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ABSTRACT

Background and objective: Recently, various algorithms have been introduced using wrist-worn photo-
plethysmography (PPG) to provide high accuracy of instantaneous heart rate (HR) estimation, including
during high-intensity exercise. Most studies focus on using acceleration and/or gyroscope signals for the
motion artifact (MA) reference, which attenuates or cancels out noise from the MA-corrupted PPG signals.
We aim to open and pave the path to find an appropriate MA reference selection for MA cancelation in
PPG.
Methods: We investigated how the acceleration and gyroscope reference signals correlate with the MAs of
the distorted PPG signals and derived both mathematically and experimentally an adaptive MA reference
selection approach. We applied our algorithm to five state-of-the-art (SOTA) methods for the performance
evaluation. In addition, we compared the four MA reference selection approaches, i.e. with acceleration
signal only, with gyroscope signal only, with both signals, and using our proposed adaptive selection.
Results: When applied to 47 PPG recordings acquired during intensive physical exercise from two differ-
ent datasets, our proposed adaptive MA reference selection method provided higher accuracy than the
other MA selection approaches for all five SOTA methods.
Conclusion: Our proposed adaptive MA reference selection approach can be used in other MA cancelation
methods and reduces the HR estimation error.
Significance: We believe that this study helps researchers to address acceleration and gyroscope signals as
accurate MA references, which eventually improves the overall performance for estimating HRs through
the various algorithms developed by research groups.
© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

cardiac disease detection [6-9], HR dynamics analysis [10-13], and
autonomic systems to respond to stressors [14,15] . The wrist-worn

Wrist-worn photoplethysmography (PPG) sensors have attracted
considerable attention because they can conveniently monitor in-
stantaneous heart rate (HR) in real time. A wrist-worn PPG sensor
is usually a reflective type, which transmits light on a wrist and
identifies the arterial blood volume change by the amount of re-
flected light during the systolic and diastolic phases of the cardiac
cycle. Compared to the transmissive type, the sensor placement is
not restricted to any particular measurement site [1,2]. This conve-
nient measurement method can be used in various medical appli-
cations such as home-based cardiac rehabilitation [3-5], automatic
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PPG is sensitive to motion artifacts (MAs), which usually originate
from the movement applied on the wrist during daily activities.
Thus, it is challenging to consistently estimate accurate instanta-
neous HRs. To overcome the MA issue, hardware or algorithmic ap-
proach was considered. In [16], ensemble empirical mode decom-
position with principal component analysis was used for effectively
denoising PPG signals. In [17], nine-multichannel device for PPG
signal acquisition was considered. Then, the multichannel signals
were denoised by using truncated singular value decomposition.
However, both studies are not available to the PPG signals severely
corrupted by MAs because MA reference such as acceleration sig-
nals were not considered. Indeed, the study [16] validated the al-
gorithm using only MIMIC data, which contains intensive care unit
patients with little movement. The algorithm [17] provided rela-
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tively high absolute error around 4 beats per minute (bpm) be-
cause of the lack of MA references.

In recent years, numerous MA cancelation algorithms have been
introduced using acceleration signals to provide high accuracy of
HR estimation [18-29], including during high-intensity exercise.
In most studies, the MAs corrupting PPG signal were attenuated
or cancelled out by using acceleration signals measured simulta-
neously with PPG signals as the MA reference. In [18], the algo-
rithm imposed a common sparsity constraint on spectral coeffi-
cients based on the power spectrum of PPG and acceleration sig-
nals. In [19], the algorithm removed noise via ensemble empirical
mode decomposition, and the power spectrum peak from accelera-
tion signals were excluded for HR estimation. In [20], the algorithm
used a frequency based-Wiener filter to attenuate the MAs using
acceleration signals. In [21], HR was estimated with signal decom-
position approach, where acceleration-based high-resolution spec-
trum estimation was employed to remove MAs, followed by spec-
tral peak tracking and verification. Those studies improved the HR
estimation accuracy providing approximately 2-3 bpm of absolute
errors. In [22-24], Bayesian-based prediction algorithms were fur-
ther considered for tracking HR. For the HR state update, the power
spectrum of acceleration signals was used for attenuating MA fre-
quency power. In [25], the concept of a finite state machine was
used after MA removal from acceleration signals. The method auto-
matically provides only accurate HR estimation results in real-time
by ignoring the estimation results from severely-corrupted PPG sig-
nals. In [26], convolutional neural networks were introduced using
the inputs of time-frequency spectrum of the PPG and accelera-
tion signals. In [28], HR was estimated by peak detection in time-
domain. The acceleration signals confirmed the reliability of PPG
signals. In [29], power spectra of PPG and acceleration signals were
applied to a modified Wiener filter by emphasizing the power of
the frequency corresponding to the previous window HR estima-
tion results. However, in our previous study, we addressed the lim-
itations of accelerometers, which measure not only the accelera-
tion of motion, but also the gravitational acceleration [30]. Gyro-
scope signals can replace the acceleration signals and thus be used
as an alternative MA reference. However, a gyroscope sensor mea-
sures angular velocity in the direction of rotation, which cannot
fully represent MAs corrupting PPG signals. Recently, both acceler-
ation and gyroscope signals have been used for the MA references
[31-33], but most studies focus on simply combining acceleration
and gyroscope signals for the MA reference.

In this study, we aim to open and pave the path for finding
an appropriate MA reference selection. For more accurate MA can-
celation, we present an in-depth analysis of how the acceleration
and gyroscope signals correlate with the MAs of the distorted PPG
signals. To the best of our knowledge, the analysis of the acceler-
ation and gyroscope signal characteristics for MA reference iden-
tification has still not been addressed. Furthermore, we propose
an adaptive MA reference selection approach for the acceleration
and gyroscope signals. Such an adaptive scheduling is to use more
appropriate MA reference to increase the HR estimation accuracy.
We believe that this study helps researchers to address accelera-
tion and gyroscope signals as accurate MA references, which even-
tually improves the overall performance of HR estimation through
the various algorithms developed by each research group.

2. Problem description and motivation

In order to explain the necessity of this study, we conducted a
simple experiment in which one subject wore a reflective PPG sen-
sor on the wrist and ran on a treadmill. Using our wrist-worn PPG
sensor described in [30], we also measured three-axis accelerome-
ter signals and three-axis gyroscope signals using the inertial mea-
surement unit (IMU) sensor. A chest electrocardiography (ECG) sig-
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nal was simultaneously recorded and used to extract the gold stan-
dard HRs. All signals were sampled at 125 Hz. Throughout this
study, we used 8s window with 2-s shifts (thus 6-s of overlap) for
all signals, which estimates HR value every 2-s. We used the same
window length (8-s) and shift (2-s) to assess the performance of
our algorithm, similarly to what done by the authors of previous
algorithms [16-29]. For the ith window, we used PPG signal S(i),
the three-axis accelerometer signals Ay(i), Ay(i), and A.(i), and the
gyroscope-axis gyroscope signals, Gx(i), Gy(i), and G,(i). We first fil-
tered S(i) using a fourth-order Butterworth band pass filter (BPF)
with cutoff frequencies of 0.4 Hz and 4 Hz, which range covers the
HR range between 0.6 and 3.3 Hz of subjects of all ages when both
resting and engaging in intensive physical activity [34,35]. Then,
we normalized S(i) to zero mean with unit variance:
S(@) — pw(S())

oS
where pu( - ) and o( - ) are the mean and standard deviation,
and Su(i) is the normalized PPG signal. In the same way, we also

normalized the three-axis accelerometer signals and the gyroscope
signals, and averaged them as

An (l) =
Gn(i) =

Sn(i) = (1)

A AD) | A -p(Ay (@) | A -p(As(i)
X( c(®) T o) T o) ) @)
G-pGD) | GO-RGD) | GlD)—ju(Ge(i)
o G) 7 G D) oG )

Wi W=

where Aj(i) and Gp(i) are the normalized and averaged acceler-
ation and gyroscope signals, respectively. The signals Su(i), An(i),
Gn(i) were then down-sampled to 25 Hz. Subsequently, we com-
puted power spectra Ps(i), P4(i) and Pg(i) from S,(i), An(i), Gn(i), re-
spectively. Fig. 1(a) and (d) show the two different examples (the
case 1 in Fig. 1(a), and the case 2 in Fig. 1(d)) representing the
power spectra Ps(i), P4(i) and Pg(i): PPG (blue), acceleration (red),
and gyroscope (green) signals when a subject ran on a treadmill
with a true HR of approximately 2 Hz. In Fig. 1(a), Ps(i) exhibits a
dominant frequency power of approximately 2.8 Hz, indicating that
the dominant frequency of the PPG signal does not overlap with
the true HR (2 Hz). Similarly, in Fig. 1(d), Ps(i) exhibits a dominant
frequency power of approximately 1.2 Hz, which does not overlap
with the true HR (2 Hz).

For the MA cancelation, we consider Wiener filter, which is
to estimate a desired signal by linear time-invariant filtering of
an observed noisy process. For the measured PPG spectrum Ps(i)
corrupted by uncorrelated additive random noise, the frequency-
domain Wiener filter is given by

. . . Ps(i) — Pa(i . P-(i
&mw%m—mm:(i%ﬂﬁﬁ)%mz<§6¥%6

where Pc(i) and P,4(i) are the spectra of the MA-free PPG signal and
acceleration signal as the MA reference, respectively. Similarly, P(i)
~ Pg(i) — Pg(i), if we use the gyroscope signal as the MA reference.
Assuming that the power spectra Pc(i — 1) and P(i) in consecutive
windows nearly overlap, Pc(i) can be substituted with Pc(i — 1).
Then, Pc(i) can be recursively estimated as [20]

)Psa) (3)

. Pe(i—1) .
(i) (pc(l—1)+pA(z) (1) (@)
For the gyroscope signal based MA cancelation,

. Pe(i—1)
&@:<&a—n+&m

Fig. 1(b) and (c) show the estimated MA-free PPG power spec-
tra Pc(i) using the acceleration and gyroscope signals, respectively
for the case 1 (Fig. 1(a)). Similarly, Fig. 1(e) and (f) show the esti-
mated clear PPG power spectra P¢(i) using the acceleration and gy-
roscope signals, respectively for Case 2 (Fig. 1(d)). In the case 1, the

)Ps(i)~ (5)
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Fig. 1. Acceleration and gyroscope signals may provide different MA cancelation results (a) - (c): example 1) in which only the acceleration signal correctly cancels out the
true MAs in the PPG signal; (d) - (f): example in which the gyroscope signal only correctly cancels out the true MAs in the PPG signal. (a) Resultant three spectra in case of
example 1 from PPG (blue), acceleration (red), and gyroscope (green) signals (true HR extracted from ECG is approximately 2 Hz); PPG power spectrum after MA cancelation
using (b) acceleration signal and (c) gyroscope signal.(d) Resultant three spectra in case of example 2 from PPG (blue), acceleration (red), and gyroscope (green) signals (true
HR extracted from ECG is approximately 2 Hz); PPG power spectrum after MA cancelation using (e) acceleration signal and (f) gyroscope signal.

dominant frequency of Pg(i) overlaps only with that of P4(i). Then,
only the acceleration signal provides the correct MA reference of
the corrupted PPG signal, which can be observed to minimize or
attenuate the dominant frequency power corresponding to the MA
corrupting the PPG signal. On the other hand, in the case 2, the
dominant frequency of Pg(i) overlaps only with that of Pg(i). Then,
only the gyroscope signal provides the correct the MA reference.

The two opposite cases indicate that acceleration and gyroscope
signals do not always correctly identify the true MA reference. To
complement the acceleration and gyroscope signals, we can con-
sider both signals for MA cancelation by sequentially performing
MA cancelation algorithms. However, because the MA cancelation
attenuates or eliminates the frequency power of MAs in the PPG
signal, sometimes it attenuates or eliminates even the true HR fre-
quency power, particularly when the dominant frequency of an ac-
celeration or gyroscope signal is close to the true HR. In the case
2 shown in Fig. 1(d), the dominant frequency of P4(i) overlaps
with the dominant frequency of PPG. Then, MA cancelation using
both signals may attenuate or eliminate the true HR information.
Thus, MA cancelation should be carefully performed to minimize
the probability of losing HR information. To avoid such unfortunate
circumstance, a better MA cancelation algorithm should be able to
select the most suitable MA reference signal between the acceler-
ation and gyroscope signals every time we measure an instanta-
neous HR. If feasible, we can use a more appropriate MA reference
for MA cancelation every time we estimate the HR.

In this study, we proposed the algorithm of adaptive scheduling
of acceleration and gyroscope signals to select the most suitable
MA reference signal. We first investigated how acceleration and gy-
roscope signals are correlated with MAs corrupting the PPG signal.
For the MA analysis from acceleration and gyroscope signals, we

first derived a mathematical formulation when the swinging arm
is unfolded. Then, we extended the formulation to a more realistic
condition by partially folding a swinging arm. Given the mathe-
matical investigation, we propose an adaptive MA reference selec-
tion approach and evaluate this approach based on state-of-the-art
methods [20,22,24,25,29] for MA cancelation and HR estimation.

3. MA Reference selection between acceleration and gyroscope
signals

3.1. Acceleration and gyroscope characteristics with stretched arm

3.1.1. Model and parameter definition

First, we simplified the model representing the applied forces to
the PPG, acceleration, and gyroscope sensors when a stretched arm
swings along the trajectory A-B-C-B-A, as shown in Fig. 2. In the
model, we defined four forces: an intrinsic force (I), a centrifugal
force (C), an arm-swing movement force (M), and a vertical-body
movement force (B), all of which change according to the relative
position. Consider the wearable device worn on the wrist, moving
along the trajectory A-B-C-B-A, where we denote 6 as the swing
angle relative to position B by the positive angle toward position A
and the negative angle toward position C. In addition, we denote
the angles of centrifugal force and gravity with respect to the x-
and y-axes of the accelerator and gyroscope by 6%, 67, 0f, and 9}’ ,
respectively.

3.1.2. Intrinsic Force

We define an intrinsic force as the force applied to the PPG,
accelerator, and gyroscope by gravity: M;, A;, and G, respectively.
There are no effects of intrinsic forces for the PPG and gyroscope:
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Fig. 2. Simplified model with swinging of the stretched arm: this model represents
the applied forces to PPG, acceleration, and gyroscope sensors when a stretched
arm swings.

M; = G; = 0. Moreover, an accelerometer measures the gravita-
tional acceleration in the direction opposite to the forced direction
(straight upward) and measures a zero value for free-fall motion.
Subsequently, A; can be decomposed as follows:

A= (Aj‘, A}’,Af) ~ (g- cos (6f), g- cos (9}’) O) (6)
where g = -9.81m/s?, 6 =0%—6, and 6) =62 —6. Under the
condition of the stretched arm, 6% = 5 and Qé' = 7. Then:

A~ (g-sinf, —g-cosd,0) (7)

Given the trajectory A-B-C-B-A, 6 changes between —Z and
Z. More specifically, 6 continuously changes from @max to 0, O
to — Omax, — Omax t0 0, and O to O ey, Where 04« is a positive an-
gle smaller than 7 in reality. By wrapping € into 6’, which changes
from O to 27T, we obtain:

A~ (g cost, —g- |sin0’

,0) (8)

Then, during trajectory A-B-C-B-A, A} exhibits a one-cycle
movement, whereas A{ exhibits a two-cycle movement. This indi-
cates that A; may result in the two dominant frequencies F and 2F
when a stretched arm swings with a frequency of F.

3.1.3. Centrifugal force

We define centrifugal forces as outward forces to the PPG, ac-
celerator, and gyroscope when a wrist-worn sensor swings with
the trajectory A-B-C-B-A: Mc, Ac and, G, respectively. Regarding a
gyroscope, there is no effect of the centrifugal force because the
gyroscope measures the angular velocity: G- = 0. In addition, the
accelerometer and PPG measure the centrifugal force. More specif-
ically, for an accelerometer, the centrifugal force is applied in the
y-axis direction (outward from the wrist). Then, Ac can be decom-
posed as:

2 2
Ac = (A%, A{Ag)%(("d -cos (67), &) .cos(eg),o>, 9)

l l

where v¢ is the tangential velocity. As 6% = 7 and 0%’ =m:

2
Ac~ (o, _ (”f) ,o). (10)

Given the trajectory A-B-C-B-A, the speed v continuously
changes from 0 to Vimgx, Vmax t0 0, O to Vigx, and vmax to 0, where
Vmax iS the maximum speed, which changes the two-cycle move-
ment of AJC’. Thus, Ac results in a dominant frequency of 2F when
a stretched arm swings with a frequency of F. Similarly, M can be
decomposed as:

e — (vt . v ~ (0. — @ o 11
o= (M Mg, Mg) ~ (0, —==.0). (1)
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Then, M also results in a dominant frequency of 2F when a
stretched arm swings with a frequency of F.

3.14. Arm-swing movement force

We define arm-swing movement forces as the forces applied to
the PPG, accelerator, and gyroscope in the tangential direction of
the arm swing: My, Ay, and Gy, respectively. With respect to an
accelerometer, Ay, can be decomposed as:

Au = (Rl Al ) ~ (AM - cos (eg - %) Ay - cos (eg - %),o), (12)

where A), is the acceleration magnitude according to the arm
swing. Since 6% = % and Gg = 7T, we obtain:

Ay =~ (Au, 0,0). (13)

Given the trajectory A-B-C-B-A, Ay, continuously changes from a
positive value to zero, a negative value, zero, and a positive value,
which results in a one-cycle movement of Af,. Thus, Ay results in
a dominant frequency of F when a stretched arm swings with a
frequency of F. Similarly:

My = (My. My, M) ~ (Ay. 0.0). (14)

Then, My, also results in a dominant frequency of 2F. Moreover,
regarding a gyroscope, the z-axis rotates and exerts a force only
on the z-axis of the gyroscope. Thus, Gy, results in a dominant fre-
quency of F.

3.1.5. Vertical-body movement force

We define a vertical body movement force as the force ap-
plied to the PPG, accelerator, and gyroscope when the entire body
moves up and down: Mg, Ag, and Gg, respectively. Regarding an ac-
celerometer, Ag can be decomposed as:

Ap = (A}, A} A5) ~ (Ag - cos (0)), Ap-cos (67),0), (15)

where Ag is the force magnitude according to the up-down move-
_ y _ gY _ y _

ment. As 0f =08 -0, 6] =07 -0, 0¥ = %, and 67 = 7, Ag can be

expressed as:

Ap ~ (Ag-sinf, — Ag-(cosf),0). (16)

By wrapping 6 into 6/, which changes from 0 to 27, we obtain:

Ap~ (Ag-cost’, —Ag- |sind’],0). (17)

Given the trajectory A-B-C-B-A, cosf’ exhibits a one-cycle
movement, whereas |sinf’| exhibits a two-cycle movement. In ad-
dition, Ag exhibits a two-cycle movement because the entire body
moves up and down twice during trajectory A-B-C-B-A. Accord-
ingly, given the wrist movement frequency of F, cosf’ can be re-
placed by cos (2 Ft), |sinf’| by |sin(2Ft)|, and Ag by sin (27 2Ft).
Then:
sin (27 (Ft)) + sin (27 (3Ft))

2
—sin (2w 2Ft) - |sin (2 Ft)| ~ —sin (2w 2Ft) - (sin 2w Ft) + «)
- Hos(zw — asin (27 2Ft) (18)

Here, A} has the two dominant frequencies of F and 3F, and
AJE’; has the two dominant frequencies of 2F and 4F. Thus, Ag ex-
hibits the four dominant frequencies of F, 2F, 3F, and 4F. Regarding
a PPG sensor, M), exhibits the dominant frequency of 2F because
the vertical movement (up and down) is repeated twice along the
trajectory A-B-C-B-A. Moreover, a gyroscope is not affected by the
vertical body movement force because the force is not related to
the angular velocity or rotation.

Table 1 summarizes the possible fundamental frequencies of the
PPG, accelerator, and gyroscope signals when a wearable device
worn on the wrist swings along the trajectory A-B-C-B-A with a
frequency of F.

A} = sin (2w 2Ft) - cos (2mFt) =

Ay
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Table 1
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Fundamental frequencies expressed in MAs in PPG, acceleration, and gyroscope signals when a wearable device
worn on the wrist swings with the frequency of F (Hz) based on Fig. 2.

Frequencies

Frequencies in Accelerator

Frequencies in Gyroscope

in PPG A X . . - X
Xx-axis  y-axis  z-axis Xx-axis ~ y-axis  z-axis
Intrinsic force 0 F 2F 0 0 0 0
Centrifugal force 2F 0 2F 0 0 0 0
Arm-swing movement force F F 0 0 0 0 F
Vertical body movement force  2F F, 3F 2F, 4F 0 0 0 0
Arm-swing  Vertical body=, Qg _ 3 and &Y = 51 AC in (10) changes to:

movement forc

e movement force

Centrifugal
L Force (C)

Arm-swing {G
movement force Centrifugal force Intrinsic force

Fig. 3. Simplified model with swinging of the partially folded arm: this model rep-
resents the applied forces to PPG, acceleration, and gyroscope sensors when a par-
tially folded arm swings.

3.2. Acceleration and gyroscope characteristics with partially folded
arm

We extended the model to a more realistic case in which the
arm is partially folded, as shown in Fig. 3. Similar to the case of the
stretched arm, we investigated the four forces applied to the wrist
when the sensor on the wrist moves along the trajectory A-B-C-
B-A. By partially folding an arm, 6% and Qg increase: 6} is greater
than Z, and Hé’ is greater than 7. For simplicity, we assume that
6% =3F and 6] = 3.

3.2.1. Intrinsic force

The intrinsic force A; with a partially folded arm can be ex-
pressed starting from (6). By partially folding an arm with 6} = 37”
and 6) = 3%, A; in (7) changes to:

Aw(ﬁ V2

2 T2
Given the trajectory A-B-C-B-A, 6 changes between —% and 7:
it continuously changes from 6 to 0, 0 to — @max, — Omax to 0,
and 0 to Omax, Where Opmgx is a positive angle smaller than % in
reality. By wrapping 6 into 6/, which changes from 0 to 2w, we
obtain

A]%<

g+ (—cosf + sind), g (cosf + sinf), O) (19)

V2
58

V2

(=|siné’| + cost’). 5

g- (|sind’| + cost’). 0)

(20)
Then, A} and A{ exhibit both one-cycle and two-cycle move-
ments. This indicates that A; exhibits two dominant frequencies of
F and 2F when a partially folded arm swings with a frequency of
F (Hz). In addition, for a PPG and gyroscope, there are no intrinsic

forces: M; = G; = 0.

3.2.2. Centrifugal force
The centrifugal acceleration Ac with a partially folded arm can
be expressed starting from (9). By partially folding an arm with

4

Ac“( ,0).

Given the trajectory A-B-C-B-A, the speed v¢ continuously
changes from O to Vmgx, Vmax to 0, O to Vingx, and vmgx to 0, where
Vmax 1S the maximum speed, which results in two-cycle move-
ments of A¥ and A’C’. Thus, Ac results in a dominant frequency of
2F when a folded arm swings with a frequency of F. Similarly, the
centrifugal force is also applied to the PPG signal, resulting in a
dominant frequency of 2F. As the gyroscope measures angular ve-
locity rather than centrifugal force, G- does not exist.

c="a

V2 ()’ V2 (ue)?
T2 T2

(21)

)

3.2.3. Arm-swing movement force
The decomposed arm-swing movement force Ay with a par-
tially folded arm can start from (12). By partially folding an arm

with 6% = 3 and 6 = 2Z, Ay in (13) changes to:
Ay ~ (fAM, \/TEAM7 0>, (22)

where A), is the acceleration magnitude according to the arm
swing. Given the trajectory A-B-C-B-A, the force magnitude Ay
continuously changes from Amgx to 0, 0 to — Amax, — Amax to 0,
and 0 to — Amax, Where Apgx is the maximum of Ay, which results
in a one-cycle movement of Af,. Thus, given the wrist movement
frequency of F, Aj; results in a dominant frequency of F. Similarly,
the arm-swing movement force is also applied to the PPG signal,
resulting in a dominant frequency of F. Regarding the gyroscope,
Gy results in the dominant frequency of F because the z-axis ro-
tates and exerts a force on the z-axis of the gyroscope.

3.2.4. Vertical-body movement force

The arm-swing movement force Ag with a partially folded arm
can be expressed starting from (15). By partially folding an arm
with 6% = 3T and 6 = 2%, A in (16) changes to:

Ag ~ (?AB(—COSQ +sinf), — ?AB(COSQ + sind), 0>’ (23)

where Ag is the force magnitude according to the up-down move-
ment. By wrapping 6 into 6/, which changes from 0 to 27, we ob-
tain:

Ay ~ L2 Ag(~|sind’| + cost"),

24
Al ~ L2 Ag([sin6’| + cost)’). o

Given the trajectory A-B-C-B-A, cosf’ exhibits a one-cycle
movement, whereas |sinf’| exhibits a two-cycle movement. Then,
cosf’ can be expressed as cos (27 Ft), |sin@’| as sin(27w 2Ft) + «, and
Ap as sin (27 2Ft), which can formulate A} and AJI; as:

2 sin (27 2Ft) - {—|sin (2w Ft)| + cos (2w Ft)}

A~ —
B2

~ ? sin (2 2Ft) - {—(sin(2mw 2Ft) + o) + cos (2w Ft)}
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Fundamental frequencies expressed in MAs in PPG, acceleration, and gyroscope signals when a wearable device worn on

the wrist swings with the frequency of F (Hz) based on Fig. 3.

Acceleration Gyroscope
MAs in PPG X - X X X X

X-axis y-axis z-axis  x-axis  y-axis  z-axis
Intrinsic force 0 F, 2F F, 2F 0 0 0 0
Centrifugal force 2F 2F 2F 0 0 0 0
Arm-swing movement force F F F 0 0 0 F
Vertical body movement force  2F F 2F, 3F, 4F F 2F 3F, 4F 0 0 0 0

Table 3 Table 4

Selected MA references based on the fundamental frequencies expressed in true
MAs, acceleration, and gyroscope signals.

Case PPG Acc Gyro Selected MA reference
1 F F F Both
2 F 2F F Gyro
3 2F 2F F Acc
4 Others None
A ?{— sin (2 2Ft) (sin(2w 2Ft) + o)}
+ {sin (27 2Ft) - cos (2w Ft)}
L Y2 { 1-C0sRrEF) _ yinr (2Ft))}
2 2
N { sin (27 (Ft)) + sin (277 (3Ft)) }
2

b —? sin (27 2Ft) - {|sin (2w Ft)| + cos (2 Ft)}

3
2

X

—g sin (2w 2Ft) - {(sin(2mw 2Ft) + a) 4 cos (2 Ft)}

%

—?{sin (2 2Ft) (sin(2m 2Ft) + a)}
+ {sin (2w 2Ft) - cos (2mFt)}

_*ZFZ{ cos (2”(‘;”)) -, asin(zn(th))}
N { sin (277 (Ft)) +2 sin (27 (3Ft)) } (25)

Thus, given the wrist movement frequency of F, both A} and
Aﬁ have four dominant frequencies of F, 2F, 3F, and 4F. Regarding
the PPG sensor, My, exhibits the dominant frequency of 2F because
the vertical movement (up and down) is repeated twice along the
trajectory A-B-C-B-A. Moreover, a gyroscope is not affected by the
vertical body movement force because the force is not related to
the angular velocity or rotation.

Table 2 summarizes the possible fundamental frequencies of the
PPG, accelerator, and gyroscope when a wearable device worn on
the wrist swings along the trajectory A-B-C-B-A with a frequency
of F.

3.3. Adaptive scheduling of acceleration and gyroscope

3.3.1. Adaptive MA reference selection

Based on the fundamental frequencies expressed in PPG, accel-
eration, and gyroscope signals, we categorized four possible cases,
as summarized in Table 3. For case 1, where all fundamental fre-
quencies are the same as F, either the acceleration or gyroscope
signal can be effective for MA cancelation. For case 2, where the
fundamental frequencies of PPG and gyroscope signals are F and
that of acceleration is 2F, only a gyroscope signal could be effective
for MA cancelation. For case 3, where the fundamental frequencies

Algorithm for MA selection in the proposed method.

Algorithm 1: Adaptive MA Selection

** Sp(i): Normalized PPG signal segment
** An(i): Acceleration signal segment
** Gp(i): Gyroscope signal segment

o Apply FFT to Su(i), An(i), and Gp(i)
e Find the frequency corresponding the highest power
- Fy from S,(i)

- F4 from An(i)
- F¢ from Gy(i)

o IFFy=Fs=F¢
THEN, either A, (i) or G,(i) is selected
ELSE IF Fy; = 2F = Fg
THEN, Gp(i) is selected
ELSE IF 2Fy = 2F, = F;
THEN, Ay(i) is selected
ELSE

none is selected

e END IF

e Perform MA cancelation using the selected reference

of the PPG and acceleration signals are 2F, and that of the gyro-
scope signal is F, only an acceleration signal can be effective for
MA cancelation. For case 4, both gyroscope and acceleration sig-
nals are not effective for MA cancelation, which indicates that we
do not need to perform MA cancelation in PPG. The case 4 includes
the condition where there is no movement on the wrist wearing
the sensor while measuring the PPG signal. In addition, the case 4
also includes the condition where the fundamental frequencies of
acceleration signals are 3F or 4F, which are not usually related to
MAs in PPG.

For each window data, we first should identify one of the four
categorized cases, as presented in Table 3. Let us denote the fun-
damental frequencies from Ps(i), P4(i), and P¢(i) by Fy, Fa, and Fg,
respectively. If Fyy = F4 = Fg, then the segment can be considered
as case 1: acceleration or gyroscope signals can be employed for
MA cancelation. If 2F,; = 2F; = F,, the segment can be consid-
ered as case 2: the gyroscope signal is available for MA cancela-
tion. If Fy; = F4 = 2F, the segment can be considered as case 3:
the acceleration signal is available for MA cancelation. Otherwise,
acceleration or gyroscope signals cannot be employed as reference
for MA cancelation. Table 4 summarizes the adaptive MA selection
process.

To evaluate our adaptive MA reference selection, we used five
state-of-the-art methods. The first method uses a Wiener filter to
attenuate MAs in (4) or (5) [20]. The second method combines
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the Wiener filter with a finite state machine (FSM) framework
(Wiener-FSM), which evaluates PPG signal quality from the peri-
odogram after MA removal, and provides only HR estimation re-
sults with a clean signal [25]. The third method consists of mod-
ifying the power spectrum of the PPG signal by emphasizing the
power of the frequency corresponding to the previous window HR,
which is then applied to the FSM framework (Kernel-FSM) [29].
The fourth and fifth methods employ a single-mode particle filter
(SPF) [22] and a multiple mode PF (MPF), respectively [24]. In the
previous studies, all of the five methods performed MA cancelation
using only an acceleration signal.

3.3.2. Evaluation metrics
The accuracy of the algorithm was evaluated by calculating the
absolute error (AE) of the estimation.

AE (i) = |HRest (i) — HRtrue (1), (26)

where HRye(i) is the true HR (bpm) in the ith segment. The overall
evaluation of HR estimation was performed based on the absolute
of AE (AAE) (bpm) by dividing the number of windows N:

N .
AAE = w (27)

In addition, we plotted the Bland-Altman to compare the esti-
mated HRs and true HRs, and performed linear regression analysis
including Pearson correlation coefficients.

4. Results and discussions
4.1. Data

Our data comprised 12-min three-channel PPG signals acquired
on the wrist, three-axis acceleration signals and three-axis gyro-
scope signals sampled at 50 Hz. We used a reflective PPG sen-
sor (SFH 7070, Osram opto semiconductors, Regensburg, Germany),
and the inertial measurement unit (IMU) sensor (LSM6DSMTR,
STMicroelectronics, Geneva, Swiss). The dataset was classified into
two groups: BAMI-I and BAMI-IL. In the BAMI-I dataset (n = 24
subjects), the exercise protocol included 1 min of rest, 2 min of
walking at 3-4 km/h for warm-up, 3 min of running at 6-8 km/h,
2 min of walking, 3 min of running at 8-12 km/h, and 1 min of
walking to cool down. The subjects were 10 men and 14 women
with an average age of 26.9 + 4.8 years. The entire exercise pro-
cess was performed on a treadmill. In the BAMI-II dataset (n = 23
subjects), the exercise protocol included 1 min of rest, 2 min of
walking for warm-up at 3-4 km/h, 4 min of running at 6-8 km/h,
4 min of walking at 3-4 km/h, and 1 min of rest to cool down. We
designed the session to reflect cardiac rehabilitation exercise for
cardiac patients with poor exercise ability, in which they normally
walk or run by holding a treadmill bar. Thus, during every 4-min
session of running and walking, the subjects walked or ran while
holding a treadmill bar during the last two minutes of the session.
The subjects were 17 men and 6 women with an average age of
22.0 + 1.7 years. The entire exercise process was performed on a
treadmill. Fig. 4 illustrates each exercise protocol in each dataset.

For both datasets, the reference true HRs were measured using
ECG data simultaneously recorded by a 24-h Holter monitor (SEER
Light, GE Healthcare, Milwaukee, WI, USA). The Holter device was
set to record three channels (leads I, V1, and V6) with the com-
mercial Ag/AgCl wet electrodes (2223H, 3M, Saint Paul, MN, USA)
placed at the positions for standard ECG measurement. Then, we
selected the best-quality channel and confirmed that R peaks were
all clearly discernible. Finally, we manually identified the R peaks,
and we computed the average RR intervals in each time window
for the reference true HRs. All data with the sampling rate of 125
Hz were collected at Wonkwang University by trained personnel
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Table 5

Based on the fundamental frequencies expressed in true MAs, accelera-
tion, and gyroscope signals, we categorized four possible cases in BAMI-I
and II Datasets.

Case PPG Acc Gyro Percentage Selected MA reference
1 F F F 1.39% Both

2 F 2F F 60.28% Gyro

3 2F 2F F 32.33% Acc

4 Others 6.00% None

from June to July 2018 for BAMI-I and from March to April 2019 for
BAMI-II. This study was approved by the Institutional Review Board
of Wonkwang University, Republic of Korea (WKUIRB 201805-032-
01). All participants provided written informed consent. All raw
signals in the BAMI-I and II datasets are publicly downloadable
(BAMI-I at https://github.com/hooseok/BAMI1 and BAMI-II at https:
//github.com/hooseok/BAMI2). Based on the BAMI-I and II datasets,
we found that 1.39%, 60.28%, 32.33%, and 6.00% of all the 8-s data
segments corresponded to cases 1, 2, 3, and 4, respectively, as sum-
marized in in Table 5.

4.2. Results

Using the BAMI-I and II datasets (n = 47), we compared the
four MA reference selection approaches, i.e. with acceleration sig-
nal only, with gyroscope signal only, with both signals, and using
our proposed adaptive selection. We applied each approach to five
different MA cancelation methods: Wiener filter, Wiener filter-FSM,
Kernel-FSM, SPF, and MPF. The results in terms of performances are
summarized in Table 6, which indicate that our proposed adaptive
selection provided a lower AAE for all five MA cancelation meth-
ods. We also summarized more detailed AAE values for the 47 in-
dividual subjects in Supplementary Table 1.

Furthermore, we also compared the HR estimation performance
from our proposed algorithm to those from other existing meth-
ods [18,36,37] as summarized in Table 7. The results show that
our adaptive MA scheduling provides more accurate HR estimation
results than any other methods. This is because our method ef-
fectively uses both MA resources from acceleration and gyroscope
signals while others use only acceleration signals.

Fig. 5 shows the Bland-Altman and Pearson coefficients plots
from both BAMI-I and II datasets according to the four MA ref-
erence selection approaches. These results were obtained using
the MPF-based HR estimation; results from other four methods
are plotted in Supplementary Figs. 1 to 4. For the MPF method,
with the adaptive selection approach, the Pearson correlation coef-
ficient was 0.9965 (r2 = 0.9931), and the limit of agreement ranged
from -3.96 to 4.03 bpm (mean: 0.04 bpm; SD: 2.04 bpm). Us-
ing the acceleration only, the Pearson correlation coefficient was
0.9369 (2 = 0.8778), and the limit of agreement ranged between
-15.95 and 19.24 bpm (mean: 1.65 bpm; SD: 8.98 bpm). With
the gyroscope only, the Pearson correlation coefficient was 0.9836
(r2 = 0.9676), and the limit of agreement ranged between -8.32
and 9.03 bpm (mean: 0.35 bpm; SD: 4.42 bpm). Using both sig-
nals, the Pearson correlation coefficient was 0.9955 (r* = 0.9909),
and the limit of agreement ranged between -4.52 and 4.61 bpm
(mean: 0.05 bpm; SD: 2.33 bpm). Thus, the adaptive selection ap-
proach range was narrower than that of the other three selection
approaches. The superiority of the adaptive selection approach was
also observed using the other four methods (Supplementary Figs. 1
to 4).

Fig. 6 shows the power spectra examples for the three cases
(cases 1, 2, and 3) summarized in Table 3. The first column rep-
resents Pg(i), P4(i), and Pg(i). The second column represents Ps(i)
after MA cancelation using only P4(i). The third column represents
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Performance comparison based on BAMI-I and II datasets (n = 47) among four MA reference selection approaches: with acceleration signal only, with gyroscope
signal only, with both signals, and using our proposed adaptive selection (five different MA cancelation methods of Wiener filter, Wiener filter-FSM, Kernel-FSM,

SPF, and MPF were used).

Acceleration Gyroscope Both
Algorithm AAE (bpm) AAE (bpm) AAE (bpm)
Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max
Wiener [20] 9.22 5.52 2.06 26.10 6.95 3.34 1.40 15.48 8.88 3.86 3.14 20.41
Adaptive selection with [20] 6.53 3.83 1.16 20.45
Wiener-FSM [25] 3.23 2.84 0.92 11.45 2.29 1.94 0.65 10.33 3.19 2.76 0.96 11.45
Adaptive selection with [25] 2.12 1.47 0.90 8.86
Kernel-FSM [29] 4.69 5.55 1.14 22.93 3.17 3.38 1.16 16.24 343 4.36 0.67 22.49
Adaptive selection with [29] 2.23 2.08 0.76 11.60
SPF [22] 4.56 6.28 0.98 30.05 2.19 2.26 0.89 15.76 1.73 0.86 0.84 6.47
Adaptive selection with [22] 149 0.62 0.74 4.64
MPF [24] 334 4.64 0.69 18.80 1.68 1.61 0.63 11.04 1.37 0.49 0.63 3.05
Adaptive selection with [24] 1.27 0.41 0.59 2.02
Table 7
Comparison among the proposed method and other HR estimation algorithms.
Algorithm IMAT [36] Kalman [37]  JOSS [18] Proposed method (MPF + Adaptive selection)
AAE (bpm) 18.29 £+ 5.12 6.04 + 3.99 5.33 +£5.03 1.27 + 041
Values are reported as means =+ standard deviations.
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Fig. 5. Bland-Altman plots comparing estimated HRs and true HRs using (a) acceleration-only, (b) gyroscope-only, (c) both, and (d) adaptive selection approach via MPF
method. Pearson correlation coefficients and regression line between estimated HRs and true HRs when using (e) acceleration-only, (f) gyroscope-only, (g) both, and (h)

adaptive selection approach via MPF method.
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Fig. 6. Power spectra examples regarding the three cases (cases 1, 2, and 3) summarized in Table 3. The first column depicts the power spectra from PPG, acceleration, and
gyroscope signals in each case. The second column shows the power spectrum after MA cancelation using the acceleration signal only. The third and fourth columns depict
the power spectra after MA cancelation using the gyroscope signal only and both signals, respectively.

Table 8
Performance comparison according to resting, walking and
running from BAMI-I and II datasets (n = 47).

Condition Resting Walking Running

AAE (bpm)  1.23 £ 0.51 1.58 + 1.17 1.73 £ 3.19

Values are reported as means =+ standard deviations.

Ps(i) after MA cancelation using only Pg(i). The last column rep-
resents Pg(i) after MA cancelation using both P4(i) and Pg(i). In
case 1, all MA reference selection approaches provided an accurate
HR. In case 2, the gyroscope-only and both signal use approaches
provided an accurate HR. In case 3, the acceleration-only approach
provided an accurate HR. These indicate that our proposed adap-
tive MA selection leads to perform more accurate MA cancelation.

Table 8 compares the performance according to the different
exercise conditions such as resting, walking and jogging.

Fig. 7 shows the HR estimation results from one exemplary
subject. Fig. 7(a) shows the fundamental frequencies from Pg(i),
P4(i), and Pg(i) as well as the true HRs for the entire recording
time. Fig. 7(b) shows the estimated HRs using only Ps(i). Figs. 7(c)
to (e) show the estimated HRs after MA cancelation using P,(i),
Pg(i) and both, respectively. Fig. 7(f) shows the estimated HRs af-
ter MA cancelation using our proposed adaptive MA reference se-
lection, where the selection is colored-marked (none, acceleration,
gyroscope and both selection). Fig. 7(g) shows the case numbers
(case 1, 2, 3 and 4) according to each time segment to appreci-
ate the performance of our algorithm in the challenging exercise
cases.

4.3. Real-time deployment in wearable device

Fig. 8 shows our developed wrist-type wearable device using a
reflective PPG sensor (SFH 7070, Osram opto semiconductors, Re-
gensburg, Germany) and an IMU sensor (LSM6DSMTR, STMicro-
electronics, Geneva, Swiss). The PPG signals obtained from the PPG
sensor was converted into a digital signal through an analog front-
end (MAX86141, Maxim integrated, San Jose, CA, USA). This analog
front-end contains analog-to-digital converters, LED drivers, and an
internal switch circuitry. Then, a single IC can control a PPG sen-
sor including an LED and a photodiode. A 1.3-inch liquid crystal
display (LCD; KWHO013ST03-F01, FORMIKE, Shenzhen, China) and
a switch were attached to the front of the device for a user in-
terface device. We applied our proposed algorithm using the dig-
itized signals through a microcontroller (STM32F413CGU6, STMi-
croelectronics, Geneva, Swiss), and successfully operated HR es-
timation in real-time with a clock rate of 25 MHz. The average
computational time per window was 141 ms, which is operated in
real-time.

4.4, Discussions

We observed that when the fundamental frequencies from the
MA reference and the true HR overlapped, incorrect results were
obtained, as shown in Fig. 9, which is the HR estimation result ex-
ample from one exemplary subject. Fig. 9(a) shows the HRs com-
puted from fundamental frequencies of PPG and the true HRs for
the entire recording time, and Fig. 9(b) shows the estimated HRs
using our proposed adaptive MA reference selection approach via
Winer-FSM. In the results, we still found erroneous results for the
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Fig. 7. HR estimation results from one exemplary subject: (a) heart rate estimated from PPG, acceleration, and gyroscope signals as well as true HRs for the entire recording
time; (b) estimated HRs using PPG signal only; (c) estimated HRs after MA cancelation using acceleration signal only, (d) estimated HRs after MA cancelation using gyroscope
signal only; (e) estimated HRs after MA cancelation using both signals, (f) estimated HRs after MA cancelation using our proposed adaptive MA reference selection approach,

and (g) adaptively selected cases in real time.
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Fig. 8. Our developed wrist-type wearable device operated in real-time. Bottom
surface with PPG sensor attached (a) and the upper surface with an LCD to check
the calculated heart rate (b).

three parts highlighted in orange. We investigated each of the parts
and found that the fundamental frequencies from the MA refer-
ence and the true HRs overlapped. Fig. 9(c) shows the fundamen-
tal frequencies of the PPG, acceleration, and gyroscope signals. The
highlighted circles in orange correspond to the erroneous results,
where the power spectrum peak from acceleration or gyroscope
is overlapped with the true HR. This indicates that even the true
HR information was canceled out or attenuated via MA cancelation
using the adaptive MA reference. Therefore, previous HR informa-

tion may be needed to preserve the true HR information in PPG
signals. For instance, if the fundamental frequency from the MA
reference is close to the estimated HR in the previous window, we
may not perform MA cancelation or maximally preserve the pre-
vious HR information. However, the application of this strategy is
challenging because it considers that the previously predicted HR
information is correct. For the future work, we also may extend
(3) into quadratic transformation of power spectrum and consider
cross spectrum between MA-free PPG and MA reference signals.
By considering the cross spectrum, the spectrum overlapping issue
may be resolved. In addition, if the signal-to-noise ratio is too low,
then MA cancelation methods may not work. Thus, for a severely
corrupted signal, we should consider other approaches as well as
adaptive MA reference selection.

Another issue to be considered is the case 4 in Table 3. We
noted that the case 4 mainly includes the condition where there
is no movement on the wrist wearing the sensor. However, in the
case 4, there are additional possible cases where MA cannot be
canceled out. Based on Table 2, when the fundamental frequency
of MAs in PPG is 2F, we can expect that that of acceleration is F,
3F or 4F. In these cases, any MA reference cannot cancel out MAs
in PPG. Thus, we should investigate the case 4, and find the way
how to handle it. The work entails investigating more diverse and
realistic models. In the future work, we will extend our proposed
algorithm to be applied to MAs with various wrist and arm move-
ments.
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Fig. 9. HR estimation result example from one exemplary subject. (a) Estimated HRs computed from fundamental frequencies of PPG and true HRs for the entire recording
time, (b) estimated HRs using our proposed adaptive MA reference selection approach, and (c¢) fundamental frequencies of PPG, acceleration, and gyroscope signals.
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Furthermore, our study began with Pc(i) ~ Pg(i) — P4(i) or P¢(i)
~ Pg(i) — Pg(i). However, Ps(i) may have additional power spectrum
components, which are not related to the movement on the wrist.
Typical examples are finger or hand actions such as finger tapping
and fist clenching/unfolding, which cause wrist muscle motion cor-
rupting PPG signals not being reflected in the acceleration and gy-
roscope signals. Thus, in future works, it will be useful to inves-
tigate other MA references such as a piezoelectric transducer to
identify pressure signals.

5. Conclusion

In this study, we first demonstrated that performing HR
estimation using PPG signals can be inaccurate when using ac-
celeration only, gyroscope only or both as a MA reference. In
order to effectively use the advantages of the MA references
from acceleration and gyroscope, we proposed the adaptive MA
reference selection approach, which was evaluated through five
state-of-the-art methods for MA cancelation and HR estimation.
The results showed that our approach improved the HR estimation
accuracy for the state-of-the-art methods. Another advantage of
our proposed adaptive selection approach is that it is simple to
be implemented. It compares the dominant frequencies from PPG,
acceleration and gyroscope signals, and selects more appropriate
MA reference based on the simple conditions. More importantly,
the selection approach can be applied to any method using ac-
celeration and gyroscope signals. We believe that this study will
help many researchers studying wearable devices to understand
accelerometer and gyroscope sensors. We also expect to open and
pave the path to find an appropriate MA reference selection for
MA cancelation in PPG. However, our approach could not also
resolve the fundamental issue of attenuating true HR information
when the fundamental frequencies from the MA reference and
the true HR overlapped. In future work, we will investigate the
MA cancellation methods considering the case of overlapping MA
and HR frequencies. As another limitation, our approach did not
consider other types of MAs such as finger tapping and fist clench-
ing/unfolding. Thus, in future work, the development of hardware
that minimizes MAs from fingers/hands should be addressed.
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