, 12S, cytb). *, sample MZUT R203 (Turin, Piedmont, NW Italy).

Dataset 1

Dataset 2
Species Region/District Locality (Point in

Figure 2) Latitude Longitude Sample Label Accession Numbers COXI 12S CYTB

C. ocellatus Saudi Arabia Ash Shihyah 26.269 43.597 CH01_ARABIA ON534012, ON534203,
ON551370 X X X

C. ocellatus Tuscany/Livorno Torre Mozza (2) 42.946 10.693 CH02_TORRE_MOZZA ON534009, ON534204,
ON551371 X X X

C. ocellatus Sicily/Trapani Pantelleria island (10) 36.817 12.003 CH05_PANTELLERIA ON534007, ON534202,
ON551381 X X X

C. ocellatus Sicily/Trapani Triscina di Selinunte (4) 37.584 12.785 CH06_SELINUNTE ON534013, ON534206,
ON551377 X X X

C. ocellatus Sicily/Trapani Ficuzza (7) 37.883 13.373 CH07_FICUZZA ON534014,ON534207,
ON551375 X X X

C. ocellatus Sicily/Trapani Mazara del Vallo (5) 37.650 12.599 CH08_MAZARA ON534015, ON534208,
ON551378 X X X

C. ocellatus Sicily/Messina Rocche del Crasto (9) 38.023 14.746 CH09_MESSINA ON534019, ON53420,
ON551376 X X X

C. ocellatus Sicily/Trapani Riserva dello Zingaro (6) 38.081 12.808 CH010_ZINGARO ON534016, ON534209,
ON551379 X X X

C. ocellatus Sardegna/Sud Sardegna Dolianova (13) 39.374 9.180 CH011_SARDINIA ON551373 X
C. ocellatus Tuscany/Livorno Piombino (1) 42.924 10.544 CH015_PIOMBINO ON534010, ON534205,

ON551372 X X X

C. ocellatus Sicily/Agrigento Linosa island (11) * 35.870 12.862 CH016_LINOSA ON534017, ON534210,
ON551382 X X X

C. ocellatus Campania/Naples Portici (3) 40.804 14.349 CH017_PORTICI ON534011, ON534211,
ON551380 X X X

C. ocellatus Sicily/Siracusa Siracusa (8) 37.080 15.286 CH018_SIRACUSA ON534018, ON534212,
ON551374 X X X

C. ocellatus Sardegna/Sud Sardegna Serdiana (12) 39.372 9.159 CH019_SARDINIA ON534008,ON534213,
ON551383 X X X

C. ocellatus Algeria EU278169_ALGERIA EU278169 X
C. ocellatus Morocco EU278171_MOROCCO EU278171 X
C. ocellatus Turkey EU278180_TURKEY EU278180 X
C. ocellatus Syria FJ980143_SYRIA FJ980143 X
C. ocellatus Greece FJ980268_GREECE FJ980268 X
C. ocellatus Egypt EU278181_EGYPT EU278181 X
C. ocellatus Israel EU278184_ISRAEL EU278184 X
C. ocellatus Tunisia EU278194_TUNISIA EU278194 X
C. ocellatus Sardinia EU278194_SARTIL EU278186 X
C. ocellatus Tunisia EU278188_TUNTIL EU278188 X
C. chalcides Italy Giglio island (Grosseto) EU278211_CCGIGLIO EU278211 X
C. chalcides Italy Piombino (Livorno) EU278212_CCPIOMBINO EU278212 X
C. viridanus Spain Canary Islands EU278116_CVCANARY EU278211 X
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Table 2. Primers used for the molecular analyses of Chalcides ocellatus.

Target Gene Label Sequence 5′-3′ Reference Fragment
Length (bp)

cytb L14841 AAAAAGCTTCCATCCAACATCTCACATGATGAAA
[26] 325H15149 AAACTGCAGCCCCTCAGAATGATATTTGTCCTCA

12S
12StPhe AAAGCACRGCACTGAAGATGC [27]

35012 g TATCGATTATAGGACAGGCTCCTCTA [28]

COXI
LCO1490 GGTCAACAAATCATAAAGATATTGG

[29] 670HCO 2198 TAAACTTCAGGGTGACCAAAAAATCA

The PCR profiles were the same reported by Kornilios et al. [19] for 12S and cytb;
for COXI, we followed the protocol described by Baratti et al. [30]. PCR products were
run on a 1.5% agarose gel purified (ExoSAP-IT, Amersham Biosciences, Amersham, UK)
and sequenced with a sequencing kit (ABI Big Dye Terminator Cycle Sequencing v. 2.0-
ABI PRISM, Applied Biosystems, Foster City, CA, USA). GenBank accession numbers are
reported in Table 1. Electropherograms were visualized with CHROMAS 1.45 (http://www.
technelysium.com.au (accessed on 9 June 2022)). The sequences were manually corrected
and then aligned using CLUSTALX 1.81 [31]. In order to determine if sequences were
nuclear (NUMTs [32,33]) or mitochondrial copies, we followed three steps. First, sequence
chromatograms were checked for double signals. Next, coding sequence alignments were
inspected for frameshift mutations and/or stop codons. Finally, the corrected sequences
were compared to those in GenBank: we compared our sequences to the ones deposited
in the NCBI database using BLASTx and BLASTn. We analyzed two datasets: one with
sequences by cytb (Dataset 2), only because it was the gene with more sequences in GenBank
and it allowed us to compare our sequences with a higher number of sequences (Table 1);
all three genes constituted the other dataset (Dataset 1).

For both datasets, we carried out a phylogenetic reconstruction by Neighbor-Joining
(NJ), Bayesian (BI) and a Maximum Likelihood (ML) phylogenetic analysis. Analyses were
carried out using genetic models selected by jModelTest [34], with the Akaike Informa-
tion Criterion (AIC). The HKY (Hasegawa–Kishino–Yano) nucleotide substitution model
was selected for cytb, whilst GTR (General Time Reversible) was used for the combined
dataset. Models were corrected for rate heterogeneity among sites with a Gamma (G)
distribution [35]. The NJ was performed by MEGA software and 1000 bootstrap replicates.
The BI analysis was conducted with MrBayes v.3.12 [36], using the best model selected by
Modeltest. Four chains of Markov chain Monte Carlo (MCMC) were run simultaneously
and sampled every 1000 generations for 4 million generations. The first 1000 sampled trees
from each run were discarded as burn-in. The proportion of trees that contained the clade
was given as the posterior probability (PP) to estimate the robustness of each clade. Branch
supports were assessed by 100 non-parametric bootstrap replicates. A strict consensus
tree was calculated when there was more than one tree. ML phylogenetic analysis was
conducted through the SeaView software [37]. We selected the optimized choices and we
obtained the tree-searching operations by Nearest-Neighbor Interchange (NNI) and Subtree
Pruning–Regrafting (SPR).

3. Results

In our work, we confirmed, for the first time, the presence of a population of ocellated
skink on the Tuscan coast, between the ports of Piombino and Torre Mozza. The population
was confirmed to be reproductive, as two juveniles were also observed. In this area,
seven adult individuals of ocellated skink (N = 4 males, 3 females) were sampled and
immediately released.

After alignment and trimming, we examined 585 base pairs for COXI, 366 base pairs
for 12S and 287 base pairs for cytb. The sequences were analyzed in two datasets: the

http://www.technelysium.com.au
http://www.technelysium.com.au
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former (Figure 3), named Dataset 1, included all three genes (1238 bp), including the first
COXI barcode sequences for this species, and the latter, named Dataset 2, included a higher
number of sequences, but only the cytb gene portion (Figure 4).
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The different phylogenetic reconstructions applied to both datasets gave similar results
(Figures 3 and 4). Within C. ocellatus sequences, two main clades occurred. The former
included southern Mediterranean populations (Greece, Syria, Egypt, Algeria, Morocco
and Saudi Arabia), except for Tunisia, which resulted as the sister clade of all the other
C. ocellatus groups. The second clade was constituted by the group of Tunisian and Italian
populations. However, the last group looked quite close to Sardinian populations but not
to the Sicilian or other peninsular populations, even though the tree is largely not solved
at the interspecies level. The Linosa sample was included in the Sicilian clade, even if
the relationships among Sicilian populations were not highly supported. However, the
phylogenetic relationships within different Italian populations were not well resolved. The
Dataset 1 tree showed two sister groups: populations from Tuscany (Piombino and Torre
Mozza, Livorno) in one group and Sicilian, Sardinian and Portici populations in the other
group. Sicilian samples are grouped together and they have the Pantelleria sample as a
sister group. The Portici sample looked quite close to Sardinia, whereas Linosa confirmed
its position inside the Sicilian group even if the support values at nodes of this group were
not high.

Sardinian populations were very close to one of the Tunisian sequences, and appeared
as the only one with such high genetic affinity, as enlightened also by genetic distances
(Table 3).
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Table 3. Genetic distances calculated among the studied populations of Chalcides ocellatus with cytb
distances above diagonal and 12S + COXI below the diagonal.

Torre
Mozza Piombino Serdiana Siracusa Ficuzza Rocche

Crasto
Triscina

Selinunte
Mazara
Vallo

Riserva
Zingaro Portici Pantelleria Linosa

Torre Mozza 0.5% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
Piombino 1.4% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
Serdiana 4.3% 3.6% 0% 0% 0% 0% 0% 0% 2% 0% 0%
Siracusa 2.5% 3.5% 1.4% 0% 0% 0% 0% 0% 0% 0% 0%
Ficuzza 4% 4% 2.6% 1.6% 0% 0% 0% 0% 0% 0% 0%

Rocche Crasto 2.5% 3.2% 1.4% 0.1% 1.6% 0% 0% 0% 0% 0% 0%
Triscina

Selinunte 3.2% 2.5% 2.1% 0.1% 0.5% 1% 0% 0% 0% 0% 0%
Mazara Vallo 2.3% 4% 1.2% 0.2% 1.4% 1.4% 2% 0% 0% 0% 0%

Riserva Zingaro 2% 2% 1.7% 0.7% 1% 1% 1% 3% 0% 0% 0%
Portici 4.3% 3.6% 0.2% 1% 2.6% 1.8% 2% 4% 1% 0% 0%

Pantelleria 2.5% 2.5% 1.7% 1% 1.6% 0.7% 2% 0.5% 1% 0% 0%
Linosa 2.5% 2.5% 1.2% 0.2% 0.9% 1.4% 1.4% 1.5% 1.3% 2% 2%

4. Discussion

The ocellated skink is a widespread lizard species, with populations throughout the
Mediterranean basin, up to the Middle East. The species may have evolved in Northern
Africa and, afterward, expanded its range until coastal Pakistan [19]. In our work, we
reported the presence of this species in a coastal area of Central Italy (Tuscany) for the first
time, and we reconfirmed the presence of this species in the surroundings of Naples
(Southern Italy). We also performed the first molecular analyses on both peninsular
populations. The occurrence of the ocellated skink in Mediterranean islands and the lack of
its presence in Corsica and the European mainland strongly suggest recent introduction
events, i.e., after the Last Glacial Maximum (i.e., 18,000 years ago [38]), as is currently
assumed for other Sardinian reptiles such as Testudo graeca [39], Chalcides chalcides [21],
Natrix maura [40] and Hemorrhois hippocrepis [41]. Particularly, ocellated skinks may have
reached Mediterranean islands through commercial routes between Europe and North
Africa [19]. Carranza et al. [21] sustained that almost all the populations of C. ocellatus clade
can be assigned to a single species, although they exhibit intraspecific genetic divergence
with 6–8% values in cytb + 12S. Consequently, a split in different taxa must be evaluated.

We are aware of the limitation due to our small sample size, as our analysis was
based on few mitochondrial DNA-only loci from a limited number of individual samples.
However, we provided the first COXI barcoding sequences for this species and the first
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available information on the origins of the only two populations occurring in peninsular
Italy; the one in Piombino is still unreported in the scientific literature.

In our analyses, the Italian populations showed very low genetic distance values,
with the highest between the Tuscany coast (Torre Mozza and Piombino) and the other
populations (Table 3). Sicilian and Sardinian samples always showed low values for both
the COXI and 12S + cytb divergences. Maio et al. [24] suggested that the small population
present in the surroundings of Portici (province of Naples) is most likely the result of an
accidental introduction from Sicily. Conversely, molecular analyses suggested that it may
actually represent an introduction from Sardinia. The first record of the ocellated skink in
Campania dates back to 1863 in the former Royal Park of Portici (Naples). However, in
this area, the population of this lizard underwent several fluctuations, with no individual
intercepted between 1990 and 2014. Afterwards, at least two observations of individuals
morphologically ascribed to the Mediterranean subspecies C. o. tiligugu were detected
(the first one reported by [24], the second one reported in this work), suggesting that
the population is not extinct. As for Tuscany, at least seven individuals, morphologically
ascribed to C. o. tiligugu (i.e., showing light dorso-lateral bands running from the head to
the tail root [10]) were detected through addressed surveys in 2021; the presence of juveniles
provided support to local reproduction events. The presence of the ocellated skink in the
immediate surroundings of the Piombino port area suggests that these individuals have
been introduced from Sardinia, possibly via the cork trade between Sardinia and the Italian
mainland [42]. This hypothesis is also confirmed by the fact that the vegetable gardens
where ocellated skinks were detected in Piombino are located near a parking area for trucks
of cork from Sardinia.

Other Sardinian species followed the same colonization pattern, e.g., the Mediter-
ranean snakefly (Fibla maclachlani), recorded since 2005 also in the coastal part of Southern
Tuscany, where it is currently expanding [43]. This species is endemic to the Mediter-
ranean largest islands and can survive at its larval stages in cork bark [43]. The ocel-
lated skink is quite common in Mediterranean habitats characterized by the presence of
Quercus suber L. [44]. The intense trade and touristic routes between Sardinia and Piombino
may thus have promoted the colonization of the Italian mainland by several Sardinian
species [43,45,46]. However, despite representing an actual introduction, we suggest that
impacts of C. ocellatus on the Italian mainland would not represent a threat to native bio-
diversity, given the low population densities [24]. If populations were to increase in size,
some competition with native lizards may occur [44]. Further monitoring is necessary to
determine the future increase in population size and geographic range in introduction areas.

Our molecular phylogeny did not confirm previous hypotheses on the existence of
a different subspecies from Linosa island (C. o. linosae [10]), which may thus represent
a different insular form of the same subspecies occurring in Sicily, thus confirming the
conclusions by Stöck et al. [23]. However, sequences shown by Stöck et al. [23] were not
retrieved from online genetic databases. In our analyses, the Linosa population was always
inside the Sicilian group, even though the low support node values did not suggest an
exact position.

5. Conclusions

Despite the wide distribution range of the ocellated skink, its scattered presence
in Europe makes this species a conservation concern [25]. Thus, although representing
introduced populations, the monitoring of ocellated skinks in peninsular Italy deserves
future attention also in port areas.

Port areas constitute a typically perturbed anthropogenic ecosystem, widespread and
highly globally interconnected. Therefore, they have considerable potential to be hubs for
the diffusion of aquatic and terrestrial alien species [3,8]. The stabilization processes of new
species are often reported starting from the port or circum-port areas [3]. In this context,
our findings of a population of ocellated skink in a Tuscan coastal area and the confirmation
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of the presence of the species near an important port area in Campania provide further
confirmation of the importance of ports as pathways of alien species introduction [3].
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