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Background and objective: Recently, various algorithms have been introduced using wrist-worn photo- 

plethysmography (PPG) to provide high accuracy of instantaneous heart rate (HR) estimation, including 

during high-intensity exercise. Most studies focus on using acceleration and/or gyroscope signals for the 

motion artifact (MA) reference, which attenuates or cancels out noise from the MA-corrupted PPG signals. 

We aim to open and pave the path to find an appropriate MA reference selection for MA cancelation in 

PPG. 

Methods: We investigated how the acceleration and gyroscope reference signals correlate with the MAs of 

the distorted PPG signals and derived both mathematically and experimentally an adaptive MA reference 

selection approach. We applied our algorithm to five state-of-the-art (SOTA) methods for the performance 

evaluation. In addition, we compared the four MA reference selection approaches, i.e. with acceleration 

signal only, with gyroscope signal only, with both signals, and using our proposed adaptive selection. 

Results: When applied to 47 PPG recordings acquired during intensive physical exercise from two differ- 

ent datasets, our proposed adaptive MA reference selection method provided higher accuracy than the 

other MA selection approaches for all five SOTA methods. 

Conclusion: Our proposed adaptive MA reference selection approach can be used in other MA cancelation 

methods and reduces the HR estimation error. 

Significance: We believe that this study helps researchers to address acceleration and gyroscope signals as 

accurate MA references, which eventually improves the overall performance for estimating HRs through 

the various algorithms developed by research groups. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Wrist-worn photoplethysmography (PPG) sensors have attracted 

onsiderable attention because they can conveniently monitor in- 

tantaneous heart rate (HR) in real time. A wrist-worn PPG sensor 

s usually a reflective type, which transmits light on a wrist and 

dentifies the arterial blood volume change by the amount of re- 

ected light during the systolic and diastolic phases of the cardiac 

ycle. Compared to the transmissive type, the sensor placement is 

ot restricted to any particular measurement site [ 1 , 2 ]. This conve-

ient measurement method can be used in various medical appli- 

ations such as home-based cardiac rehabilitation [3–5] , automatic 
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ardiac disease detection [6–9] , HR dynamics analysis [10–13] , and 

utonomic systems to respond to stressors [ 14 , 15 ] . The wrist-worn

PG is sensitive to motion artifacts (MAs), which usually originate 

rom the movement applied on the wrist during daily activities. 

hus, it is challenging to consistently estimate accurate instanta- 

eous HRs. To overcome the MA issue, hardware or algorithmic ap- 

roach was considered. In [16] , ensemble empirical mode decom- 

osition with principal component analysis was used for effectively 

enoising PPG signals. In [17] , nine-multichannel device for PPG 

ignal acquisition was considered. Then, the multichannel signals 

ere denoised by using truncated singular value decomposition. 

owever, both studies are not available to the PPG signals severely 

orrupted by MAs because MA reference such as acceleration sig- 

als were not considered. Indeed, the study [16] validated the al- 

orithm using only MIMIC data, which contains intensive care unit 

atients with little movement. The algorithm [17] provided rela- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ively high absolute error around 4 beats per minute (bpm) be- 

ause of the lack of MA references. 

In recent years, numerous MA cancelation algorithms have been 

ntroduced using acceleration signals to provide high accuracy of 

R estimation [18–29] , including during high-intensity exercise. 

n most studies, the MAs corrupting PPG signal were attenuated 

r cancelled out by using acceleration signals measured simulta- 

eously with PPG signals as the MA reference. In [18] , the algo- 

ithm imposed a common sparsity constraint on spectral coeffi- 

ients based on the power spectrum of PPG and acceleration sig- 

als. In [19] , the algorithm removed noise via ensemble empirical 

ode decomposition, and the power spectrum peak from accelera- 

ion signals were excluded for HR estimation. In [20] , the algorithm 

sed a frequency based-Wiener filter to attenuate the MAs using 

cceleration signals. In [21] , HR was estimated with signal decom- 

osition approach, where acceleration-based high-resolution spec- 

rum estimation was employed to remove MAs, followed by spec- 

ral peak tracking and verification. Those studies improved the HR 

stimation accuracy providing approximately 2-3 bpm of absolute 

rrors. In [22–24] , Bayesian-based prediction algorithms were fur- 

her considered for tracking HR. For the HR state update, the power 

pectrum of acceleration signals was used for attenuating MA fre- 

uency power. In [25] , the concept of a finite state machine was 

sed after MA removal from acceleration signals. The method auto- 

atically provides only accurate HR estimation results in real-time 

y ignoring the estimation results from severely-corrupted PPG sig- 

als. In [26] , convolutional neural networks were introduced using 

he inputs of time-frequency spectrum of the PPG and accelera- 

ion signals. In [28] , HR was estimated by peak detection in time- 

omain. The acceleration signals confirmed the reliability of PPG 

ignals. In [29] , power spectra of PPG and acceleration signals were 

pplied to a modified Wiener filter by emphasizing the power of 

he frequency corresponding to the previous window HR estima- 

ion results. However, in our previous study, we addressed the lim- 

tations of accelerometers, which measure not only the accelera- 

ion of motion, but also the gravitational acceleration [30] . Gyro- 

cope signals can replace the acceleration signals and thus be used 

s an alternative MA reference. However, a gyroscope sensor mea- 

ures angular velocity in the direction of rotation, which cannot 

ully represent MAs corrupting PPG signals. Recently, both acceler- 

tion and gyroscope signals have been used for the MA references 

31–33] , but most studies focus on simply combining acceleration 

nd gyroscope signals for the MA reference. 

In this study, we aim to open and pave the path for finding 

n appropriate MA reference selection. For more accurate MA can- 

elation, we present an in-depth analysis of how the acceleration 

nd gyroscope signals correlate with the MAs of the distorted PPG 

ignals. To the best of our knowledge, the analysis of the acceler- 

tion and gyroscope signal characteristics for MA reference iden- 

ification has still not been addressed. Furthermore, we propose 

n adaptive MA reference selection approach for the acceleration 

nd gyroscope signals. Such an adaptive scheduling is to use more 

ppropriate MA reference to increase the HR estimation accuracy. 

e believe that this study helps researchers to address accelera- 

ion and gyroscope signals as accurate MA references, which even- 

ually improves the overall performance of HR estimation through 

he various algorithms developed by each research group. 

. Problem description and motivation 

In order to explain the necessity of this study, we conducted a 

imple experiment in which one subject wore a reflective PPG sen- 

or on the wrist and ran on a treadmill. Using our wrist-worn PPG 

ensor described in [30] , we also measured three-axis accelerome- 

er signals and three-axis gyroscope signals using the inertial mea- 

urement unit (IMU) sensor. A chest electrocardiography (ECG) sig- 
2 
al was simultaneously recorded and used to extract the gold stan- 

ard HRs. All signals were sampled at 125 Hz. Throughout this 

tudy, we used 8s window with 2-s shifts (thus 6-s of overlap) for 

ll signals, which estimates HR value every 2-s. We used the same 

indow length (8-s) and shift (2-s) to assess the performance of 

ur algorithm, similarly to what done by the authors of previous 

lgorithms [16–29] . For the i th window, we used PPG signal S ( i ),

he three-axis accelerometer signals A x ( i ), A y ( i ), and A z ( i ), and the

yroscope-axis gyroscope signals, G x ( i ), G y ( i ), and G z ( i ). We first fil-

ered S ( i ) using a fourth-order Butterworth band pass filter (BPF) 

ith cutoff frequencies of 0.4 Hz and 4 Hz, which range covers the 

R range between 0.6 and 3.3 Hz of subjects of all ages when both 

esting and engaging in intensive physical activity [ 34 , 35 ]. Then, 

e normalized S ( i ) to zero mean with unit variance: 

 n ( i ) = 

S ( i ) − μ( S ( i ) ) 

σ ( S ( i ) ) 
, (1) 

here μ( · ) and σ ( · ) are the mean and standard deviation, 

nd S n ( i ) is the normalized PPG signal. In the same way, we also

ormalized the three-axis accelerometer signals and the gyroscope 

ignals, and averaged them as 

 n ( i ) = 

1 
3 

×
(

A x ( i ) −μ( A x ( i ) ) 
σ ( A x ( i ) ) 

+ 

A y ( i ) −μ( A y ( i ) ) 
σ ( A y ( i ) ) 

+ 

A z ( i ) −μ( A z ( i ) ) 
σ ( A z ( i ) ) 

)
 n ( i ) = 

1 
3 

×
(

G x ( i ) −μ( G x ( i ) ) 
σ ( G x ( i ) ) 

+ 

G y ( i ) −μ( G y ( i ) ) 
σ ( G y ( i ) ) 

+ 

G z ( i ) −μ( G z ( i ) ) 
σ ( G z ( i ) ) 

)
, 

(2) 

here A n ( i ) and G n ( i ) are the normalized and averaged acceler-

tion and gyroscope signals, respectively. The signals S n ( i ), A n ( i ),

 n ( i ) were then down-sampled to 25 Hz. Subsequently, we com- 

uted power spectra P S ( i ), P A ( i ) and P G ( i ) from S n ( i ), A n ( i ), G n ( i ), re-

pectively. Fig. 1 (a) and (d) show the two different examples (the 

ase 1 in Fig. 1 (a), and the case 2 in Fig. 1 (d)) representing the

ower spectra P S ( i ), P A ( i ) and P G ( i ): PPG (blue), acceleration (red),

nd gyroscope (green) signals when a subject ran on a treadmill 

ith a true HR of approximately 2 Hz. In Fig. 1 (a), P S ( i ) exhibits a

ominant frequency power of approximately 2.8 Hz, indicating that 

he dominant frequency of the PPG signal does not overlap with 

he true HR (2 Hz). Similarly, in Fig. 1 (d), P S ( i ) exhibits a dominant

requency power of approximately 1.2 Hz, which does not overlap 

ith the true HR (2 Hz). 

For the MA cancelation, we consider Wiener filter, which is 

o estimate a desired signal by linear time-invariant filtering of 

n observed noisy process. For the measured PPG spectrum P S ( i ) 

orrupted by uncorrelated additive random noise, the frequency- 

omain Wiener filter is given by 

 C ( i ) ≈ P S ( i ) − P A ( i ) = 

(
P S ( i ) − P A ( i ) 

P S ( i ) 

)
P S ( i ) ≈

(
P C ( i ) 

P C ( i ) + P A ( i ) 

)
P S ( i ) (3) 

here P C ( i ) and P A ( i ) are the spectra of the MA-free PPG signal and

cceleration signal as the MA reference, respectively. Similarly, P C ( i ) 

P S ( i ) − P G ( i ), if we use the gyroscope signal as the MA reference. 

ssuming that the power spectra P C ( i − 1) and P C ( i ) in consecutive

indows nearly overlap, P C ( i ) can be substituted with P C ( i − 1).

hen, P C ( i ) can be recursively estimated as [20] 

 C ( i ) = 

(
P C ( i − 1 ) 

P C ( i − 1 ) + P A ( i ) 

)
P S ( i ) . (4) 

For the gyroscope signal based MA cancelation, 

 C ( i ) = 

(
P C ( i − 1 ) 

P C ( i − 1 ) + P G ( i ) 

)
P S ( i ) . (5) 

Fig. 1 (b) and (c) show the estimated MA-free PPG power spec- 

ra P C ( i ) using the acceleration and gyroscope signals, respectively 

or the case 1 ( Fig. 1 (a)). Similarly, Fig. 1 (e) and (f) show the esti-

ated clear PPG power spectra P C ( i ) using the acceleration and gy- 

oscope signals, respectively for Case 2 ( Fig. 1 (d)). In the case 1, the
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Fig. 1. Acceleration and gyroscope signals may provide different MA cancelation results (a) – (c): example 1) in which only the acceleration signal correctly cancels out the 

true MAs in the PPG signal; (d) – (f): example in which the gyroscope signal only correctly cancels out the true MAs in the PPG signal. (a) Resultant three spectra in case of 

example 1 from PPG (blue), acceleration (red), and gyroscope (green) signals (true HR extracted from ECG is approximately 2 Hz); PPG power spectrum after MA cancelation 

using (b) acceleration signal and (c) gyroscope signal.(d) Resultant three spectra in case of example 2 from PPG (blue), acceleration (red), and gyroscope (green) signals (true 

HR extracted from ECG is approximately 2 Hz); PPG power spectrum after MA cancelation using (e) acceleration signal and (f) gyroscope signal. 
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a

T

ominant frequency of P S ( i ) overlaps only with that of P A ( i ). Then,

nly the acceleration signal provides the correct MA reference of 

he corrupted PPG signal, which can be observed to minimize or 

ttenuate the dominant frequency power corresponding to the MA 

orrupting the PPG signal. On the other hand, in the case 2, the 

ominant frequency of P S ( i ) overlaps only with that of P G ( i ). Then,

nly the gyroscope signal provides the correct the MA reference. 

The two opposite cases indicate that acceleration and gyroscope 

ignals do not always correctly identify the true MA reference. To 

omplement the acceleration and gyroscope signals, we can con- 

ider both signals for MA cancelation by sequentially performing 

A cancelation algorithms. However, because the MA cancelation 

ttenuates or eliminates the frequency power of MAs in the PPG 

ignal, sometimes it attenuates or eliminates even the true HR fre- 

uency power, particularly when the dominant frequency of an ac- 

eleration or gyroscope signal is close to the true HR. In the case 

 shown in Fig. 1 (d), the dominant frequency of P A ( i ) overlaps

ith the dominant frequency of PPG. Then, MA cancelation using 

oth signals may attenuate or eliminate the true HR information. 

hus, MA cancelation should be carefully performed to minimize 

he probability of losing HR information. To avoid such unfortunate 

ircumstance, a better MA cancelation algorithm should be able to 

elect the most suitable MA reference signal between the acceler- 

tion and gyroscope signals every time we measure an instanta- 

eous HR. If feasible, we can use a more appropriate MA reference 

or MA cancelation every time we estimate the HR. 

In this study, we proposed the algorithm of adaptive scheduling 

f acceleration and gyroscope signals to select the most suitable 

A reference signal. We first investigated how acceleration and gy- 

oscope signals are correlated with MAs corrupting the PPG signal. 

or the MA analysis from acceleration and gyroscope signals, we 
3

rst derived a mathematical formulation when the swinging arm 

s unfolded. Then, we extended the formulation to a more realistic 

ondition by partially folding a swinging arm. Given the mathe- 

atical investigation, we propose an adaptive MA reference selec- 

ion approach and evaluate this approach based on state-of-the-art 

ethods [ 20 , 22 , 24 , 25 , 29 ] for MA cancelation and HR estimation. 

. MA Reference selection between acceleration and gyroscope 

ignals 

.1. Acceleration and gyroscope characteristics with stretched arm 

.1.1. Model and parameter definition 

First, we simplified the model representing the applied forces to 

he PPG, acceleration, and gyroscope sensors when a stretched arm 

wings along the trajectory A-B-C-B-A, as shown in Fig. 2 . In the 

odel, we defined four forces: an intrinsic force (I), a centrifugal 

orce (C), an arm-swing movement force (M), and a vertical-body 

ovement force (B), all of which change according to the relative 

osition. Consider the wearable device worn on the wrist, moving 

long the trajectory A-B-C-B-A, where we denote θ as the swing 

ngle relative to position B by the positive angle toward position A 

nd the negative angle toward position C. In addition, we denote 

he angles of centrifugal force and gravity with respect to the x- 

nd y-axes of the accelerator and gyroscope by θ x 
c , θ

y 
c , θ

x 
I 

, and θ y 
I 

, 

espectively. 

.1.2. Intrinsic Force 

We define an intrinsic force as the force applied to the PPG, 

ccelerator, and gyroscope by gravity: M I , A I , and G I , respectively. 

here are no effects of intrinsic forces for the PPG and gyroscope: 
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Fig. 2. Simplified model with swinging of the stretched arm: this model represents 

the applied forces to PPG, acceleration, and gyroscope sensors when a stretched 

arm swings. 
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 I = G I = 0. Moreover, an accelerometer measures the gravita- 

ional acceleration in the direction opposite to the forced direction 

straight upward) and measures a zero value for free-fall motion. 

ubsequently, A I can be decomposed as follows: 

 I = 

(
A 

x 
I , A 

y 
I 
, A 

z 
I 

)
≈

(
g · cos ( θ x 

I ) , g · cos 
(
θ y 

I 

)
, 0 

)
(6) 

here g = −9.81 m/ s 2 , θ x 
I 

= θ x 
C 

− θ , and θ y 
I 

= θ y 
C 

− θ . Under the

ondition of the stretched arm, θ x 
C 

= 

π
2 and θ y 

C 
= π . Then: 

 I ≈ ( g · sinθ, − g · cosθ, 0 ) (7) 

Given the trajectory A-B-C-B-A, θ changes between −π
2 and 

π
2 . More specifically, θ continuously changes from θmax to 0, 0 

o − θmax , − θmax to 0, and 0 to θmax , where θmax is a positive an- 

le smaller than 

π
2 in reality. By wrapping θ into θ ′ , which changes 

rom 0 to 2 π , we obtain: 

 I ≈
(
g · cosθ ′ , − g ·

∣∣sinθ ′ ∣∣, 0 

)
(8) 

Then, during trajectory A-B-C-B-A, A 

x 
I 

exhibits a one-cycle 

ovement, whereas A 

y 
I 

exhibits a two-cycle movement. This indi- 

ates that A I may result in the two dominant frequencies F and 2 F 

hen a stretched arm swings with a frequency of F . 

.1.3. Centrifugal force 

We define centrifugal forces as outward forces to the PPG, ac- 

elerator, and gyroscope when a wrist-worn sensor swings with 

he trajectory A-B-C-B-A: M C , A C and, G C , respectively. Regarding a 

yroscope, there is no effect of the centrifugal force because the 

yroscope measures the angular velocity: G C = 0. In addition, the 

ccelerometer and PPG measure the centrifugal force. More specif- 

cally, for an accelerometer, the centrifugal force is applied in the 

-axis direction (outward from the wrist). Then, A C can be decom- 

osed as: 

 C = 

(
A 

x 
C , A 

y 
C 

A 

z 
C 

)
≈

(
( v C ) 2 

l 
· cos 

(
θ x 

C 

)
, 

( v C ) 2 

l 
· cos 

(
θ y 

C 

)
, 0 

)
, (9) 

here v C is the tangential velocity. As θ x 
C 

= 

π
2 and θ y 

C 
= π : 

 C ≈
(

0 , − ( v C ) 2 

l 
, 0 

)
. (10) 

Given the trajectory A-B-C-B-A, the speed v C continuously 

hanges from 0 to v max , v max to 0, 0 to v max , and v max to 0, where

 max is the maximum speed, which changes the two-cycle move- 

ent of A 

y 
C 

. Thus, A C results in a dominant frequency of 2 F when

 stretched arm swings with a frequency of F . Similarly, M C can be

ecomposed as: 

 C = 

(
M 

x 
C , M 

y 
C 
, M 

z 
C 

)
≈

(
0 , − ( v C ) 2 

l 
, 0 

)
. (11) 
4 
Then, M C also results in a dominant frequency of 2 F when a 

tretched arm swings with a frequency of F . 

.1.4. Arm-swing movement force 

We define arm-swing movement forces as the forces applied to 

he PPG, accelerator, and gyroscope in the tangential direction of 

he arm swing: M M 

, A M 

, and G M 

, respectively. With respect to an

ccelerometer, A M 

can be decomposed as: 

 M 

= 

(
A x M 

, A y 
M 

, A z M 

)
≈

(
A M 

· cos 

(
θ x 

C −
π

2 

)
, A M 

· cos 

(
θ y 

C 
− π

2 

)
, 0 

)
, (12) 

here A M 

is the acceleration magnitude according to the arm 

wing. Since θ x 
C 

= 

π
2 and θ y 

C 
= π , we obtain: 

 M 

≈ ( A M 

, 0 , 0 ) . (13) 

Given the trajectory A-B-C-B-A, A M 

continuously changes from a 

ositive value to zero, a negative value, zero, and a positive value, 

hich results in a one-cycle movement of A 

x 
M 

. Thus, A M 

results in 

 dominant frequency of F when a stretched arm swings with a 

requency of F . Similarly: 

 M 

= 

(
M 

x 
M 

, M 

y 
M 

, M 

z 
M 

)
≈ ( A M 

, 0 , 0 ) . (14) 

Then, M M 

also results in a dominant frequency of 2 F . Moreover, 

egarding a gyroscope, the z-axis rotates and exerts a force only 

n the z-axis of the gyroscope. Thus, G M 

results in a dominant fre- 

uency of F . 

.1.5. Vertical-body movement force 

We define a vertical body movement force as the force ap- 

lied to the PPG, accelerator, and gyroscope when the entire body 

oves up and down: M B , A B , and G B , respectively. Regarding an ac-

elerometer, A B can be decomposed as: 

 B = 

(
A 

x 
B , A 

y 
B 
, A 

z 
B 

)
≈

(
A B · cos ( θ x 

I ) , A B · cos 
(
θ y 

I 

)
, 0 

)
, (15) 

here A B is the force magnitude according to the up-down move- 

ent. As θ x 
I 

= θ x 
C 

− θ , θ y 
I 

= θ y 
C 

− θ , θ x 
C 

= 

π
2 , and θ y 

C 
= π , A B can be

xpressed as: 

 B ≈ ( A B · sin θ, − A B · ( cos θ ) , 0 ) . (16) 

By wrapping θ into θ ′ , which changes from 0 to 2 π , we obtain: 

 B ≈
(
A B · cosθ ′ , − A B ·

∣∣sinθ ′ ∣∣, 0 

)
. (17) 

Given the trajectory A-B-C-B-A, cos θ ′ exhibits a one-cycle 

ovement, whereas | sin θ ′ | exhibits a two-cycle movement. In ad- 

ition, A B exhibits a two-cycle movement because the entire body 

oves up and down twice during trajectory A-B-C-B-A. Accord- 

ngly, given the wrist movement frequency of F, cos θ ′ can be re- 

laced by cos (2 πFt ), | sin θ ′ | by | sin (2 πFt )|, and A B by sin (2 π2 Ft ).

hen: 

 

x 
B = sin ( 2 π2 F t ) · cos ( 2 πF t ) = 

sin ( 2 π( F t ) ) + sin ( 2 π( 3 F t ) ) 

2 

 

y 
B 

= − sin ( 2 π2 F t ) · | sin ( 2 πF t ) | ≈ − sin ( 2 π2 F t ) · ( sin ( 2 πF t ) + α) 

= 

1 − cos ( 2 π( 4 F t ) ) 

2 
− α sin ( 2 π2 F t ) (18) 

Here, A 

x 
B 

has the two dominant frequencies of F and 3 F , and

 

y 
B 

has the two dominant frequencies of 2 F and 4 F . Thus, A B ex-

ibits the four dominant frequencies of F , 2 F , 3 F , and 4 F . Regarding

 PPG sensor, M M 

exhibits the dominant frequency of 2 F because 

he vertical movement (up and down) is repeated twice along the 

rajectory A-B-C-B-A. Moreover, a gyroscope is not affected by the 

ertical body movement force because the force is not related to 

he angular velocity or rotation. 

Table 1 summarizes the possible fundamental frequencies of the 

PG, accelerator, and gyroscope signals when a wearable device 

orn on the wrist swings along the trajectory A-B-C-B-A with a 

requency of F . 
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Table 1 

Fundamental frequencies expressed in MAs in PPG, acceleration, and gyroscope signals when a wearable device 

worn on the wrist swings with the frequency of F (Hz) based on Fig. 2 . 

Frequencies 

in PPG 

Frequencies in Accelerator Frequencies in Gyroscope 

x-axis y-axis z-axis x-axis y-axis z-axis 

Intrinsic force 0 F 2 F 0 0 0 0 

Centrifugal force 2 F 0 2F 0 0 0 0 

Arm-swing movement force F F 0 0 0 0 F 

Vertical body movement force 2 F F , 3 F 2 F , 4 F 0 0 0 0 

Fig. 3. Simplified model with swinging of the partially folded arm: this model rep- 

resents the applied forces to PPG, acceleration, and gyroscope sensors when a par- 

tially folded arm swings. 
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.2. Acceleration and gyroscope characteristics with partially folded 

rm 

We extended the model to a more realistic case in which the 

rm is partially folded, as shown in Fig. 3 . Similar to the case of the

tretched arm, we investigated the four forces applied to the wrist 

hen the sensor on the wrist moves along the trajectory A-B-C- 

-A. By partially folding an arm, θ x 
C 

and θ y 
C 

increase: θ x 
C 

is greater 

han 

π
2 , and θ y 

C 
is greater than π . For simplicity, we assume that 

x 
C 

= 

3 π
4 and θ y 

C 
= 

5 π
4 . 

.2.1. Intrinsic force 

The intrinsic force A I with a partially folded arm can be ex- 

ressed starting from (6). By partially folding an arm with θ x 
C 

= 

3 π
4 

nd θ y 
C 

= 

5 π
4 , A I in (7) changes to: 

 I ≈
(√ 

2 

2 

g · ( −cosθ + sinθ ) , −
√ 

2 

2 

g · ( cosθ + sinθ ) , 0 

)
(19) 

Given the trajectory A-B-C-B-A, θ changes between −π
2 and 

π
2 : 

t continuously changes from θmax to 0, 0 to − θmax , − θmax to 0, 

nd 0 to θmax , where θmax is a positive angle smaller than 

π
2 in 

eality. By wrapping θ into θ ′ , which changes from 0 to 2 π , we 

btain 

 I ≈
(√ 

2 

2 

g ·
(
−
∣∣sinθ ′ ∣∣ + cosθ ′ ), −

√ 

2 

2 

g ·
(∣∣sinθ ′ ∣∣ + cosθ ′ ), 0 

)

(20) 

Then, A 

x 
I 

and A 

y 
I 

exhibit both one-cycle and two-cycle move- 

ents. This indicates that A I exhibits two dominant frequencies of 

 and 2 F when a partially folded arm swings with a frequency of 

 (Hz). In addition, for a PPG and gyroscope, there are no intrinsic 

orces: M I = G I = 0. 

.2.2. Centrifugal force 

The centrifugal acceleration A C with a partially folded arm can 

e expressed starting from (9). By partially folding an arm with 
5 
x 
C 

= 

3 π
4 and θ y 

C 
= 

5 π
4 , A C in (10) changes to: 

 C ≈
(

−
√ 

2 

2 

( v C ) 2 

l 
, −

√ 

2 

2 

( v C ) 2 

l 
, 0 

)
. (21) 

Given the trajectory A-B-C-B-A, the speed v C continuously 

hanges from 0 to v max , v max to 0, 0 to v max , and v max to 0, where

 max is the maximum speed, which results in two-cycle move- 

ents of A 

x 
C 

and A 

y 
C 

. Thus, A C results in a dominant frequency of 

 F when a folded arm swings with a frequency of F . Similarly, the

entrifugal force is also applied to the PPG signal, resulting in a 

ominant frequency of 2 F . As the gyroscope measures angular ve- 

ocity rather than centrifugal force, G C does not exist. 

.2.3. Arm-swing movement force 

The decomposed arm-swing movement force A M 

with a par- 

ially folded arm can start from (12). By partially folding an arm 

ith θ x 
C 

= 

3 π
4 and θ y 

C 
= 

5 π
4 , A M 

in (13) changes to: 

 M 

≈
(√ 

2 

2 

A M 

, −
√ 

2 

2 

A M 

, 0 

)
, (22) 

here A M 

is the acceleration magnitude according to the arm 

wing. Given the trajectory A-B-C-B-A, the force magnitude A M 

ontinuously changes from A max to 0, 0 to − A max , − A max to 0, 

nd 0 to − A max , where A max is the maximum of A M 

, which results

n a one-cycle movement of A 

x 
M 

. Thus, given the wrist movement 

requency of F, A M 

results in a dominant frequency of F . Similarly, 

he arm-swing movement force is also applied to the PPG signal, 

esulting in a dominant frequency of F . Regarding the gyroscope, 

 M 

results in the dominant frequency of F because the z-axis ro- 

ates and exerts a force on the z-axis of the gyroscope. 

.2.4. Vertical-body movement force 

The arm-swing movement force A B with a partially folded arm 

an be expressed starting from (15). By partially folding an arm 

ith θ x 
C 

= 

3 π
4 and θ y 

C 
= 

5 π
4 , A B in (16) changes to: 

 B ≈
(√ 

2 

2 

A B ( −cosθ + sinθ ) , −
√ 

2 

2 

A B ( cosθ + sinθ ) , 0 

)
, (23) 

here A B is the force magnitude according to the up-down move- 

ent. By wrapping θ into θ ′ , which changes from 0 to 2 π , we ob- 

ain: 

 

x 
B ≈

√ 

2 
2 

A B 

(
−| sinθ ′ | + cosθ ′ ), 

 

y 
B 

≈ −
√ 

2 
2 

A B 

(| sinθ ′ | + cosθ ′ ). (24) 

Given the trajectory A-B-C-B-A, cos θ ′ exhibits a one-cycle 

ovement, whereas | sin θ ′ | exhibits a two-cycle movement. Then, 

os θ ′ can be expressed as cos (2 πFt ), | sin θ ′ | as sin (2 π2 Ft ) + α, and

 B as sin (2 π2 Ft ), which can formulate A 

x 
B 

and A 

y 
B 

as: 

 

x 
B ≈

√ 

2 

2 

sin ( 2 π2 F t ) · { −| sin ( 2 πF t ) | + cos ( 2 πF t ) } 

≈
√ 

2 

sin ( 2 π2 F t ) · { −( sin ( 2 π2 F t ) + α) + cos ( 2 πF t ) } 

2 
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Table 2 

Fundamental frequencies expressed in MAs in PPG, acceleration, and gyroscope signals when a wearable device worn on 

the wrist swings with the frequency of F (Hz) based on Fig. 3 . 

MAs in PPG 

Acceleration Gyroscope 

x-axis y-axis z-axis x-axis y-axis z-axis 

Intrinsic force 0 F, 2F F, 2F 0 0 0 0 

Centrifugal force 2F 2F 2F 0 0 0 0 

Arm-swing movement force F F F 0 0 0 F 

Vertical body movement force 2F F, 2F, 3F, 4F F, 2F, 3F, 4F 0 0 0 0 

Table 3 

Selected MA references based on the fundamental frequencies expressed in true 

MAs, acceleration, and gyroscope signals. 

Case PPG Acc Gyro Selected MA reference 

1 F F F Both 

2 F 2 F F Gyro 

3 2 F 2 F F Acc 

4 Others None 

A

A  

t

t

t

v

t

P

t

o

3

3

e

a

q

s

f

t  

f

Table 4 

Algorithm for MA selection in the proposed method. 

Algorithm 1: Adaptive MA Selection 

∗∗ S n ( i ): Normalized PPG signal segment 
∗∗ A n ( i ): Acceleration signal segment 
∗∗ G n ( i ): Gyroscope signal segment 

• Apply FFT to S n ( i ), A n ( i ), and G n ( i ) 

• Find the frequency corresponding the highest power 

- F M from S n ( i ) 

- F A from A n ( i ) 

- F G from G n ( i ) 

• IF F M = F A = F G 

THEN, either A n ( i ) or G n ( i ) is selected 

ELSE IF F M = 2 F A = F G 

THEN, G n ( i ) is selected 

ELSE IF 2 F M = 2 F A = F G 

THEN, A n ( i ) is selected 

ELSE 

none is selected 

• END IF 

• Perform MA cancelation using the selected reference 

o  

s

M

n

d

t

t

a

a  

M

c

d  

r  

a

M  

e

t  

t

a

f

p

s

a

≈
√ 

2 

2 

{ − sin ( 2 π2 F t ) ( sin ( 2 π2 F t ) + α) } 
+ { sin ( 2 π2 F t ) · cos ( 2 πF t ) } 

≈
√ 

2 

2 

{ 

1 − cos ( 2 π( 4 F t ) ) 

2 

− αsin ( 2 π( 2 F t ) ) 

} 

+ 

{
sin ( 2 π( F t ) ) + sin ( 2 π( 3 F t ) ) 

2 

}

 

y 
B 

≈ −
√ 

2 

2 

sin ( 2 π2 F t ) · { | sin ( 2 πF t ) | + cos ( 2 πF t ) } 

≈ −
√ 

2 

2 

sin ( 2 π2 F t ) · { ( sin ( 2 π2 F t ) + α) + cos ( 2 πF t ) } 

≈ −
√ 

2 

2 

{ sin ( 2 π2 F t ) ( sin ( 2 π2 F t ) + α) } 
+ { sin ( 2 π2 F t ) · cos ( 2 πF t ) } 

≈ −
√ 

2 

2 

{
cos ( 2 π( 4 F t ) ) − 1 ) 

2 

+ αsin ( 2 π( 2 F t ) ) 

}

+ 

{
sin ( 2 π( F t ) ) + sin ( 2 π( 3 F t ) ) 

2 

}
(25) 

Thus, given the wrist movement frequency of F , both A 

x 
B 

and 

 

y 
B 

have four dominant frequencies of F , 2 F , 3 F , and 4 F . Regarding

he PPG sensor, M M 

exhibits the dominant frequency of 2 F because 

he vertical movement (up and down) is repeated twice along the 

rajectory A-B-C-B-A. Moreover, a gyroscope is not affected by the 

ertical body movement force because the force is not related to 

he angular velocity or rotation. 

Table 2 summarizes the possible fundamental frequencies of the 

PG, accelerator, and gyroscope when a wearable device worn on 

he wrist swings along the trajectory A-B-C-B-A with a frequency 

f F . 

.3. Adaptive scheduling of acceleration and gyroscope 

.3.1. Adaptive MA reference selection 

Based on the fundamental frequencies expressed in PPG, accel- 

ration, and gyroscope signals, we categorized four possible cases, 

s summarized in Table 3 . For case 1, where all fundamental fre- 

uencies are the same as F , either the acceleration or gyroscope 

ignal can be effective for MA cancelation. For case 2, where the 

undamental frequencies of PPG and gyroscope signals are F and 

hat of acceleration is 2 F , only a gyroscope signal could be effective

or MA cancelation. For case 3, where the fundamental frequencies 
6 
f the PPG and acceleration signals are 2 F , and that of the gyro-

cope signal is F , only an acceleration signal can be effective for 

A cancelation. For case 4, both gyroscope and acceleration sig- 

als are not effective for MA cancelation, which indicates that we 

o not need to perform MA cancelation in PPG. The case 4 includes 

he condition where there is no movement on the wrist wearing 

he sensor while measuring the PPG signal. In addition, the case 4 

lso includes the condition where the fundamental frequencies of 

cceleration signals are 3 F or 4 F , which are not usually related to

As in PPG. 

For each window data, we first should identify one of the four 

ategorized cases, as presented in Table 3 . Let us denote the fun- 

amental frequencies from P S ( i ), P A ( i ), and P G ( i ) by F M 

, F A , and F G ,

espectively. If F M 

= F A = F G , then the segment can be considered

s case 1: acceleration or gyroscope signals can be employed for 

A cancelation. If 2 F M 

= 2 F G = F A , the segment can be consid-

red as case 2: the gyroscope signal is available for MA cancela- 

ion. If F M 

= F A = 2 F G , the segment can be considered as case 3:

he acceleration signal is available for MA cancelation. Otherwise, 

cceleration or gyroscope signals cannot be employed as reference 

or MA cancelation. Table 4 summarizes the adaptive MA selection 

rocess. 

To evaluate our adaptive MA reference selection, we used five 

tate-of-the-art methods. The first method uses a Wiener filter to 

ttenuate MAs in (4) or (5) [20] . The second method combines 
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Table 5 

Based on the fundamental frequencies expressed in true MAs, accelera- 

tion, and gyroscope signals, we categorized four possible cases in BAMI-I 

and II Datasets. 

Case PPG Acc Gyro Percentage Selected MA reference 

1 F F F 1.39% Both 

2 F 2 F F 60.28% Gyro 

3 2 F 2 F F 32.33% Acc 

4 Others 6.00% None 

f
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he Wiener filter with a finite state machine (FSM) framework 

Wiener-FSM), which evaluates PPG signal quality from the peri- 

dogram after MA removal, and provides only HR estimation re- 

ults with a clean signal [25] . The third method consists of mod- 

fying the power spectrum of the PPG signal by emphasizing the 

ower of the frequency corresponding to the previous window HR, 

hich is then applied to the FSM framework (Kernel-FSM) [29] . 

he fourth and fifth methods employ a single-mode particle filter 

SPF) [22] and a multiple mode PF (MPF), respectively [24] . In the 

revious studies, all of the five methods performed MA cancelation 

sing only an acceleration signal. 

.3.2. Evaluation metrics 

The accuracy of the algorithm was evaluated by calculating the 

bsolute error (AE) of the estimation. 

E ( i ) = | H R est ( i ) − H R true ( i ) | , (26) 

here HR true ( i ) is the true HR (bpm) in the i th segment. The overall

valuation of HR estimation was performed based on the absolute 

f AE (AAE) (bpm) by dividing the number of windows N : 

AE = 

∑ N 
t=1 AE ( i ) 

N 

, (27) 

In addition, we plotted the Bland–Altman to compare the esti- 

ated HRs and true HRs, and performed linear regression analysis 

ncluding Pearson correlation coefficients. 

. Results and discussions 

.1. Data 

Our data comprised 12-min three-channel PPG signals acquired 

n the wrist, three-axis acceleration signals and three-axis gyro- 

cope signals sampled at 50 Hz. We used a reflective PPG sen- 

or (SFH 7070, Osram opto semiconductors, Regensburg, Germany), 

nd the inertial measurement unit (IMU) sensor (LSM6DSMTR, 

TMicroelectronics, Geneva, Swiss). The dataset was classified into 

wo groups: BAMI-I and BAMI-II. In the BAMI-I dataset ( n = 24 

ubjects), the exercise protocol included 1 min of rest, 2 min of 

alking at 3-4 km/h for warm-up, 3 min of running at 6–8 km/h, 

 min of walking, 3 min of running at 8–12 km/h, and 1 min of

alking to cool down. The subjects were 10 men and 14 women 

ith an average age of 26.9 ± 4.8 years. The entire exercise pro- 

ess was performed on a treadmill. In the BAMI-II dataset ( n = 23 

ubjects), the exercise protocol included 1 min of rest, 2 min of 

alking for warm-up at 3–4 km/h, 4 min of running at 6–8 km/h, 

 min of walking at 3–4 km/h, and 1 min of rest to cool down. We

esigned the session to reflect cardiac rehabilitation exercise for 

ardiac patients with poor exercise ability, in which they normally 

alk or run by holding a treadmill bar. Thus, during every 4-min 

ession of running and walking, the subjects walked or ran while 

olding a treadmill bar during the last two minutes of the session. 

he subjects were 17 men and 6 women with an average age of 

2.0 ± 1.7 years. The entire exercise process was performed on a 

readmill. Fig. 4 illustrates each exercise protocol in each dataset. 

For both datasets, the reference true HRs were measured using 

CG data simultaneously recorded by a 24-h Holter monitor (SEER 

ight, GE Healthcare, Milwaukee, WI, USA). The Holter device was 

et to record three channels (leads I, V1, and V6) with the com- 

ercial Ag/AgCl wet electrodes (2223H, 3M, Saint Paul, MN, USA) 

laced at the positions for standard ECG measurement. Then, we 

elected the best-quality channel and confirmed that R peaks were 

ll clearly discernible. Finally, we manually identified the R peaks, 

nd we computed the average RR intervals in each time window 

or the reference true HRs. All data with the sampling rate of 125 

z were collected at Wonkwang University by trained personnel 
7

rom June to July 2018 for BAMI-I and from March to April 2019 for 

AMI-II. This study was approved by the Institutional Review Board 

f Wonkwang University, Republic of Korea (WKUIRB 201805-032- 

1). All participants provided written informed consent. All raw 

ignals in the BAMI-I and II datasets are publicly downloadable 

BAMI-I at https://github.com/hooseok/BAMI1 a nd BAMI-II at https: 

/github.com/hooseok/BAMI2 ). Based on the BAMI-I and II datasets, 

e found that 1.39%, 60.28%, 32.33%, and 6.00% of all the 8-s data 

egments corresponded to cases 1, 2, 3, and 4, respectively, as sum- 

arized in in Table 5 . 

.2. Results 

Using the BAMI-I and II datasets ( n = 47), we compared the 

our MA reference selection approaches, i.e. with acceleration sig- 

al only, with gyroscope signal only, with both signals, and using 

ur proposed adaptive selection. We applied each approach to five 

ifferent MA cancelation methods: Wiener filter, Wiener filter-FSM, 

ernel-FSM, SPF, and MPF. The results in terms of performances are 

ummarized in Table 6 , which indicate that our proposed adaptive 

election provided a lower AAE for all five MA cancelation meth- 

ds. We also summarized more detailed AAE values for the 47 in- 

ividual subjects in Supplementary Table 1. 

Furthermore, we also compared the HR estimation performance 

rom our proposed algorithm to those from other existing meth- 

ds [18,36,37] as summarized in Table 7 . The results show that 

ur adaptive MA scheduling provides more accurate HR estimation 

esults than any other methods. This is because our method ef- 

ectively uses both MA resources from acceleration and gyroscope 

ignals while others use only acceleration signals. 

Fig. 5 shows the Bland–Altman and Pearson coefficients plots 

rom both BAMI-I and II datasets according to the four MA ref- 

rence selection approaches. These results were obtained using 

he MPF-based HR estimation; results from other four methods 

re plotted in Supplementary Figs. 1 to 4. For the MPF method, 

ith the adaptive selection approach, the Pearson correlation coef- 

cient was 0.9965 ( r 2 = 0.9931), and the limit of agreement ranged 

rom -3.96 to 4.03 bpm (mean: 0.04 bpm; SD: 2.04 bpm). Us- 

ng the acceleration only, the Pearson correlation coefficient was 

.9369 ( r 2 = 0.8778), and the limit of agreement ranged between 

15.95 and 19.24 bpm (mean: 1.65 bpm; SD: 8.98 bpm). With 

he gyroscope only, the Pearson correlation coefficient was 0.9836 

 r 2 = 0.9676), and the limit of agreement ranged between -8.32 

nd 9.03 bpm (mean: 0.35 bpm; SD: 4.42 bpm). Using both sig- 

als, the Pearson correlation coefficient was 0.9955 ( r 2 = 0.9909), 

nd the limit of agreement ranged between -4.52 and 4.61 bpm 

mean: 0.05 bpm; SD: 2.33 bpm). Thus, the adaptive selection ap- 

roach range was narrower than that of the other three selection 

pproaches. The superiority of the adaptive selection approach was 

lso observed using the other four methods (Supplementary Figs. 1 

o 4). 

Fig. 6 shows the power spectra examples for the three cases 

cases 1, 2, and 3) summarized in Table 3 . The first column rep-

esents P S ( i ), P A ( i ), and P G ( i ). The second column represents P S ( i )

fter MA cancelation using only P ( i ). The third column represents 
A 

https://www.github.com/hooseok/BAMI1
https://www.github.com/hooseok/BAMI2
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Table 6 

Performance comparison based on BAMI-I and II datasets ( n = 47) among four MA reference selection approaches: with acceleration signal only, with gyroscope 

signal only, with both signals, and using our proposed adaptive selection (five different MA cancelation methods of Wiener filter, Wiener filter-FSM, Kernel-FSM, 

SPF, and MPF were used). 

Algorithm 

Acceleration Gyroscope Both 

AAE (bpm) AAE (bpm) AAE (bpm) 

Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max 

Wiener [20] 9.22 5.52 2.06 26.10 6.95 3.34 1.40 15.48 8.88 3.86 3.14 20.41 

Adaptive selection with [20] 6.53 3.83 1.16 20.45 

Wiener-FSM [25] 3.23 2.84 0.92 11.45 2.29 1.94 0.65 10.33 3.19 2.76 0.96 11.45 

Adaptive selection with [25] 2.12 1.47 0.90 8.86 

Kernel-FSM [29] 4.69 5.55 1.14 22.93 3.17 3.38 1.16 16.24 3.43 4.36 0.67 22.49 

Adaptive selection with [29] 2.23 2.08 0.76 11.60 

SPF [22] 4.56 6.28 0.98 30.05 2.19 2.26 0.89 15.76 1.73 0.86 0.84 6.47 

Adaptive selection with [22] 1.49 0.62 0.74 4.64 

MPF [24] 3.34 4.64 0.69 18.80 1.68 1.61 0.63 11.04 1.37 0.49 0.63 3.05 

Adaptive selection with [24] 1.27 0.41 0.59 2.02 

Table 7 

Comparison among the proposed method and other HR estimation algorithms. 

Algorithm IMAT [36] Kalman [37] JOSS [18] Proposed method (MPF + Adaptive selection) 

AAE (bpm) 18.29 ± 5.12 6.04 ± 3.99 5.33 ± 5.03 1.27 ± 0.41 

Values are reported as means ± standard deviations. 

Fig. 4. The exercise protocol in (a) BAMI-I and (b) BAMI-II. 

Fig. 5. Bland-Altman plots comparing estimated HRs and true HRs using (a) acceleration-only, (b) gyroscope-only, (c) both, and (d) adaptive selection approach via MPF 

method. Pearson correlation coefficients and regression line between estimated HRs and true HRs when using (e) acceleration-only, (f) gyroscope-only, (g) both, and (h) 

adaptive selection approach via MPF method. 

8 
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Fig. 6. Power spectra examples regarding the three cases (cases 1, 2, and 3) summarized in Table 3 . The first column depicts the power spectra from PPG, acceleration, and 

gyroscope signals in each case. The second column shows the power spectrum after MA cancelation using the acceleration signal only. The third and fourth columns depict 

the power spectra after MA cancelation using the gyroscope signal only and both signals, respectively. 

Table 8 

Performance comparison according to resting, walking and 

running from BAMI-I and II datasets ( n = 47). 

Condition Resting Walking Running 

AAE (bpm) 1.23 ± 0.51 1.58 ± 1.17 1.73 ± 3.19 

Values are reported as means ± standard deviations. 
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 S ( i ) after MA cancelation using only P G ( i ). The last column rep-

esents P S ( i ) after MA cancelation using both P A ( i ) and P G ( i ). In

ase 1, all MA reference selection approaches provided an accurate 

R. In case 2, the gyroscope-only and both signal use approaches 

rovided an accurate HR. In case 3, the acceleration-only approach 

rovided an accurate HR. These indicate that our proposed adap- 

ive MA selection leads to perform more accurate MA cancelation. 

Table 8 compares the performance according to the different 

xercise conditions such as resting, walking and jogging. 

Fig. 7 shows the HR estimation results from one exemplary 

ubject. Fig. 7 (a) shows the fundamental frequencies from P S ( i ), 

 A ( i ), and P G ( i ) as well as the true HRs for the entire recording

ime. Fig. 7 (b) shows the estimated HRs using only P S ( i ). Figs. 7 (c)

o (e) show the estimated HRs after MA cancelation using P A ( i ),

 G ( i ) and both, respectively. Fig. 7 (f) shows the estimated HRs af-

er MA cancelation using our proposed adaptive MA reference se- 

ection, where the selection is colored-marked (none, acceleration, 

yroscope and both selection). Fig. 7 (g) shows the case numbers 

case 1, 2, 3 and 4) according to each time segment to appreci- 

te the performance of our algorithm in the challenging exercise 

ases. 
9 
.3. Real-time deployment in wearable device 

Fig. 8 shows our developed wrist-type wearable device using a 

eflective PPG sensor (SFH 7070, Osram opto semiconductors, Re- 

ensburg, Germany) and an IMU sensor (LSM6DSMTR, STMicro- 

lectronics, Geneva, Swiss). The PPG signals obtained from the PPG 

ensor was converted into a digital signal through an analog front- 

nd (MAX86141, Maxim integrated, San Jose, CA, USA). This analog 

ront-end contains analog-to-digital converters, LED drivers, and an 

nternal switch circuitry. Then, a single IC can control a PPG sen- 

or including an LED and a photodiode. A 1.3-inch liquid crystal 

isplay (LCD; KWH013ST03-F01, FORMIKE, Shenzhen, China) and 

 switch were attached to the front of the device for a user in- 

erface device. We applied our proposed algorithm using the dig- 

tized signals through a microcontroller (STM32F413CGU6, STMi- 

roelectronics, Geneva, Swiss), and successfully operated HR es- 

imation in real-time with a clock rate of 25 MHz. The average 

omputational time per window was 141 ms , which is operated in 

eal-time. 

.4. Discussions 

We observed that when the fundamental frequencies from the 

A reference and the true HR overlapped, incorrect results were 

btained, as shown in Fig. 9 , which is the HR estimation result ex- 

mple from one exemplary subject. Fig. 9 (a) shows the HRs com- 

uted from fundamental frequencies of PPG and the true HRs for 

he entire recording time, and Fig. 9 (b) shows the estimated HRs 

sing our proposed adaptive MA reference selection approach via 

iner-FSM. In the results, we still found erroneous results for the 
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Fig. 7. HR estimation results from one exemplary subject: (a) heart rate estimated from PPG, acceleration, and gyroscope signals as well as true HRs for the entire recording 

time; (b) estimated HRs using PPG signal only; (c) estimated HRs after MA cancelation using acceleration signal only, (d) estimated HRs after MA cancelation using gyroscope 

signal only; (e) estimated HRs after MA cancelation using both signals, (f) estimated HRs after MA cancelation using our proposed adaptive MA reference selection approach, 

and (g) adaptively selected cases in real time. 

Fig. 8. Our developed wrist-type wearable device operated in real-time. Bottom 

surface with PPG sensor attached (a) and the upper surface with an LCD to check 

the calculated heart rate (b). 
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t

hree parts highlighted in orange. We investigated each of the parts 

nd found that the fundamental frequencies from the MA refer- 

nce and the true HRs overlapped. Fig. 9 (c) shows the fundamen- 

al frequencies of the PPG, acceleration, and gyroscope signals. The 

ighlighted circles in orange correspond to the erroneous results, 

here the power spectrum peak from acceleration or gyroscope 

s overlapped with the true HR. This indicates that even the true 

R information was canceled out or attenuated via MA cancelation 

sing the adaptive MA reference. Therefore, previous HR informa- 
ig. 9. HR estimation result example from one exemplary subject. (a) Estimated HRs com

ime, (b) estimated HRs using our proposed adaptive MA reference selection approach, an

10 
ion may be needed to preserve the true HR information in PPG 

ignals. For instance, if the fundamental frequency from the MA 

eference is close to the estimated HR in the previous window, we 

ay not perform MA cancelation or maximally preserve the pre- 

ious HR information. However, the application of this strategy is 

hallenging because it considers that the previously predicted HR 

nformation is correct. For the future work, we also may extend 

3) into quadratic transformation of power spectrum and consider 

ross spectrum between MA-free PPG and MA reference signals. 

y considering the cross spectrum, the spectrum overlapping issue 

ay be resolved. In addition, if the signal-to-noise ratio is too low, 

hen MA cancelation methods may not work. Thus, for a severely 

orrupted signal, we should consider other approaches as well as 

daptive MA reference selection. 

Another issue to be considered is the case 4 in Table 3 . We

oted that the case 4 mainly includes the condition where there 

s no movement on the wrist wearing the sensor. However, in the 

ase 4, there are additional possible cases where MA cannot be 

anceled out. Based on Table 2 , when the fundamental frequency 

f MAs in PPG is 2 F , we can expect that that of acceleration is F ,

 F or 4 F . In these cases, any MA reference cannot cancel out MAs

n PPG. Thus, we should investigate the case 4, and find the way 

ow to handle it. The work entails investigating more diverse and 

ealistic models. In the future work, we will extend our proposed 

lgorithm to be applied to MAs with various wrist and arm move- 
puted from fundamental frequencies of PPG and true HRs for the entire recording 

d (c) fundamental frequencies of PPG, acceleration, and gyroscope signals. 
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Furthermore, our study began with P C ( i ) ≈ P S ( i ) − P A ( i ) or P C ( i )

P S ( i ) − P G ( i ). However, P S ( i ) may have additional power spectrum

omponents, which are not related to the movement on the wrist. 

ypical examples are finger or hand actions such as finger tapping 

nd fist clenching/unfolding, which cause wrist muscle motion cor- 

upting PPG signals not being reflected in the acceleration and gy- 

oscope signals. Thus, in future works, it will be useful to inves- 

igate other MA references such as a piezoelectric transducer to 

dentify pressure signals. 

. Conclusion 

In this study, we first demonstrated that performing HR 

stimation using PPG signals can be inaccurate when using ac- 

eleration only, gyroscope only or both as a MA reference. In 

rder to effectively use the advantages of the MA references 

rom acceleration and gyroscope, we proposed the adaptive MA 

eference selection approach, which was evaluated through five 

tate-of-the-art methods for MA cancelation and HR estimation. 

he results showed that our approach improved the HR estimation 

ccuracy for the state-of-the-art methods. Another advantage of 

ur proposed adaptive selection approach is that it is simple to 

e implemented. It compares the dominant frequencies from PPG, 

cceleration and gyroscope signals, and selects more appropriate 

A reference based on the simple conditions. More importantly, 

he selection approach can be applied to any method using ac- 

eleration and gyroscope signals. We believe that this study will 

elp many researchers studying wearable devices to understand 

ccelerometer and gyroscope sensors. We also expect to open and 

ave the path to find an appropriate MA reference selection for 

A cancelation in PPG. However, our approach could not also 

esolve the fundamental issue of attenuating true HR information 

hen the fundamental frequencies from the MA reference and 

he true HR overlapped. In future work, we will investigate the 

A cancellation methods considering the case of overlapping MA 

nd HR frequencies. As another limitation, our approach did not 

onsider other types of MAs such as finger tapping and fist clench- 

ng/unfolding. Thus, in future work, the development of hardware 

hat minimizes MAs from fingers/hands should be addressed. 

eclaration of Competing Interest 

The authors declare that there is no conflict of interest regard- 

ng the publication of this paper. 

cknowledgments 

This research was supported by a grant of the Korea Health 

echnology R&D Project through the Korea Health Industry De- 

elopment Institute (KHIDI), funded by the Ministry of Health & 

elfare, Republic of Korea (grant number: HV22C0233), the Korea 

edical Device Development Fund grant funded by the Korea 

overnment (the Ministry of Science and ICT; Ministry of Trade, 

ndustry and Energy; Ministry of Health and Welfare; and Ministry 

f Food and Drug Safety) (KMDF_PR_2020 0901_0 095), and a Basic 

cience Research Program through National Research Foundation 

f Korea (NRF) funded by the Ministry of Science, ICT & Future 

lanning (NRF- 2020R1A2C1014829). This research was also sup- 

orted by the Italian MIUR PON R&I 2014-2020 AIM project (no. 

IM1851228-2. L.F) and supported by the Italian MIUR PRIN 2017 

roject 2017WZFTZP “Stochastic forecasting in complex systems”. 

upplementary materials 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.cmpb.2022.107126 . 
11 
eferences 

[1] M. Radha, P. Fonseca, A. Moreau, M. Ross, A. Cerny, P. Anderer, X. Long,

R.M. Aarts, A deep transfer learning approach for wearable sleep stage clas- 

sification with photoplethysmography, NPJ Digital Med. 4 (2021) 1–11 . 
[2] D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, H. Nazeran, A review on 

wearable photoplethysmography sensors and their potential future applica- 
tions in health care, Int. J. Biosens. Bioelectron. 4 (2018) 195 . 

[3] H. Lee, H. Chung, H. Ko, C. Jeong, S.-E. Noh, C. Kim, J. Lee, Dedicated cardiac
rehabilitation wearable sensor and its clinical potential, PLoS One 12 (2017) 

e0187108 . 

[4] H. De Cannière, F. Corradi, C.J. Smeets, M. Schoutteten, C. Varon, C. Van Hoof,
S. Van Huffel, W. Groenendaal, P. Vandervoort, Wearable monitoring and inter- 

pretable machine learning can objectively track progression in patients during 
cardiac rehabilitation, Sensors 20 (2020) 3601 . 

[5] H. Chung, H. Lee, C. Kim, S. Hong, J. Lee, Patient-provider interaction system 

for efficient home-based cardiac rehabilitation exercise, IEEE Access 7 (2019) 

14611–14622 . 
[6] S.K. Bashar, D. Han, S. Hajeb-Mohammadalipour, E. Ding, C. Whitcomb, 

D.D. McManus, K.H. Chon, Atrial fibrillation detection from wrist photoplethys- 

mography signals using smartwatches, Sci. Rep. 9 (2019) 1–10 . 
[7] T. Pereira, N. Tran, K. Gadhoumi, M.M. Pelter, D.H. Do, R.J. Lee, R. Colorado, 

K. Meisel, X. Hu, Photoplethysmography based atrial fibrillation detection: a 
review, NPJ Digital Med. 3 (2020) 1–12 . 

[8] J. Lee, B.A. Reyes, D.D. McManus, O. Maitas, K.H. Chon, Atrial fibrillation detec- 
tion using an iPhone 4S, IEEE Trans. Biomed. Eng. 60 (2012) 203–206 . 

[9] K. Lee, H.O. Choi, S.D. Min, J. Lee, B.B. Gupta, Y. Nam, A comparative evaluation

of atrial fibrillation detection methods in Koreans based on optical recordings 
using a smartphone, IEEE Access 5 (2017) 11437–11443 . 

[10] H.J. Davies, P. Bachtiger, I. Williams, P.L. Molyneaux, N.S. Peters, D.P. Mandic, 
Wearable in-ear PPG: Detailed respiratory variations enable classification of 

COPD, IEEE Trans. Biomed. Eng. 69 (2022) 2390–2400 . 
[11] A. Prabha, J. Yadav, A. Rani, V. Singh, Intelligent estimation of blood glucose 

level using wristband PPG signal and physiological parameters, Biomed. Signal 

Process. Control 78 (2022) 103876 . 
12] G. Wang, M. Atef, Y. Lian, Towards a continuous non-invasive cuffless blood 

pressure monitoring system using PPG: Systems and circuits review, IEEE Cir- 
cuits Syst. Mag. 18 (2018) 6–26 . 

[13] H.W. Loh, S. Xu, O. Faust, C.P. Ooi, P.D. Barua, S. Chakraborty, R.-S. Tan, F. Moli-
nari, U.R. Acharya, Application of Photoplethysmography signals for Health- 

care systems: an in-depth review, Comput. Methods Programs Biomed. (2022) 

106677 . 
[14] S. Heo, S. Kwon, J. Lee, Stress detection with single PPG sensor by orches- 

trating multiple denoising and peak-detecting methods, IEEE Access 9 (2021) 
47777–47785 . 

[15] M. Zubair, C. Yoon, Multilevel mental stress detection using ultra-short pulse 
rate variability series, Biomed. Signal Process. Control 57 (2020) 101736 . 

[16] M.A. Motin, C.K. Karmakar, M. Palaniswami, Ensemble empirical mode de- 

composition with principal component analysis: A novel approach for extract- 
ing respiratory rate and heart rate from photoplethysmographic signal, IEEE J. 

Biomed. Health Inform. 22 (2017) 766–774 . 
[17] H. Lee, H. Chung, H. Ko, J. Lee, Wearable multichannel photoplethysmography 

framework for heart rate monitoring during intensive exercise, IEEE Sensors J. 
18 (2018) 2983–2993 . 

[18] Z. Zhang, Photoplethysmography-based heart rate monitoring in physical ac- 

tivities via joint sparse spectrum reconstruction, IEEE Trans. Biomed. Eng. 62 
(2015) 1902–1910 . 

[19] E. Khan, F. Al Hossain, S.Z. Uddin, S.K. Alam, M.K. Hasan, A robust heart rate
monitoring scheme using photoplethysmographic signals corrupted by intense 

motion artifacts, IEEE Trans. Biomed. Eng. 63 (2015) 550–562 . 
20] A. Temko, Accurate heart rate monitoring during physical exercises using PPG, 

IEEE Trans. Biomed. Eng. 64 (2017) 2016–2024 . 
21] Z. Zhang, Z. Pi, B. Liu, TROIKA: A general framework for heart rate monitor- 

ing using wrist-type photoplethysmographic signals during intensive physical 

exercise, IEEE Trans. Biomed. Eng. 62 (2014) 522–531 . 
22] Y. Fujita, M. Hiromoto, T. Sato, PARHELIA: Particle filter-based heart rate es- 

timation from photoplethysmographic signals during physical exercise, IEEE 
Trans. Biomed. Eng. 65 (2017) 189–198 . 

23] V. Nathan, R. Jafari, Particle filtering and sensor fusion for robust heart rate 
monitoring using wearable sensors, IEEE J. Biomed. Health Inform. 22 (2017) 

1834–1846 . 

24] J. Lee, H. Chung, H. Lee, Multi-mode particle filtering methods for heart rate 
estimation from wearable photoplethysmography, IEEE Trans. Biomed. Eng. 66 

(2019) 2789–2799 . 
25] H. Chung, H. Lee, J. Lee, Finite state machine framework for instantaneous 

heart rate validation using wearable photoplethysmography during intensive 
exercise, IEEE J. Biomed. Health Inform. 23 (2018) 1595–1606 . 

26] A. Reiss, I. Indlekofer, P. Schmidt, K. Van Laerhoven, Deep PPG: large-scale 

heart rate estimation with convolutional neural networks, Sensors 19 (2019) 
3079 . 

27] D. Biswas, N. Simões-Capela, C. Van Hoof, N. Van Helleputte, Heart rate esti- 
mation from wrist-worn photoplethysmography: a review, IEEE Sensors J. 19 

(2019) 6560–6570 . 
28] M. Wójcikowski, B. Pankiewicz, Photoplethysmographic time-domain heart 

rate measurement algorithm for resource-constrained wearable devices and its 

implementation, Sensors 20 (2020) 1783 . 

https://doi.org/10.1016/j.cmpb.2022.107126
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0023
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0027
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0028


H. Lee, H. Chung, H. Ko et al. Computer Methods and Programs in Biomedicine 226 (2022) 107126 

[

[

[

[  

[

[

[

[

[

29] H. Chung, H. Lee, J. Lee, State-dependent Gaussian kernel-based power spec- 
trum modification for accurate instantaneous heart rate estimation, PLoS One 

14 (2019) e0215014 . 
30] H. Lee, H. Chung, J. Lee, Motion artifact cancellation in wearable photoplethys- 

mography using gyroscope, IEEE Sensors J. 19 (2018) 1166–1175 . 
31] A .V. Galvez, A .J. Casson, Nine degree of freedom motion estimation for wrist 

PPG heart rate measurements, in: 2019 41st Annual International Confer- 
ence of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, 

pp. 3231–3234 . 

32] D. Yang, Y. Cheng, J. Zhu, D. Xue, G. Abt, H. Ye, Y. Peng, A novel adaptive spec-
trum noise cancellation approach for enhancing heartbeat rate monitoring in 

a wearable device, IEEE Access 6 (2018) 8364–8375 . 
33] K. Xu, X. Jiang, W. Chen, Photoplethysmography motion artifacts removal based 

on signal-noise interaction modeling utilizing envelope filtering and time-de- 
lay neural network, IEEE Sensors J. 20 (2019) 3732–3744 . 
12 
34] H. Tanaka, K.D. Monahan, D.R. Seals, Age-predicted maximal heart rate revis- 
ited, J. Am. Coll. Cardiol. 37 (2001) 153–156 . 

35] R.L. Gellish, B.R. Goslin, R.E. Olson, A. McDONALD, G.D. Russi, V.K. Moudgil, 
Longitudinal modeling of the relationship between age and maximal heart 

rate, Med. Sci. Sports Exerc. 39 (2007) 822–829 . 
36] M.B. Mashhadi, E. Asadi, M. Eskandari, S. Kiani, F. Marvasti, Heart rate tracking 

using wrist-type photoplethysmographic (PPG) signals during physical exercise 
with simultaneous accelerometry, IEEE Signal Process Lett. 23 (2015) 227–231 . 

37] A. Galli, C. Narduzzi, G. Giorgi, Measuring heart rate during physical exercise 

by subspace decomposition and Kalman smoothing, IEEE Trans. Instrum. Meas. 
67 (2017) 1102–1110 . 

http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0029
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0030
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0031
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0033
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0035
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0036
http://refhub.elsevier.com/S0169-2607(22)00507-7/sbref0037

	Adaptive scheduling of acceleration and gyroscope for motion artifact cancelation in photoplethysmography
	1 Introduction
	2 Problem description and motivation
	3 MA Reference selection between acceleration and gyroscope signals
	3.1 Acceleration and gyroscope characteristics with stretched arm
	3.1.1 Model and parameter definition
	3.1.2 Intrinsic Force
	3.1.3 Centrifugal force
	3.1.4 Arm-swing movement force
	3.1.5 Vertical-body movement force

	3.2 Acceleration and gyroscope characteristics with partially folded arm
	3.2.1 Intrinsic force
	3.2.2 Centrifugal force
	3.2.3 Arm-swing movement force
	3.2.4 Vertical-body movement force

	3.3 Adaptive scheduling of acceleration and gyroscope
	3.3.1 Adaptive MA reference selection
	3.3.2 Evaluation metrics


	4 Results and discussions
	4.1 Data
	4.2 Results
	4.3 Real-time deployment in wearable device
	4.4 Discussions

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


