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Abstract
In this paper, we shall study a spatially extended version of the FitzHugh-Nagumo
model, where one describes the motion of the species through cross-diffusion. The
motivation comes frommodeling biological species where reciprocal interaction influ-
ences spatial movement. We shall focus our analysis on the excitable regime of the
system. In this case, we shall see how cross-diffusion terms can destabilize uniform
equilibrium, allowing for the formation of close-to-equilibrium patterns; the species
are out-of-phase spatially distributed, namely high concentration areas of one species
correspond to a low density of the other (cross-Turing patterns). Moreover, depend-
ing on the magnitude of the inhibitor’s cross-diffusion, the pattern’s development
can proceed in either case of the inhibitor/activator diffusivity ratio being higher or
smaller than unity. This allows for spatial segregation of the species in both cases
of short-range activation/long-range inhibition or long-range activation/short-range
inhibition.
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1 Introduction

The FitzHugh-Nagumo (FHN) system, initially introduced as a simplification of the
Hodgkin–Huxley model to describe the conduction of electric impulses along a nerve
axon [8, 22], has become a prototype of reaction-diffusion models of excitable media.
FitzHugh-Nagumo-type equations are used to describe excitable behavior in many
biological, chemical, and physical systems ranging from tissue muscles, intestine, and
cardiac cells, to reaction kinetics, to deposition phenomena on metal surfaces [29]. In
addition to excitability, the reaction kinetics of the FHN system can reproduce other
qualitatively different dynamics, such as oscillations and bistability, by simply tun-
ing the values of the parameters (see the classification of the local dynamics given
in Sect. 2). Therefore, given its mathematical simplicity, the FHN model is widely
adopted to mimic the mechanisms responsible for the formation of a variety of coher-
ent structures such as stationary patterns, traveling waves, dissipative solitons, and
complex spatiotemporal dynamics [6, 7, 19, 24, 26, 28, 33].

In this paper, we are interested in the formation of stationary patterns for the
following FithzHugh-Nagumo-type model with cross-diffusion terms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= u(1 − u2) − (1 − βu)v + ∇2u + dv∇2v, on � × R+,

∂v

∂t
= ε (γ u − v − a) + du∇2u + d∇2v, on � × R+,

∂u

∂n
= ∂v

∂n
= 0, on � × R+,

u(x, 0) = uin(x), v(x, 0) = vin(x), on �,

(1.1)

where u(x, t) and v(x, t) are the activator and the inhibitor species, respectively;
x ∈ � ⊂ R

m , where � is a spatial domain; here and in the companion paper [10], �
will be either a finite interval (for m = 1), or a square domain (for m = 2); ∂/∂n is
the derivative along the unit normal vector to the boundary ∂�. The parameter d is the
ratio between the diffusivities of v and u, respectively, and the parameters du and dv are
the cross-diffusion coefficients. The parameters ε, β, γ , and a characterize the local
reaction dynamics: ε is the ratio between the typical timescales of the two species, γ
and a control the number of intersections and the relative position of the nullclines,
0 ≤ β < 1 is a small parameter which breaks the symmetry (u → −u, v → −v, a →
−a). All parameters are nonnegative, except a, which can be positive and negative.
Throughout the paper, the coefficients of the above system will therefore satisfy the
following conditions:

ε > 0, γ > 0, 0 ≤ β � 1, a ∈ R, (1.2a)

d > 0, du ≥ 0, dv ≥ 0. (1.2b)

Throughout the paper, we shall consider the region of the parameter space where the
system (1.1) admits a unique stable homogeneous equilibrium E0 ≡ (u∗, v∗). For
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this reason, we shall impose the following conditions on the parameters: ε > εH and
γ > εH / (1 − βu∗), where εH = 1 + βv∗ − 3u∗2 (for more details, see Sect. 2).

A typical mechanism leading to stationary patterns in reaction–diffusion systems
is the Turing mechanism [31], where a small perturbation of the homogeneous equi-
librium grows until saturation. The formation of this kind of structure for system (1.1)
is the subject of the present paper. In the companion paper [10], we shall consider
a different class of patterns arising from finite-amplitude localized perturbations of
stable equilibrium. Such far-from-equilibrium structures occur in excitable or bistable
systems, provided the inhibitor species diffuses sufficiently fast [4, 7, 28]. System
(1.1) displays both bistability and excitability. In [10], we shall focus on the excitable
regime.

The occurrence of Turing patterns is well-studied for the FitzHugh-Nagumo sys-
tem in the monostable regime, where the reaction kinetics satisfies the requirements
imposed by the diffusion-driven instability, namely, the self-activating species u pro-
motes the growth of v while the self-inhibitor v suppresses the increase of u [11, 37].
In [9], the authors studied the effects of introducing linear cross-diffusion terms on
forming stationary patterns in themonostable regime. Generalizing reaction–diffusion
systems by introducing off-diagonal terms in the diffusion matrix accounts for the fact
that the gradient of one species determines the dispersal of another species, a phe-
nomenon frequently observed in real systems [23, 27, 32, 34]. In [9], the introduction
of the cross-diffusion termwasmotivated in the context of population dynamics, as one
can see that the FHN model rules the evolution of a perturbation of the homogeneous
equilibrium in a predator–prey system describing plankton dynamics. The presence
of cross-diffusion or nonlinear diffusion terms alters the pattern-forming properties of
the models, enlarging the parameter region where the instability occurs or introducing
otherwise unexpected solutions (see also [1, 13, 15–17, 20, 25]). In [9], the authors
prove that a positive value of the inhibitor cross-diffusion du broadens the region
of the Turing instability and relaxes the requirement of a rapidly diffusing inhibitor,
allowing for pattern formation also for comparable values of the diffusion coefficients
or when the activator diffuses faster than the inhibitor. For a fixed and sufficiently
large value of du , the homogeneous steady-state undergoes a double bifurcation as the
ratio of diffusivities is varied: as prescribed by the classical Turing theory, the first
bifurcation occurs for values of the diffusivity ratio above a critical threshold, d+

c , and
determines the birth of stationary periodic patterns where the species are in-phase spa-
tially distributed. The second bifurcation is due to the presence of the cross-diffusion
terms, taking place for values of the diffusivity ratio below a second critical thresh-
old, d−

c , where d−
c ≤ d+

c . In the latter case, the instability is driven by the inhibitor
cross-diffusion du . The emerging stationary structures, named cross-Turing patterns,
present spatial segregation of the species that distribute on the domain with oppo-
site phasing. Moreover, for increasingly large values of the inhibitor cross-diffusion,
the two thresholds, d+

c and d−
c coalesce and disappear so that the instability sets in

independently of the value of the diffusivities ratio, whose magnitude only selects the
relative phasing of the pattern.

In this work, we shall analyze the impact of the linear cross-diffusion terms on
the onset of small-amplitude stationary nonhomogeneous solutions to the FHN sys-
tem in the excitable regime. Roughly, an excitable system possesses the capability to
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amplify a superthreshold perturbation for a transient time before the response ampli-
tude decreases. In a dynamical system, this property results in the existence of a unique
equilibrium and of a threshold. In the presence of a perturbation whose size is below
the threshold, the system quickly settles to equilibrium; if the perturbation is above the
threshold, the system undergoes a large excursion before returning to the fixed point.
The effect of cross-diffusion terms on wave-like solutions to excitable systems has
been studied over the last decades in diverse contexts [2, 3, 18, 33, 35, 36]. However,
the impact of non-diagonal diffusion terms on the formation of stationary patterns in
excitable models has received less attention. In this paper we shall assume d, du and
dv > 0 to describe the following type of dispersal: both species diffuse and move
away from high-density areas of the other species. In predator–prey systems, this type
of cross-diffusion models a hunting strategy of the predator, consisting of heading to
low-density areas of the prey to maximize its hunting success [12, 30]. In plankton
models, the cross-diffusion term describes the tendency of the grazing zooplankton to
avoid high concentrations of the toxin-producing phytoplankton [5, 15].

In the excitable regime, the linearized kinetics of the FHN system in the neighbor-
hood of the homogeneous steady state does not satisfy the requirements of the classical
Turing theory, so, in the presence of only ordinary diffusion terms, small amplitude
patterns close to equilibrium do not develop [28]. However, if one assumes lateral
inhibition, namely a rapid diffusion of the inhibitor relative to that of the activator, one
can prove [7] the existence of large amplitude solitary and periodic stationary struc-
tures, which do not arise due to a Turing mechanism. In this work, we shall prove that
when the local FHN dynamics is excitable, the presence of cross-diffusion terms may
drive the appearance of small amplitude periodic structures of the same type observed
in the monostable regime below the threshold d−

c . Such cross-Turing patterns, in fact,
occur for sufficiently high values of the inhibitor cross-diffusion du and for values of
the ratio of the diffusivities d below a given threshold. Moreover, depending on the
value of the cross-diffusion coefficient du , the pattern may form for values of d less
than unity, namely when the inhibitor species diffuses slower than the activator. In this
case, the pattern-forming mechanism is opposite to what is prescribed by the classical
Turing theory, which requires the inhibitor to diffuse much faster than the activator. In
a companion paper [10], adopting an asymptotic procedure based on a multiple scales
expansion, we shall construct the cross-Turing patterns and derive the corresponding
amplitude equations.

The plan of the paper is the following. In Sect. 2, we shall classify the different
dynamical regimes of the local FHN system and state the conditions for the existence
and stability of a unique equilibrium; this leads to identifying two regions in the
parameter space, where two different regimes, the monostable and the excitable one,
occur. In Sect. 3, we shall perform the Turing instability analysis to determine the
conditions under which Turing patterns generated by the cross-diffusion can emerge.
In Sects. 4–5,we shall express such conditions in terms of the parameters of the original
system (1.1), for the two cases of the monostable and excitable regime, respectively.
Such analysis will provide the critical values of the bifurcation parameter and the
wavenumber of the resulting solution. A thorough analysis of the monostable case is
in [9], and we shall summarize the main results here for the reader’s convenience. In
the concluding section, we discuss our results and the possible focus of future research.
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Fig. 1 Nullclines of the local FHN system (2.1a)–(2.1b). The parameters are ε = 0.1, β = 0.2, γ = 1.12. a
The monostable or oscillatory case, with a = 0.05. b The excitable case, with a = −0.35. c The excitable
case, with a = 0.5. The labels m and M indicate the minimum and the maximum of the u-nullcline. The
matrices give the signs of the derivatives fu , fv, gu , gv evaluated at the equilibrium point

2 Local dynamics of the FitzHugh-Nagumo system

In this Section we shall focus on the reaction term of (1.1), namely we shall consider
the following dynamical system:

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= f (u, v) := u(1 − u2) − (1 − βu)v ,

dv

dt
= g(u, v) := ε (γ u − v − a) .

(2.1a)

(2.1b)

2.1 Classification of the equilibria

Depending on the values of the parameters β, γ and a, one can have different relative
positions of the u- and v-nullclines of the system (2.1a)–(2.1b). Following [9], we shall
denote by m and M the points of the (u, v)-plane corresponding to the local minimum
and maximum of the nullcline f (u, v) = 0, respectively (see Fig. 1). The dynamics
of the system (2.1a)–(2.1b) can be classified, according to the possible intersections
of the u- and v-nullclines, as follows ([9, 14]):

(i) monostable or oscillatory case, when the system (2.1a)–(2.1b) admits a unique
stable equilibrium that lies on the inner branch of the u-nullcline, namely that
portion of the curve that lies between m and M , see Fig. 1a. In this case, we shall
say that the system (1.1) admits a unique inner equilibrium;

(ii) excitable case, when the system (2.1a)–(2.1b) has a unique stable equilibrium that
lies on one of the outer branches of the u-nullcline, namely those portions of the
curve that lie on the left of m or on the right of M , see Fig. 1b or c. In this case,
we shall say that the system (1.1) admits a unique outer equilibrium;

(iii) bistable case, when the system (2.1a)–(2.1b) admits three equilibria, two stable
and one unstable.
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In this paper, we shall restrict the analysis to the region of the parameter space
where the system (2.1a)–(2.1b) admits only one stable equilibrium, which corresponds
to the two cases of the monostable and the excitable regime. According to the signs
of the partial derivatives fu, fv, gu, gv evaluated at the stable equilibrium point E0
(see Fig. 1), one can classify the local interaction between u and v as of the activator-
inhibitor type [21]. In fact, in all cases, at the stable equilibrium E0, one has gu > 0
so that the activator u promotes the growth of v, and fv < 0, so that the inhibitor v

dampens the increase of u. However, while in the monostable case the u-species is
self-activating (since fu > 0), in the excitable case u is self-inhibiting (since fu < 0).
As a consequence of the form of the nullclines, in the excitable regime, the dynamics
of (2.1a)–(2.1b) exhibits a threshold behavior, namely, a sufficiently large perturbation
from the equilibrium causes the species to undergo a large excursion before returning
to the steady state.

2.2 Conditions for the existence of a unique equilibrium and its stability

Given the system (2.1a)–(2.1b), let E0 ≡ (u∗, v∗) be an equilibrium point. First, we
recall the conditions for E0 to be a unique equilibrium of (2.1a)–(2.1b).

Proposition 2.1 (Conditions for the existence of a unique equilibrium) Given the sys-
tem (2.1a)–(2.1b), where the parameters satisfy the conditions (1.2a), let u∗ be a real
root of u3 − βγ u2 + (aβ + γ − 1)u − a = 0. If:

4p + 3

(

u∗ − βγ

3

)2

> 0, with p = aβ + γ − 1 − β2γ 2/3, (2.2)

then E0 ≡ (u∗, v∗), where v∗ = γ u∗ − a, is the unique equilibrium point of (2.1a)–
(2.1b).

The proof of the above Proposition is in the appendix of [9].

Remark 1 In the symmetrical case, when β = 0, the condition (2.2) simplifies to
γ > 1 − 3u∗2/4. In the non-symmetrical case, 0 < β � 1, the condition (2.2) is
equivalent to γ− < γ < γ+, where

γ ± − =
[

(2 − βu∗) ±
√

(2 − βu∗)2 + 4aβ3 + β2(3u∗2 − 4)

]

/β2,

with limβ→0 γ− = 1 − 3u∗2/4 and limβ→0 γ+ = +∞. Hence, by choosing a suffi-
ciently small value of β, there is an arbitrarily large interval of γ -values such that the
system admits a unique equilibrium.

Proposition 2.2 (Monostable or oscillatory case) Given the system (2.1a)–(2.1b),
suppose the hypotheses of Proposition 2.1 are satisfied. If

εH > 0, with εH = 1 + βv∗ − 3u∗2, (2.3)

then E0 ≡ (u∗, v∗) is the unique inner equilibrium point of (2.1a)–(2.1b).
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Proposition 2.3 (Excitable case)Given the system (2.1a)–(2.1b), suppose the hypothe-
ses of Proposition 2.1 are satisfied. If

εH < 0, with εH = 1 + βv∗ − 3u∗2, (2.4)

then E0 ≡ (u∗, v∗) is the unique outer equilibrium point of (2.1a)–(2.1b).

The proof of Propositions 2.2 and 2.3 relies on the following observation: along the
u-nullcline v(u) = u(1 − u2)/(1 − βu) , one has:

v′(u∗) = εH

1 − βu∗ , (2.5)

so that, given that 1 − βu∗ > 0, the sign of εH coincides with the sign of v′ (u∗).
Hence, εH > 0 on the inner branch of the u-nullcline, while εH < 0 on the outer
branches of the u-nullcline.

We now pass to analyze the stability of E0. By setting w = (u − u∗, v − v∗)T , we
get the following linearized dynamics of (2.1a)–(2.1b) in the neighborhood of E0:

wt = Kw, with K =
(

εH −(1 − βu∗)
εγ −ε

)

, (2.6)

and where εH = 1 + βv∗ − 3u∗2.
The following Proposition holds:

Proposition 2.4 (Stability of the unique equilibrium point) Given the system (2.1a)–
(2.1b), suppose the hypotheses of Proposition 2.1 are satisfied. If

tr(K) = −ε + εH < 0, (2.7)

det(K ) = ε
[−εH + (

1 − βu∗) γ
]

> 0. (2.8)

then E0 ≡ (u∗, v∗) is a stable equilibrium point of (2.1a)–(2.1b).

Remark 2 In the excitable case,where εH < 0, the conditions (2.7) and (2.8) are always
satisfied and the equilibrium is stable. In the monostable regime, where εH > 0, the
equilibrium can undergo either a Hopf bifurcation, when εH = ε, or a pitchfork
bifurcation, when εH = (1 − βu∗) γ .

3 Turing instability analysis

In this Section, we shall perform the Turing bifurcation analysis of the reaction–
diffusion system (1.1) on the assumption of the existence of a unique stable
equilibrium, i.e., under the hypotheses of Proposition 2.1 and of Proposition 2.4.
The linearized dynamics of (1.1) in the neighborhood of E0 is:

∂w
∂t

= Lw, (3.1)
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where:

L = K + D∇2, D =
(

1 dv

du d

)

, (3.2)

and K is given in (2.6). Hereafter, we shall assume that the following necessary
condition for the well-posedness of the system (1.1) is satisfied:

det(D) = d − dudv > 0. (3.3)

The condition for steady state solution E0 to undergo a Turing bifurcation is that it is
stable against spatially uniform perturbations while it loses stability due to spatially
non-homogeneous perturbations. Namely, if we look for instability to perturbations
of the form cos (k · x), the linear stability analysis leads to the following eigenvalue
problem:

λw = M(k2)w, (3.4)

where

M(k2) = K − k2D, (3.5)

and k2 = k · k. Instability sets in if R(λ(k)) > 0 for some k 
= 0, where λ(k) is an
eigenvalue of M(k2), namely a solution of the following dispersion relation:

λ2 + g
(

k2
)

λ + h
(

k2
)

= 0, (3.6)

where the coefficients of the above dispersion relation are:

h
(

k2
)

= det(M(k2)) = det(D)k4 + qk2 + det(K ),

g
(

k2
)

= −tr(M(k2)) = k2tr(D) − tr(K ),

q = −(K11D22 + K22D11) + K12D21 + K21D12, (3.7)

and Ki j , Di j are the elements of the matrices K and D, respectively.
Since by Proposition 2.4 the equilibrium E0 is stable for the kinetics, condition

(2.7) holds so that the trace ofM(k2) is negative, i.e. g
(
k2

)
> 0 for all k. Therefore,

Turing instability can occur only if, due to the presence of the diffusion terms, one
of the eigenvalues of the matrix M(k2) crosses zero, namely if the curve h(k2) =
det(M(k2)) assumes negative values for some k. Since h(k2) attains its minimum at:

k2c = − q

2 det(D)
, (3.8)
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the necessary conditions for yielding the Turing instability are the following [21]:

{
q < 0, (reality of the critical wavenumber)

q2 − 4 det(D) det(K ) ≥ 0. (bifurcation condition)

(3.9a)

(3.9b)

Condition (3.9a) ensures that the minimum of h(k2) is attained at a positive value of
k2. Condition (3.9b) ensures that, past the bifurcation, the minimum value of h(k2)
is negative, so to have a finite bandwidth of unstable wavenumbers k2. Equality in
(3.9b) holds at the bifurcation and, for fixed values of the other parameters, defines
the critical value dc of the bifurcation parameter d.

In the next two Sections, we shall express the above-given conditions (3.9a)–(3.9b)
together with the necessary condition for well-posedness, condition (3.3), in terms of
the parameters of the original system (1.1). We shall consider separately the two cases
of the monostable and excitable regimes.

In Sect. 4, we shall briefly treat the case of the monostable regime, already exten-
sively analyzed in [9]. In Sect. 5, we shall treat the case of the excitable regime, the
present paper’s main topic.

4 Diffusive instability: themonostable regime

In the absence of the cross-diffusion terms, the local behavior of the nullclines in the
proximity of a monostable equilibrium satisfies the necessary conditions for the clas-
sical diffusion-driven instability and, therefore, allows for the onset of Turing patterns
(see Fig. 1a). The presence of cross-diffusion terms, although non-necessary for the
appearance of stationary patterns, enlarges the parameter region where instability may
occur and introduces a new type of pattern.

For any nonnegative fixed value of dv , conditions (3.3) and (3.9a) are both satisfied
if:

{
d > d̄ for du < δ

(1)
u ,

d > dvdu for du ≥ δ
(1)
u ,

(4.1)

where

d̄ := 1

εH
(ε(1 + γ dv) + (βu∗ − 1)du) and δ(1)

u := ε(1 + γ dv)

1 − βu∗ + εH dv

. (4.2)

d̄ is the threshold value of the bifurcation parameter d above which one gets q < 0
(i.e. a positive value of k2c ) and δ

(1)
u defines in the (du, d)-plane the abscissa of the

intersection point between the two straight lines d = d̄ and d = dudv , see Fig. 2.
We now enforce condition (3.9b), where equality gives the threshold values for d.

Written in terms of the system parameters, (3.9b) is expressed by the following second
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Fig. 2 a–b Monostable case: geometrical representation of the conditions for the diffusive instability for
two different choices of dv . The regions in the (du , d)-plane above the two straight lines d = du dv (dashed
line) and d = d̄ (dotted line) correspond to the fulfillment of conditions (3.3)–(3.9a). The gray shaded
areas represent the diffusive instability regions in the (du , d)-plane, corresponding to the fulfillment of both
(3.3)–(3.9a) and (3.9b). The boundaries of the Turing region are d = dc , or P(d) = 0, (solid line) and
d = dvdu (dashed line). The other parameters are chosen as β = 0.1, a = 0.0001, γ = 1.02, ε = 2, so

that E∗ = (0.0051, 0.0051). (a) dv = 0.1, which gives δ
(2)
u = 2.2051, δ(1)

u = 2.0045. b dv = 1, which

gives δ
(2)
u = 4.0421, δ(1)

u = 2.0201. c Turing pattern obtained by the numerical simulation of the system
(1.1) in the competition regime, with dv = 0.1, du = 2.0194 and d = 0.32 > d+

c = 0.3191 (so that
k+

c = 0.75). The other parameters are chosen as in (a). The profile of the activator (inhibitor) is represented
by a solid (dotted) line. d Cross-Turing pattern obtained by the numerical simulation of the system (1.1) in
the competition regime, with dv = 0.1, du = 2.0194 and d = 0.20423 < d−

c = 0.20432 (so that k−
c = 2).

The other parameters are chosen as in (a). The profile of the activator u (inhibitor v) is represented by a
solid (dotted) line

degree inequality:

P(d) := ε2H d2 − 2d
(
ε2H d̄ + 2 det(K )

)
+ ε2H d̄2 + 4 det(K )dudv ≥ 0. (4.3)

It is not difficult to prove that, in the (du, d)-plane, the locus where P(d) = 0 is a
parabola, see Fig. 2a, b. A detailed study of the solutions to (4.3), gives the conditions
under which (3.9b) is verified, see [9] for details. Here we briefly report the results:
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Upon defining

δ(2)
u = ε(1 + γ dv)

1 − βu∗ , δ(3)
u = εH ε(1 + γ dv) + det(K )

εH (1 − βu∗ + εH dv)
, (4.4)

we distinguish the following three different cases, depending on the value of the
parameter du :

(i) du < δ
(1)
u (Diffusion-dominated regime)

For du < δ
(1)
u , one has d ≥ d̄ > dv du . The quadratic polynomial P(d) given by

(4.3) admits two real roots, of whom only one, dc, is greater than d̄. It follows that
conditions (3.3) and (3.9a)–(3.9b) will be verified for d ≥ dc (see Fig. 2a, b).

(ii) δ
(1)
u ≤ du ≤ δ

(3)
u (Competition regime)

In this case d̄ < dv du , so that, to satisfy (3.9a) and (3.3), we have to take d > dv du

(see (4.1)). The quadratic polynomial P(d) given by (4.3) still admits two real
roots, say d−

c and d+
c , which both lie above the straight line d = dvdu (see Fig. 2a,

b).
iii) du > δ

(3)
u (Cross-diffusion-dominated regime)

In this region, being δ
(1)
u < δ

(3)
u < du , to satisfy (3.9a) and (3.3), we take d > dvdu .

The polynomial P(d) never vanishes and (3.9b) is always satisfied. Therefore,
the diffusion-driven instability occurs for all d > dvdu that guarantee the well-
posedness of the system (see Fig. 2a, b).

Hence, we have the following:

Theorem 4.1 (Diffusive instability—monostable case) Given the system (1.1) under
the conditions (1.2a)–(1.2b). Suppose:

1. The hypotheses of Proposition 2.1 are satisfied;
2. The hypotheses of Proposition 2.2 are satisfied;
3. The hypotheses of Proposition 2.4 are satisfied.

Let d̄, δ
(1)
u , δ

(2)
u and δ

(3)
u be given by (5.3), (5.6) and (4.4), respectively.

Then:

(i) if du < δ
(1)
u , then the equilibrium E0 loses stability through a Turing bifurcation

whenever d ≥ dc = d̄+ξ+, where ξ+ is the positive root of the following quadratic
polynomial:

P1(ξ) = ε2H ξ2 + 4 det(K )ξ − 4 det(K )(d̄ − dudv). (4.5)

At d = dc the critical wavenumber is given by:

kc =
√

− qc

2 det(Dc)
, (4.6)
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where:

qc = −εH dc − (1 − βu∗)du + ε(1 + γ dv), and det(Dc) = dc − dudv.

(4.7)

(ii) if δ
(1)
u ≤ du ≤ δ

(3)
u , then the equilibrium E0 loses stability through a Turing

bifurcation for

dvdu < d ≤ d−
c = dvdu + ξ1 or for d ≥ d+

c = dvdu + ξ2,

where 0 < ξ1 < ξ2 are the roots of the following polynomial:

ε2H ξ2 − 2ξ
{[

ε2H dv + εH (1 − βu∗)
]
(δ(3)

u − du) + det(K )
}

+ ε2H
(
d̄ − dudv

)2
.

(4.8)

At d = d±
c the critical wavenumber is given by:

k±
c =

√

− q±
c

2 det(D±
c )

, (4.9)

where:

q±
c = −εH d±

c − (1 − βu∗)du + ε(1 + γ dv) and det(D±
c ) = d±

c − dudv.

(4.10)

(iii) if du > δ
(3)
u , then the equilibrium E0 loses stability through a Turing bifurcation

for all d > dvdu. For every fixed value of du and d, the most unstable wavenumber
is given by:

k =
√

− q

2 det(D)
, (4.11)

where D and q are given in (3.3) and (5.2), respectively.

Theorem 4.1 states, for the monostable case, the existence of three different regimes,
characterized, for any fixed value of dv , by different values of the inhibitor cross-
diffusion du . For small values of du , the pattern-forming instability is driven by the
classical mechanism; the effect of the cross-diffusion term is to lower the bifurcation
value of the diffusivity ratio dc. The reason is easily understood: the classical Turing
mechanism requires high mobility of the inhibitor, to which, here, also cross-diffusion
contributes. Increasing values of du reduce further the bifurcation threshold dc andmay
drive it below unity, allowing the pattern formation for a slowly diffusing inhibitor. As
predicted by the classical theory, one can show that the species spatially distribute in
phase, with values of the activator peaks higher than the inhibitor maxima. We have
named this regime diffusion-dominated.
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For increasing values of du , according to Theorem 4.1 one has the competition
regime: for the same parameter set, the homogeneous equilibrium of (1.1) undergoes
a double bifurcation as d is varied so that two qualitatively different patterns form
for d ≤ d−

c and for d ≥ d+
c , respectively. The latter is just the continuation of the

branch observed in the diffusion-dominated regime, with in-phase spatially distributed
species. On the other hand, the pattern arising for d ≤ d−

c is a new phenomenon,
determined by the presence of the cross-diffusion du , where the spatial concentration
of the activator is out-of-phase with respect to the density of the inhibitor, see Fig. 2.
As the cross-term drives it, we have called this structure a cross-Turing pattern.

Finally, for increasingly large values of du , the two bifurcation values d+
c and d−

c

approach and collide at du = δ
(3)
u . The cross-diffusion dominated regime is obtained

for values of du larger than δ
(3)
u : the mechanism of pattern formation is now driven

solely by the cross-diffusion and the instability sets in independently on d, whose
value only determines the relative phasing of the species.

5 Diffusive instability: the excitable regime

In this Section, we shall derive the conditions for the onset of diffusive instabilities in
the excitable regime, i.e., when the kinetics of the system (1.1) admits a single outer
equilibrium. Therefore, throughout this Section,we shall assume to hold the conditions
of Proposition 2.1 (ensuring uniqueness of the equilibrium), and of Propositions 2.3
and 2.4 (ensuring excitability and stability, respectively). namely:

1 − βu∗ > 0 and εH < 0. (5.1)

We shall express the condition for the reality of the critical wavenumber, i.e., (3.9a), the
bifurcation condition, i.e., (3.9b), and the necessary condition for well-posedness, i.e.,
(3.3), in terms of the system parameters, considering d as the bifurcation parameter.

The plan of the Section is the following. First, in Sect. 5.1, we shall show how,
without cross-diffusion, no pattern would arise. Second, in Sect. 5.2, we shall impose
the reality of the critical wavenumber, condition (3.9a), deriving the conditions (5.3)
and (5.4). In Sect. 5.3, we shall impose the well-posedness condition, deriving the
condition (5.7), that includes the conditions (5.3) and (5.4). In Sect. 5.4, we shall
impose the bifurcation condition (3.9b), proving Proposition 5.1. In Sect. 5.5 we shall
state the Theorem 5.2, that summarizes the analysis, and discuss the obtained results.

5.1 Classical diffusion coupled with excitable kinetics does not allowTuring
instability

In the absence of the cross-diffusion terms, the linearized dynamics in the neigh-
borhood of a single outer equilibrium (see Fig. 1b, c) prohibits the onset of Turing
instability. Although the interaction between the two species is of activator-inhibitor
type (being fv < 0, gu > 0), the requirement fu gv < 0 is not satisfied: namely, the
inhibitor v, is not self-activating. In fact, when the inhibitor species is autocatalytic,
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a smaller value of the activator diffusivity may allow for the onset of a stationary
instability resulting in out-of-phase patterns of the two species [21]. The excitable
kinetics, instead, when the model includes the classical diffusion only, forbids the
instability of the equilibrium point. In what follows, we shall show that the presence
of the cross-diffusion terms can destabilize the equilibrium, so determining a finite-
size Turing region in the parameter space. We shall also highlight the role of varying
du and dv separately, showing that they have opposite influences on the width of the
Turing region.

5.2 The first necessary condition for the cross-diffusion-driven instability:
Eq. (3.9a) q < 0

Expliciting q as defined in (3.7) in terms of the system parameters, yields:

q = −εH d − (1 − βu∗)du + ε(1 + γ dv). (5.2)

When the equilibrium point E0 of the reaction terms (2.1a)–(2.1b) lies on either one
of outer branches of the u-nullcline, one has that εH < 0. So that it is easily seen that
condition (3.9a), q < 0, is verified for:

d < d̄, where d̄ := 1

εH
(ε(1 + γ dv) + (βu∗ − 1)du). (5.3)

Therefore, d̄ is the threshold value of the bifurcation parameter d below which q < 0
and one gets a positive value of k2c .

However, d̄ could be negative, which would make the condition (5.3) impossible
to verify. Therefore, we now investigate the conditions under which d̄ ≥ 0. In the
(du, d)-plane, for fixed dv , the condition d < d̄ corresponds to the region below the
straight line d = d̄, see Fig. 3a and b. Since 1 − βu∗ > 0 and εH < 0, the slope of
the line d = d̄ is positive, while the intercept with the d-axis Ic = ε(1 + γ dv)/εH is
negative. An equivalent condition to have a non-negative value of d̄ is therefore that:

du > δ(2)
u , where δ(2)

u := ε(1 + γ dv)

1 − βu∗ . (5.4)

The conditions (5.3) and (5.4), both necessary conditions for the onset of a cross-
diffusion-driven instability, are the main results of the present Subsection.

5.3 Intersection of the well-posedness condition d > dudv with d < d̄

In addition to condition (3.9a), which is equivalent to (5.3), we have to satisfy the
well-posedness condition (3.3). Therefore, we must have

dudv < d < d̄.
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Fig. 3 Geometrical representation of the conditions for the Turing instability in the excitable case. a–b
For two different choices of dv , the dark gray regions in the (du , d)-plane delimited by the two straight
lines d = du dv (dashed line) and d = d̄ (dotted line) correspond to the fulfillment of conditions (3.3)–
(3.9a). The other parameters are chosen as β = 0.2, a = −0.35, γ = 1.12, ε = 0.1, so that E0 =
(−0.6163,−0.3403). a dv = 0.1, which gives δ

(2)
u = 0.099, δ(1)

u = 0.1009, Ic = −0.5357. b dv = 1,

which gives δ
(2)
u = 0.1887, δ(1)

u = 0.2315, Ic = −1.0213. c–d Depicted in gray the Turing instability
region in the (du , d)-plane, corresponding to the fulfillment of both (3.3)–(3.9a) and (3.9b) for two different
values of dv .The boundaries of the Turing region are d = dc , or P(d) = 0, (solid line) and d = dvdu
(dashed line). c The parameters are chosen as in (a). d The parameters are chosen as in (b)

In the (du, d)-plane, the above conditions are satisfied in the intersection of two half-
planes, see also Fig. 3a and b. In the (du, d)-plane, this intersection is nonempty if and
only if the slope dv of the line d = dv du is smaller than the slope of the line d = d̄.
Such requirement imposes a condition on dv , namely:

dv < δv := βu∗ − 1

εH
. (5.5)

When (5.5) is verified, the two lines meet at the value du = δ
(1)
u where:

δ(1)
u := ε(1 + γ dv)

1 − βu∗ + εH dv

, (5.6)
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that defines the abscissa of the leftmost point of the region in the (du, d)-plane where
both conditions (3.3) and (3.9a) are verified (see Fig. 3a, b). On the other hand, one
has to take into account the condition (5.4): however, by inspection, δ

(1)
u ≥ δ

(2)
u for

any non-negative dv; therefore, condition (5.4) can be dropped. One finally gets the
following requirement for du :

du ≥ δ(1)
u , where δ(1)

u := ε(1 + γ dv)

1 − βu∗ + εH dv

.

In conclusion, themain result of the present subsection are the following conditions:

dv < δv, du ≥ δ(1)
u dudv < d < d̄ (5.7)

which is an improved version of the condition (5.3).
We finally notice that the quantity δ

(1)
u is an increasing function of dv , so that

increasing the cross-diffusion of the activator dv reduces the width of the Turing
region. This is also apparent from the comparison of Fig. 3a and b.

5.4 The second necessary condition for the cross-diffusion-driven instability:
Eq.(3.9b)

Supposing that (5.7) is satisfied, let us now consider the last condition (3.9b), where
equality gives the threshold values for d. We shall prove the following

Proposition 5.1 Given the system (1.1) under the conditions (1.2a)–(1.2b), suppose
that the hypotheses of Propositions 2.1 and of Proposition 2.3 are satisfied. Let dv < δv

and du ≥ δ
(1)
u , with δv and δ

(1)
u given by (5.5) and (5.6), respectively. Then, there exists

dc ∈ (d̄, dudv), such that P(dc) = 0, with

P(d) := ε2H d2 − 2d
(
ε2H d̄ + 2 det(K )

)
+ ε2H d̄2 + 4 det(K )dudv. (5.8)

Moreover, for any d ∈ (dc, dudv), one has that P(d) > 0.

Proof Making it explicit in (3.9b) the dependence on the system parameters, one gets
a second degree inequality for d, namely:

P(d) := ε2H d2 − 2d
(
ε2H d̄ + 2 det(K )

)
+ ε2H d̄2 + 4 det(K )dudv ≥ 0. (5.9)

The condition for criticality in (5.9) is given by P(d) = 0, that represents in the
(du, d)-plane a parabola (see Fig. 3c, d). It is easy to prove that the symmetry axis
that the symmetry axis of the parabola has the same slope of the line d = d̄ . The
discriminant of P(d) reads:


 = 4 det(K )(det(K ) + ε2H (d̄ − dudv)). (5.10)
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The discriminant 
 is positive: in fact, det(K ) > 0 since, by Propositions 2.3 and 2.4,
E0 is stable for the kinetics. Moreover, by (5.7), d̄ > dudv (see also Fig. 3a, b). From
the positivity of 
, it follows that the polynomial P(d) admits two real roots. By the
Descartes’ rule of signs, such roots are both positive. We now prove that only one of
the two roots of P(d) belongs to the interval (dudv, d̄), as required by (5.7). To find
the roots dc that lie below the threshold d̄ , we substitute d = d̄ − ξ in P(d) defined
by (5.9). By inspection, one sees that the resulting quadratic polinomial in ξ , namely:

ε2H ξ2 + 4 det(K )ξ − 4 det(K )(d̄ − dudv), (5.11)

admits only one real positive root ξ+. Similarly, it is easy to prove that such root

dc ≡ d̄ − ξ+ (5.12)

is such that dc > dudv . We have therefore proved that there exists a unique value of
the parameter d = dc, given by (5.12), with dc ∈ (dudv, d̄) such that P(dc) = 0 and
P(d) > 0 for d ∈ (dudv, dc). ��

5.5 Main result and discussion

The analysis of the Sects. 5.2, 5.3 and 5.4 can be summarized as follows:

Theorem 5.2 (Diffusive instability—excitable case) Given the system (1.1) under the
conditions (1.2a)–(1.2b). Suppose:

1. The hypotheses of Proposition 2.1 are satisfied;
2. The hypotheses of Proposition 2.3 are satisfied;
3.

dv < δv, with δv = (βu∗ − 1)/εH ,

du > δ
(1)
u , where δ

(1)
u = ε(1 + γ dv)/(1 − βu∗ + εH dv).

(5.13)

Let ξ+ be the positive root of the polynomial (5.11), then the equilibrium E0 loses
stability through a Turing bifurcation whenever dudv < d ≤ dc, where dc = d̄ − ξ+.
The critical wavenumber is given by:

kc =
√

− qc

2 det(Dc)
, (5.14)

where:

qc = −εH dc − (1 − βu∗)du + ε(1 + γ dv) and det(Dc) = dc − dudv. (5.15)

Proof Given that the hypotheses of Proposition 2.1 are satisfied, the equilibrium E0
is unique. Moreover, by the hypotheses of Proposition 2.3 and by Proposition 2.4,
E0 is stable with excitable dynamics. By the hypotheses given in (5.13), one has that

123



S132 G. Gambino et al.

dudv < d̄ , where d̄ is given by (5.3), see Sect. 5.2. Therefore, choosing dv < δv and
du ≥ δ

(1)
u , one has that for any d such that dudv < d < d̄ , the necessary condition for

well-posedness is satisfied and the critical wavenumber is real-valued, see Sect. 5.3.
Finally, Proposition 5.1 guarantees that there exists a unique value dc = d̄ − ξ+ such
that:

(i) for d = dc:

• λ(kc) = 0, i.e. the growth rate λ(kc) of the critical wavenumber kc is zero;
• λ(k) < 0, ∀k 
= kc, i.e. the growth rate of all the wavvembers except kc is
negative;

(ii) for d < dc there exists a band of wavenumbers k ∈ (k1, k2) such that:

• λ(k) > 0 for k ∈ (k1, k2), λ(k) < 0 for k < k1 ∪ k > k2 and λ(k1) = λ(k2) =
0; i.e. only the wavenumbers belonging to the interval (k1, k2), have positive
growth rate.

��

5.5.1 Discussion

Theorem 5.2 reveals that including in the model the cross-diffusion terms relaxes the
requirements on the reaction kinetics imposed by the classical Turing mechanism for
the formation of patterns. Classically, diffusion-driven instability not only requires
the reaction kinetics to be of activator-inhibitor-type, but it is also necessary that
either: (a) the activator species is self-activating, and the inhibitor is self-inhibiting
(so that the linearized kinetics matrix is of the form shown in Fig. 1a); or (b) that the
activator is self-inhibiting, and the inhibitor is self-activating (so that in the linearized
kinetics, one has fu < 0, fv < 0, gu > 0, gv > 0). Neither of the two conditions,
(a) or (b), is valid for the FitzHugh-Nagumo model (1.1) in the excitable regime: By
the linearized kinetics close to the equilibrium, one easily derives that the u-species
(activator) is self-inhibiting but, contrarily to what the Turing mechanism requires, the
v-species (inhibitor) is self-inhibiting too. In the absence of autocatalytic effects of
the inhibitor and if only classical diffusion terms are present, any small perturbation
of the equilibrium decays, inhibiting pattern formation.

More precisely, Theorem 5.2 explains that, with excitable dynamics, the cross-
diffusion causes instability when present in the inhibitor equation. To understand this,
take both the cross-diffusion coefficients equal to zero: from the expression (5.3),
one can see that the threshold d̄ below which condition (3.9a) is satisfied assumes the
negative value ε/εH , so that no positive value of d wouldmake it possible a bifurcation
at E0. An increase of dv maintaining du = 0, further lowers the threshold d̄ to the
value Ic = ε(1 + γ dv)/εH (see Fig. 3a, b), preventing evenmore the occurrence of the
instability. On the other hand, if one chooses dv = 0, (3.9a) is satisfied for all values
of du greater than δ

(1)
u = δ

(2)
u , i.e., in the region of the (du, d)-plane delimited by

the du-axes and the straight line d = d̄. Therefore, one can enforce condition (3.9b),
giving rise to the instability region. The cross-diffusion coefficient of the inhibitor du

is the key parameter to initiate the pattern formation.
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The existence of a threshold on the cross-diffusion coefficient du to set in the
instability means that the inhibitor has to diffuse sufficiently fast away from increasing
concentrations of the activator. In addition, one has to require a small value of the self-
diffusivities ratio; namely, the activator has to disperse faster than the inhibitor. To
stabilize the pattern, in fact, a sufficiently high value of the activator self-diffusion
coefficient is necessary to guarantee a net flux of activator species from regions with
low inhibitor/high activator concentration towards zone with a small activator/high
inhibitor density. Therefore, the emerging structures formed by the u- and v-species
are out-of-phase. We postpone the classification of the pattern-phasing to [10]. The
effect of varying separately du and dv also confirms the opposite roles played by
the two cross-diffusion terms on the width of the instability region. As one can see
from the comparison of Fig. 3a, b, the shaded area is reduced upon increasing dv ,
while, for fixed dv , increasing du makes it larger the interval of values of d where
(3.9a) is verified. A similar effect has varying du and dv on the condition (3.9b) (see
Fig. 3c, d): for fixed dv , increasing du moves the threshold dc upwards, so enlarging
the instability region. Conversely, from the comparison of Fig. 3c and d, it is apparent
that an increase in dv determines a downward shift of the threshold dc, so reducing
the width of the instability region. Therefore, while the presence of an increasingly
strong cross-diffusion in the inhibitor dynamics helps the onset of the instability, the
cross-diffusion of the activator hampers the formation of stationary patterns.

6 Conclusions

This paper investigates the pattern formation process driven by linear cross-diffusion
in a FHN-type model. For completeness, we have included some results concerning
the monostable regime; more details on this regime are in [9]. However, most of our
analysis has focused on the excitable regime.

We have proved that, although the qualitative form of the kinetics in the neigh-
borhood of the homogeneous equilibrium does not satisfy the conditions required by
the classical Turing theory, cross-diffusion terms can promote the formation of small-
amplitude patterns. In fact, cross-diffusion-driven patterns also arise in the presence
of long range activation and short range inhibition, contrarily to what happens when
only classical diffusion is present.

In a companion paper [10] we shall construct the cross-Turing pattern on 1D and
2D spatial domain and study far-from-equilibrium stationary solutions.
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