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Abstract

5G-and-beyond and Internet of Things (IoT) technologies are pushing a
shift from the classic cloud-centric view of the network to a new edge-centric
vision. In such a perspective, the computation, communication and storage
resources are moved closer to the user, to the bene�t of network respon-
siveness/latency, and of an improved context-awareness, that is, the ability
to tailor the network services to the live user's experience. However, these
improvements do not come for free: edge networks are highly constrained,
and do not match the resource abundance of their cloud counterparts. In
such a perspective, the proper management of the few available resources
is of crucial importance to improve the network performance in terms of
responsiveness, throughput, and power consumption.

However, networks in the so-called Age of Big Data result from the dy-
namic interactions of massive amounts of heterogeneous devices. As a conse-
quence, traditional model-based Resource Allocation algorithms fail to cope
with this dynamic and complex networks, and are being replaced by more
�exible AI-based techniques as a result. In such a way, it is possible to design
intelligent resource allocation frameworks, able to quickly adapt to the ever-
changing dynamics of the network edge, and to best exploit the few available
resources.

Hence, Arti�cial Intelligence (AI), and, more speci�cally Machine Learn-
ing (ML) techniques, can clearly play a fundamental role in boosting and
supporting resource allocation techniques at the edge. But can AI/ML ben-
e�t from optimal Resource Allocation?

Recently, the evolution towards Distributed and Federated Learning ap-
proaches, i.e. where the learning process takes place in parallel at several
devices, has brought important advantages in terms of reduction of the com-
putational load of the ML algorithms, in the amount of information transmit-
ted by the network nodes, and in terms of privacy. However, the scarceness of
energy, processing, and, possibly, communication resources at the edge, espe-
cially in the IoT case, calls for proper resource management frameworks. In
such a view, the available resources should be assigned to reduce the learning
time, while also keeping an eye on the energy consumption of the network
nodes.

According to this perspective, a two-fold paradigm can emerge at the
network edge, where AI can boost the performance of Resource Allocation,
and, vice versa, optimal Resource Allocation techniques can speed up the
learning process of AI algorithms.



Part I of this work of thesis explores the �rst topic, i.e. the usage of
AI to support Resource Allocation at the edge, with a speci�c focus on two
use-cases, namely UAV-assisted cellular networks, and vehicular networks.

Part II deals instead with the topic of Resource Allocation for AI, and,
speci�cally, with the case of the integration between Federated Learning tech-
niques and the LoRa LPWAN protocol. The designed integration framework
has been validated on both simulation environments, and, most importantly,
on the Colosseum platform, the biggest channel emulator in the world.
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Chapter 1

Introduction

The last decades have witnessed an unprecedented evolution of wireless and
mobile networks. The number of interconnected nodes has grown consider-
ably, and their nature has changed as well. Indeed, more and more people
can access mobile networks and terminals all over the world. Due to the
recent emergence of new technologies, such as the Internet of Things (IoT)
and 5G and beyond paradigms, there has been a shift from a cloud-centric
to an edge-centric vision of the network. In such a perspective, the storage,
computational and communication services are moved at the edge of the net-
work, and closer to the users. Among the main advantages of this approach
are [1]: i) the increased responsiveness and reduced latency of the system.
Network resources are moved closer to the �nal users, resulting in smaller
communication delays, as well as in a reduced congestion of the network
(tra�c is kept at the edge servers, rather than processed at a single central
cloud node); ii) Context Awareness, i.e. the ability to supply customized
services based on the live user's experience. The edge servers can exploit
the physical proximity to capture useful real-time information, enabling a
plethora of applications at di�erent levels of the stack, starting from the ap-
plication level (e.g. virtual reality [2, 3], content caching [4, 5], computation
o�oading [6, 7]), to the network level (for instance, load balancing [8, 9],
and virtual network function provisioning [10, 11]), down to the physical
level (e.g., spectrum hole detection [12, 13], radio �ngerprinting [14, 15]).

Nevertheless, this advantages do not come for free; indeed, unlike its cloud
counterpart, the edge infrastructure presents several constraints at various
degrees of level. For instance, an edge server is not nearly as powerful as
a cloud server, and may represent a computational bottleneck if the net-
work resources are not properly managed. Another example is represented
by mobile networks extended by Unmanned Aerial Vehicles (UAVs): for in-
stance, overloading one speci�c drone may lead to a quick battery-depletion,
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causing a service outage. Finally, this issue is even more critical in IoT net-
works, where the energy, computational, and communication resources are
extremely constrained, and call for a proper management.

In other words, the problem of resource management and allocation at
the edge is of utmost importance, as it can drastically improve the network
throughput, e�ciency, and lifetime.

The traditional approach to solve resource allocation problems is through
mathematical modeling and optimization. In such a view, the �rst step
is to model the dynamics and performance of the network, and to accord-
ingly solve a mathematical problem (e.g. a constrained maximization of the
network throughput, or a constrained minimization of the network energy
consumption). While optimal, this approach proves impractical and/or un-
feasible in modern edge networks.

Actually, 5G and beyond technologies, together with the IoT bring a
tremendous growth in the number of users, and, consequently, in the volume
of generated data and interactions. In other words, modern wireless networks
have entered the so-called "Age of Big Data", and are the result of complex
interactions among heterogeneous devices. Thus, traditional model-based
approaches for network design, deployment and management prove obsolete
and ine�cient. If old-fashioned wireless networks could be easily described
and evaluated through mathematical models, the same does not apply to
modern networks, which can only be described with either complex but in-
tractable models or simple but inaccurate models.

If the model-based approach is doomed to fail, what could instead cope
with the increased complexity and variability of wireless networks? The
answer is Arti�cial Intelligence (AI). AI and its implementation through Ma-
chine Learning (ML) have attracted great interest in both academia and
industry, as they promise to deal with problems which are either too com-
plex to be solved with the aforementioned model-based algorithms, or cannot
be modeled at all. ML systems, such as deep neural networks (DNNs), are
capable of learning how to perform a task from large sets of examples, i.e.,
data coming from either real-world scenarios or simulations.

Neural networks do not require the development of an explicit model,
and can exploit the large volume of data generated in modern networks to
their own advantage, i.e. to learn. Most notably, ML systems are also able
to adapt to the circumstances, and can optimally react to the dynamics of
modern edge networks. Given such remarkable features, intelligent systems
prove to be i) easier to deploy, and ii) more �exible than model-based op-
timization algorithms. In short, intelligent systems are the answer to the
renewed complexity and variability of the edge wireless networks.

With all of this in mind, it is clear how the �exibility and adaptability of
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AI represent the most e�ective solution to the problem of resource allocation
at the network edge. The �rst part of this work of thesis, i.e. Part I, focuses
indeed on two speci�c edge scenarios where AI can be employed to solve the
problem of resource allocation.

Chapter 3 deals with the already mentioned scenario of UAV-assisted
cellular networks, where UAVs behave as a natural extension of the �xed
mobile infrastructure. In such a case, the UAVs can either act as a bridge
between rural/remote areas and the mobile network, or support the exist-
ing cellular infrastructure in case of �ash-crowds and/or unexpected tra�c
growth. In this speci�c case, the UAVs act as Virtual Network Functions
(VNFs) providers and compete to maximize their own utility. The UAVs
can establish a competition by buying a certain amount of bandwidth, i.e.
the resource to be assigned, from the network Telco Operator. Moreover,
the drones can take autonomous decisions by means of a game-theoretical
framework supported by exponential learning mechanism.

Chapter 4 is instead focused on the problem of AI-based job o�oading
in vehicular networks. The scenario is the following: two battery-powered
Road Side Units (RSUs) receive the jobs generated by the vehicles moving
along a roadway. The RSUs can activate a variable number of computing
elements, either to speed up the job processing, or to save energy. In order
to balance the network load, each RSU can o�oad its respective jobs to the
other. Both the decisions over the number of jobs to o�oad, and the number
of computing elements to turn on are taken according to a model-based
Reinforcement Learning mechanism. The latter can operate according two
di�erent policies, either to privilege energy-saving and increase the system
autonomy, at the expense of the job processing latency, and vice versa.

If AI can help improve and optimize the process of resource allocation at
the edge, what about the opposite? Can resource allocation frameworks help
improve and speed-up the process of learning in the networks? The answer
is yes.

Recently, vanilla AI/ML techniques have evolved towards the so-called
Distributed Learning approach. Intuitively, Distributed Learning takes place
in parallel at several devices, as opposed to the traditional setting where
learning occurs at a single powerful node. In such a view, the individual
nodes produce either part of a global ML model or a local version. The re-
sult of the computation is then sent to a central server in place of the actual
training data. The distribution of the learning process brings three main
advantages: i) the computation load is split among several devices, ii) the
amount of information transmitted by the devices is signi�cantly reduced,
and iii) sensitive data is kept local, for the sake of privacy and security. In
such a view, Federated Learning (FL) is gaining an important momentum
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in both research and academia. FL is an evolution of regular Distributed
Learning, designed to deal with massively distributed, non-IID and unbal-
anced data sets [16]. In other words, in a typical FL setting, training data
samples are spread among a huge number of nodes, and the average size of
local data sets is signi�cantly smaller than the total number of devices in the
system; also, data from di�erent nodes are characterized by di�erent distri-
butions, and the number of training samples per-node can vary from device
to device.

On one hand, FL and the IoT represent a match made in heaven. Indeed,
IoT networks are made up of a massive amount of sensing devices scattered
over a large geographic area. Due to these features, the sensor nodes in
the network collect location-speci�c data sets, where local data follow het-
erogeneous, i.e. non-i.i.d., probability distributions. For instance, Figure
1.1 depicts a possible use case, where Federated Learning supports an ap-
plication of Spectrum Sensing in the IoT. However, on the other hand, the
two paradigms present opposite and contrasting requirements. In fact, some
critical aspects to take into account are 1:

� Energy Resources: Energy saving is an important aspect in mobile
networks, and Federated frameworks should optimize the battery life
of devices included in the learning process. Energy saving is even more
important to IoT nodes, whose low capacity batteries are not expected
to last for several months/years.

� Processing Power: Federated Learning and, more in general, Ma-
chine Learning require certain minimum computational capabilities to
carry the learning process, e.g. CPUs or, even better, GPUs. IoT de-
vices are, instead, equipped with low-end on-chip processors. Thus,
even more advanced nodes equipped with GPUs may struggle to train
a local model, especially in the case of complex neural networks.

� Data Rate: Modern IoT networks resort to Low Power Wide Area
Networks (LPWANs) to communicate, such as LoRa [17], SigFox[18]
technologies, and many others. Such protocols allow the transmission
of information at long distances and with low energy consumption, at
the expense of achievable data rates. Clearly, LPWAN protocols cannot
be easily integrated with Federated Learning, as the latter requires the
transmission of millions of parameters in a short amount of time.

Hence, the usage of Federated Learning techniques in IoT networks calls
for proper allocation frameworks. In such a way, the few available resources

1Note how this issues can be also present in regular 5G and beyond networks, but are
greatly exacerbated in the IoT
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Figure 1.1: Federated Learning in the IoT: a possible use case

can be exploited in the best way possible, reducing both the learning time,
and the system energy consumption (and, accordingly, the network lifetime).

Therefore, if Part I of this thesis explores how AI can support procedures
of Resource Allocation at the edge, Part II overturns this idea, and proposes
an example of an IoT Resource Allocation framework to support and speed-
up Federated Learning schemes in the IoT. More in detail, Part II describes
our Federated Learning framework for the popular Long Range (LoRa) com-
munication protocol, including the design, implementation, and evaluation
of the framework in both the Colosseum channel emulator platform [19], and
in real scenarios.

Chapter 5 describes the implementation of LoRa Physical Layer over
Software De�ned Radio (SDR) from scratch. Although not directly related to
the topic of Federated Learning, this represents a step of utmost importance
towards the testing and evaluation of our FL framework over large-scale
scenarios implemented on Colosseum. The latter actually is a general purpose
channel emulator, and, as such, relies on the SDR technology to support a
vast variety of communication protocols.

Chapter 6 focuses on the actual Federated Learning framework for the
IoT, named FedLoRa. The chapter illustrates the theoretical intuitions be-
hind the framework, a greedy solution for the resource allocation problem,
as well as the comparison of our resource allocation technique with two base-
lines. The AI reference model for the numerical evaluation is a DNN for radio
device �ngerprinting, that is, a typical application of Spectrum Sensing.
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Chapter 2

Related Work

The intertwining between AI and Resource Allocation promises to boost the
performance of Edge Networks, yet it represents a very complex and scenario-
speci�c topic. Indeed, the problem formulation and solution depend on a
variety of factors, namely the speci�c use-case, the AI/ML technique taken
into account, and the type of available resources. This thesis, in particular,
focuses on three speci�c application scenarios, namely:

� Resource Allocation in UAV-based cellular networks

� Resource Allocation and Job O�oading in vehicular networks

� Resource Allocation and Federated Learning in the IoT

For the sake of clarity, this chapter summarizes the current state-of-the-
art for each one of these scenarios.

2.1 UAV and Cellular Networks Integration

Integration between UAVs and wireless networks has been explored in several
technical papers [20, 21, 22, 23, 24, 25, 26]. More in detail, the usage of
drones as mobile cellular base stations, is thoroughly addressed in literature.
Authors in [27, 28] study the employment of UAVs to improve the capacity
of the existing mobile network, while authors in [29, 30] optimize the usage
of drones as relays or aerial base stations in absence of a �xed infrastructure.
A key aspect of the study proposed in this thesis is the usage of Game
Theory as a tool to study the dynamics in UAV-based cellular networks and
optimize their performance. Several other works in literature employ Game
Theory in the study of these scenarios, albeit focused on di�erent aspects. For
instance, the authors in [31] focus on the problem of task o�oading: Game
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Theory supports the drones in taking an o�oading decision, and allows the
optimization of the trade-o� between energy consumption, cost, and latency.
In [32], the authors follow two di�erent approaches based on Non-Cooperative
Games and Evolutionary Algorithms to maximize the network coverage of
�ocks of drones. The work described in [33] illustrates a disaster scenario,
where drones act as LTE base stations and try to �ll the coverage gaps in the
existing terrestrial WiFi infrastructure. Here, Game Theory is instrumental
in selecting the optimal communication delay and minimize the interference,
so to achieve a satisfactory throughput in both the WiFi and LTE networks.

For what concerns this work of thesis, we present a game-theoretic model
of an edge computing scenario relaying on the exploitation of drones. Game
Theory represents a fundamental tool to describe the dynamics of the sce-
nario and the interactions between users and drone. Hence, not only Game
Theory enables a fully distributed management of the available communica-
tion resources, but is also instrumental to prove the full convergence of the
scenario. Arti�cial intelligence comes into play in real deployments, where
it enables drones to autonomously allocate the available communication re-
sources, and, in general, to eventually converge to the demonstrated game
equilibrium.

Several novel aspects are considered here. First, we speci�cally target
our model to 2 important 5G and beyond use cases, namely eMBB and
URLLC, each characterized by its own relevant requirements and features.
We also consider a hybrid trade o� use case in between the requirements
of eMBB and URLLC. We highlight the impact of delay requirements and
bandwidth concerns and then we incorporate in our model also the e�ect
of interference among users which has been shown to represent a critical
feature in next generation 5G networks [34]. Finally, we also evaluate how
interference impacts on the game equilibrium.

2.2 Resource allocation frameworks and job of-

�oading in vehicular networks

In this section, we review the main studies in the current literature that re-
gard the application �eld of job o�oading and load balancing in vehicular
networks. First, we present some papers regarding the integration of compu-
tation o�oading techniques, computing paradigms and vehicular networks
in the context of ITS. Then we move to discuss some papers regarding the
application of o�oad to reduce processing delays in vehicular networks and,
speci�cally, dealing with aspects related to energy saving. Finally, we review
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some papers that optimize energy saving in MEC servers, and that introduce
cooperation among MEC servers for load balancing purposes.

Several surveys deal with computation o�oading applied to vehicular
networks. The study in [35] provides a taxonomy based on the main aspects
of this topic, also presenting the main challenges and directions to guide
future research in this active area. Authors in [36] investigate application of
computation o�oading in vehicular environments, proposing a framework to
support it, while some models for task scheduling in vehicular networks have
been proposed in [37, 38, 39, 40]. Other papers [41, 42, 43] consider o�oad
techniques focusing on maximizing resource utilization.

One of the main aspects of o�oad that has been taken into consider-
ation in the past literature, overlapping a topic of this paper, is reducing
computation tasks' processing delay [44]. To this purpose, large amount of
research work has focused on the integration of vehicular networks and MEC
[45, 46, 47, 48].

In [45], Islam et al. address the unbalanced load distribution issue and
propose a secure intelligent vehicle federation model for balancing loads based
on a blockchain-based decentralized architecture to enhance transparency in
resource management. In [46], Tang et al. focus on integrating edge with
autonomous vehicles, and design a scheduling pipeline for the transfer and
fusion of di�erent types of data between vehicles and edge nodes to achieve
cooperative perception of the road environment.

In [47], Hui et al. develop a collaborative edge computing mechanism for
sixth-generation (6G) space-air-ground integrated vehicular networks where
each 6G infrastructure component (e.g., satellite, drone, and base station)
cooperates with parked vehicles to provide services for mobile vehicles in or-
der to improve the e�ciency of the edge computing services. In [48], Buda
et al. de�ne an architecture with an e�cient collaboration between vehicles,
aimed at managing computation task processing with low latency. To this
purpose, they propose a two-stage collaborative edge computing scheme for
vehicular IoT towards a greener ITS, where vehicles are organized in clus-
ters to increase e�ciency of the networking and computing architecture. The
same idea of clustering vehicles is used in [49], where a task-o�oading scheme
is introduced for cellular vehicle to everything (C-V2X) with the objective
of improving o�oading reliability and latency. Vehicles in need of assistance
can transfer their task to other vehicles for processing through the vehicle-
to-vehicle (V2V) link, or transfer their task to the mobile edge computing
(MEC) server via the vehicle-to-network (V2N) link, with the goal of min-
imizing communication overhead and providing reliable routes for e�cient
task o�oading. Matching theory is exploited for the task assignments. Nev-
ertheless, although all the above papers have goals that are very similar to
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this paper, use of iterative approaches require many interactions and causes
slow convergence, which does not allow the framework to quickly adapt to
dynamicity of the environment where it is applied. On the contrary, the ap-
proach presented in this thesis provides the two platform servers (i.e. VPS
and MPS) with a mathematical tool to calculate the optimum analytically,
and so adaptation to system variations is immediate. In addition, not hav-
ing a global model of the environment, performance evaluation and design
insights in the above papers are derived via simulation.

In addition, the above papers, although focusing on the same ITS scenario
of this paper and having the same target of integrating vehicles with MEC
servers, do not consider energy consumption aspect that, on the contrary,
constitutes one of the main elements of this work of thesis. As regards this
important aspect, the survey in [50] provides a classi�cation of solutions of
computation o�oading for vehicular networks according to the techniques of
partitioning, scheduling and data retrieval, while some other works concen-
trated their focus on achieving the maximum bene�t of service providers via
designing optimal resource management schemes [51].

In [52], using the game theory, the authors propose a task-o�oading
scheme for real-time and compute-intensive applications that optimizes en-
ergy consumption at mobile devices without violating such applications' strict
latency requirements. In [53], a multi-agent RL algorithm is proposed with
the task of optimizing the tradeo� among energy consumption, delay and
task failure rate. The study in [54] has the target of jointly optimizing task
o�oading and resource allocation to minimize the energy consumption sub-
ject to the latency requirement. To address this issue, the general problem is
decomposed into three sub-problems named o�oading ratio selection, trans-
mission power optimization, and subcarrier and computing resource alloca-
tion. An iterative algorithm is introduced to deal with them in a sequence,
deriving the closed-form solution of o�oading ratios, employing the equiva-
lent parametric convex programming to obtain the optimal power allocation
policy, and dealing with subcarrier and computing resource allocation by the
primal-dual method. The work in [55] deals with the problem of user associa-
tion and task o�oading to MEC servers with spatial and temporal variations
of computing power, channel quality and connection capacity between di�er-
ent MEC servers. Nevertheless, let us notice that most of the above works
focus on optimizing task o�oading decision problems to minimize energy
consumption of mobile terminals like smartphones or IoT devices. This is
also the case of [56], where minimization of processing time is included, and
of [57, 58], where a battery with limited capacity is considered. Also in [55]
mobile devices are smartphones, and the focus is to design an architecture
to charge mobile devices from MEC servers with power transfer techniques.
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Likewise, in [9], the authors investigate the average transmission-power min-
imization problem for Vehicular Edge Computing (VEC) under the tasks of
QoS requirements.

Unfortunately, this does not apply to our case of vehicular networks be-
cause here mobile terminals are on vehicles that have a big battery that is
also continuously recharged by the vehicle recharge system. Therefore, en-
ergy consumption of devices installed on vehicles does not constitute a main
concern, whilst our focus for energy saving is on the MEC servers residing
in the RSUs. Little work has been carried out focusing on this aspect. In
[59] Mao et al. proposed a framework that jointly optimizes radio resource
allocation and computation resource management, deriving the optimal CPU
cycle frequency of mobile devices and MEC servers in closed form using an
algorithm based on Lyapunov optimization and the Gauss�Seidel method.
However, its focus is limited to calculate the optimal transmit power and
bandwidth allocation only. More recently, in [60], Tang et al. proposed a
cache enabled task o�oading in the vehicular edge computing in hope to
jointly optimize the response delay and the energy consumption at the RSU.
More speci�cally, both the communication and computation models are re-
�ned and a greedy algorithm is then put forward to solve the optimization
problem. However, in this work of thesis, we integrate the models de�ned
at both the vehicular and the MEC domains with an accurate model of the
vehicular tra�c, which we de�ne as a Markov modulated model to capture
both �rst- and second-order statistics. Moreover, we de�ne the queueing sys-
tems in both the domains through Markov chains allowing us to provide the
platform servers (i.e. VPS and MPS) with an overall model supporting their
decision process analytically.

Another aspect that cannot be neglected in applying edge computing for
o�oading, and that plays an important role in this thesis, is the computing
limitation of MEC servers that may compromise the quality of o�oading ser-
vice. To this purpose, in the �eld of fog computing, there is a lot of research
work on load balancing. However, only few works have considered cooper-
ation among MEC servers in vehicular networks. To address this problem,
the authors of [61] propose a hierarchical cloud-based o�oading framework
for vehicular networks, where a near backup computing server is introduced
to make up for the de�cit computing resources of MEC servers. The opti-
mal multilevel o�oading scheme, which maximizes the utilities of both the
vehicles and the computing servers, was solved as a Stackelberg game. An-
other paper, where some task o�oading schemes in vehicular edge computing
networks are optimized by considering cooperative MEC servers is [62]. In
that paper, computing resource allocation and the maximum latency of tasks
are considered as constraints, but no Key Performance Indicators (KPIs) are
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calculated to evaluate system reliability, and utility is considered only from
the service provider perspective, and not from the vehicle viewpoint. More-
over, that paper sets the problem as a mixed integer non-linear programming
problem (MINLP), which results NP-hard, and therefore it was necessary to
resort to some heuristics to achieve a sub-optimal solution.

Utilities of both vehicles and providers of computing servers simultane-
ously were considered by few papers. The authors in [63] propose a contract-
based o�oading and computing resource allocation scheme, which maximize
the bene�t of the MEC service providers while enhancing the utilities of the
vehicular terminals. In [44, 51], load balancing of the computation resources
at the edge servers is approached by means of the game theory, with the
same objective of minimizing the processing delay of all the computation
tasks. The paper in [64] formulates a problem for load balance in vehicular
networks, with the objective of minimizing the maximum load under some
constraints in terms of transmit power, storage capacity, per-task completion
time and energy consumption. A deep RL algorithm is used to manage net-
work dynamics, while a coalition game based on deep reinforcement learning
is used to maximize the total payo� for the sel�shness of vehicles. In [65], Xu
et al. approach optimization of task o�oading in software-de�ned access net-
works formulating a mixed integer non-linear program problem to minimize
the overall cost, and solve it by means of an algorithm based on convex op-
timization and matching theory to minimize the overhead. Moreover, they
adopt alternating direction method of multipliers algorithm to optimize a
problem of load balancing of edge servers. In [66], the task computation
load dynamics are captured in cloud-based autonomous vehicular networks
by means of a Markov Decision Process (MDP), with the objective of mini-
mizing the expectation of a long-term total cost for imbalanced base-station
computation load and task o�oading decision switching with o�oading la-
tency constraints. Diverse options for computing o�oading in scenarios of
multiple edge servers are studied in [67], where an Ant Colony Multi-edge
Load-balancing O�oading (ACMLO) strategy is proposed inspired by an ant
colony algorithm. The problem is modeled as a general multi-constraint op-
timization problem with the goal of minimizing the weighted sum of energy
consumption and delay, and is solved iteratively. In each iteration, the ant
colony algorithm is used to make decisions on the division of subtasks and
allocation of channel bandwidth to achieve load balancing.

Nevertheless, to the best of our knowledge, this work of the thesis is
the �rst to proposes a RSU system as a whole, equipped with a portable
microeolic power generator, named VMEC-in-a-Box, that is able to work at
both vehicular and MEC domains aiming at supporting decisions maximizing
utilities at both levels. Unlike most of the past literature, a model-based RL
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approach is used in order to achieve high reactivity. Moreover, we introduce
cooperation between VMEC Stations in order to maximize performance and
decrease outage probability due to lack of battery charge, aspect that was
never considered so far.

2.3 LPWANs and Federated Learning

This section reviews existing work about the integration of low-power wide-
area networks (LPWANs) protocols, and of LoRa in particular, with Fed-
erated Learning techniques. A huge part of the study of this integration
required the usage of Colosseum, the biggest channel emulator in the world
[19]. However, since Colosseum relies on the SDR technology, a full LoRa
stack implementation was required to set up the experimentation over the
platform. Therefore, as part of this work of thesis, we developed the �rst full-
�edged LoRa implementation for SDR. For this reason, this section is split
in two parts: the �rst one explores existing LoRa implementations, while the
second focuses on the topic of Federated Learning within the IoT.

2.3.1 LoRa and SDR

LPWAN technologies, and, speci�cally, LoRa, represent sources of great in-
terest from both academia and industry, as they allow long range, yet low-
energy communications over the wireless spectrum [68]. LoRa enables a
wide variety of sensing and monitoring applications, including Smart Health,
Smart Metering, Smart Agriculture and Smart Home [69], but also proves
very e�ective for other use cases, such as image transmission [70], UAV com-
munications [71], and localization [72]. Given the huge potentialities of LoRa,
several works focus on the design of a SDR implementation of the protocol.
From a theoretical point of view, Bernier et al. [73] o�ered a complete study
of the preamble and start-of-frame synchronization procedure of LoRa, and
also focused on the implementation of low-complexity frame synchroniza-
tion algorithms. The authors provided some performance insights of such
algorithms in terms of phase estimation error and synchronization failure
probability. However, the implementation of the other components of the
LoRa transceiver chain was neglected. Knight and Seeber attempt to imple-
ment a full LoRa physical layer (PHY) stack for SDRs in [74]. However, this
implementation lacks some functionalities, e.g. the possibility to tune the
Spreading Factor (SF) � the only allowed value is 8 � and the Coding Rate
(CR), and does not properly implement the whitening functionalities.
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Marquet et al. [75] provided a thorough description of the LoRa modu-
lation and demodulation architecture. The implementation is exploited to
o�er some performance insight on the LoRa technology, such as an evalu-
ation of the Bit Error Rate (BER) as a function of SF and CR. However,
the implementation in [75] does not include time and frequency shift track-
ing for chirp spread spectrum (CSS) modulation, and is therefore unable to
decode LoRa signals. Robyns et al. [76] provided an implementation called
gr-lora, where the authors have reverse-engineered the functionalities of a
LoRa receiver. This implementation is therefore successful at decoding LoRa
signals generated by commercial devices. However, the transmitter has not
been included in the implementation.

Tapparel et al. [77] provide an implementation that includes a Carrier
Frequency O�set (CFO) estimation functionality, and is therefore able to
communicate with LoRa commercial devices. Moreover, the authors val-
idate their implementation through experiments on USRP SDR hardware.
However, such experiments are run on dedicated cables connecting the trans-
mitter to the receiver. Hence, the provided BER values do not include any
possible performance degradation resulting from external interference. Fi-
nally, the performance analysis results from a �xed con�guration, with SF =
7, a bandwidth of 250 kHz, and a payload of 64 bytes.

2.3.2 Federated Learning in the IoT

Another important research topic in the context of LoRa networks is the de-
sign of optimal resource allocation and optimization schemes. Authors in [78]
model the energy consumption of a single LoRa node, and accordingly study
the optimization of transmission parameters (bandwidth, SF, and transmis-
sion power) to minimize the node power consumption. However, the authors
do not consider the potential interference from other LoRa devices, and fo-
cus on a single node con�guration. Su et Al. [79] study the problem of
energy minimization through optimal resource allocation in LoRa networks.
The presented approach is similar to the one adopted in this work of the-
sis. Nevertheless, the authors do not allow nodes on the same LoRa channel
to share the same SF, as instead is considered in our problem formulation.
Similarly, authors in [80] deal with the problem of resource allocation in IoT
networks, and focus on LoRa as an illustrative example. The proposed al-
location scheme �rst groups users on several LoRa frequencies; then, users
on the same frequency are assigned optimal SF and transmission power val-
ues, thus maximizing the network throughput. However, the authors simply
ignore the e�ect of interference SFs in the process of resource allocation.

Federated Learning is a very popular machine learning techniques, as
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it represents the �rst step towards ubiquitous and pervasive AI systems.
Convergence in Federated Learning systems relies on accurate and fast data
delivery from the devices to the central aggregator and vice versa. Given the
scarceness of communication and energy resources (especially in IoT scenar-
ios), optimal resource allocation in Federated Learning has been investigated
in several works. Authors of [81] employ SignSGD, an optimized Federated
Learning approach where the networks nodes only transmit 1-bit signs of
the local gradients to the aggregator. Moreover, the authors derive both a
local computation and a transmission model, to either improve the energy
consumption or minimize the devices' outage probability. However, the envi-
sioned system is based on OFDM-based channel access techniques, which are
often unsuitable for IoT devices. Although Narrowband IoT (NB-IoT) [68]
represents a notable exception, LoRa technology proves less power-hungry
and more cost-e�cient, and, last but not least, is license-free. [82]. Simi-
larly, authors in [83] propose a resource allocation algorithm for IoT FL to
improve energy consumption and transmission time of the devices. In spite
of a solid allocation algorithm and convergence analysis, such a work is based
on unrealistic assumptions for typical IoT communication protocols (e.g. the
usage of maximum ratio combining techniques, or the availability of massive
amounts of bandwidth). Moreover, conversely to this work of thesis, valida-
tion of the FL framework is based on computer vision datasets and models.
Likewise, authors in [84] model the problem of resource allocation in FL IoT
networks. Here, resource allocation is modeled as a non-linear programming
model, and heuristically solved through an Alternative Direction algorithm.
However, the system modeling is only valid for cellular-based IoT networks,
which, as already speci�ed, seems a quite unrealistic assumption.

To the best of our knowledge, the work described in Chapter 6 is the �rst
to adopt LoRa as a supporting communication protocol for FL in IoT net-
works. Moreover, we are the �rst to propose an optimal resource framework
for such a scenario, and to validate such a framework on a realistic testbed
based on Colosseum wireless emulator.
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Part I

AI for Resource Allocation
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Introduction

The �rst part of this work of thesis discusses how Arti�cial Intelligence (AI)
can be employed to improve the process of Resource Allocation in edge net-
works. More in detail, Chapter 3 deals with the use case of UAV-based
cellular networks. The behavior of UAVs and mobile users is modeled by
means of a Game Theoretical framework. The game provably converges to a
unique equilibrium, where UAVs can take autonomous decisions on the Re-
source Allocation policy (i.e. the allocation of bandwidth to the users) with
the support of Exponential Reinforcement Learning mechanisms.

The second use case is job o�oading in vehicular networks. In such a
perspective, the so-called Road Side Units (RSUs) can autonomosuly decide
either to further o�oad the jobs generated by the vehicles or not, and also
allocate a variable number of computing elements to the job processing pro-
cedure. The decisions can be taken thanks to a model-based Reinforcement
Learning scheme, and also according to several perfomance policies, such as
energy saving, delay minimization, and so on.
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Chapter 3

AI-powered Resource Allocation

in UAV-based cellular networks

through Game Theory

3.1 Introduction

Nowadays, 5G networks represent a reality. As of June 2021, 188 operators
in 86 countries have already activated at least one 5G site in their com-
mercial networks[85]. Also, in the 2022 Mobile Economy Report the GSMA
announced that it is expected the number of 5G global connections to reach
one billion in 2022 and to double to two billion by 2025. By that time 5G
connections will thus account for a quarter of all mobile connections [86].
Nevertheless, the 5G networks are still far from reaching their full poten-
tial. Indeed, according to its technical speci�cations, 5G has to support
di�erent typologies of users with heterogeneous and, often, contrasting re-
quirements. Indeed 5G-speci�c use cases include Ultra Reliable Low Latency
Communications (URLLC) and Enhanced Mobile Broadband (eMBB). The
former gathers all the use cases where low-latency and reliability are of cru-
cial importance (e.g., autonomous driving or remote surgery), while the latter
comprises all about providing extremely high data rates provided to massive
amounts of users.

Edge Computing proves to be a crucial enabler for 5G, especially for
URLLC and eMBB use cases. Bringing the computing facilities closer to the
network edge, can indeed improve the management of massive amounts of
users and reduce the end-to-end communication latency. Still, the deploy-
ment of computation facilities at the edge may be particularly expensive,
making resource over-provisioning only seldom possible. At times, capillary
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deployment of computation facilities is not feasible at all, especially in the
case of rural and/or remote areas. For these reasons, the Edge Computing
paradigm could as it is, fail in providing ubiquitous connectivity and ser-
vices, either because the limited edge facilities are not powerful enough to
withstand sudden or unpredictable increases in the local tra�c (e.g. in case
of massively crowded events, natural disasters, and so on), or because the
edge facilities simply do not exist at all.

Unmanned Aerial Vehicles (UAVs) like drones represent a valid answer
to this problem, as cellular drone-cells are able to either provide additional
support to the already existing edge infrastructure, or to form a new stand-
alone edge cell from scratch.

In the recent past, the use of drones as a critical component of the com-
munication network emerged [87, 88, 89, 90]. In particular, UAVs can help to
support reliable connectivity in hostile areas with limited or unavailable com-
munication infrastructure, where UAVs provide aided communication net-
works by integrating them into the peripheral network, e.g. as �ying base
stations (BSs) [91], relay nodes [92], or terminal devices [93]. UAVs thus act
primarily as a means for enabling �exible communication services in remote
areas when interconnections with existing networks are lost.

This chapter investigates a scenario where drones are identi�ed as po-
tential sellers of services to network users in the form of Virtual Network
Functions (VNFs) and as clients buying bandwidth from the Telco Operator
(TO). To this end, we propose a marketplace scenario to model interactions
among di�erent players, that is, drones performing as VNF servers trying
to maximize their monetary revenue while also coping with energy features,
and users which requiring servicse from a speci�c server (i.e., a drone), based
on the requested fee or performance needs. More speci�cally, we target three
realistic 5G use cases, namely URLLC, eMBB, and an intermediate use case,
where multiple contrasting requirements arise.

The main aim of this work, therefore, is enhancing previous models and
customizing them to speci�c system settings to describe network dynamics
and players' behavior by means of a game-theoretical model. This theoreti-
cal framework, together with exponential reinforcement learning procedures,
brings a certain degree of intelligence to the network, allowing both users and
servers to take autonomous and decentralized decisions, as foreseen in next
generation networks. More speci�cally, in the rest of this chapter, we propose
a system model for the eMBB, the URLLC, and a hybrid trade o� use case
in 5G systems, including a customized de�nition of proper utility functions
to describe behavior and objectives of the system players. The introduced
two-stage game model, based on Evolutionary Game Theory and Stackel-
berg Games, analyzes the interactions among users, and between users and
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Figure 3.1: System architecture.

servers, while accounting in the di�erent use cases for multiple contrasting
requirements in terms of bandwidth, delay, price, and e�ect of interference
caused by multiple users served by the same drone. The game is shown to
converge to a unique point of equilibrium which can be explicitly estimated.
A set of numerical estimations is also provided for the di�erent use cases
where, based on the diverse requirements, new network dynamics in terms
of requested bandwidth and user distribution emerge. Finally, the numerical
estimation also considers the impact of multiple available drones as well as
the e�ect of interference experienced into the network as a consequence of
multiple users served by the same drone.

3.2 System Model

In this section we present the system model considered for this study. More
speci�cally, in Figure 3.1 the envisaged architecture is illustrated. It consists
of a typical 5G and beyond network, made up of three main actors: a Telco
Operator (TO), the users, and the servers. The TO provides connectivity and
services to the network customers through the support of drones behaving as
Mobile Edge Hosts (MEHs), which thus act as servers. The users can either
be physical customers or devices, and request network and/or application
functions and services with heterogeneous requirements.

In such a view, each entity in the network, on the one hand, has to incur
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into various costs, e.g. energy costs and/or monetary costs, in order to take
part into the system and accomplish its own tasks. On the other hand,
all entities in the network also gain some bene�ts by participating to the
system economy, e.g. the TO can sell services and bandwidth, the drones
can earn money by providing VNFs, and the users can receive services and
connectivity.

Therefore, the system equilibrium results from the interaction of the three
aforementioned entities (i.e., the TO, the servers and the users), whose main
goal is to maximize their own utility while obviously keeping the costs as
low as possible. The study of the performance evolution in such a scenario
calls for the creation of an accurate and �exible marketplace model, able to
account for the large variety of possible use cases of 5G and beyond cellular
networks.

For instance, the sketched system architecture in Figure 3.1 depicts two
relevant use cases in new generation networks; actually, it includes users from
an eMBB domain (e.g., smartphone users, 8K video streaming users,immersive
VR and AR users), which request huge amounts of bandwidth, and users from
a URLLC domain (e.g., vehicular nodes, or delay-sensitive medical systems,
disaster recovery systems), whose main priority is reliability and very low
latency.

Let us now describe, in detail, the business model for our system.
As previously stated, servers are drones, possibly owned by third parties,

and act as a bridge between the users and the Edge Network. Hence, the
servers can receive data and requests from the users, run network/applica-
tion functions, and send the results back to the users. On the one hand, the
servers can sell the services for a fee, and thus increase their monetary rev-
enue. On the other hand, they incur the typical energy costs of drones, due
to processing, communication, and hovering. Speci�cally, the energy con-
sumption is dependent on both the drone maneuvering and �ying system,
and the carried hardware. The latter also in�uences the processing delay of
a server (e.g., the more are the active CPU cores and the faster is the clock
speed, the shorter is the processing delay). In addition, servers also incur
into monetary costs, as they need to buy some bandwidth from the TO to
provide the aforementioned services. Last but not least, depending on the
number of connected users, if a server can increase its revenue, users on their
side can experience a proportional reduction in bandwidth if the server is not
prone to a�ord additional costs to improve the bandwidth availability, or can
experience an increase of interference because of multiple users coexisting in
the same ecosystem served by a speci�c drone.

Indeed the problem of estimating the impact of interference in 5G net-
works has been addressed in detail in [34] where the issue of noise and inter-
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ference regimes in 5G Millimeter-Wave networks has been considered. The
problem of appropriately weighting interference is of paramount importance
since it can both provide bene�ts coming from inter-cellular interference co-
ordination, coordinated beamforming and dynamic orthogonalization but, in
case of high thermal noise, it can represent a major drawback. Also, dif-
ferently from traditional cellular networks, in mmWave systems the relative
strength of interference depends on many more factors, such as high direc-
tionality. size of the antenna arrays, antenna pattern, and level of local
scattering and spatial multipath. Accordingly, in this work we consider the
impact of interference in our model since it has shown to represent a key
performance indicator in next generation 5G scenarios.

That said, the users can connect to speci�c servers according to the net-
work and/or application functions they are interested in. Since the same
function can be implemented by more than one drone, the users can choose
to connect to a speci�c server according to the amount of o�ered bandwidth,
the requested fee, the o�ered processing delay, and the expected job loss
probability. For this reason, multiple users will connect to the same server.
This is especially true for users moving together, or belonging to the same
geographical area; for instance, vehicles moving together along the same road
will probably connect to the same server unit. We therefore group these sets
of users into User Groups.

The TO holds an important role as well, as it is responsible of the man-
agement of the whole system, thanks to the support of an Orchestrator. The
latter is in charge of several crucial tasks related to the provisioning of virtual
network and/or application functions. Indeed, the Orchestrator: i) shares a
list of the available resources provided by the TO with the users ; ii) provides
a template for each virtual network and/or application function. A template
de�nes the operations needed to deploy and realize each application, network,
storage or computation function and to manage its life cycle; iii) allocates the
bandwidth resources to the servers in exchange of a monetary fee; iv) pro-
vides the users with a list of all the servers implementing a speci�c virtual
function, as well as information about the provided bandwidth, the pricing
applied, and the expected delay and loss probability of those servers.

Let us now discuss the mathematical model of the system.
Let F be the set of virtual network and/or application functions avail-

able to the users. Moreover, let U be the set of user Groups, where any User
Group consists of users requesting provisioning of the same network func-
tion(s). Note how a User Group represents a convenience abstract de�nition,
useful for modeling our system, rather than an actual group of users to be
maintained and managed by the network.

Given a function fp ∈ F , let p ∈ U be a User Group made up of Np user
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devices that are interested in the virtual function fp, and S be the set of
servers providing fp.

Let dip be the processing delay experienced by users from the User Group
p when they are served by server i ∈ S. Also let us denote as nip the number
of users of User Group p served by server i ∈ S.

The entities participating in these interactions are the servers running fp,
the users that request fp for some of their �ows, and the Orchestrator.

Each server incurs costs of heterogeneous nature. First, each server has to
manage several user �ows, and accordingly allocate storage and computing
resources to those �ows. Flight control and drone movements also imply
a further energetic cost. Finally, VNF provisioning requires the servers to
power on their hardware capabilities, and to withstand an additional cost for
each new incoming user �ow.

With all that in mind, the cost incurred by a server i to manage all the
user �ows in p can be modeled as:

C
(F)
ip = cFC

ip + cHW
ip + cip · nip (3.1)

In the above expression, cHW
ip is the cost needed to activate gimbals,

sensors, actuators, and communication modules of the drone, while cFC
ip is

the cost implied by �ight control and hovering. Last, cip represents the
incremental cost to allocate the required resources to each new incoming
�ow which requests function fp.

Servers have also to lease some bandwidth from the TO to properly pro-
vide services and VNFs to the managed user �ows. Clearly, the amount of
leased bandwidth depends on the price the drones are willing to pay. Let bip
be the bandwidth allocated by the server i to the User Group p, and p(B)i the
bandwidth-unit price charged by the TO network to the server i. Hence, the
overall cost of the bandwidth lent to the server is:

C
(B)
ip = p

(B)
i · bip (3.2)

On the other hand, the servers earn some pro�t by selling VNFs to the
users. However, the TO can claim part of the pro�t as a commission fee.
Formally speaking, the revenue for the server i associated to the provision
of fp is proportional to i) the number nip of users that are using it, and ii)
the fee price p̂(F)

ip applied by the server. Given that the commission fee can
be represented as the commission parameter ψ ∈ [0, 1], the actual revenue of
the server i related to the provision of function fp to the User Group p is:

Rip = p
(F)
ip · nip (3.3)
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where p(F)
ip = p̂

(F)
ip (1− ψ).

Accordingly, the utility function of the server i is:

U
(S)
ip (bp) = β1Rip − β2C(F)

ip − β3C
(B)
ip (3.4)

where bp = (b1p, b2p, . . . , bMp) is the bandwidth vector that speci�es the band-
width bip requested to the TO network by each server, and β1, β2 and β3 are
weighing constants for revenues and costs, respectively1

Users in Group p choose the server according to a variety of factors: the
expected processing delay; the price applied by the server for the provision
of the VNF fp; the amount of available bandwidth at the server and the
interference experienced upon connecting to a server which is also shared
with other users. Note that all the above parameters are updated at each
instantiation of the game and kept updated. Observe how, the higher the
number of �ows using the same server, the lower the bandwidth allocated
to each of them. Speci�cally, the server equally splits the bandwidth among
all the served users. In the end, each user receives an amount of fractional
bandwidth equal to bip/nip.

That said, each user selects the server i that maximizes its utility function,
i.e. [94]:

U
(U)
ip (np) = α1 ln

(
bip
nip

)
− α2p̂

(F)
ip − α3dip − α4 ln (kipnip) (3.5)

where np = (n1p, n2p, . . . , nMp) is the state vector of the number nip of �ows
from the User Group p served by each server in S; α1, α2, α3 and α4 are
constants in the utility function of the user balancing the relevance given to
the bandwidth received, the price applied by the server, the processing delay
of the server, and the packet loss rate due to interference among users served
by the same server, respectively. Also kip is a constant weighing the impact
of the number of users served by the drone on the experienced interference.
Note that this parameter can be di�erent at the various servers because it
can account for possible hardware features of the server device which make
the e�ect of interference even more critical.

In the following of the chapter, we will refer to α1, α2, α3, α4, β1, β2 and
β3 as the weighing parameters.

1 The coe�cients are used to balance the contribution of the di�erent revenue and cost
terms in eq. (3.4) by making them comparable in size.
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3.3 Game Model

This section introduces the two-staged game developed to model interactions
between servers and users in the distributed management framework.

The adoption of a game theoretical model is easily motivated: in the
depicted marketplace scenario, decisions taken by servers and users indeed
depend not only on their individualistic interests, but also on decisions taken
by counterparts.

Going into the details, we chose to model the scenario as a Stackelberg
competition game between leaders and followers. Indeed, in real scenarios,
servers act and make decisions by anticipating users. Therefore, Stackelberg
Games represent the most natural choice, as interactions among servers and
users can be modeled as a game where servers behave as the leaders and
users as the followers. Another key point to our two-stage model is the
ability of users to replicate other users decisions. Such a behavior best �ts
those scenarios whose entities can improve their own utility by replicating
other users' behavior. [95, 96, 97, 98].

The rest of the section is organized as follows: in Section 3.3.1 we exploit
Evolutionary Game Theory (EGT) and replicator dynamics to model the
decision-making process of users of the same User Group p ∈ U . The outcome
is the game G(U)

p , and represents the �rst stage of our game theoretical model;
In Section 3.3.2, we use non-cooperative game theory to de�ne the game
G(S)p , which models competition among servers to serve users in the User
Group p and represents the second stage of the model; �nally, in Section
3.3.3 we describe the distributed reinforcement learning procedure employed
to compute the equilibrium of the game G(S)p .

As an output of the game, the distribution of users between servers can
be determined as well as the consequent amount of bandwidth requested by
each server to the TO. These two conditions represent a so-called equilibrium
for our game.

However, the whole game sways from this equilibrium condition every
time some conditions of the system change. Indeed, a variation of either
the processing delay, a change in the pricing applied by a server for a given
function or in the number of users interested in the function, or also the
mobility of some drones and/or a deterioration in the wireless channel link
conditions could determine a change in the utility function of some users. As
a consequence, users start playing the game again, thus modifying the distri-
bution of the users among the servers. This variation stimulates the servers
to re-play the game in order to consequently check whether a modi�cation
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in the bandwidth requested to the TO network is needed.2

3.3.1 Evolutionary game G(U)p among users

Each user acts is a sel�sh way, as it takes decisions with the aim of maximizing
its own utility U (U)

ip , as de�ned in (3.5). Still, the higher the number nip of
users in the User Group p supported by the server i, the lower the utility U (U)

ip

of those users. Accordingly, the decision-making process of each user cannot
ignore the decisions taken by the other users of the same group. Moreover, a
user could adopt an imitation behaviour to improve the achieved utility. The
idea is the following: the behaviour of users achieving the best utility could
be imitated by other users in the group. For instance, if the user with the best
utility in the group is served by server i, other users could migrate to that
server, too. We refer to this occurrence as imitation behavior. The imitation
behavior can be based on actual implicit or explicit exchange of information
between the users. Indeed, in order to select a server (i.e. a drone), the users
need some important information, such as the number of users served, the
VNF cost, the processing delay and the level of interference at each drone.
The drones will periodically broadcast this type of information, and a user
can therefore leverage on it to autonomously select the best possible drone
and eventually imitate the user in the group with the best utility.

The imitation dynamics among users can be accurately described with the
help of the well-known and widely used replicator dynamics [99]. Therefore,
for each User Group p ∈ U , we de�ne the evolutionary game G(U)

p as follows:

� Population: the set of the Np users in the User Group p ∈ U .

� Strategy : the choice of the server i ∈ S to whom each user in the
population p decides to associate.

� Utility : the utility U (U)
ip achieved by each user associated to the server

i ∈ S, as de�ned in (3.5).

The variation in the population p that associates to the available servers can
be described by means of the replicator equation:

ṅip = nip

[
U

(U)
ip (nip)−

1

Np

∑
j∈S

njpU
(U)
jp (nip)

]
(3.6)

2In our work we focus on a system which is stable and does not �uctuate as a con-
sequence of the appearance of dynamic temporal variations in system parameters. Ac-
cordingly, we characterize the behavior of users and drones upon neglecting these possible
temporal �uctuations.

35



where nip ∈ np is the number of users in the User Group p which, as a
strategy, have chosen to associate to the server i.

The �rst term in the right-hand side of (3.6), represents the utility of
a user that connects to the server i, while the second term expresses the
average utility of the population, and depends on the current distribution
state vector np. Therefore, the growth rate ṅip/nip of the number of users in
the User Group p associated to the server i is equal to the di�erence between
the bene�t when choosing the strategy i, and the average bene�t of the whole
population3.

According to a general result from Evolutionary Game Theory, when all
users experience the same bene�t, i.e., U (U)

ip = U
(U)
jp for all i, j ∈ S, an

equilibrium point for the replicator dynamics is reached. As shown in [100],
the replicator equation (3.6) for each User Group p admits a unique solution
for any bandwidth vector bp, and the corresponding equilibrium point can
be characterized as:

n∗
ip =

Np∑
j∈S

[
ϕ
(p)
i,j

(
bjp
bip

)α1
(

kjp
kip

)α4
] 1

α1+α4

(3.7)

where ϕ(p)
i,j = e

[
α2

(
p̂
(F)
ip −p̂

(F)
jp

)
+α3(dip−djp)

]
, ϕ(p)

i,j = 1/ϕ
(p)
j,i , ϕ

(p)
i,i = 1, and

bip ∈ bp.
An important outcome that stems from the uniqueness of the equilibrium

point is the uniqueness of the convergence point, thus avoiding any possible
oscillation among two or more equilibrium points.

3.3.2 Stackelberg game G(S)p between servers and users

For the sake of notation, let us �rst de�ne two auxiliary variables, i.e.:

p̃ip = Np

(
β1p

(F)
ip − β2cip

)
(3.8)

and
πi = β3p

(B)
i (3.9)

Accordingly, the utility function U (S)
ip of the server i ∈ S can be written

3Note that the values of the user utilities are communicated by the individual users to
the servers, which then estimate the average utility of the population and disseminate this
metric to allow all users to estimate the di�erence between the average bene�t, i.e. utility,
and their own individual bene�t when choosing strategy i.
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as follows:

U
(S)
ip (bp) =p̃ip

1∑
j∈S

[
ϕ
(p)
i,j

(
bjp
bip

)α1
(

kjp
kip

)α4
] 1

α1+α4

− πibip − β2(cFC
ip + cHW

ip )

(3.10)

For each User Group p ∈ U , we de�ne the non-cooperative game G(S)p

among servers as follows:

� Player set : the set S of servers.

� Strategy : the amount of bandwidth bip requested to the TO network
by the server i to serve its associated users in the User Group p. For
each User Group in U , we assume that such amount of bandwidth is
upper-bounded by Bi. Thus, the strategy set is B =

∏
i∈S Bi, where

Bi ∈ [0, Bi] and
∏

identi�es the Cartesian product4.

� Utility : the utility U
(S)
ip achieved by each server i ∈ S as de�ned in

(3.10).

In the following, we analyze the Stackelberg game G(S)p and provide some
results about its Stackelberg Equilibrium, hereafter referred to as SE.

Let b∗
p ∈ B be the bandwidth vector at the equilibrium. The strategy

pro�le (b∗
p,n

∗
p) is a SE for the game G(S)p if, for all bp ∈ B and i ∈ S, we have

U
(S)
ip (b∗

p,n
∗
p) ≥ U

(S)
ip (bp,n

∗
p)

where n∗
p is de�ned as in (3.7).

Note that b∗
p = (b∗ip,b

∗
p−i

), where b∗
p−i

is the bandwidth vector of all
players except i, i.e., b∗

p−i
= (b∗jp)j∈S, j ̸=i with b∗jp ∈ b∗

p. The strategy b∗
p =

(b∗1p, b
∗
2p, . . . , b

∗
Mp) is a Stackelberg strategy for the game G(S)p if, for all i ∈ S:

b∗ip = arg max
bip∈Bi

U
(S)
ip (bip,b

∗
p−i
,n∗

p)

In this case, the value U (S)
ip (b∗

p,n
∗
p) is referred to as the Stackelberg utility of

server i in game G(S)p .

4We do not consider the variable p̂(F) as a strategy for the server. While the bandwidth
varies fast in time, pricing policies are instead �xed or slowly-variant thus making the
problem of selection of p̂(F) less relevant in the considered problem.
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As proven in [100], the game G(S)p admits a unique SE.
Therefore, the game G(S)p between users (i.e., the followers) and servers

(i.e., the leaders) results in a unique SE (b∗
p,n

∗
p). Since the servers compete

with each other in the Stackelberg game, the strategy pro�le b∗
p discussed

above also represents a Nash Equilibrium (NE) [101] for the competitive
game among servers.

3.3.3 Reinforcement Learning Procedure for game G(S)p

In order to provide a robust mechanism to allow servers to independently
reach the equilibrium of the game, we resort to an exponential reinforcement
learning procedure [102][103].

For each server i ∈ S that serves users in Group p ∈ U , the learning
procedure is de�ned as follows:{

zip(m+ 1) = zip(m) + γmvip (bp(m))

bip(m+ 1) = Bi
ezip(m+1)

1+ezip(m+1)

(3.11)

where m represents the iteration index, bp(m) is the bandwidth vector at
iteration m, γm is the step-size of the learning procedure, and vip (bp(m)) is

the marginal utility of each player i ∈ S and is de�ned as vip(bp) =
∂U

(S)
ip (bp)

∂bip
.

Notably, it can be easily shown how the proposed exponential reinforce-
ment learning procedure converges to the equilibrium of the game5.

More in detail, given any variable step-size in the form γm = 1/mξ with
ξ ∈ (0.5, 1], the procedure will always converge to the unique SE of the game
G(S)p .

3.4 Numerical analysis

This section discusses the numerical results related to the application of the
proposed framework to relevant 5G use cases. The analysis is carried out for
three scenarios, namely, the URLLC scenario, the eMBB scenario, and an
intermediate use case which corresponds to a tradeo� between the �rst and
the second one.

5Note that the use of exponential reinforcement learning procedures is easy to imple-
ment, and lightweight. Actually, by running a simulation of duration equal to 20000 time
steps, the procedure required approximately 1 second to be executed and reach equilibrium
in a medium-end machine equipped with an Intel Core i7-6700HQ 2.60GHz CPU [100].
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Parameter
Use Case

URLLC eMBB Trade-o�

α1 0.15 0.5 0.15
α2 0.0001 0.0001 1.5 · 10−5

α3 0.06 0.005 0.03
α4 0.4 0.001 0.105

Table 3.1: Values of parameters α for the considered use cases

The number of deployed drones, unless otherwise speci�ed, is equal to
two, to better highlight the dynamics of the interactions among the users
and the impact of the weighing parameters on the �nal outcome of the game.

For each use case, we consider a number of N = 3000 users, and we set
β1 = 1, β2 = 30, and β3 = 1. Note that typically β1 = β3 since the �rst
and the third terms in eq. (3.4) are numerically comparable; on the other
hand β2 is usually much larger than the other two terms to allow numerically
accounting also for the cost term associated to server management of �ows.
In our numerical analysis we will also investigate the impact of the choice of
β2.

Concerning parameters α1, α2, α3, α4, they are uniquely tailored to char-
acterize each considered use case. Note how α parameters weigh the relative
importance of the di�erent terms in the user utility functions, and must be
tuned taking the di�erent scenario requirements into account. As an exam-
ple, in a URLLC scenario where the processing delay dip is more relevant
than the o�ered bandwidth bip/nip, parameters α1 and α3 must be tuned

to satisfy the condition α3 · dip > α1 · ln
(

bip
nip

)
. According to the di�erent

considered use cases, the e�ect of the αi terms, where i ∈ {1, . . . 4} is to let
the utility function account for the speci�c requirements associated to the
scenario (e.g., for the eMBB the terms associated to the bandwidth concern
in eq. (3.5) should be the dominant one, as compared to other terms). In our
case the three di�erent use cases have been characterized in such a way that

each of the four terms. namely the bandwidth term BT =
α1 ln

(
bip
nip

)
U

(U)
ip (np)

, the

price term PT =
α2p̂

(F)
ip

U
(U)
ip (np)

, the delay term DT =
α3dip

U
(U)
ip (np)

, and the loss term

LT =
α4 ln(kipnip)

U
(U)
ip (np)

in eq. (3.5), do exhibit a di�erent percentage contribution

to the overall user utility. Details on the settings of these terms in the three
use cases are reported in Table 3.1 and discussed in the following subsections.
Also, unless otherwise speci�ed, the pricing fee p(F )

1 applied by server S1 is
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Figure 3.2: URLLC Scenario Variable β: Requested Bandwidth (a) and User Distribution

(b) of drone S2 at the Stackelberg equilibrium as a function of the price p
(F )
2 for three

di�erent values of β2: 30, 100, 120).

equal to 100 Price Units (PUs), while the pricing applied by server S2 is
variable.

We assume the commission parameter ψ is equal to 0 (in other words, the
drones do not owe any commission fee to the TO), and the bandwidth-unit
price p(B)

i is the same for all drones in S and equal to p(B)
i =1 PUs. The

hardware and the �ight control costs are equally set for all drones to cHW
ip =

32.5 W and cFC
ip = 390 W, respectively, according to the parameter values in

[104] [105].
In the following sections, we thoroughly analyze the numerical results for

each considered use case.

3.4.1 URLLC scenario

The following section is dedicated to the numerical results for the URLLC
use case.

According to the URLLC features, users are interested in a low-latency
and reliable service, and not in a large amount of bandwidth. As a conse-
quence of this setting of the parameters, the corresponding weights of the
bandwidth term (BT), price term (PT), delay term (DT) and loss term
(LT) in eq. (3.5) respectively are BT=0.184, PT=0.006, DT=0.51, and
LT=0.3, respectively. Correspondingly, the chosen weighing parameters are
α1 = 0.15, α2 = 0.0001, α3 = 0.06, α4 = 0.4.

As a preliminary consideration we want to estimate the impact of the
weigh terms βj in eq. (4).
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Figures 3.2a and 3.2b depict the requested bandwidth and the user dis-
tribution of server S2 at the game SE as a function of p(F )

2 for di�erent values
of the parameter β2, namely 30, 100, and 120. It is possible to observe how
di�erent choices of the parameter (which accounts for the processing cost
associated to �ow management) do not play any relevant role. Thus in the
rest of this chapter, for all use cases, we will assume β1 = β3 = 1 and β2 = 30
to weigh the terms βj in eq. (4).

Once decided the values of the βj terms, Figures 3.3a and 3.3b, show the
requested bandwidth and the distribution of users at the SE equilibrium as
a function of price p(F )

2 . The results are depicted for d1 = 15 DUs, k1 =
0.0015 and d2 = 20 DUs, k2 = 0.002 (solid line), and d1 = d2 = 20 DUs,
k1 = k2 = 0.002 (dashed line). Note that the amount of requested bandwidth
results proportional to the applied pricing. Concerning the user distribution,
let's �rst discuss the setting with heterogeneous latency and interference
coe�cients. In this case, the user distribution is unbalanced towards S1.
Indeed, the latter has a lower delay, and is more robust to interference than
S2. The increase in the bandwidth requested by S2 produces only a slight
variation in the user distribution. For instance, when p(F )

2 < 100 , S2 attracts
about 30% of the users, which increases to about 40% when p(F )

2 = 400. In
other words, S2 has to request almost four times the bandwidth requested
by S1 to try attracting up to 40% of the users. Let's now discuss the second
parameter setting, i.e. when the servers have equal latencies and interference
coe�cients. The outcome is, accordingly, very di�erent. In this setting, no
server holds a speci�c advantage over the others: the only way to attract more
users is to o�er more bandwidth. Accordingly, the user distribution is such
that whoever o�ers more bandwidth, attracts more users. Indeed, on the one
hand, the users tend to choose the server o�ering more bandwidth; on the
other, they aim at minimizing the interference to improve reliability, and,
therefore, at equally distributing themselves among the available servers.
Generally speaking, regardless of the chosen set of parameters, the total
amount of bandwidth is halved, as will be also evident from the following
discussion of the eMBB case. This comes quite expected, as the URLLC
scenario speci�cations do not focus on massive amount of bandwidth.

Figures 3.4a and 3.4b show how the system reacts to changes in the
scenario and reaches a new equilibrium. For the URLLC case, we let the
latency of server S2 vary at speci�c time instants, while the delay of server
S1 is �xed at d1 = 20 DUs. More in detail, d2 gets the values 30, 25, 20,
15, 10 DUs at times interval 0, 20000, 40000, 60000 and 80000, respectively.
Moreover, we set the price and interference coe�cient for drones to p(F )

1 =

100, p
(F )
2 = 150, k1 = k2 = 0.002. Similarly to the static case, as long as S2
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Figure 3.3: URLLC Scenario: Requested Bandwidth (a) and User Distribution (b) at the

Stackelberg equilibrium as a function of the price p
(F )
2

o�ers a lower delay than S1, it is able to attract more users. When, instead,
its delay increase, the majority of users connect to S1 instead. Finally, when
both the servers o�er the same latency, the users tend to slightly prefer S2: in
fact due to the higher VNF fee, S2 is indeed also able to o�er more bandwidth
to the users.

In Figures 3.5a and 3.5b, we report the requested bandwidth and the
user distribution of server S2 at the game SE as a function of both latency
d2 and pricing p(F )

2 . Once again, latency and pricing of drone S1 are instead
�xed and equal to d1 = 20 DUs and p(F )

1 = 100 PUs, respectively. The plots
show how, the more is the processing delay of S2, the more is the transition
towards a monopolistic scenario, where most of the users are attracted by
S1. The scenario is strongly competitive when d1 = d2 = 20. Indeed, at that
point, the amount of requested bandwidth reaches its maximum, especially
for high values of p(F )

2 . Moreover, the users are almost equally shared by
the servers. When, instead, the delay o�ered by S2 is particularly high,
the amount of attracted users drops drastically, and so does the amount
of requested bandwidth, too. When, instead, the latency o�ered by S2 is
extremely low, the plots show an opposite dynamic, where most, if not all
the users, are attracted by S2.

In order to estimate the e�ect of interference and loss (associated to term
α4 in eq. (5)) Figure 3.6 shows the evolution of the user distribution as the
weight of the loss term (LT) increases. In order to better show the in�uence
of the loss term over the user distribution, we set k1 = k2 = 0.002, and
p
(F )
1 = p

(F )
2 = 100 PUs. Moreover, we set d1 = 15 DUs, and d2 = 20

DUs. When the weight of the loss term is low, S1 holds the majority of

42



20000 40000 60000 80000 100000

Step

10000

15000

20000

25000

30000

R
e
q

u
e
s
te

d
 B

a
n

d
w

id
th

Drone S
1

Drone S
2

(a)

0 20000 40000 60000 80000 100000

Step

500

1000

1500

2000

2500

U
s
e
r 

D
is

tr
ib

u
ti
o

n

Drone S
1

Drone S
2

(b)

Figure 3.4: URLLC Scenario: Evolution of Requested Bandwidth (a) and User Distribu-
tion (b) at the Stackelberg equilibrium as a function of time
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Figure 3.5: URLLC Scenario: Requested Bandwidth (a) and User Distribution (b) of

drone S2 at the Stackelberg equilibrium as a function of the price p
(F )
2 and of the delay d2

users (about 70%), as it o�ers the lowest processing delay. However, as the
importance of the loss term increases, more users choose S2 instead, until
an equal distribution is eventually achieved when the importance of the loss
term is equal to 100%. The interference term is indeed minimized when the
users are equally distributed among the available servers.

3.4.2 eMBB Scenario

In this section we detail the results obtained for the eMBB use case scenario.
The corresponding weight of the bandwidth term (BT), price term (PT),
delay term (DT) and loss term (LT) in eq. (3.5) are BT=0.96, PT=0.0047,
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Figure 3.6: URLLC scenario: impact of the weight of the loss term on the User Distribution

DT=0.035, and LT=3·10−4, respectively. This setting is the result of the fact
that users are mostly interested in bandwidth, while latency and interference
are only minor concerns. Correspondingly, the weighing parameters set cho-
sen for the eMBB scenario is α1 = 0.5, α2 = 0.0001, α3 = 0.005, α4 = 0.001.

Figures 3.7a and 3.7b show the variation of the requested bandwidth and
the distribution of users at the SE equilibrium as the pricing applied by the
server (i.e. drone) S2 increases. Results are depicted for two di�erent settings
of latency and interference parameters, namely d1 = 15 DUs, k1 = 0.0015 and
d2 = 20 DUs, k2 = 0.002 (solid line), and d1 = d2 = 20 DUs, k1 = k2 = 0.002
(dashed line). Note that the behaviour is interesting and counter intuitive:
indeed the number of users connected to drone S2 is proportional to its VNF
fee. The reason is that, the more is the applied fee, the more bandwidth drone
S2 can buy. Since the users are interested in massive amounts of bandwidth,
S2 represents the most natural choice. Conversely, in the region where p(F )

2 is
smaller than p(F )

1 , S2 requests less bandwidth than S1, and thus attracts less
users. Finally, an equal pricing leads to an identical distribution of the users
among the two servers. Note how the exhibited behaviour is nearly identical
for the two settings with identical or di�erent delay features: in fact, users
are mostly focused on bandwidth and the diversity in the choice of other
parameters makes little or no di�erence.

Figures 3.8a and 3.8b show how the system reacts to changes in the
scenario and reaches a new equilibrium. In the eMBB case, we let the pricing
applied by S2 vary at speci�c time instants, while the fee applied by S1 is
�xed at p(F )

1 = 100 PUs. More in detail, p(F )
2 gets the values 400, 250, 50,

70, 100 PUs at times interval 0, 20000, 40000, 60000 and 80000, respectively.
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Figure 3.7: eMBB Scenario: Requested Bandwidth (a) and User Distribution (b) at the

Stackelberg equilibrium as a function of the price p
(F )
2

Moreover, we set the delay and interference coe�cient to be equal for both
drones, with d1 = d2 = 20, k1 = k2 = 0.002

Once again, the behaviour is similar to the one depicted in the static
case: as long as S2 applies a higher fee than S1, it can buy more bandwidth
and attract more users. When, instead, its price drops, the majority of users
connect to S1 instead. When the pricing is the same, the users are equally
shared by the drones.

Figures 3.9a and 3.9b depict the requested bandwidth and the user dis-
tribution of server S2 at the SE of the game as both the latency d2 and
pricing p(F )

2 increase. The pricing and latency of drone S1 are instead �xed
and equal to d1 = 20 DUs and p

(F )
1 = 100 PUs, respectively. Similarly to

their 2D counterparts, the plots highlight how, as the pricing applied by S2

increases, the amount of requested bandwidth increases as well, driving more
users towards S2. Notably, in spite of the small relevance given to the server
latency, a large di�erence between d1 and d2 is still able to impact on the user
distribution and the amount of requested bandwidth. Indeed, note how, for
high values of d2, S2 is forced to request more bandwidth to compensate the
higher latency, and also attracts a lower amount of users. When d2 is low,
instead, S2 attracts most of the users even with lower amounts of requested
bandwidth.

In order to estimate the e�ect of interference and loss (associated to term
α4 in eq. (5)) Figure 3.10 depicts the user distribution as a function of
the loss term weight. The system parameters are set as k1 = k2 = 0.002,
d1 = d2 = 20 DUs, p(F )

1 = 100 PUs and p(F )
2 = 400 PUs. As long as the weight

of the loss term is kept low, S2 holds the majority of users. In fact, since
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Figure 3.8: eMBB Scenario: Evolution of Requested Bandwidth (a) and User Distribution
(b) at the Stackelberg equilibrium as a function of time.
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Figure 3.9: eMBB Scenario: Requested Bandwidth (a) and User Distribution (b) of drone

S2 at the Stackelberg equilibrium as a function of the price p
(F )
2 and of the delay d2.

p
(F )
2 is four times larger than p(F )

1 , S2 can a�ord a sensibly higher amount of
bandwidth. As the weight of the loss term increases, the amount of o�ered
bandwidth becomes less important, until, as in the URLLC case, the users
are equally distributed among the two servers when the importance of the
loss term becomes equal to 100%.

3.4.3 Trade-o� scenario

The following section illustrates the numerical results for a "trade-o�" use
case, i.e. an intermediate scenario. In this case the corresponding weight of
the bandwidth term (BT), price term (PT), delay term (DT) and loss term
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Figure 3.10: eMBB scenario: impact of the weight of the loss term on the User Distribution

(LT) in eq. (3.5) are BT=0.4477, PT=0.0014, DT=0.4312, and LT=0.1197,
respectively. As a consequence, the chosen weighing parameters are α1 =
0.15, α2 = 1.5 · 10−5, α3 = 0.03, α4 = 0.105.

Figures 3.11a and 3.11b depict the requested bandwidth and the distri-
bution of users at the SE equilibrium as a function of price p(F )

2 . Once again,
latency and interference parameters are set as d1 = 15 DUs, k1 = 0.0015 and
d2 = 20 DUs, k2 = 0.002 (solid line), and d1 = d2 = 20 DUs, k1 = k2 = 0.002

(dashed line). The larger is the VNF fee applied by p(F )
2 , the higher is the

amount of bandwidth requested by S1. The user distribution shows an inter-
mediate behaviour between the URLLC and eMBB case. Let's focus on the
case with d1 = 15 DUs and d2 = 20 DUs (solid lines). In the pricing interval
below 300 PUs, the server with a lower processing delay, i.e. S2, attracts
the majority of the users. When p(F )

2 passes the threshold value of 300 PUs,
however, the amount of users managed by S1 drops below 50 %. Indeed,
while the users are still interested in the processing delay, they also keep an
eye to amount of bandwidth o�ered by the drones. For this reason, when the
pricing p(F )

2 grows, the amount of bandwidth o�ered by S2 increases. This
behaviour can also be observed for the case with d1 = d2 = 20. However, the
user behavior shifts a threshold value of 100 PUs, rather than the 300 PUs
from the previous case.

Figures 3.12a and 3.12b show how the system reacts to changes in the
scenario and reaches a new equilibrium as the latency of server S2 varies
over time. More in detail, the delay of server S1 is �xed at d1 = 20 DUs,
while d2 gets the values 30, 25, 20, 15, 10 DUs at time interval 0, 20000,
40000, 60000 and 80000, respectively. The price and interference coe�cients
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for both drones are set to p(F )
1 = 100, p

(F )
2 = 25, k1 = k2 = 0.002. Generally

speaking, S2 always requests almost four times the bandwidth requeted by
S1, thanks to its higher VNF fee. Initially, the majority of users is attracted
by S1 due to its lower processing delay and high amount of o�ered band-
width. As the delay d2 decreases, however, S2 attracts more users. Indeed,
the lower amount of o�ered bandwidth is compensated by lower processing
delays. More speci�cally, for d2 = 10 DUs, the users are (almost) equally
distributed among the two servers. In fact, on one hand, S1 compensates a
high processing delay with a high amount of o�ered bandwidth, while, on the
other, S2 is characterized by a low processing delay, but o�ers a low amount
of bandwidth.

Figures 3.13a and 3.13b show how the system equilibrium varies with
changes in the VNF fee p(F )

2 . More in detail, p(F )
2 gets the values 400, 250, 50,

70, 100 PUs at time interval 0, 20000, 40000, 60000 and 80000, respectively.
As in the previous case, p(F )

1 is equal to 100 PUs. Moreover, we set the delay
and interference coe�cient to be equal for both drones, with d1 = 15, d2 = 20,
k1 = k2 = 0.002. The bandwidth requested by S2 varies in line with the VNF
pricing. When p

(F )
2 > p

(F )
1 , S2 can a�ord to request more bandwidth than

S1. Conversely, if p(F )
1 > p

(F )
2 , the latter o�ers the most bandwidth. Let's

now discuss the user behaviour. When, p(F )
2 = 400 PUs, S2, can a�ord

a considerable amount of bandwidth, and, in spite of its higher processing
delay, attracts more users than S1. Then, as the pricing of S2 drops to 250
PUs, the users equally distribute among the servers. Finally, for p(F )

2 = 50, 70
and 100 PUs, S1 can always a�ord more (or, at least, the same) bandwidth
than S2. Since S2 is also characterized by a higher processing delay, S1

attracts the majority of users as a consequence.
Figures 3.14a and 3.14b depict the requested bandwidth and the user

distribution of server S2 at the SE of the game as a function of both latency
d2 and pricing p(F )

2 . Similarly to the previous cases, pricing and latency of
drone S1 are instead �xed and equal to d1 = 20 DUs and p(F )

1 = 100 PUs,
respectively. The plots show how both the o�ered latency and requested
bandwidth play a role in the choices of users. Indeed, the distribution of
users at S2 reaches its maximum when the drone both o�ers a fair amount
of bandwidth, and a low processing delay. The minimum is instead reached
when the drone o�ers a high latency, and a small amount of bandwidth.
When, the o�ered latency is moderate (about 40-45 DUs) and the amount
of o�ered bandwidth is su�ciently high, S2 is still capable of attracting an
acceptable amount of users, namely between 20 and 30 %. Indeed, latency
and bandwidth have similar relevance, and a low delay can compensate for a
small amount of requested bandwidth. Similarly, a fair amount of requested
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Figure 3.11: Tradeo� Scenario: Requested Bandwidth (a) and User Distribution (b) at

the Stackelberg equilibrium as a function of the price p
(F )
2
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Figure 3.12: Tradeo� Scenario: Evolution of Requested Bandwidth (a) and User Distri-
bution (b) at the Stackelberg equilibrium as a function of time

bandwidth compensates a higher delay.
Figure 3.15 depicts the impact of the weight of the loss term over the user

distribution. We considered the following parameter con�guration: k1 =
k2 = 0.002, p(F )

1 = 100 PUs, p(F )
2 = 50 PUs. Moreover, we set d1 = 15

DUs, and d2 = 20 DUs. For low weights of the loss term, over 60% of the
users choose server S1, as it o�ers both a lower delay and a larger amount
of bandwidth (thanks to its higher fee). When, instead, the loss term has a
relevant importance, the users, as already shown for the URLLC and eMBB
cases, tend to distribute more equally, to reduce the experienced interference.
Once again, when the weight of the loss term is equal to 100 %, each server
manages exactly half of the users.
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Figure 3.13: Tradeo� Scenario: Evolution of Requested Bandwidth (a) and User Distri-
bution (b) at the Stackelberg equilibrium as a function of time

3.4.4 Multiple Drones Scenarios

In this section, we analyze the impact of adding additional drones to each
considered 5G use case. More in detail, we focus on the speci�c cases of
S = 3 and S = 4 drones, respectively.

Let us focus on the case S = 3. The latency and interference con�gu-
rations are the same for each scenario, with d1 = 14 DUs , d2 = 15 DUs,
d3 = 16 DUs, and k1 = k2 = k3 = 0.001. Moreover, we �x p(F )

1 = 250 PUs
and p(F )

3 = 450 PUs, while p(F )
2 ranges from 200 to 450 PUs, with a step of

50 PUs. The remaining parameters are set as in the previous section for each
speci�c use case.

URLLC Scenario Figure 3.16a reports the user distribution for the
URLLC use case. As expected, given the slight di�erence between d1, d2, and
d3, the users are distributed in an almost equal way among all the drones,
Note, however, how as the pricing increases, S2 is able to buy more bandwidth
and, hence, to attract slightly more users.

eMBB Scenario The user distribution for the eMBB use case is de-
picted in Figure 3.16b. As opposed to the URLLC case, the pricing applied
by S2 plays an important role on the �nal user distribution. Indeed, for
p
(F )
2 = 200 PUs, S2 cannot a�ord to buy as much bandwidth as S1 and S2,
and attracts only about 10% of the users. As the pricing applied increases,
S2 is able to buy more bandwidth, until it attracts about 45% of the users
for p(F )

2 = 450 PUs.
Trade-o� Scenario Last, the user distribution for the trade o� use case

is shown in Figure 3.16c. The exhibited behavior is intermediate between the
ones in the eMBB and URLLC cases. Indeed, the user distribution is not as
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Figure 3.14: Tradeo� Scenario: Requested Bandwidth (a) and User Distribution (b) of

drone S2 at the Stackelberg equilibrium as a function of the price p
(F )
2 and of the delay d2
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Figure 3.15: Tradeo� scenario: impact of the weight of the loss term on the User Distri-
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Figure 3.16: User distribution for S = 3 drones for the URLLC (a), eMBB(b), and Trade-
o� (c) scenarios

unbalanced as in the eMBB case, even for a pricing of p(F )
2 = 200 PUs. On the

other hand, unlike in the URLLC scenario, the amount of o�ered bandwidth
still has a moderate importance. Indeed, for p(F )

2 = 400, S2 succeeds in
attracting the majority of the users.

In the case with S = 4, the latency and interference con�guration is
instead the following: d1 = 14 DUs , d2 = 15 DUs, d3 = 16 DUs, d3 = 17
DUs and k1 = k2 = k3 = k4 = 0.001. Moreover, we �x p

(F )
1 = 250 PUs,

p
(F )
3 = 350 PUs, p(F )

4 = 450 PUs, while, as in the previous case, p(F )
2 ranges

from 150 to 450 PUs, with a step of 50 PUs. The remaining parameters are
set, once again, as in the previous sections.

Figure 3.16a reports the user distribution for the URLLC use case. As
expected, given the slight di�erence between d1, d2, and d3, the users are
distributed in an almost equal way among all the drones, Note, however
how, as the pricing increases, S2 is able to buy more bandwidth and, hence,
to attract slightly more users.

URLLC Scenario Figure 3.17a depicts the user distribution for the
URLLC use case. As in the S = 3 case, the users are distributed in an almost
equal way among all the drones, as implied by the slight di�erence between
d1, d2, d3, and d4. The user distribution is subject to a marginal variation
as a function of p(F )

2 ; in fact, the number of users associated to S2 increases
from about 25% when p(F )

2 = 200 PUs to about 30% when p(F )
2 = 450 PUs.

eMBB Scenario The user distribution for the eMBB use case is shown
in Figure 3.17b. As demonstrated in the previous sections, the amount of
bandwidth requested by each drone strongly depends on the applied fee.
Accordingly, when p(F )

2 = 200 PUs, S2 attracts almost no user, while S4, i.e.
the drone with the highest fee, serves about 50% of the total number of users.
As the pricing p(F )

2 rises, the number of users connected to S2 rises, and S2

eventually surpasses S4 for p(F )
2 = 450 PUs. Indeed, while both S2 and S4
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Figure 3.17: User distribution for S = 4 drones for the URLLC (a), eMBB(b), and Trade-
o� (c) scenarios

apply the same fee, and can thus request the same amount of bandwidth, S2

o�ers a lower processing delay.
Trade-o� Scenario The user behavior for the trade o� use case is

visible in Figure 3.17c. The user distribution is well balanced, especially in
the case p(F )

2 = 300 PUs, due to the similar importance of the bandwidth
and the delay in the users decision. Indeed, the lower amount of bandwidth
requested by S1 and S2 is counterbalanced by their lower processing delay.
Viceversa, the higher delays of S3 and S4 are compensated by their larger
availability of bandwidth. Eventually, when p(F )

2 = 400, S2 manages to at-
tract the majority of users, as it can both o�er a large amount of bandwidth,
and a lower processing delay.

3.4.5 Benchmark comparison

In order to assess the e�ectiveness of the introduced approach, we also present
a comparison between the proposed game theoretic framework and a bench-
mark 5G scenario where no marketplace is considered, and server nodes are
simply characterized by certain delay and bandwidth features. More speci�-
cally, we compare our model with the eMBB and URLLC standard scenarios
where users tend to simply choose the best bandwidth e�cient or delay ef-
�cient server without any form of competition among the servers. In this
case we consider the e�ect of the benchmark policy on the loss term LT
which is proportional to the interference experienced when all user nodes are
served by a single server (i.e. the best according to the speci�c considered
use case). Figure 3.18 shows a comparison between the benchmark case, i.e.
where all the users in the scenario connect to a single drone, and our game
theoretical framework. In particular, the evaluation has been performed for
S = 2, 3 and 4 drones. Note that the advantage of fostering the emergence of
a marketplace is evident in terms of improvement of interference resilience.
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Figure 3.18: Benchmark vs Game-theoretical Framework: Interference reduction for the
URLLC (a), eMBB(b), and Trade-o� (c) scenarios

Actually, availability of additional providers implies a distribution of users
among multiple drones playing as servers, with a consequent reduction in
interference. This is particularly true for the S = 4 case. While, indeed,
the experienced interference is reduced of about 10 to 15% in the case with
S = 2 and 3 drones, the interference value drops to about 60% (or even less)
with respect to the benchmark case with a single drone.
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Chapter 4

AI-based Resource Allocation and

Computation O�oading in

Vehicular Networks

4.1 Introduction

In the last decades, tra�c congestion, tra�c accidents, and environmental
pollution caused by road tra�c have become major global issues, also af-
fecting the economic growth of industrialized countries. The global interest
in this problem is demonstrated by the fact that, for example, the United
States, guided by the �VISION 2050: An Integrated National Transportation
System�, proposed to build transportation systems with integration, inter-
nationalization, inclusiveness, intelligence, and innovation, while the State
Council of China identi�ed the �Intelligent Tra�c Management System� as
a priority element [106]. An improvement in this direction has been regis-
tered thanks to the application of the Internet of Things (IoT) and wireless
communication technologies. In fact, in the last years, vehicles are evolved
from just engine-and-wheels systems to very complex platforms with a huge
number of sensors, storage availability, intelligence and computational power
[107]. Connected to each other (V2V) and with the �xed network infrastruc-
ture (V2I), and more in general to everything (V2X), vehicles constitute the
so-called vehicular networks, which are becoming an important part of fu-
ture Intelligent Transportation Systems (ITS) [108]. Besides applications like
advertisements, path planning and navigation, there are a lot of more com-
plex services that require the high perception of surrounding environment
(e.g. adaptive tra�c signal, autonomous intersection control and license
plate recognition). There are also time-critical services, such as cooperative
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adaptive cruise driving, autonomous driving, driver-safety enhancement and
tra�c monitoring that may require huge amounts of computation resources
with very low delay.

Deployment of technologies for ITS support involves the installation of
equipment both on the roadway, i.e. the Road Side Units (RSU), and inside
the vehicles, the so-called On-Board Units (OBU). However, the huge amount
of required RSUs to guarantee global coverage, and the limited processing
and storage capacity of the OBUs installed on-board vehicles may slow down
the spreading process of these technologies.

Recently, a lot of research has been focused on �nding of quick deploy-
ment and alternative lower-cost methods and techniques to the ITS. With
this purpose, 5G networks, the �fth generation of mobile communication
technology, thanks to its goals of providing users and connected devices with
evolved mobile broadband (eMBB), ultra-reliable and low-latency communi-
cations (URLLC) and massive machine-type communications (mMTC), will
make a great impulse on the development of ITS [109]. Nevertheless, the suc-
cess of application of 5G to ITS will depend not only on reliability and low
latency of the radio links, but on the performance of the whole path made
by the jobs generated by vehicles, including their processing that must be
done in a very short time [110, 111]. The solution provided by 5G to support
this plethora of services with heterogeneous requirements is the application
of the Multi-Access Edge Computing (MEC) paradigm [112]. This paradigm
pushes computing and storage resources at the edge of the network, speci�-
cally in Base Stations (BSs) and RSUs, in proximity of the end users, close
to where the data are generated and likely consumed.

The presence of MEC servers allows the implementation of some o�oad-
ing policies. However, compared to other MEC-assisted vertical markets, the
automotive domain adds a layer of complexity to the process of computation
o�oading. Indeed, ITS scenarios may present strict requirements in terms
of connection stability, quality and reliability caused by high mobility and
vehicle speed [113]. Moreover, since RSUs can be deployed on highways in
places very far from towns and villages, where Internet connections and even
power grid may be not available, they have to be stand-alone computing
systems with local computing facilities to perform computing locally, and be
�tted with renewable power generators. Finally, due to the huge number of
MEC servers that should be installed to cover the road network in capillary
way, these should be cheap and easy to install.

With all this in mind, the main objective of the work presented in this
chapter is to introduce VMEC-in-a-Box, a smart RSU combined with a
MEC station, aimed at providing edge computing for vehicular applications.
VMEC-in-a-Box is also equipped with a microeolic power generator that,
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if compared with its larger counterpart, is portable, smaller and easier to
install, with reduced noise, attractive aesthetics and localized power genera-
tion. It is also able to work in presence of lower levels of wind, by varying
their computing capacity dynamically to pursue the best tradeo� between
performance and power consumption at runtime, and to cooperate with each
other by mutually o�oading jobs (horizontal o�oad) with the aim of improv-
ing performance and reliability of the whole system. The main contributions
of this work are as follows:

� We propose a two-layer architecture for decision making of job o�oad-
ing, which is able to take into consideration the model of vehicular traf-
�c and the time-variant load produced by vehicles in the area covered
by each RSU, as well as o�oading costs and performance requirements
of the vertical vehicular applications. To this purpose, we de�ne two
reward functions, one at the Vehicular Domain and the other at the
MEC Domain. These functions are used to weigh costs, performance
and energy consumption to make the system reliable, that is, with mean
delay, loss probability for queue over�ow and outage probability for �at
battery, lower than some given thresholds, and therefore acceptable.

� We de�ne the decision-making process in the MEC Domain using a
model-based Reinforcement Learning (RL) in order to make the sys-
tem highly reactive even in cases when the external conditions change
abruptly.

� We describe the environment by means of a Markov Decision Process
(MDP) based on Markov Modulated discrete-time processes to capture
both �rst- and second-order statistics of the real processes. This allows
us to obtain the optimal solution o�ine, i.e. with no need to be trained
online.

� We include in the design parameters the probability of service outage
caused by lack of battery charge of the MEC servers, aspect that was
never considered in the previous literature.

The above peculiarities make this work, to the best of our knowledge, the
�rst work that proposes an integrated framework, which aims at supporting
decisions maximizing reliability and performance in both Vehicular and MEC
Domains.

The chapter is structured as follows. Section 4.2 describes the refer-
ence system. Section 4.3 formulates the problem, also describing the reward
functions to be optimized at both the Vehicular and the MEC Domains,
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Figure 4.1: Reference System: Portion of road equipped with VMEC-in-a-Box Stations

while Section 4.4 describes the decision-making strategy. Models of the two
Domains are presented in Sections 4.5 and 4.6. The main performance pa-
rameters are analytically derived in Section 4.7. Section 4.8 presents some
numerical results, aimed at describing how the proposed platform works.

4.2 Reference System

The work presented in this chapter focuses on a portion of road, as depicted
in Fig. 4.1, providing vehicles with advanced ITS services. Each RSU is
equipped with a VMEC-in-a-Box Station, also referred to as VMEC Station
for the sake of brevity. The architecture of the VMEC Box is depicted in
Fig. 4.2. A VMEC Station is de�ned as a self-consistent box that is able to
allow Telco Operators to create 5G network slices for third party ITS service
providers to run application tools very close to the vehicles, at the edge of the
network. We consider any kind of application service using objects installed
on the vehicles (e.g. video surveillance with 360° cameras installed on the top
of the vehicles, or tra�c monitoring for smart driving and drive assistance
with sensors and cameras).

In order to be easily installed anywhere with no constraints regarding the
need of a socket of the power grid, the VMEC Station is equipped with a
microeolic power generator. With the aim of improving reliability, a backup
battery is also included to supply the station during periods when the power
produced by the microeolic power generator is not su�cient to supply the
station. The reference system architecture is sketched in Fig. 4.3. Two
di�erent domains are highlighted there. The Vehicular Domain is constituted
by smart vehicles �owing on the road. In this domain, sensors and other
kinds of devices installed on board vehicles generate data to be processed.
A burst of data constitutes a job to be processed by a computing facility
within a given time that depends on the speci�c ITS application. Some
of these applications require low-latency processing to work in real-time.
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Figure 4.2: Reference System: VMEC-in-a-Box Station Architecture

Figure 4.3: Reference System Architecture

This constitutes one of the most stringent QoS requirement for many ITS
applications, and has to be taken seriously to enable these kinds of service.
For this reason, as depicted in Fig. 4.3, each vehicle is equipped with a local
computing station, the OBU, which is able to process jobs produced locally
by the same vehicle. In addition, due to the limited processing capacity of
an OBU, each vehicle can o�oad jobs to the closest VMEC Station, the one
associated to the RSU used by it as network access point (this o�oading
operation is named vertical o�oad, and is indicated as OFVEC in Fig. 4.3).

As already said so far, also detailed in Fig. 4.3, each VMEC Station
is constituted by a MEC server to process jobs received by the Vehicular
Domain for o�oading, a microeolic power generator to supply the whole
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station, including the RSU. The backup battery is used to store surplus
energy during periods of peak energy generation and to supply the station
when the power generated by the microeolic power generator is not su�cient.
In order to face overload periods, which are typical in vehicular environments
that are characterized by tra�c slowing down and job generation peaks, we
introduce the possibility of horizontal o�oad between MEC servers belonging
to near VMEC Stations. In this way, the set of VMEC Stations covering a
portion of road work as a single entity providing vehicles with MEC services.
For this reason, we refer to this set of VMEC Stations as the MEC Domain.

In the sequel, we will assume that the job generation process is statis-
tically equal for all vehicles, and that all vehicles are equipped with OBUs
having the same performance. For this reason, the percentage of jobs each
vehicle needs to o�oad to the MEC Domain for a given ITS service appli-
cation will be considered the same of the other vehicles. This percentage,
q, is centrally decided by the Vehicular Platform Server (VPS). More specif-
ically, the VPS decides the value of q maximizing a given reward function
that weighs performance and costs, the latter due to the price applied by the
MEC Domain to process the jobs received for vertical o�oading.

Let us note that the decision of which jobs processing locally or o�oaded
to the MEC Domain (in case some jobs have greater importance and should
be privileged with speci�c performance) is in charge of each vehicle, and can
be done independently of the behavior of the VPS. This decision can be taken
according to any strategy proposed in the previous literature regarding risk-
aware user's behavior [43], but is out of the scope of this work. If some of
such strategies is applied and the amount of jobs that have to be processed
locally according to it is high, this would represent only an upper bound for
q. However, for the sake of simplicity, in the sequel we do not consider this
scenario, and so q ranges in the range [0, 1].

On the other side, in the MEC Domain, two elements play a fundamental
role for its performance: the number of CEs, such as CPUs, which have to
be maintained active in each VMEC Station, and the amount of horizontal
o�oad from one VMEC Station to another one through a link of the backhaul
network. As in [44], this last operation is indicated as OFMEC in Fig. 4.3.
With respect to Fig. 4.3, MEC Server 1 can o�oad a fraction of the received
jobs to the MEC Server 2 and vice versa. The direction of o�oad is decided
according to the current load of the MEC servers: the least loaded MEC
server can o�oad jobs to the other one.

The �rst decision, concerning the number of CEs to be maintained ac-
tive, has to be taken considering that the higher the number of CEs that
are activated in a VMEC Station, the better its performance, but the higher
the risk of service outage due to lack of power supply in the backup battery.
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Instead, the second decision should have to consider that horizontal o�oad,
on one side, improves performance because it balances load among the MEC
servers, but implies some o�oad costs due to the price applied by the back-
haul infrastructure providers for the links connecting VMEC Stations. These
links can be realized with �ber optical cables, wireless connections, or even
with Unmanned Aerial Vehicles (UAVs) behaving as Base Stations (BS), as
proposed in [45]. However, the speci�c type of these links is out of the scope
of this work. Optimization of the above decisions is in charge of an entity
named MEC Platform Server (MPS). As described in the sequel, it applies a
model-based RL to �nd the best actions for each state of the MEC-Domain
system. The list of these actions is provided to the RSUs that, thanks to a
periodic mutual exchange of information regarding their states, implement
these actions behaving according to the optimized behavior decided by the
MPS.

4.3 Problem Formulation

In this section, we describe how the management servers working at the two
di�erent Domains, i.e. VPS and MPS, decide the parameters of their domains
to optimize their reward functions. The main notation is synthesized in Table
I.

At the Vehicular Domain, the VPS has the task of deciding the percentage
q of �ow that each vehicle has to forward to the MEC Domain. This is done
by optimizing a reward function weighing the following terms: 1) the penalty
due to the costs for o�oading, ω ; 2) the mean overall delay, ϕ ; 3) the
magnitude of the overall job loss probability, ψ

(mag)
.

The term ω depends on the per-job o�oading price, ℘OL , applied by the
MEC Domain to the Vehicular Domain for job o�oading, and is proportional
to the amount of o�oaded jobs to the MEC Domain:

ω = ℘OL ·ROL
(V→M) (4.1)

where ROL
(V→M) is the mean job o�oad rate from the Vehicular Domain

to the MEC Domain.
The mean overall delay term ϕ is calculated by averaging the mean job

computation delay, ϕV , su�ered in the OBU placed in the vehicle, and the
mean job computation delay su�ered in the MEC Domain, ϕM , by consider-
ing the percentage q of jobs to o�oad to the MEC Domain, and the remaining
ones to be locally managed:

ϕ = qϕM + (1− q)ϕV (4.2)
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The term ψ
(mag)

represents the magnitude of the overall job loss probabil-
ity, ψ , calculated by averaging the loss probabilities su�ered by non-o�oaded
and o�oaded jobs at the MEC and the Vehicular Domains, ψM and ψV ,
respectively, that is:

ψ
(mag)

= − log10 ψ where ψ = qψM + (1− q)ψV (4.3)

Therefore, we de�ne the reward function that the VPS applies to make
decisions regarding the percentage q of �ow to be forwarded to the MEC
Domain as follows:

F
(V PS)
RW = −γ1ω − γ2ϕ− γ3ψ

(mag)
(4.4)

The constants γ1 , γ2 and γ3 are weighing parameters that can be properly
tuned according to some system management criteria de�ned by the VPS.
The parameters ω , ϕ and ψ

(mag)
are normalized in the interval [0,1] in order

to be comparable to each other.
On the other hand, according to the optimization model implemented by

the MPS at the MEC Domain, the following decisions are applied at each
slot:

1. the number bi of CEs to be active during the time slot for each MEC
Server i. The others are put in low-power state to reduce power con-
sumption;

2. the MEC server that can perform o�oad;

3. the maximum number of jobs, σ, to be locally managed by the MEC
server that is enabled to perform o�oad among the jobs arrived in the
considered slot for vertical o�oad from the Vehicular Domain. The
remaining jobs are o�oaded to the other MEC server.

Of course, if the number of jobs to be o�oaded by the MEC server decided
in the above step 2 in a generic slot is higher than the number of rooms avail-
able in the queue of the other MEC server after departures and arrivals from
its area, only jobs that can be accommodated there are o�oaded. The other
jobs are discarded by OFMEC block of the �rst MEC server to avoid payment
for their transmission when it is sure that they cannot be accommodated in
the other MEC server. The o�oad direction is based on the current load,
represented by the queue lengths in the two MEC servers: horizontal o�oad
is performed by the MEC server with the longest queue towards the other
one. Instead, the choice of bi and σ is taken by each MEC server according
to the indications received by the MPS, derived by solving the optimization
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model described in Section V.B. To this purpose, the MPS uses a model-
based RL with the following reward function considered as the immediate
reward of the implemented action:

F
(MPS)
RW = −c1ξ − c2θ − c3ϕM − c4ψM (4.5)

In the above equation, ξ represents the mean power consumed by the
active CEs. It is proportional to the mean number of active CEs with a
proportionality constant, ℘CE , given by the mean power consumption of
each CE. The term θ is the mean net revenue at the MEC Domain, calculated
considering the mean cost applied by the BIP for o�oading towards another
MEC server through the backhaul network, and the mean monetary gain
received by accepting o�oad from the vehicles based on the price applied to
the Vehicular Domain. It depends on the per-job cost applied by the backhaul
network provider, Θ(OL)

M→M , and the price applied by the MEC Domain to the
Vehicular Domain, Θ(OL)

V→M . Finally, ϕM and ψM are the mean processing
delay for a job and its loss probability su�ered in the MEC Domain, both
depending on the behavior of the process representing the number of jobs in
the MEC queues. The constants c1, c2, c3 and c4 are parameters that can be
properly tuned by the MPS according to some system management criteria
(e.g. if minimization of the mean delay is the priority, the constant c3 is
chosen greater than the other ones). They are an input of the problem and
their impact will be discussed in Section IX.

In addition, we consider a performance constraint regarding the service
outage probability, ΩM , of a MEC server due to the lack of power supply,
despite the presence of a backup battery, which should be not higher than a
given threshold Ω

(Max)

M . Of course, the higher the amount of tra�c that is
o�oaded to the MEC Domain and the harder the requirements in terms of
mean delay and loss probability, the higher the need for using a higher number
of available CEs. This causes higher battery charge drain, and therefore
more di�culties in satisfying the service-outage probability constraint ΩM <

Ω
(Max)

M . Moreover, let us observe that the service outage probability also
depends on the power that the microeolic power generator is able to produce
and the backup battery capacity, the latter de�ned as the amount of charge
that can be stored in the battery. For this reason, in Section VIII, we will
derive the service outage probability of a MEC server, ΩM , in order that the
backup battery, the microeolic power generator and the decision policy can
be timely designed at the MEC Domain, and the percentage q of tra�c to
be vertically o�oaded can be decided at the Vehicular Domain.
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Figure 4.4: Decision Framework for the VPS and MPS domain

4.4 Decision-Making Strategy

In this section, we describe the framework proposed to take decisions by the
VPS at the Vehicular Domain (Section V.A) and by the MPS at the MEC
Domain (Section V.B). The whole strategy is synthesized in Fig. 4.4. We
will apply a discrete-time approach, with a slot duration, ∆, equal to the
time needed by a CE of the MEC server to process one job.

O�oad Decision Making at the Vehicular Domain

At the Vehicular Domain, the VPS decides the optimal percentage q∗ of job
�ow to be o�oaded to the MEC Domain for each vehicle. For the sake of
simplicity, we assume that the same percentage is applied for all the vehicles.
As shown in Fig. 4.4, it consists of the following steps:

� Step V0: derivation of the feasibility set QF , de�ned as the set of q
values such that the requirement ΩM < Ω

(Max)

M for the service outage
probability is matched. It is based on the service outage probability
ΩM calculated by the MPS at the Step M5;

� Step V1: derivation of the mean delay, ϕV , and the job loss probability,
ψV , su�ered in the vehicle OBU for each o�oading percentage q ∈ QF .
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They will be derived from the model of the job-processing queue at the
Vehicular domain, as described in Section VI;

� Step V2: derivation of the overall mean delay ϕ and the magnitude
of the overall job loss probability, ψ

(mag)
, su�ered by all the jobs, cal-

culated as in 4.2 and 4.3 by averaging the mean delay and the loss
probability su�ered by jobs that are o�oaded to the MEC Domain,
ϕM and ψM , and the ones su�ered locally in the vehicles where jobs
are generated, i.e. ϕV and ψV . The former are received from the MPS
as result of the Step M5 of the o�oading decision making strategy at
the MEC Domain, while the latter are calculated in the Step V1.

� Step V3: derivation of the reward function F
(V PS)
RW at the Vehicular

Domain, according to 4.4.

� Step V4: derivation of the o�oading percentage q∗ as the best value
of q that maximizes the function de�ned in 4.4 and calculated at the
Step V3 for each value of q ∈ QF . This is the output of the VPS work.

4.4.1 O�oad Decision Making at the MEC Domain

The best actions for all the states of the MEC Domain are decided by the
MPS by using a model-based RL. They are performed periodically at the
beginning of each time slot, whose duration will be indicated as ∆. As said
so far, the objective of the MPS is to decide the number of CEs to be active
during the time slot for each MEC server, b1 and b2, the MEC server that can
perform o�oad, and the maximum number of jobs, σ, to be locally managed
by the MEC server enabled for o�oad.

To this purpose, the MPS works according to the steps listed in Fig. 4.4
and described below.

� Step M1: derivation of the model, Λ(n) , of the arrival process to each
MEC server of the MEC Domain. This model will be described at
the beginning of Section VII and used in the next step to describe the
behavior of the MEC Domain.

� Step M2: derivation of the transition probability matrix P (Σ|ρ of the
Markov Decision Process (MDP) Σ to be used in Step M4 by the MPS
to �nd the optimal policy. It is done by RL, for di�erent values of the
Vehicular-Domain o�oading probability q ranging between 0 and 1. Its
derivation will be described in Section VII.A.
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� Step M3: derivation of the immediate reward matrix, Ψ(Σ|ρ , of the
MDP Σ, according to the reward function, F (V PS)

RW , de�ned in 4.5. Its
derivation will be described in Section VII.A.

� Step M4: derivation of the best policy ρ∗. This is achieved by RL, solv-
ing the Bellman optimality equation system [114] applying the function
F

(MPS)
RW calculated in the previous step as the Immediate Reward R(n).

The Cumulative Reward, indicated as G(n), is de�ned as follows:

G(n) =
∞∑
k=0

γk ·R(n+ k + 1) (4.6)

where γ ∈ [0, 1]

� Step M5: derivation of the mean delay and the loss probability su�ered
by jobs that are o�oaded to the MEC Domain, ϕM and ψM , and of the
service outage probability at the MEC Domain, ΩM . These derivations,
done applying the optimal policy ρ∗ calculated in the previous step, and
for each considered value q ∈ [0, 1] of o�oading probability to the MEC
Domain, will be described in Section VIII.

4.5 Model of the job processing queue in the

vehicular domain

In this section, we model the local computing station (i.e. the OBU) of a
vehicle, with the aim of deriving the computing delay, ϕV , and the loss
probability, ψV , su�ered by non-o�oaded jobs. They will constitute the
results of the Step V1 to be provided to the Step V2 as input. To this
purpose, we model the vehicle OBU as a B/B/1/KV queueing system. The
�rst three parameters mean Bernoulli arrivals, Bernoulli departures, and only
one service facility. The parameter KV represents the maximum number of
jobs that can be accommodated in the OBU, i.e. Kv − 1 jobs in the queue
and one job in the queue service facility.

Let pV be the per-slot job generation probability for one vehicle, and
ξV the mean per-job service rate of the local service facility placed on the
vehicle, coinciding with the per-slot job departure rate from the OBU service
facility. Considering that a percentage q of the �ow is o�oaded to the MEC
Domain, the per-slot arrival probability of a job to the OBU queueing system
is p→QV = (1−q)pV . The steady-state probability array π(QV ) can be derived
as in [115]. Then, applying the Little law, we can derive the mean delay
su�ered in the OBU as follows:
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ϕV = NQV /ΛQV (4.7)

where NQV is the mean number of jobs in the system whileΛQV is the
mean arrival rate, equal to the job emission rate reduced by the percentage
of o�oaded jobs. They can be calculated as follows:

NQV =

KV∑
sQV

sQV · π(QV
[sQV ] and ΛQV = p→QV = (1− q)pV (4.8)

The job loss probability, ψV , su�ered in the OBU by non-o�oaded jobs as
the ratio between the mean number of lost jobs in the generic slot n and the
mean number of jobs arrived in the same slot:

ψV =
LQV

λQV

(4.9)

The denominator has been calculated in 4.8. The numerator can be
calculated as the probability that the queue is full, i.e. SQV (n) = KV , and
there are one arrival (occurring with probability p→QV ) and no departure
(occurring with probability 1− ξV ), that is, p→QV (1− ξV ) · π(QV

[KV ]

4.6 Modeling the MEC Domain

In this section, we will present the models needed to describe the MEC Do-
main system. More speci�cally, in Section VII.A we will derive the transition
probability matrix and the short-term reward matrix of the MDP Σ, to be
used as input of the Step M4. Then, in Section VII.B, we will describe how
�nding the optimal policy to be applied by the MPS. To simplify notation,
we will consider a MEC Domain constituted by only two MEC servers, cov-
ering two adjacent areas on the road. Extension to more than two servers is
easy, but would complicate notation and the model description. As regards
the arrival process to the MEC Layer, as said so far, jobs are generated by
devices installed on vehicles moving on the road. Due to the correlation be-
tween the number of vehicles in the two considered areas, we model the job
arrival process to the MEC Domain coming from the Vehicular Domain as
a bi-dimensional Markov modulated process Λ(n) =

(
Λ1(n),Λ2(n)

)
, Λ1(n)

and Λ2(n) representing the number of jobs that arrive from the Area 1 and
the Area 2, respectively. The reader can refer to [115] to derive the tran-
sition probability matrix and the joint job emission probability matrix that
characterize the arrival process Λ(n) , whose generic elements are:
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P
(Λ)

[s
′
Λ,s

′′
Λ]
= Pr

{
S(Λ)(n) = s

′′

Λ

∣∣∣S(Λ)(n− 1) = s
′

Λ

}
(4.10)

B
(Λ)

[s
′′
Λ,λ1,λ2]

= Pr
{
Λ1(n) = λ1,Λ2(n) = λ2

∣∣∣S(Λ)(n) = s
′′

Λ

}
(4.11)

Let us notice that, since the MPS uses a model-based RL, which works
o�ine to derive the optimal set of actions related to all the possible states of
the environment, the communication links between vehicles and their RSU
are modeled with their average behavior. Moreover, due to the short distance
between vehicles and RSUs, we assume that these links do not introduce
signi�cant delays. Therefore, they do not constitute a bottleneck, and so
they are not considered in the Markov Decision Process used by the MPS.

4.6.1 Modeling Markov Decisions at the MEC Domain

With the aim of �nding the best policy that optimizes the cumulative reward
at the MEC Domain, we model the system at this level with a Markov
Decision Process (MDP) Σ . More speci�cally, as described in Fig. 4.5,
we de�ne a three-dimensional discrete-time Markov chain:

SΣ(n) =

(
SΛ(n), SQ1(n), SQ2(n)

)
(4.12)

where SΣ(n) is the state of the underlying Markov chain of the bi-dimensional
Switched Batch Bernoulli Process (SBBP) process Λ(n) de�ned so far, whereas
SQ1(n) and SQ2(n) are the Markov chains modeling the behavior of the
queues Q1 and Q2 located in the two MEC servers and used to access their
active CEs. Let K be the maximum number of jobs that can be bu�ered in
each of those queues. Therefore, SQ1(n) ∈ [0. . . . , K], with i ∈ {1, 2} . From
4.12, the resulting state space cardinality is CΣ = CΛK

2, where CΛ is the
number of states used to model the job arrival process from the Vehicular
Domain.

Jobs generated by vehicles moving in the Area 1, and that are not of-
�oaded, together with jobs coming from vehicles in the Area 2 for o�oad,
will su�er a delay due to the queue Q1 . Likewise, jobs coming from the Area
2 and not o�oaded, together with jobs o�oaded by the Area 1, will su�er
a delay due to the queue Q2. Jobs that cannot �nd space in the queues are
lost. We assume that each queue �rst accommodates jobs coming from the
area directly served by it (the Area 1 for Q1 and the Area 2 for Q2), and
then accommodates the jobs o�oaded from the other area.
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Figure 4.5: Model of the MEC Domain

The choice of the action for each state of the system is the optimal policy
decided by RL. In order to calculate the optimal policy ρ∗ that speci�es
an action a for each state of Σ, we derive the transition probability matrix
P (Σ|ρ) needed in Step M2, and the immediate reward matrix Ψ(Σ|ρ). Section
VII.B will describe how deriving the optimal policy and will calculate the
steady-state probability array when the optimal policy is applied.

In order to calculate the transition probability matrix of the whole system
at the MEC Domain, constituted by the job arrival processes coming from
the Areas 1 and 2, and by the queueing processes of the MEC 1 and MEC 2
Servers, let us consider the following two generic states:

� s
′
Σ =

(
s
′
Λ, s

′
Q1, s

′
Q2

)
= SΣ(n− 1): the system state at the slot n− 1 ;

� s
′′
Σ =

(
s
′′
Λ, s

′′
Q1, s

′′
Q2

)
= SΣ(n): the system state at the slot n.

Let as′Σ be the action chosen by the MPS at the beginning of the slot n,
associated to the state according to the optimal policy ρ∗, decided by RL.
To simplify notation, in the sequel we will omit the dependence of the action
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from the starting state s
′
Σ. The generic element of the transition probability

matrix can be de�ned as follows:

P
(Q1,Q2|a)
[(s

′
Q1,s

′
Q2),(s

′′
Q1,s

′′
Q2)]

(s
′′

N1, s
′′

N2) =

= Pr

{
S(Q1)(n) = s

′′

Q1

S(Q2)(n) = s
′′

Q2

∣∣∣∣∣S(Q1)(n− 1) = s
′

Q1,

S(Q2)(n− 1) = s
′

Q2, A(n) = a

}
(4.13)

All the details of the derivation are reported in Chapter A of the Ap-
pendix. As regards the short-term reward matrix Ψ(Σ|ρ), its generic element,
representing the immediate reward received performing the action a at the
slot n when the system transits from s

′
Σ to s

′′
Σ is de�ned as follows:

Ψ
(Σ|ρ)
[s

′
Σ,s

′′
Σ]
= E

{
R(n)

∣∣∣∣∣S(Σ)(n− 1) = s
′

Σ, S
(Σ)(n) = s

′′

Σ

A(n) = a

}
(4.14)

It is the output of the Step M3 to be used in 4.6 as the immediate re-
ward. It can be easily derived similarly to [115], but considering that in this
case, according to 4.5, it is a weighed sum of the four key performance pa-
rameters characterizing the MEC Domain behavior, that is, the mean power
consumption, the mean net revenue, the mean delay for a job processed by
the MEC Domain and its loss probability. More in deep, from 4.5, we de�ne
the immediate reward associated to that transition as follows:

Ψ
(Σ|a)
[s

′
Σ,s

′′
Σ]
= −c1ξ(a)− c2θ(s

′′

Λ, a)− c3ϕM(s
′′

Σ, a)− c4ψM(s
′′

Σ, a) (4.15)

All the details of its derivation are reported in in Chapter A of the Ap-
pendix.

4.6.2 Optimal policy and steady-state probability

The optimal policy ρ∗ is the set of actions for each state of the MDP. Start-
ing from the knowledge of the dependence of each element of the transition
probability matrix and the short-term reward matrix calculated in the previ-
ous two subsections on each possible action, for each policy ρ, we de�ne the
state-value function of a state sΣ as follows:

νρ(sΣ) = Eρ

{
G(n)

∣∣∣∣S(Σ)(n) = sΣ

}
(4.16)

where Eρ{·} is the expected value given that the agent follows the policy
ρ, and G(n) is the cumulative reward, as de�ned in 4.6, representing the long-
term expected return when the system starts from the state sΣ and follows
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the policy ρ. Substituting 4.6 in 4.16, and applying the theorem of total
probability to all the possible arrival states S(Σ)(n) = s

′′
Σ after the transition

from the slot n − 1 to the slot n , we derive the so-called Bellman equation
[116] for the state s

′
Σ:

νρ(s
′

Σ) = Eρ

{ ∞∑
k=0

γk ·R(n+ k + 1)

∣∣∣∣S(Σ)(n− 1) = s
′

Σ

}
=

=
∑

∀s′′Σ∈ℑ(Σ)

P[s
′
Σ,s

′′
Σ,]
·
[
Ψ

(Σ|ρ)
[s

′
Σ,s

′′
Σ]
+ γ · νρ(s

′′

Σ)
] (4.17)

It gives a relationship between the value of a state s
′
Σ and the values of

its successive states. It a�rms that the value of the start state must equal
the value of the expected next state, plus the reward expected along the way.
Finding the value of each state for each policy ρ as the solution of a linear
system constituted by the above Bellman equation applied to all the states
of the Markov chain S(Σ)(n), by RL we obtain the optimal policy ρ∗ as the
set of the best actions associated to each state of the MDP represented by
S(Σ) [114].

Then, starting from the transition probability matrix de�ned in 4.12 and
calculated for the actions in , we can calculate the steady-state probability
array for the MEC Domain, whose generic element is de�ned as π(Σ)

[sΣ]
=

limn→∞ Pr
{
S(Σ)(n) = sΣ

}
. It can be derived by solving the steady-state

equation system π(Σ) · P (Σ) = π(Σ) with the condition π(Σ) · 1T = 1 where,
for the sake of conciseness, we have omitted the dependence on the optimal
policy ρ∗. This will be done also in the next sections.

4.7 Performance Analysis

In this section, we derive the �ve main performance parameters that charac-
terize the MEC Domain, that is, the mean power consumption, ξ, the mean
net revenue, θM , the mean delay, ϕM , the loss probability, ψM , and the MEC
server outage probability, ΩM . We will also derive the two main performance
parameters of the system as a whole, that is, the overall mean delay, ϕ, and
the overall loss probability, ψ.

To calculate the, we have to consider the number of active CEs decided
for each state of the MEC Domain at the generic slot, multiplied by the
power consumption of each CE, and weighed by the steady-state probability
of that state:
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ξ =
∑

sΣ∈ℑ(Σ)

π
(Σ)
[sΣ]
· (b1 + b2) · ℘CE (4.18)

where b1 and b2 are the number of active CEs for both the MEC servers
decided for the state sΣ. Energy saving can also be easily derived as follows:

Es = (ξL − ξ)/ξL · 100 (4.19)

where ξL is the power consumption when L CEs are always active, i.e.
ξL = L · ℘CE .

Likewise, the mean net revenue, the mean delay and the loss probability
can be easily derived by calculating these parameters for each state sΣ of
the system, and averaging them over all the system states using the associ-
ated steady-state probability. Details of their derivation can be found in in
Chapter A of the Appendix.

The last key performance parameter at the MEC Domain is the MEC
server outage probability. It is used as the metric to quantify the system
reliability regarding cases in which the backup battery of a MEC server is
empty. In these cases, the MEC server is not supplied, and therefore its
service is not available. In order to calculate this probability, we assume
that the batteries used to supply the MEC servers are lithium-ion polymer
batteries, so with linear charging and discharging processes. For this reason,
we model each battery as a bu�er: at each slot, it is loaded by the energy
produced by the microeolic power generator [117, 116], and dequeued of the
energy consumed by the computing facility (CF) of the MEC servers in the
same slot. The energy consumption process of the CF is time-variant since
its electrical load depends on the number of active CEs according to the
decisions of the MPS.

More in deep, for the generic MEC Server i ∈ {1, 2}, we model the backup
battery (BT) behavior with the 3-dimensional Markov process S(BT )(n) =(
S(RG)(n), S(QB)(n), S(CF )(n)

)
, where S(RG)(n) ∈ ℑ(RG) is the state of the

microeolic power generator, S(QB)(n) ∈ ℑ(QB) the state of the backup-battery
charge level, and S(CF )(n) ∈ [1, L] the state of the computing facility, that is,
the number of active CEs in the slot n decided by the MPS for the considered
MEC Server i.

In order to model the state of the battery charge level, we quantize it in
quantum of charge (QoC), and indicate the number of QoCs corresponding
to the fully-charged battery as KQoB. Let ℑ(QB) =

{
0, 1, ·, KQoB

}
be the

space set of S(QB)(n) and ℑ(RG) be the space set of S(RG)(n). The dimension
of the battery model state space is CBT = CRG · KQoB · L, where CRG is
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the number of states used to model the behavior of the microeolic power
generator. Let us de�ne the transition probability matrix of the battery
system. To this purpose, let us consider two generic states of S(BT )(n), i.e.
s
′
BT =

(
s
′

(RG), s
′

(QB), b
′
)
in the slot n − 1, and s

′′
BT =

(
s
′′

(RG), s
′′

(QB), b
′′
)
in

the slot n. The generic element of the transition probability matrix of the
battery system can be calculated as follows:

PBT
[s

′
BT ,s

′′
BT ]

= Pr
{
S(BT )(n) = s

′′

BT

∣∣∣∣S(BT )(n− 1) = s
′

BT

}
(4.20)

Its derivation is reported in the in Chapter A of the Appendix for the
sake of readability.

Finally, after calculating the steady-state probability π(BT ) of the battery
behavior process sBT (n) by solving the steady-state equation system applied
to the matrix P (BT ), the service outage probability of a given MEC server i
can be derived as follows:

ΩM,i = Pr
{
Outage for empty battery

}
=

= Pr
{
S(QB)(n) = 0

}
=

∑
∀sBT |sQB=0

π
(BT )
[sBT ]

(4.21)

Let ΩM,1 and ΩM,2 be the service outage probability for the MEC Servers
1 and 2, respectively. We de�ne the overall MEC Domain service outage
probability as the probability that at least one of the two MEC servers are
out because we assume that none of the servers is able to support the global
tra�c. Therefore, the overall MEC Domain service outage probability can
be derived as follows:

ΩM = 1− 1
[
(1− ΩM1) · (1− ΩM2)

]
(4.22)

Finally, we derive the two main performance parameters of the system as
a whole, that is, the overall mean delay, ϕ , and the overall loss probability,
ψ . The overall mean delay and the overall loss probability can be calculated
as in 4.2 and 4.3, respectively. The �rst terms of 4.2 and 4.3 are the mean
delay ϕV and the loss probability ψV su�ered in the Vehicular Domain, and
derived in 4.7 and 4.9. Instead, the terms ϕM and ψM are the mean delay
and the loss probability su�ered in the MEC Domain, and can be calculated
as follows:
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ϕM =
∑

∀sΣ∈ℑ(Σ)

π
(Σ)
[sΣ]
· ϕM(sΣ, a)

ψM =
∑

∀sΣ∈ℑ(Σ)

π
(Σ)
[sΣ]
· ψM(sΣ, a)

(4.23)

where ϕM(sΣ) and ψM(sΣ) are the mean delay in the MEC Domain as-
sociated to the state sΣ when the action a is applied. They can be easily
calculated as reported in Chapter A of the Appendix.

4.8 Numerical Results

In this section, we present some numerical results to demonstrate the gain
of the proposed system as compared to a standard management technique of
the MEC Domain that does not apply intelligence to change the number of
active CEs dynamically at runtime. Moreover, we will analyze the impact on
the overall performance of the chosen set of weights of the reward functions
at both the MEC and the Vehicular Domains. Finally, we will provide some
design guidelines to match some given objectives pursued at the two domains
according to the speci�c vertical vehicular application.

To this purpose, we will consider a real use case that will be described in
Section IX.A. Section IX.B will be devoted to present some numerical results
at the MEC Domain, while Section IX.C will present some results from the
vehicular perspective. Finally Section IX.D will discuss on how dimensioning
the battery capacity of MEC servers, and the impact of this choice on the
feasibility region of the o�oad percentage q.

4.8.1 Use Case Setup

As a use case, we consider a video surveillance application realized by a
set of video cameras mounted on cars and buses that produce photos and
short video-clips to be processed by a video-processing unit based on machine
learning to �nd garbage or other kinds of objects left on the roadsides. Mea-
surements were realized on the stretch of 400 m of road depicted in Fig. 4.6.
We have covered this stretch of road with two MEC Stations. The behavior
of the number of vehicles in the two areas in one month of measurements
is described in [118], while the Markov models of the vehicle arrival process
O(n) to the area 1, the vehicle departure process µ1(n) from the area 1 to-
wards the area 2, and the vehicle departure process µ2(n)f rom the area 2
are provided in [115]. Accordingly, assuming that each vehicle generates one
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Figure 4.6: Stretch of road considered as use case

job in a slot with probability pV = 0.95, the transition probability matrix
and the joint job emission probability matrix that characterize the arrival
process Λ(n) to both the areas can be computed as in Section VII.A.

At the Vehicular Domain, vehicles are equipped with a miniPC with an
Intel Celeron Processor N4020 2-Cores/2-Threads 4GB DDR4 RAM, working
as OBU, that is able to process jobs with a mean service rate of ξV = 0.75
job/slot and having a queue size of KV = 10 jobs.

As far as the MEC Domain is concerned, we consider MEC servers equipped
with L = 4 CEs, each realized with a ThinkCentre M75n with AMD Ryzen
5 PRO 3500U Processor with 4 cores and consuming, on average, ℘CE =
47.4W. Let K = 10 jobs be the size of the MEC server queue. Decision mak-
ing is performed by RL with a discount factor γ = 0.8. The MEC Domain
applies a job-o�oading price Θ

(OL)
V→M = 0.1 PrU to the Vehicular Domain,

where PrU is the unit of price. The same price is applied for horizontal
o�oad of one job from one MEC server to another one, i.e. Θ

(OL)
V→M = 0.1

PrU.
In the numerical analysis, we will consider three strategies applied by the

MPS at the MEC Domain and two strategies applied by the VPS at the
Vehicular Domain. These strategies are characterized by di�erent weighing
parameters. Among all the strategies, SM1 is the more balanced, giving
all the components of the reward function at the MEC Domain the same
importance, i.e. with c1 = c2 = c3 = c4 = 1 . The other two strategies are,
instead, more focused on delay and loss, setting c3 = c4 = 2 for SM2, and
c3 = c4 = 6 for SM3. The weight c1 = 1 is used for both these last strategies,
while the weight of the mean net revenue, c2 , is set c2 = 0.5 for SM2 and
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SM1 SM2 SM3

c1 1 1 1
c2 1 0.5 1
c3 1 2 6
c4 1 2 6

Table 4.1: MEC-Domain Strategy
parameters

SV 1 SV 2

γ1 1 1
γ2 1 6
γ3 1 6

Table 4.2: Vehicular-Domain
Strategy parameters

c2 = 1 for SM3. In such a way, SM2 and, even more, SM3 strongly privilege
delay and loss probability as compared with power consumption and mean
net revenue.

As regards the Vehicular Domain, we consider the strategy SV 1 weighing
all the components of the reward function at the same way, that is, with
γ1 = γ2 = γ3 = 1, while the strategy SV 2 strongly weighs mean delay and
loss probability as compared with the penalty due to the costs for o�oading.
This is achieved by setting γ2 = γ3 = 6, while maintaining γ1 = 1. The
parameters of these strategies are synthesized in Tables 4.1 and 4.2.

4.8.2 Perfomance Evaluation of the MEC Domain

In this section, we evaluate the gain achieved by changing the number of
active CEs at runtime by means of RL. To this purpose, we will compare
the performance of the proposed VMEC-in-a-Box system with a standard
baseline model.

The latter employs RL to decide how many jobs to send to the other
MEC server for horizontal o�oad, but maintains the number of active CEs
constant. More speci�cally, we will refer to the model proposed for the
VMEC-in-a-Box system as the RL-All policy. Instead, the policies that apply
RL only to manage the horizontal o�oad while keeping the number of active
CEs constant and equal to L = 2, L = 3 and L = 4 are named RL-OL2,
RL-OL3, RL-OL4, respectively.

Fig. 4.7 and 4.8 present a comparison of the proposed policy, RL-All,
with the other policies introduced so far, in terms of mean delay and mean
loss probability, calculated as in 4.23, while Fig. 4.9 shows the energy sav-
ing percentage calculated as in 4.19. These �gures also show a comparison
between the three considered RL-All policies at the MEC Domain, that is,
SM1, SM2 and SM3.

As far as the mean delay is concerned, we can observe that SM3 per-
forms better than the other RL-All strategies, while SM1 o�ers the worst
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Figure 4.7: Mean Delay at the MEC Domain Figure 4.8: Loss Probability at the MEC Do-
main

Figure 4.9: Energy saving percentage

performance. Indeed, SM1 results in a mean delay that is even higher than
RL-OL2, which uses only two CEs, at least for q smaller than 0.6 and bigger
than about 0.8. This is due to the importance that the three strategies give
to the mean delay, which is maximum for SM3 and minimum for SM1, as
illustrated in Table 4.1. As regards the three policies with �xed active CEs,
the higher the number of active CEs, the lower the mean delay. The same
reasoning can be applied for loss probability, shown in Fig. 8.

The non-monotonic behavior of some curves is due to the need of balanc-
ing the privileges provided to the loss probability with the ones of the other
parameters in the reward function.

However, it is necessary to analyze Fig. 4.7 and 4.8 together with en-
ergy saving percentage shown in Fig. 4.9 to better understand the overall
performance of each technique. Indeed, if, on one hand, it is evident that
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RL-OL4 obtains a delay of only one slot, i.e. the time needed to process one
job, and a negligible loss probability, on the other hand, it consumes a lot of
energy to maintain all the CEs active. On the other side, the policy RL-OL2
presents the advantage of saving 50% of energy, but causes high delays and
loss probability even with very low values of the o�oad percentage q. Instead,
the curves regarding the three strategies considered for RL-All are able to
achieve a good tradeo� between delay and loss performance on one side, and
energy saving on the other side, and this tradeo� can be tuned by a timely
chosen strategy: the highest energy saving is achieved by SM1, as it gives
more importance to this aspect. Indeed, we can observe how SM1, although
characterized by delay and loss probability performances that are compara-
ble with RL-OL2, achieves higher energy saving, even when compared to the
other RL-All strategies.

Similarly, SM3 (especially in the case of a high load of o�oaded jobs, i.e.
for q higher than 0.6) achieves a behavior comparable to RL-OL4 in terms
of loss and delay, but with a sensible amount of saved energy.

As expected, power consumption has a strong impact on the service out-
age probability, as shown in Fig. 4.22, where this parameter has been calcu-
lated according to 4.22 for a battery capacity of 20 Ah in the MEC Server
1, needed to manage a bigger amount of tra�c, and of 12 Ah in the MEC
Server 2. Let us notice that in the study of this subsection, these values
of battery capacity are an input of the problem, but they can be designed
thanks to the proposed model, as described in Section IX.D. Plots regard-
ing RL-OL2, RL-OL3, RL-OL4 are �at because they maintain the number
of active CEs constant independently of the input tra�c coming from the
Vehicular Domain. Moreover, we can observe that RL-OL3 and RL-OL4, in
spite of their good performances in terms of mean delay and loss probabil-
ity, are characterized by unacceptable service outage probabilities, while the
RL-OL2 strategy provides better service outage probability, although very
high, but unacceptable delays and losses. On the contrary, in Fig. 4.10, we
can appreciate how the proposed framework is able to guarantee a very low
service outage probability for a wide range of q. More in deep, let us note
that service outage probability for the three RL-All policies is negligible for
values of q approximately less than 0.6. For higher values of q, the outage
probability starts to increase more rapidly; however, the fact that we have
chosen a bigger battery in the MEC Server 1 and that we use horizontal of-
�oad for load balancing purposes, determines a similar behavior of the outage
probability curves for both the MEC servers. Indeed, as highlighted by the
mean number of per-slot o�oaded jobs plot shown in Fig. 4.11, horizontal
o�oad is not much used for low values of q, while it increases when the MEC
Domain starts to become more stressed. As expected, SM2 o�oads more
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Figure 4.10: Service Outage Probability at
the MEC Domain

Figure 4.11: Mean number of per-slot of-
�oaded jobs

jobs on average in comparison to SM1 and SM3, as it gives less importance
to the mean net revenue and, therefore, can a�ord to spend more money on
o�oading procedures. Another observation that can be done by looking at
Fig. 4.11 is that o�oad is more used by RL-OL2, RL-OL3, RL-OL4 for their
lack of �exibility in terms of modulation of the number of active CEs, but
this causes an increase of costs for o�oading with a consequent decrease in
the reward function.

Finally, the non-monotonic trend of the service outage probability pre-
sented in Fig. 4.10 for SM1 is due to the higher importance that this strategy
gives to energy consumption, that determines a decreasing in the service out-
age probability when, due to the high values of q, delays and losses tend to
increase. Indeed, when the MEC Domain is overloaded (high values of q),
SM1 privileges energy saving, as it is also evident in Fig. 4.9, at expense of
delays and losses, while SM2 and SM3 prefer to use more CEs to keep delays
and losses low.

4.8.3 Overall performance from the Vehicular perspec-
tive

In this section, we analyze performance of the overall system, considering
the point of view of the VPS at the Vehicular Domain. For this reason,
we focus on a given strategy at the MEC Domain, speci�cally the SM2 one,
and evaluate the impact of the strategy chosen at the Vehicular Domain. In
particular, as said in Section IX.A, we compare two strategies at this domain,
i.e. SV 1 that weighs costs for vertical o�oad, delays and loss probabilities at
the same way, and SV 2 that gives more importance to performances in terms
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Figure 4.12: Overall System Delay, from the
Vehicular Domain viewpoint

Figure 4.13: Overall System Loss Probabil-
ity, from the Vehicular Domain viewpoint

q∗ SM1 SM2 SM3

SV 1 0.325 0.4 0.425
SV 2 0.5 0.6 0.975

Table 4.3: Optimal Percentage of O�oad to the MEC Domain

of delays and loss probability.
In Fig. 4.12 and 4.13, we have plotted the overall system performance in

terms of mean delay, calculated as in 4.2, and loss probability, calculated as
in 4.3, as seen from the Vehicular Domain viewpoint. Each of these �gures
presents three curves, one for each MEC Domain strategy, calculated against
the amount of tra�c that is o�oaded to the MEC Domain. As expected,
the overall performance is compliant with the requirements of each MEC
strategy. Therefore, SM3 is the best strategy in terms of delays and losses,
whilst SM1 the worst one. The non-monotonic trend depends on the fact
that, when q increases, performance gets worse at the MEC Domain while
improves at the Vehicular Domain.

The best working point depends on the speci�c strategy applied by the
VPS at the Vehicular Domain. To this purpose, Fig. 4.14 compares the
reward function at the Vehicular Domain obtained for each of the two strate-
gies considered by the VPS, i.e. SV 1 and SV 2. For each of these strategies,
the curves are calculated for the three strategies considered at the MEC Do-
main. As we can see, each curve has a maximum value q∗ that represents
the optimal decision taken by the VPS at the Step V4 (see the VPS work
description illustrated Fig. 4.4). The best values obtained from Fig. 4.14
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Figure 4.14: VPS Reward Function for the two Vehicular Domain Strategies for each
strategy considered at the MEC Domain

(a) MEC Server 1 (b) MEC Server 2

Figure 4.15: Service Outage Probability

are reported in Table 4.3. Each value in the table represents the percentage
of tra�c that each vehicle should o�oad to the MEC Domain to maximize
the reward function at the Vehicular Domain.

4.8.4 An example of system design

Thanks to the fact that the behavior of the two entities MPS and VPS, whose
target is decision making at MEC Domain and Vehicular Domain, is based
on an analytical model, we can use this model to design the main parameters
of the system. Let us note that design of the MEC Domain is independent of
the design at the Vehicular Domain. Speci�cally, parameters of the Vehicular
Domain are designed when the MEC Domain behavior is known.

At the MEC Domain, the main choices regard the strategy and the bat-
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(a) MEC Server 1 (b) MEC Server 2

Figure 4.16: Feasibility Region

tery capacity. The choice of the parameters characterizing the strategy, as
discussed so far, is determined by the importance that MPS needs to provide
to the four components of the reward function, that is, energy consumption,
net revenue, mean delay and loss probability. Availability of plots like the
ones reported in Fig. 4.8, 4.9 and 4.10 allows the MEC designer to choose
the best strategy.

In order to decide the battery capacity, the model allows the designer
to draw three-dimensional �gures representing the service outage probability
as a function of battery capacity and o�oading percentage q. A decision
on the battery capacity limits the range QF of q (see Step V0 of the VPS
work description illustrated Fig. 4.4). In order to show how this is done,
in Fig. 4.15, as an example, we have plotted the service outage probability,
calculated as in 4.21, for each MEC server and for the MEC strategy SM2,
and added two planes to calculate the intersection at 10−5 and 10−7. The
intersections for all the three strategies are plotted in Fig. 4.16 for both the
MEC servers. This �gure allows us to determine the feasibility region that
limits the choice of the battery capacity. For example, if the strategy SM3 is
used and a service outage probability of 10−7 is required, a battery installed
on the MEC Server 1 with capacity of 25 Ah limits the range QF of q as
QF = {∀q ≤ 0.65}. Instead, if we want to support all values of q, we need to
install a battery with capacity of 33 Ah in the MEC Server 1 and of 23 Ah
in the MEC Server 2.
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Part II

Resource Allocation for AI
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Figure 4.17: Federated ML for the IoT.

Introduction

Federated machine learning (FML) is being increasingly used to improve
the robustness of locally-trained deep neural networks (DNNs). This is ul-
timately achieved by merging local DNNs into a globally-shared model [16],
thus overcoming the non-i.i.d. nature of the local datasets [119, 120, 121,
122]. In the context of the Internet of Things (IoT), FML perfectly �ts sce-
narios where a large number of �spectrum sensors� need to be deployed over a
large geographical area � see Figure 4.17 � to alleviate spectrum congestion
by performing operations such as DNN-based radio �ngerprinting (RFP)
[15, 123, 124] and DNN-based spectrum hole detection (SHD) [125, 13].
These operations are crucial to enable secure and e�ective dynamic spec-
trum access (DSA) [126, 127, 128, 129, 130]. Enabling fast and e�cient
FML in this context becomes fundamental since (i) spectrum sensors may
be handled by di�erent entities, which may not want to share their local
dataset for privacy reasons; (ii) sending raw spectrum measurements for cen-
tralized training would be impractical, as the required data rate would go
far beyond the capabilities of IoT sensors; (iii) the locally-collected spectrum
datasets will be subject to di�erent noise, interference, and fading regimes,
which renders the local DNNs incapable to generalize to di�erent spectrum
environments [14].

The key challenge is that FML is based on the exchange of local DNN
parameters to a central server (also called the aggregator). However, IoT
protocols based on the low-power wide-area network (LPWAN) paradigm
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have very limited data rates. For example, LoRa has a maximum data rate
of 37.5 kbps due to duty cycle and other limitations [131]. Moreover, IoT
nodes are severely power-constrained. Thus, on one hand, we want the nodes
to send their DNN parameters to the aggregator as fast as possible, to ensure
faster FML convergence. On the other hand, we want to keep energy con-
sumption to a minimum to prolong the sensor's lifetime. Although existing
literature � discussed in Section 2.3.2 � has investigated energy-aware LoRa
optimization [78, 79, 80] and FML techniques for IoT [81, 83, 84], a series of
assumptions (e.g., OFDM-based transmissions, zero interference, single-node
network) make prior work not entirely applicable to real-world IoT contexts.

To address the above challenges, the work described in Part II
makes the following novel contributions:
• First, we reverse-engineer the LoRa physical layer (PHY) layer func-

tionalities, including the procedures of packet modulation, demodulation,
and preamble detection. Accordingly, we design the �rst functional software
implementation of the LoRa PHY layer for Software De�ned Radio (SDR)
from scratch, and evaluate its functionalities in two di�erent settings: i) the
Colosseum wireless channel emulator, and ii) a real testbed with o�-the-
shelf USRP radios and commercial devices. The results demonstrate both
e�ectiveness of our implementation, and its interoperability with LoRa com-
mercial device
• We demonstrate a fundamental theoretical result for FML schemes un-

der lossy wireless communication channels. By aggregating all the gradient
components retrieved from the local DNNs, it is possible to approximate the
descendent gradient scheme and derive a steady-state bound on the global
model errors. Importantly, this bound can be related to the communication
error rate experienced by each sensor, and forced to zero in case the learning
rate gradually decreases with the number of updating rounds.
• We leverage the theoretical result to design FedLoRa, an optimization

framework for e�cient large-scale federated learning in LoRa wireless net-
works, in which we optimize the Resource Allocation scheme for transmitting
the local models trained by the sensors. We formalize a Resource Allocation
Problem for LoRa (LoRa-RAP), where the communication resources (spread-
ing factor and transmission power) assigned to each sensor are optimized so
as to minimize the FML round time and keeping energy consumption into
account. The key intuition behind this result is to apply a load balancing
logic to the resource allocation procedure. In other words, the objective is
fairly distribute the network load over the available Spreading Factors (SFs).
Usually, nodes sharing the same SF must transmit in a sequential fashion
to avoid any possible message collision. Thus, allocating most of the nodes
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to the same SF results in a long FML round time. Conversely, we spread
the nodes over di�erent SFs, so that many simultaneous transmissions can
happen at once. This leads to a more e�cient usage of the network, and
thus, to a shorter FML round time.
•We consider a state-of-the-art DNN for RFP [122], and leverage on our

Long Range (LoRa) SDR implementation to investigate the FedLoRa perfor-
mance with di�erent RF con�guration scenarios on Colosseum. Moreover,
we also validated the e�ectiveness of FedLoRa with real-world measurements
with a LoRa gateway and a LoRa node. Our results show that FedLoRa

reduces the FML round time by up to about 35% with respect to baselines.
Chapter 5 focuses on the description and evaluation of our SDR LoRa

implementation, while Chapter 6 describes the actual implementation of
FedLoRa.
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Chapter 5

Dissecting and Implementing

LoRa on Software-De�ned Radios

from scratch

5.1 Background on LoRa

LoRa (short for Long Range) is a LPWAN proprietary protocol owned by
Semtech. LoRa is based on the chirp spread spectrum (CSS) modulation
technology, and supports reliable low data-rate transmissions over long dis-
tances, ranging from 1-2 to 10 (and possibly more) kilometers. The actual
transmission range and data-rate strongly depend on the SF setting. The SF
is an important spectral parameter, and roughly corresponds to the number
of chips per bit transmitted. Higher SFs yield a longer transmission range,
at the expense of a lower bit-rate, and vice-versa. LoRa speci�es the PHY
only. As such, it lacks link-layer and networking functionalities, which are
instead de�ned by the LoRaWAN protocol from Semtech. Typical LoRa
networks are arranged in a star-of-stars topology, where few LoRa gateways
collect data transmitted by the LoRa nodes. The received data can even-
tually be forwarded to the Internet thanks to the networking functionalities
implemented by LoRaWAN.

LoRa Regional Parameters. LoRa operates in the sub-GHz bands of
the Industrial, Scienti�c, and Medical (ISM) spectrum, according to speci�c
regional frequency plans: the EU433 and the EU863-870 bands for Europe,
theUS902-928 band for US, and theAS923 band for Asia. Another region-
speci�c parameter is the supported bandwidth: European countries usually
support a single bandwidth of 125 kHz, while US allow the usage of both 125
and 500 kHz. The maximum supported data-rate is in�uenced accordingly,
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as a bigger bandwidth guarantees higher transmission rates.
LoRa Transmission Parameters. LoRa supports six di�erent SFs rang-

ing from 7 to 12. However, a SF equal to six is also allowed in some implemen-
tations. LoRa also supports up to three di�erent bandwidth con�gurations of
125, 250, and 500 kHz, respectively. Both parameters can be set to reach the
desired trade-o� between data rate and reliability. Indeed, higher SFs and
smaller bandwidths increase the sensitivity and robustness of the receiver,
while lower SFs and bigger bandwidths maximize the transmission data-rate.

Finally, the robustness of LoRa communications is further boosted by
the usage of Forward Error Correction (FEC) techniques. LoRa supports
four di�erent Coding Rate (CR) values, according to the formula 4/(4 +
n), n ∈ {1, 2, 3, 4}, where n is the number of redundant information bits. A
bigger n increases the data protection, but negatively impacts the e�ective
transmission rate.

5.1.1 Chirp Spread Spectrum (CSS) Modulation

LoRa implements a CSS modulation, which has been demonstrated to be
very robust against in-band or out-band interference, which can be very
critical when operating in ISM bands. In particular, LoRa employs an M-ary
modulation scheme based on chirps [132]. Basic chirps are constant envelope
signals whose frequency is linearly modulated sweeping from fmin to fmax

(up-chirp), or from fmax to fmin (down-chirp). Chirps are cyclically-shifted
to produce di�erent symbols, and this cyclical shift carries the information.
A symbol, whose length is divided in K equal time intervals called chips,
can be cyclically shifted from 0 to K − 1 positions. The reference position is
given by the un-shifted (base) symbol at the beginning of the LoRa frame,
which is also used for building the frame preamble.

For a given bandwidth B = fmax− fmin, the symbol time depends on the
SF parameter, which de�nes two modulation features: (i) the time duration
of each chirp (or, equivalently, the slope of the linear frequency sweep), which
is given by 2SF chip intervals; and (ii) the number of raw bits encoded by that
symbol, equal to SF. The Data Rate (DR) thus depends on the bandwidth
B in Hz, the SF and the Coding Rate (CR) as:

DR = SF · B
2SF
· CR (5.1)

where 1/B is the chip interval, the factor B/2SF provides the symbol rate and
the coding rate CR = 4/(4 + RDD) depends on the number of redundancy
bits (RDD, from 1 to 4) used for Hamming code forward error correction.
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Figure 5.1: Instantaneous frequency of three upchirp signals for SF = 7.

The bandwidth can be con�gured as 125kHz, 250kHz and 500kHz (typically
125kHz is used in the 868MHz ISM band).

Fig. 5.1 shows the modulating signal used for (i.e. the instantaneous
frequency of) a basic upchirp and two examples of circular shifts obtained
for SF = 7: the basic upchirp can be shifted to represent up to 2SF symbols,
each encoding SF bits. The blue line (a) is the basic upchirp and encodes
symbol M = 0; the orange line (b) encodes the symbol M = 64, while the
green line (c) encodes the symbol M = 96. Moreover, the symbol time can
be calculated as T = 128Tc.

The instantaneous frequency of an unmodulated (base) LoRa chirp can
be written as:

f
(0)
i (t) = −µB

2
+ µ

B

T
t (5.2)

where µ = +1 gives an upchirp and µ = −1 a downchirp, T = 2SFTc is
the symbol time and Tc = 1/B the chip duration, 0 ≤ t < T . There are
K = 2SF possible symbols, each representing a cyclic shifted version of the
base upchirp. The instantaneous frequency of symbol k is thus given by:

f
(k)
i (t) =

{
+µB

2
+ µB

T
(t− kTc) 0 ≤ t < kTc

−µB
2
+ µB

T
(t− kTc) kTc ≤ t < T.

(5.3)

The LoRa preamble starts with several repetitions of a base upchirp:

fpr(t) = −
B

2
+B

(
t

T
−
⌊
t

T

⌋)
. (5.4)
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After several consecutive base upchirps, the preamble features two modu-
lated symbols, called sync words, for network identi�cation, and 2.25 downchirps
which are useful for accurate synchronization. Overall, the preamble of a
LoRa frame is constituted by a sequence of at least eight upchirps (including
the two modulation sync words), followed by two and a quarter downchirps.
Following the preamble, the payload header, the payload and an optional
frame check sequence are transmitted by using the cyclically-shifted M-ary
modulation.

5.1.2 Receiver Sensitivity

Another fundamental parameter in LoRa modulation is the receiver sensi-
tivity, i.e. the minimum detectable signal strength. According to [133], the
sensitivity for a LoRa receiver is:

S = −174 + 10 log10BW +NF + SNR [dBm] (5.5)

Where the �rst term is the thermal noise power in 1 Hz of bandwidth at a
room temperature of 300K; BW is the transmission bandwidth; NF is the
receiver noise �gure, and is typically equal to 6 dB for popular transceivers
models, such as Semtech SX1272 or Semtech SX1276 [132]. The last term
is the Signal-to-Noise Ratio (SNR) value required at the receiver input for
a successful demodulation, and depends, once again, on the receiver archi-
tecture, and on the SF, too. Typical values for SNR are reported in Table
5.1.

SF 7 8 9 10 11 12
SNR[dB] -7.5 -10 -12.5 -15 -17.5 -20

Table 5.1: SNR thresholds for several SF values.

According to (5.5), the sensitivity is in�uenced by both the bandwidth
and the SF settings. Hence, high SF values and small bandwidths achieve a
high receiver sensitivity, at the expense of low data-rates. Conversely, faster
LoRa communications are associated to low SFs, and larger bandwidths,
but usually su�er of a low sensitivity. In other words, SF and BW can be
properly tuned to achieve the desired trade-o� between reliability and data
rate.

5.2 SDR LoRa Transceiver

In this section, we present the design and implementation of our LoRa
transceiver for SDR platforms, together with some preliminary simulation
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results on the transceiver performance. All simulations have been run in
Matlab. The receiver is based on three main modules: (i) the symbol de-
tection module, which is responsible of identifying the symbols encoded in
the received signal, once a new packet is correctly identi�ed and synchro-
nized; (ii) the synchronization module, which identi�es the beginning of a
new packet, and estimates the carrier and timing references used by the
transmitter; (iii) the (optional) drift tracking module that compensates the
clock drifts between transmitter and receiver for the correct demodulation of
long frames. Apart from the building of LoRa symbols, we also implemented
a pipeline of processing operations in the TX chain, including: parity check
coding, whitening, shu�ing and interleaving, and Gray coding.

5.2.1 Symbol Detection

LoRa demodulation can be implemented with very simple operations by map-
ping in each symbol the time interval at which the chirp jumps from fmax

to fmin in a easily detectable frequency. In particular, our implementation
works as follows. First, each received symbol is multiplied with the synchro-
nized base down-chirp (at the same SF of the received signal). The result
is a signal comprising only two frequencies (namely, −k/T and −B − k/T ,
with T being the symbol time) which depend on the transmitted symbol k.
Second, by down-sampling the signal at the rate B, both frequencies can
be aliased to the same frequency −k/T . Finally, the signal is transformed
in the frequency domain by means of an FFT. The symbol index k can be
estimated by considering the position of the peak at the output of the FFT.

An interesting feature of LoRa is the quasi-orthogonality of signals trans-
mitted at di�erent SFs, as well as the robustness against external interference
sources. Indeed, after the multiplication of the signal with the synchronized
downchirp, the interfering signal is mapped into a noise over the whole fre-
quency band of the signal, which prevents the correct identi�cation of the
symbol peak only for very low SIR (Signal-to-Interference Ratio) values.
Conversely, when the interfering signal is a LoRa signal at the same SF, the
receiver will observe multiple peaks at the output of the FFT: a maximum
peak corresponding to the reference symbol, and two smaller peaks corre-
sponding to two - partially overlapping - interference symbols. In such a
case, if the reference signal is a few dB stronger than the interfering one, the
symbol can be detected.

Fig. 5.2 shows the performance of our receiver in terms of Packet Error
Rate (PER) in case of interference with an in-band sinusoidal (or narrow-
band) signal. The reference signal is given by the same packet with a payload
of 20 bytes, which has been modulated at di�erent SFs as indicated in the
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Figure 5.2: PER vs SIR in case of sinusoidal interference.

labels. From the �gure, we observe that there are about 3dB of di�erence
between the SIR values which guarantee a target PER for signals modulated
at SF x and x+ 1. Fig. 5.3 quanti�es the robustness of our receiver against
interference sources generated by other LoRa signals. The �gure depicts the
PER versus the SIR values for a reference LoRa signal modulated at SF 7,
with B = 125 KHz and a payload of 20 bytes, in case of interference with
LoRa signals modulated under di�erent SFs (as indicated in the labels). As
expected, the interference due to a LoRa signal modulated at SF 7 is critical,
because even a SIR value of 1 dB (often called capture threshold) can result
in a PER equal to 0.1. For the other signals modulated at di�erent SFs, it
is evident that the signal orthogonality is not perfect: when the interfering
signal is about 10dB stronger than the reference one, the PER is higher
than 0.1. This SF-dependent threshold is often called interference rejection
threshold. Obviously, the receiver has to correctly identify the SF used by
the transmitter and the boundary of each symbol, as detailed in the next
section.

5.2.2 Carrier and Time Synchronization

In order to recognize the symbol boundary, the receiver has to �rst identify
the exact beginning of a preamble in time and in frequency, as well as the
symbol duration corresponding to the correct SF.

Our synchronization mechanism is built by exploiting the preamble struc-
ture, which includes both upchirp and downchirp transmissions. The idea
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Figure 5.3: PER vs SNR values in case of interference with other LoRa modulated signals.

is mixing (i.e., multiplying) the received signal frx(t) with the complex con-
jugate of a reference preamble upchirp fpr(t). Since the downchirp has the
same absolute slope as the unsynchronized upchirp of the preamble, the fre-
quency of the mixed signal fmix,1(t) = frx(t) − fpr(t) changes over time as
⌊(t− τ)/T ⌋ − ⌊t/T ⌋, which is a square wave with values 0 and ±1 and duty
cycle |τ |/T . It follows that the output of the mixer signal features tones at
only two frequencies ν1 = CFO − Bτ/T (when t ≥ τ) and ν1 ± B (when
t < τ). The same mixing mechanism can be applied to the last part of the
preamble (constituted by downchirps), by multiplying the signal with base
upchirps. The resulting signal has the same structure as the previous one
with frequencies ν2 = CFO + Bτ/T and ν2 ± B. If ν1 and ν2 are avail-
able, the estimated carrier o�set CFOest can be computed as the average
between ν1 and ν2, while the estimated timing o�sets τest can be computed
as T/B · (ν2 − ν1)/2.

In order to identify a new preamble, the receiver:

1. samples the received signal r(t) with a sampling frequency fs = B·OSF,
i.e., Over Sampling Factor (OSF) times the nominal bandwidth of the
signal, obtaining rn = r(n/fs)

2. multiplies (mixes) a window of N = K · OSF samples with a base
downchirp, obtaining:

zn = rn exp(ȷπ(n/OSF− n2/(N ·OSF))) (5.6)
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Figure 5.4: Probability of failing to detect a preamble.

3. computes the absolute value of the FFT of signal zn:

Γk =

∣∣∣∣∣
N−1∑
n=0

zn exp(−ȷ2πnk/N)

∣∣∣∣∣ (5.7)

4. estimates k̂ as the position of the maximum in Γk;

Finally, if the estimated position k̂ is detected continuously for a number of
times (e.g., 3 consecutive windows), the receiver understands that an incom-
ing preamble is received.

This procedure is executed continuously, for each possible SF, even when
the demodulation of a frame is already in progress. This algorithm succeeds
in detecting a preamble even several dBs below the sensitivity threshold. The
probability of failing the detection of a preamble is shown in Fig. 5.4, when
the power margin is computed as the di�erence between the received signal
power and the receiver sensitivity. From the �gure, it is evident that the
receiver is able to detect a preamble even when the received power is below
the sensitivity threshold of -121 dBm. Only when the margin is smaller
than 7 dB, is the failure probability higher than 1%. Once the preamble is
detected, �ne estimates of ν1 and ν2 can be obtained as follows:

ν̂ =
B

K

(
k̂ +

1

2

Γk̂−1 − Γk̂+1

Γk̂−1 − 2Γk̂ + Γk̂+1

)
(5.8)
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Figure 5.5: SNR values guaranteeing PER ≤ 0.5.

where the values of k̂ and Γk are obtained from the multiplication with the
base downchirp in the �rst part of the preamble, and with its conjugate for
the last 2.25 preamble symbols (for the last portion of the preamble, made
of downchirps). Equation (5.8) is based on a parabolic interpolation around
the maximum, and yields excellent results even for very low SNR values.
For a reference signal transmitted at SF 7 and power margin of -10dB, the
standard deviation of the CFO estimation error σCfo over a bandwidth of 125
kHz is about 9 · 10−4, while for a power margin of -5dB the ratio σCfo/BW
is reduced to 6.8 · 10−4 ·BW .

5.2.3 Impact of Clock Drifts

Once a preamble has been detected and initial estimates of CFO and τ have
been performed, the LoRa receiver should periodically update these estimates
for compensating the clock drifts between the transmitter and the receiver.
Most SDR implementations have not addressed this issue, because SDR plat-
forms usually rely on clocks whose errors are in the order of 1 PPM. However,
o�-the-shelf devices may experience inaccuracy can be as high as 17 PPM,
due to low-cost crystal oscillator which may lead to synchronization problems
(especially for long frames).

We quanti�ed the SNR threshold leading to a PER lower than 0.5 for
a receiver not implementing any clock tracking mechanism and for di�erent
packet transmission times. Speci�cally, Fig. 5.5 shows the SNR values as
a function of the frame length, for a reference signal modulated at SF 7
and B = 125 kHz, for di�erent clock stability values. Irrespective that the
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reference signal is transmitted at SF 7 (and therefore the transmission times
are accordingly minimized), packet reception is completely prevented for a
clock frequency error higher than 10 PPM and a frame length higher than 60
bytes (PPM 50) or 100 bytes (PPM 20). Otherwise, packet reception works,
but the errors are relevant.

A possible solution is extending the receiver architecture with the clock
tracking module, such as the one we designed in [134]. Once a window of
consecutive symbols is demodulated, the signal regenerated at the receiver is
correlated with three di�erent versions of the originally received signal: the
one obtained considering a time o�set equal to the initial estimate τest, and
two other versions in which the o�sets are equal to τest ± 1/fs (being fs the
sampling frequency), i.e., shifted by plus or minus one sample. The three
correlation operations will result in three di�erent maximum values, which
will be interpolated using a quadratic function. Finally, the maximum of
this parabolic interpolation will provide the time o�set used in the current
window for compensating the clock drift. In our implementation, we chose a
time window of four symbols as a trade-o� of accuracy and complexity.

5.2.4 Transmitter Implementation

At the transmitter side, we implemented parity check coding, whitening,
shu�ing, interleaving, and gray coding, to increase robustness towards syn-
chronization errors or narrowband interference, which can be a serious issue
for CSS-based modulations. While most of the transmitter side operations
have been implemented as described in the LoRa modulation patent [133],
a few implementation details required a low-level analysis of real signals,
transmitted by LoRa commercial devices. Indeed, the patent leaves some
ambiguities (for example about the row to column ordering in the inter-
leaving, or the actual parity check matrix for coding at rate 4/5 and 4/8).
Moreover, the initialization values for the CRC computation in the payload
is not constant as speci�ed in the patent, but rather seems to depend on the
payload size. We found the initialization vectors for each possible packet size
by exhaustive search. The resulting implementation has been demonstrated
to be compatible with commercial devices.

5.3 Improving link reliability

Taking into account that each device experiences a speci�c Packet Delivery
Rate (PDR) as a function of its channel and interference conditions, we de-
signed and implemented two di�erent solutions for improving link reliability:
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i) the usage of on-demand retransmissions of corrupted frames, by means of
an Automatic Repeat Request (ARQ) protocol, ii) the proactive transmission
of additional frames, generated by means of rate-less coding schemes applied
at a frame-level. Obviously, the �rst approach is e�ective in case a generic
device is involved in sporadic transmissions, while the second one is useful
when devices need to transmit a burst of multiple frames.

ARQ Mechanism.We implemented an optional Automatic Repeat Re-
quest (ARQ) reliability mechanism, to integrate and complement the FEC
Hamming techniques natively implemented by the protocol. To support
packet re-ordering and acknowledgment, as well as addressing, we reserve the
�rst three bytes of the LoRa packet payload for the Destination, Source,
and Sequence Number �elds. Our protocol has several steps: (i) Transmis-
sion of the actual data, (ii) Response from the receiver with a NACKmessage,
(iii) Re-transmission of the missing packets, if needed, (iv) Transmission of
a �nal ACK from the receiver, and (v) Termination of the communication
phase. To avoid any deadlock, during (ii), if no response is received from the
transmitter for a speci�ed timeout, the receiver re-sends the NACK packet.

Rateless Coding. Rateless codes such as those described in RFC6330
work by exploiting the possibility of generating as many encoded frames as
needed from a burst of k frames at the transmitted side. Indeed, thanks to
the coding scheme, the receiver is able to decode an exact copy of the entire
burst of k frames from any subset of k+ν successful received (i.e. non-erased)
encoded frames. The required reception overhead ϵ = ν/k is usually in the
order of a few percentage points. An interesting feature of this solution is that
no downlink channel is required as a feedback to transmitter. Being downlink
bandwidth limited in LoRaWAN networks, such an approach can be useful
in many practical scenarios. We implemented a signalling mechanism from
the network server to devices, for notifying the device-speci�c PDR. On the
basis of this value and a target probability γ of successful delivery for a burst
of k frames, each device involved in the transmission of data bursts computes
the number k′ of coded frames to be generated from each group of k frames,
as:

k′ :
k′∑

l=k+ν

(
k′

l

)
PDRl · (1− PDR)k′−l ≥ γ (5.9)

The expected number of delivered frames is k′·PDR. The usage of rateless
coding increases the load o�ered to the network and, consequently, the PDR
experienced by other devices. However, when the number of devices involved
in the transmission of data bursts is limited or when the main source of frame
losses is the channel, the load increment has a minimal e�ect on the PDR
variations and a single iteration su�ces for �nding a stable k′.
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Figure 5.6: Map of the testbed locations.

5.4 Experimental results

We validated the implementation of our LoRa transceiver by running some
compatibility tests with commercial LoRa devices. We set one SDR platform
running the LoRa transceiver in our laboratory at the University of Catania,
and deployed the devices in outdoor in locations characterized by partially
obstructed links as depicted in Fig. 5.6. In position 1, where nodes were
perfectly visible, we got a Packet Delivery Rate (PDR) equal to 1 for each
available SF ; in position 2, some errors were found at SF 7, while in position
3, the PDR was lower than 0.1 at SF 7 and about 0.5 at SF 10.

In order to study the performance of our prototype, we also integrated
the LoRa transceiver on the Colosseum testbed, where multiple coordinated
SDR platforms and channel emulators are available. An important feature of
the testbed is the possibility of controlling the network scenarios, in terms of
channel models between nodes, as well as the transmission patterns of coex-
isting devices. Indeed, the transmission attempts of independent SDR plat-
forms can be synchronized or shifted of a desired time interval, for character-
izing speci�c interference e�ects generated by multiple interference sources.
Moreover, the testbed allows the analysis of low-level signals collected by
independent receivers, enabling many experimental studies on receiver archi-
tectures.

5.4.1 Testbed Description

We evaluated SDR-LoRa on Colosseum, the world's largest network emu-
lator [19]. Colosseum is a wireless emulator with 128 so-called Standard
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Radio Nodes (SRNs), i.e. dedicated hardware nodes each equipped with a
NI/Ettus USRP X310 SDR. Each SRN can host and run user-de�ned Linux
Containers (LXCs), to o�er a high degree of freedom in the customization
and usage of the underlying hardware. The SRNs are all linked together by
the Colosseum Massive Channel Emulator (MCHEM). The latter is made
up of several FPGA modules and is thus able to process the radio signals
through Finite Impulse Response (FIR) �lters. The MCHEM can therefore
emulate the e�ects of real-world wireless RF channels, such as attenuation,
propagation delay, fading, and multipath. Another fundamental module of
the Colosseum architecture is the RF scenario server. A Colosseum scenario
is a collection of wireless links between several SRNs, where each link is de-
�ned by digital channel taps. When a scenario is activated on the emulation
platform, these channel taps are fed to the MCHEM at run time. Our results
are based on a custom LXC image. This container includes the developed
SDR implementation, together with the libraries and system tools needed to
run our code.

5.4.2 Results for Single Link

We run a �rst set of experiments with a single LoRa link, with two SDR nodes
acting as a transmitter and receiver, connected by means of the MCHEM
channel emulator. The selected RF scenario is characterized by a noise power
with σn = 3.5 ∗ 10−8 and a tunable Path Loss.

Channel Attenuation 45 dB 50 dB 55 dB 60 dB
PDR 1 0.99 0.74 0.20

Table 5.2: PDR vs Channel Loss.
Table 5.2 shows the PDR at the receiver, as a function of di�erent channel

attenuation values1, when the receiver transmits at SF 7, with a bandwidth
of 125kHz, a payload size of 50 bytes, and a �xed normalized amplitude of
the signal equal to 1. The link also su�ers of additional power losses, due to
the connectors between SDR nodes and the wired channel emulator. Since
these losses cannot be easily quanti�ed, we experimentally found the channel
attenuation which results in an SNR lower than the reception threshold.
Indeed, the PDR is lower than 1 (about 75%) for a channel attenuation of
55dB and lower than 15% when the channel attenuation is increased to 60dB.

For a channel attenuation value of 56dB (leading to an SNR value lower
than the reception threshold at SF 7), we run further experiments at di�erent

1This choice is useful to emulate several transmission distances. In fact, in free-space
communications, a larger path-loss corresponds to a longer communication distance.
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Figure 5.7: PDR vs the packet Payload Size.

SFs and for di�erent payload sizes. We measured the PER when transmit-
ting a �xed amount of data (namely, 10000 bytes), which corresponds to a
di�erent total number of frames. The results are summarized in Fig. 5.7.
From the �gure, it is evident that the SNR value at the receiver is higher
than the minimum reception thresholds for SFs 10, 11 and 12. For the other
SFs, for which the correct demodulation of the symbols cannot be guaran-
teed, the PDR is a�ected by the payload size, with a general degradation
as the payload size increases (although there are a few exceptions due to the
con�dence interval of the results). However, the PDR does not decrease as
an exponential function (with a base lower than 1) of the number of symbols
in the frame, which are roughly proportional to the payload size. This sug-
gests that synchronization problems can be the main cause of packet losses
for the SNR values considered in the experiments.

On top of error-prone links, we also tested our schemes for improving link
reliability. Fig. 5.8 quanti�es the total amount of time needed to completely
transfer 10000 bytes of data to the receiver, for a channel attenuation of 56
dB. The time takes into account the total interval required for transmitting all
the frames, including selective retransmissions of corrupted frames. No duty
cycle has been considered. Note how higher SFs exhibit a bigger transmission
time despite the fact that the links are more robust: indeed, the higher is
the SF, the higher is the number of chips in a single LoRa symbol, and thus,
the bigger is the transmission time of each frame.

An alternative approach for improving the link reliability is exploiting
rate-less coding. Table 5.3 summarizes the number of coded frames required
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Figure 5.8: Transmission vs the packet Payload Size.

for guaranteeing a delivery probability γ ≤ 1−104 and the relevant transmis-
sion time, for the same scenario of a data transfer of 10000 bytes, a channel
attenuation of 56 dB, and a payload size equal to 100 or 250 bytes. The
table refers to the usage of Raptor-Q codes, assuming to use ν = 5 (which
guarantees according to RFC6330 a probability lower than 10−10 that the
frame decoding will fail). For a given PDR, the number of additional pack-
ets generated by the usage of rate-less coding is obviously greater than the
one resulting from selective retransmissions, but the di�erence gets lower as
the the total number of packets to be sent increases (for example, for 100
bytes and SF = 9 we transmit 125 packets, with a total number of expected
transmissions equal to 108 packets).

100 bytes 250 bytes
SF PDR k' Time PDR k' Time
7 0.58 220 41.6 s 0.48 129 46.3 s
8 0.84 142 48.0 s 0.78 72 46.5 s
9 0.92 125 76.9 s 0.92 57 65.4 s

Table 5.3: Overheads of Raptor-Q coding

5.4.3 Results for Multiple Links

We run a second set of experiments for studying the impact of interference
between multiple coexisting LoRa links. First, we analyzed the imperfect
orthogonality of di�erent SFs. We set-up a reference LoRa link working at
SF 7 and transmitting frames with a payload of 50 bytes, and an interfering
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Figure 5.9: PDR vs SIR for a reference link at SF 7, in presence of collisions with di�erent
SF s.

node working at a SF di�erent from SF 7. The interfering node has been
con�gured for transmitting continuously, without any duty cycle, in order
to guarantee that all the frames transmitted by the reference link overlap
in time with the interfering node, thus leading to collisions. Fig. 5.9 shows
the PDR measured in our experiments, when the transmitted frames collide
with interfering signals at di�erent SF s, as a function of the SIR. The limits
of imperfect orthogonality are quite evident: for SF 8, it is enough a SIR
value of -4 dB for damaging the frames and reducing the PDR to about 75%.
Although the interference generated at SF 8 is the one reducing the PDR
the most, we also notice that the SIR threshold which prevents a PDR equal
to 1 is about the same for all the SF s used by interfering node.

The large rejection thresholds of the interfering signals is due to the re-
ceiver operation. When multiplying the received signal with the downchirp
at SF 7 and computing the FFT , such an interfering power is spread on the
whole bandwidth of 125kHz, while the power of the reference signal is seen
as a narrow peaks whose position within the band corresponds to the coded
symbols.

Obviously, a possible cause of symbol detection error due to a low SIR
value is the presence of multiple interfering signals. Fig. 5.10 quanti�es
the PDR achieved by the reference link at SF 7, when multiple interfering
nodes are active at SF 8 and for di�erent normalized amplitude values of
the reference signals. We let this amplitude value vary in the range 0.4-0.8,
while the normalized amplitude of the interfering signals is �xed and equal
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Figure 5.10: PDR of a reference link at SF 7 as a function of the number of interfering
nodes at SF 8.

to 0.5.
We also considered the e�ects of collisions generated at SF 7. In principle,

signals transmitted at the same SF are not orthogonal and should prevent
the correct reception of the colliding frames. However, the capture thresholds
of LoRa are very low: it is enough that the reference link has a SIR of a
few dB (typically, 3 dB) to allow the correct demodulation of the frame.
We repeated the experiment with multiple interfering nodes by con�guring
the interfering signal at SF 7. Fig. 5.11 shows the PDR observed as the
number of interfering nodes increases and when the transmission power of the
reference link is 6dB stronger than the interfering ones. From the �gure we
observe an interesting phenomenon: the PDR is almost one even in presence
of 4 nodes, when the SIR is 0 dB, and slightly lower than 1 in case of 5
interfering nodes (for a negative SIR). This is due to the receiver operation,
according to which the interference generated by multiple transmitters at SF
7 is not additive.
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Figure 5.11: PDR of a reference link at SF 7 as a function of the number of interfering
nodes on the same SF .
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Chapter 6

Fast and E�cient Federated

Learning in the Internet of Things

Through LoRa Resource

Optimization

6.1 Introduction to Federated Learning

In the following, we introduce a conceptual description of a Federated Learn-
ing problem. A typical Federated Learning system includes an aggregation
server and several users. Each user can build its own local model starting
from a local data set, and eventually send the result to the aggregation server,
which, in turn, produces the �nal global model by averaging the local ones.

A Federated learning procedure unfolds across three di�erent phases:

1. Task de�nition: During the �rst step, the central server de�nes the
task, and, accordingly, the type of data and the relevant features to
be taken into account. The server is also responsible of initializing the
global model;

2. Local Training: In this phase, each device �rst receives the global
model. At this point, each user makes use of its own data set to produce
a local update of the global model. After the local training phase, the
updates are eventually sent to the central server;

3. Global Aggregation: in the third and last phase, the server receives
the new local models from the users and produces the global update
through a weighed average of the local models. More speci�cally, each
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local model is weighed by the local data set size; indeed, a larger number
of examples produces more accurate local models. Accordingly, such
models get more importance during the global aggregation.

To achieve the desired accuracy, phase 2 and 3 are repeated several times.
The algorithm stops when convergence is reached or, alternatively, after a
maximum number of iterations is executed.

6.2 The Federated Learning Scheme

We de�ned a federated learning scheme suitable for LoRa networks, in which
communication links have limited bandwidth and are error prone. We assume
that N sensors (also called clients) work each on a local data-set to be used
for training a model characterized by a vector of d parameters w ∈ Rd. The
goal of the training process is to �nd w∗ able to minimize a loss function
f(w) on the whole data-set D = ∪N

i=1Di, being Di = {xi,l}|Di|
l=1 the data-set

available to the i-th client, whose total number of data samples xi,l is equal
to |Di|.

Our approach is based on the federated averaging algorithm described
in the previous section. The process is organized in a set of communication
rounds, in which each client locally executes a single update epoch before
sending back the local gradients to the central server. More into details, at
a generic round k the process works as follows:

Broadcasting phase: the central server transmits in downlink the current
vector wk to all clients.

Local update: each client computes the gradient ∇fi(wk) of the loss func-
tion on a random sub-setD′

i of its local data, being fi(w
k) =

∑|D′
i|

l=1 Fi(w
k, xi,l)

and Fi(w
k, xi,l) the loss of the current model on the training sample xi,l. The

gradient vector is sent back to the central server by transmitting, in general,
multiple LoRa frames. The frames are organized by including randomly or-
dered components, together with the relevant model index, in order to allow
an exact identi�cation of the gradient updates at the server.

Central update: The loss function on the complete data-set is given by
f(x) =

∑N
i=1 fi(x), whose gradient can be computed by summing the con-

tributions sent by each client. However, at the end of each communication
round, some coe�cients of the gradient vectors ∇fi(wk) may be lost. Since
we assume that the gradient components are randomly ordered to form the
packets, multiple losses due the corruption of one packet are uniformly spread
on the total number of model dimensions d. Di�erent options are available for
dealing with these missed updates. For example, the server could completely
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ignore the partial updates sent by the clients for which some coe�cients are
lost. However, this could bias the learning process by focusing on the data
available at the clients experiencing the best communication links. A di�er-
ent approach is the utilization of all the data collected by the server. Let
∇f 0

i (w
k) the gradient vector for a generic client i, where any missing coe�-

cient [∇fi(wk)]l is replaced by zero. The model update can be implemented
as:

wk+1 = wk − ηk
N∑
i=1

∇f 0
i (w

k) (6.1)

6.2.1 Bounding the Error

In this section we investigate the FML scheme in case of losses on the com-
munication links. While discarding gradients with missing components can
be seen as an optimization based on stochastic gradient, our scheme rep-
resents a perturbation of the descendent gradient under time-varying noise
components. Although the vector resulting from the aggregation of the cor-
rectly received components will deviate from the true gradient along some
dimensions, intuitively we can expect that the following updates will be able
to compensate these loss-induced random deviations.

Let ξk =
∑N

i=1 ξ
k
i =

∑N
i=1

[
∇fi(wk)−∇f 0

i (w
k)
]
be the vector represent-

ing the sum of all the missing gradient components. We can express the
model update rule as a perturbation of the true descendent gradient:

wk+1 = wk − ηk
N∑
i=1

∇fi(wk) + ηkξ
k =

= Gk(w
k) + ηkξ

k (6.2)

where Gk(w
k) is the update due to the true gradient. Under the assump-

tions that the loss function is a smooth function, i.e. ∃L > 0 : ∀x,∀y ∈
Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, and ηk ∈]0, 2/L[ ∀k, we can derive some
conditions for characterizing the updates of the global model over time [135].
First, in case the loss function is also strongly convex, there is a global min-
imum point w∗ in which the gradient is null. For a smooth convex function,
it can be shown that ∀x,y ∈ Rd:

⟨∇f(y)−∇f(x),y − x⟩ ≥ 1

L
∥∇f(y)−∇f(x)∥ (6.3)

where ⟨∇f(y) − ∇f(x),y − x⟩ represents the inner product between the
vectors ∇f(y)−∇f(x) and y−x. Let ek = ∥wk−w∗∥2 the squared distance
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between the current model vector and the point minimizing the loss function∑N
i=1 fi(w)1. For a Lipschitz loss function, the module of the di�erence

between the loss function at f(wk) and the minimum loss function at f(w∗)
is proportional to the square root of ek. By considering the inequality in 6.3,
we can derive :

∥wk+1 −w∗∥2 = ∥wk − ηk∇f(wk) + ηkξ
k −w∗∥2 =

= ∥Gk(wk)−w∗∥2 + η2k∥ξk∥2+
− 2ηk⟨Gk(w

k)−w∗, ξ
k⟩ (6.4)

≤ ∥wk −w∗∥2 − 2ηk(1/L− ηk/2)∥∇f(wk)∥2+
+ η2k∥ξk∥2 − 2ηk⟨Gk(w

k)−w∗, ξ
k⟩

from which the error sequence obey to:

ek+1 ≤ ek + η2k∥ξk∥2 − 2ηk⟨Gk(w
k)−w∗, ξ

k⟩ (6.5)

In other words, the tracking error is bounded by a discrete time dynamical
system, where the shift between the real and true gradient behaves as a
disturbance input. The average value of the disturbance at each step k is
given by E[η2k∥ξ

k∥2 − 2ηk⟨Gk(w
k) − w∗, ξ

k⟩], which is equal to η2kE[∥ξ
k∥]2

under the assumption that E[ξk] = 0. This assumption may be justi�ed by
recalling that the overall gradient around w∗ becomes negligible, and this,
in turn, is true for every partial gradient in case the data is i.i.d. among
the clients. In case the data is not i.i.d., the ξk will not be negligible, but
the assumption will be still valid if the packet losses are equally distributed
between clients. It follows that the error admits a steady-state bound, but
it does not decrease to zero in presence of communication losses. For ηk
decaying with k, we can force the disturbance to vanish.

Note that the error bound critically depends on the norm of the missing
gradient components, which in turns is a�ected by the loss probability on
the communication channel. Speci�cally, if the coe�cient error rate CERi is
small, i.e. lower than 30% so that the number of coincident missing coe�-
cients in vector pairs is negligible, we can approximate the square norm of
the gradient perturbation as ∥ξk∥2 ≈

∑N
i=1 ∥ξ

k
i ∥2. The square norm of the

i-th term, in turn, may be approximated by the expected number of missing
components times the mean square value of the i-th gradient contribution.

1Note that, in general, models based on multi-layer perceptrons do not have a strong
convex loss function and therefore more than one local minimum exists. However, the fol-
lowing derivation can be generalized for pseudoconvex functions with multiple minimizers.
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Figure 6.1: Accuracy and Loss of the proposed FML scheme vs CER for 9 nodes

This results in the following approximation for the perturbation term:

E[∥ξk∥2] ≈
N∑
i=1

∥ξki ∥2 ≈

≈
N∑
i=1

d · CERi ·
1

d

d∑
l=1

[∇fi(wk)]2l =

=
N∑
i=1

CERi∥∇fi(wk)∥2 (6.6)

If we assume the gradient descent is convergent, we obtain the asymptotic
approximate E[∥ξ∞∥2] ≈

∑N
i=1 CERi∥∇fi(w∗)∥2, which goes to zero in case

the data subset are i.i.d.
Figure 6.1 shows a numerical example of our federated learning scheme

working with nine clients and under di�erent coe�cient error rates. The
example refers to a scenario in which the model is given by 194,855 coe�cients
with not i.i.d data subsets. The model accuracy is minimally impacted by
the CER up to 50% after 100 update rounds, while the convergence rate of
the loss function, as expected by the previous argument, decreases as the
CER gets higher.

6.3 The FedLoRa Framework

The main target of FedLoRa is to establish reliable, e�ective and energy-
e�cient federated learning in LoRa networks, taking into account the channel
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and interference conditions of the sensors (i.e. the network level) and the
acceptable errors on the global model over time (i.e. the learning level).
We provide a walkthrough of FedLoRa below with the help of Figure 6.2.
At the beginning, the architecture of the DL model M = w is shared with
FedLoRa (Step 1). The DL model weights are then forwarded to the LoRa
nodes by the LoRa gateway (Step 2). Then, the DL model size is fed to
the LoRa Resource Allocation Problem (LoRa-RAP), formulated in Section
6.3.1. The LoRa-RAP takes as input some channel-related information, such
as signal-to-noise ratio (SNR) and signal-to-interference (SIR) ratio, which
are estimated experimentally through pilot transmissions (Step 3), and the
desired CER on the model components. The PHY parameters are then sent
to each node in the network through the LoRa gateway (Step 4). As regards
the federated machine learning (FML) training, each node trains a local DL
model in several subsequent rounds. Since nodes are not computationally
powerful, the local model for node i, Mi = w − η∇fi(w), is trained only
with a sub-portion of the locally-available data D′

i. Each node then signals
the weights of Mi by transmitting the gradient coe�cients to the gateway.
The gradients received from all the nodes are aggregated for updating the
model weights, which are sent back to the nodes for the next round (Step
5).

LoRa
Resource

Allocation
LoRa

Gateway

Input: DL Model

LoRa 
PHY

Parameters

...

(1)

...

LoRa Nodes

Global
DL Model

(1)

(5) (3)
(4)

(2)

Figure 6.2: High-level overview of the FedLoRa framework.
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6.3.1 LoRa-RAP Formulation

We assume that the network con�guration can be optimized by dynamically
adjusting the transmission power and Spreading Factor (SF) used by each
sensor. Higher SFs are associated to more robust links, yet to lower data-
rates (and, thus, to a longer transmission time). Moreover, higher values of
transmission power guarantee better SNR at the receiver, but also imply a
bigger energy consumption, and produce more interference to other nodes
in the network. Other communication parameters such as the transmission
bandwidth B and coding rate CR are not considered as network tunable
parameters. In real LoRa applications the bandwidth is not con�gurable.
For example, according to EU LoRa regulations, all SFs can only work on
a bandwidth of 125 kHz (except for SF7). Moreover, We do not include
the CR PHY parameter in the optimization as we assume a Line-of-Sight
channel model (i.e. Rice fading), and a very limited e�ect of the coding
gain employed in LoRa (1 dB at most, even when employing Soft-Input Soft-
Output decoding [136]).

Since each sensor has to transmit a bulk of frames at each model update
round, which results in a temporary congestion of the network, as a �rst
optimization strategy we consider the possibility of polling sequentially the
network nodes rather than using random access. Multiple polling rounds are
executed in parallel on di�erent SF, by exploiting the capability of LoRa
modulation of rejecting signals modulated at di�erent SF even for negative
SIR values. By considering this access solution, we set the signal to noise
(SNR) and interference (SIR) ratios which need to be provided to each node
for guaranteeing the desired CER. For a reference node n, we assume that
interfering signals are only due to other LoRa nodes transmitting at a SF
di�erent from SFn (which are not perfectly orthogonal [137]) and that the
channel is AWGN.

The goal of LoRa-RAP is to �nd the values of SF and transmission power
for each node able to minimize the energy consumption, while also taking
into account the aforementioned constraints. In the following, we only for-
mulate the problem of energy minimization, and instead omit the problem
of transmission time minimization, as the two problems are intertwined in
LoRa. In fact, choosing the lowest possible value of SF achieves a shorter
transmission time, which results in both an increased data rate and lower
energy consumption.

We de�ne N as the set of LoRa nodes in our reference scenario and
SF as the set of available spreading factors. Moreover, ρn and SFn are the
transmission power and the spreading factor for a generic node n. We now
model the energy consumption and the transmission time in the system.
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First, the data-rate of a LoRa node n is equal to [132]

rn = SFn
B

2SFn

4

4 + CR

where SFn is the SF assigned to node n. Accordingly, being s the size of
the model coe�cients (in bytes) to be transmitted to the central server, the
energy consumption of node n is equal to:

En = ρn
s

rn
= ρns

2SFn

BSFn

4 + CR

4

where we assume that the model size s is �xed for all the nodes2. We
de�ne the resource allocation problem as follows.

LoRa Resource Allocation Problem (LoRa-RAP)

min
ρ,SF

∑
n∈N

ρns ·
2SFn

BSFn

4 + CR

4
(6.7)

s.t.

ρmin ≤ ρn ≤ ρmax ∀n ∈ N (6.8)

SFn ∈ {7, 8, 9, 10, 11, 12} ∀n ∈ N (6.9)

SIRn(SFn, SFint) ≥ SIRth(SFn, SFint) ∀n ∈ N ,
∀ SFint ∈ {7, 8, 9, 10, 11, 12}, SFint ̸= SFn (6.10)

SNRn ≥ SNRth(SFn) ∀n ∈ N (6.11)

NSF,x = N
ATSF,x∑

SF∈SFATSF
∀n ∈ SF (6.12)

where:

� SIRn(SFn, SFint) is the Signal to Interference Ratio of node n w.r.t. an
interfering spreading factor SFint at the gateway.

� SNRn is the signal to noise ratio of node n at the gateway.
2A further direction for optimizing the system could be the usage of compression

schemes for sending the model coe�cients, which could lead to heterogeneous model sizes
sn.
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� NSF,x is the number of users assigned to SF x, while ATSF,x is the
airtime of a LoRa packet with maximum payload on the same SF, x.

With reference to constraint (6.10), whenever SIRn is below the threshold
SIRmin(SFn, SFint), decoding of frames sent from node n may fail in case
of collisions with frames sent on SFint. The reference threshold values are
con�gured from the experimental work in [137].

For what concerns constraint (6.11), the threshold value SNRth is prop-
erly set to guarantee a speci�c CER/FER on the incoming packets. We
calculated a threshold value able to guarantee a CER equal to or less than
30 %, according to the study carried on in [138].

Finally, with constraint (6.12), we aim at balancing the load on all the
available SFs. More speci�cally, the smaller is the air time, the bigger will
be the portion of user assigned to the corresponding SF. The main reason to
perform load balancing is maximization of parallel (non-interfering) trans-
missions and the consequent reduction of the FML round time.

The problem above formulated is non-linear and includes continuous vari-
ables (ρ), integer variables (SF), as well as non-linear constraints (constraints
6.10 and 6.11), and therefore falls into the category of Mixed-Integer Non-
linear Programming (MINLP) problems. By de�nition [139, 140], MINLP
problems are NP-Hard, and must be solved through either numerical ap-
proximation or greedy algorithms.

6.3.2 A Greedy Algorithm for LoRa-RAP

We designed a greedy algorithm for resource allocation, whose pseudocode is
shown in Algorithm 1. The algorithm is split in several phases: (i) Estimate
the channel (Lines 1-4), (ii) Meet SNR constraints (Lines 6-15), (iii) Meet
SIR constraints (Lines 17-34). During the �rst phase, the gateway node
estimates the maximum SNR of each node (we assume the channel gain
matrix and signal noise power to be known a priori). The maximum SNR
can be easily estimated by assuming the nodes to transmit at the maximum
available power. Nodes are accordingly ordered by SNR, in descending order.
In the second phase, each node is assigned to the minimum SF possible, in
compliance with the SNR constraint (6.11). However, if this choice violates
the load-balancing constraint (6.12), the algorithm tries to assign the node to
the next higher SF. This procedure is repeated until either constraint (6.12)
is satis�ed, or until the maximum SF value is reached. The third and last
phase focuses on the SIR constraint (6.10).

For each node n in the scenario, the algorithm checks if the assigned
transmission power is compliant with the SIR constraint for SFn. If not,
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Algorithm 1: Greedy Resource Allocation for FedLoRa
Data: LoRa Node Set N , Channel Gain Matrix HN×N , Signal noise

power σ2
n

1 foreach node n in N do
2 Set power ρn of node n to ρmax;
3 Estimate SNRn of node n from HN×N and σ2

n ;
4 end
5 Sort nodes by SNR, in descending order;
6 foreach node n in N do
7 Find minimum SFn,min, such that SNRn > SNR ;
8 if NSFn,min

+ 1 does not satisfy constraint (6.11) then
9 do
10 SFn,min ← SFn,min + 1
11 while constraint (6.11) is satis�ed or SF, x == SF,max;
12 end
13 SFn ← SFn,min;
14 Find ρ′min such that constraint (6.11) is satis�ed ;
15 ρn ← min(ρ′min, ρmin) ;
16 end
17 do
18 foreach node n ∈ N do
19 if SIRn(SFn, SFint) satis�es constraint (6.10) then
20 continue ;
21 else
22 foreach SFint ∈ {7, 8, 9, 10, 11, 12} do
23 if SFint == SFn then
24 continue;
25 end
26 ∆ρ← SIRth(SFn, SFint)− SIRn(SFn, SFint);
27 ρn ← ρn +∆ρ ;
28 if ρn > ρmax then
29 Convergence Not Reachable, Exit;
30 end

31 end

32 end

33 end

34 while constraint (6.10) is satis�ed or Problem Diverges;
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the algorithm proceeds to increase the transmission power, until either the
constraint is satis�ed, or the assigned power exceeds the maximum power
limit. In the latter case, no feasible solution can be found. Then, the algo-
rithm starts over and repeats the check � since the nodes are examined in
a sequential fashion, adjusting the transmission power of node i could lead
to a violation of the SIR constraint for at least one of the i − 1 previous
nodes. Hence, the algorithm needs to repeat the check and exits if and only
if the SIR constraint is still satis�ed for all nodes. If not, the algorithm exe-
cutes step 3 several times. If the algorithm converges, it yields a sub-optimal
solution to the energy minimization problem formulated in (6.7).

6.3.3 FedLoRa Prototype

We prototyped and evaluated FedLoRa and LoRa-RAP on Colosseum, the
world's largest network emulator [19]. Colosseum is a wireless emulator with
128 Standard Radio Nodes (SRNs). Each SRN is equipped with 48-core Intel
Xeon E5-2650 CPUs and an NVIDIA Tesla K40m GPU, and with a NI/Ettus
USRP X310 Software De�ned Radio (SDR) as well. The SRNs are all linked
together by a Massive Channel Emulator (MCHEM), which is responsible
for the emulation of the wireless channels. Thanks to its FPGA modules,
the MCHEM processes the radio signals through Finite Impulse Response
(FIR) �lters, and thus emulate the e�ects of a real radio channel, such as
attenuation and propagation delay.

As part of the prototype, we implemented FedLoRa on Colosseum, start-
ing from the LoRa PHY for SDR described in Chapter 5.

Polling Mechanism. Besides the LoRa PHY, we implemented for the
�rst time a MAC protocol to establish reliable data exchange between the
nodes and the gateway based on polling. Indeed, for transmitting the gra-
dient components of the local model at each communication round, sensors
generate a bulk of data frames. Our polling mechanism is intended to re-
place the ALOHA mechanism of standard LoRa networks, which has a very
limited e�ciency in case of greedy tra�c sources.

With a polling mechanism, nodes assigned to the same SF transmit in
a sequential way, and do not interfere with each other, while nodes working
on di�erent SFs can be polled in parallel. For this reason, balancing the
load in the network is of crucial importance for maximizing parallel
(non-interfering) transmissions, thus reducing the FML round time.
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6.4 Colosseum results

Before presenting the results obtained through Colosseum, we �rst describe
the baselines and the RF scenarios.

Baselines. We compare LoRa-RAP with the following baselines:

� MinPower : this algorithm �rst focuses on the minimization of the node
transmission power. Then, it assigns the lowest SF possible, in compli-
ance with LoRa SNR requirements.

� BestSF : as opposed to MinPower, the main goal of BestSF is to �rst
�nd the minimum SF allowed by the SNR constraints, and, only then,
to minimize the transmission power. No load balancing criteria are
applied.

Both algorithms also deal with the SIR constraints in (6.10). The adopted
procedure is identical to the one of Algorithm 1.

Scenario Description. We now describe the custom LoRa scenarios
implemented in Colosseum to evaluate LoRa-RAP. A network scenario is
easily de�ned in Colosseum as a collection of wireless links between several
radio nodes. Each link is speci�ed by digital channel taps, which are fed to
the MCHEM at run time. As depicted in Figure 6.3, the scenario involves a
maximum of 18 LoRa nodes and one LoRa gateway, scattered over a 400 ×
400m2 area. The color scheme is related to the SF value assigned to each
node by LoRa-RAP in the full setting (as the number of considered nodes
varies, the allocation of resources is accordingly di�erent).

Channel attenuation is calculated by means of Friis propagation model,
with a path loss exponent α = 2 (i.e. the coe�cient for free space path loss
scenarios). Note that the choice to simulate a "small" area and to assume
a free space propagation model could seem unsuitable for the emulation of
LoRa-based communications. This choice, however, is due to the intrinsic
limitations of Colosseum, and, more speci�cally, of the SDR hardware, which
introduces a noise power estimated as high as σ2

n ≈ 3, 5 ∗ 10−8. This e�ect
naturally reduces the maximum allowed simulated attenuation and, as a
consequence, the maximum simulated communication distance.

Figure 6.3 depicts the virtual locations of the nodes in the emulated
scenario, as well as the SF resource allocation performed by LoRa-RAP. Note
how the farthest nodes are naturally associated to higher SFs. Moreover, the
SF allocation re�ects the load balancing criterion described in the previous
sections.

Experiments. The experiments performed on the Colosseum channel
emulator aimed at the evaluation of two main metrics: energy consump-

116



200 150 100 50 0 50 100 150 200
Meters

200

100

0

100

200

M
et

er
s

SF7

SF8

SF9

SF10

Gateway

Figure 6.3: Colosseum Testbed for FedLoRa: Location of the LoRa Nodes and of the
Gateway in the emulated scenario.

tion, and FML round time. Note how the former represents a normalized
energy value, rather than a real energy value. Indeed, since SDRs are uncal-
ibrated devices, calculating the actual output power is not possible. Instead,
we calculate the energy consumption for each node from the digital signal
amplitude, and from the model transmission time. The reference Machine
Learning (ML) model for our experiments is the neural network from [122],
whose speci�c aim is the �ngerprinting of radio devices. The overall size of
the network is 83.41 kBytes, and can thus suit the low data-rate capabilities
of LoRa. The total number of weights in the network is 21,353. Since each
weight is represented as a 4 byte �oat, a single LoRa packet can �t up to 62
weights. The experiments were run for several sub-sets of active nodes, rang-
ing from just three LoRa nodes, to the full con�guration of eighteen nodes.
In each con�guration, the chosen nodes were the closest to the gateway. Fi-
nally, the energy consumption and FML round time have been averaged on
a total of �ve federated rounds per experiment.

Note how, in this particular scenario, the baseline MinPower allocates all
the nodes to SF 9, while, for BestSF, every node is assigned to SF 7.

Figure 6.4 reports the average per-node energy consumption for LoRa-
RAP and the baselines. Signi�cantly, all three strategies exhibit a similar
performance for each node con�guration, with a slight reduction in the energy
consumption for the BestSF strategy. Note how a bigger number of active
nodes results in a bigger average energy consumption. Indeed, the farthest

117



nodes either transmit on higher SFs and/or with high transmission power.
Hence, the average energy consumption accordingly increases.

Figure 6.4: Colosseum - LoRa-RAP vs baselines: Average per-node Energy Consumption

Figure 6.5 depicts the average FML round time for LoRa-RAP and the
baselines. The results show how our approach is able to reduce the average
time for a FML round, and, hence, to �nally reduce the convergence time
of the FML procedure. In fact, while BestSF simply assigns the smallest
SF possible to each node, LoRa-RAP balances the load among the available
SFs, allowing for simultaneous transmissions on di�erent SFs, thus reducing
the FML round time by up to about 35%. Note how the baseline MinPower
o�ers instead the worst performance: since the priority is the minimization
of the transmission power, the nodes are accordingly allocated to higher SFs
(in this speci�c case, SF 9), resulting in a high transmission time.

6.5 Testbed Results

To validate the performance of FedLoRa with real-world data on a larger
scale, we have collected realistic SNR and RSSI values from real-world mea-
surements through the testbed depicted in Figure 6.6. Speci�cally, we used
(i) one Adafruit RFM95W LoRa radio transceiver breakout board operating
at 915MHz, equipped with a Semtech SX1276 Engine with 127 dB Dynamic
Range RSSI; (ii) a LoRaWAN-compliant RAK7268C WisGate Edge Lite 2
gateway from RAK Wireless; (iii) an NVIDIA Jetson Nano. We placed the
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Figure 6.5: Colosseum - LoRa-RAP vs baselines: FML Round Time

LoRa gateway inside our laboratory and collected several SNR/RSSI mea-
surements in several di�erent locations, at a maximum distance of about 5
Km from the gateway, as shown in Figure 6.6. The SNR and RSSI values
have been used to model the channel conditions between the nodes and the
gateway, with an estimated noise power of about -105 dbm. All these data has
been fed to LoRa-RAP and to the baseline allocation procedures. Since re-
sults from the previous section demonstrated the ine�ectiveness of MinPow,
we omit the performance results from this baseline. Instead, we introduce a
variant of LoRa-RAP called LoRa-RAP Min SF. The di�erence is in the way
the load balancing criterion is applied. While LoRa-RAP tries to distribute
the nodes over all the available SFs (if possible), LoRa-RAP Min SF also aims
at keeping the SFs as low as possible. Intuitevely, in small-scale scenarios,
LoRa-RAP Min SF performs similarly to vanilla LoRa-RAP, if not worse.
For this reason, we chose not to evaluate LoRa-RAP on Colosseum, and to
instead test its performance over a larger, simulated scenario. Once again,
the baselines are evaluated in terms of both average energy consumption,
and FML round time. Similarly to the experiments run on Colosseum, we
evaluate the allocation strategies over a variable number of nodes, ranging
from 24 to 42 nodes. Figure 6.6 illustrates the SF allocation for LoRa-RAP
over all the 42 evaluated positions.

Figure 6.7 reports the average energy consumption per-node. In line with
the results from Colosseum, LoRa-RAP and LoRa-RAP Min SF exhibit a
slightly higher energy consumption, as compared to BestSF. Once again, in-
cluding more nodes, and, speci�cally, the farthest ones, results in an increased
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Figure 6.6: Physical locations of the nodes and gateways during data collection.

average energy consumption.
Figure 6.8 depicts the FML round time. LoRa RAP and LoRa-RAP Min

SF achieve a relevant improvement in the FML round time. More speci�cally,
LoRa-RAP is the best allocation strategy in most con�gurations, with an
improvement of up to 50% over BestSF. However, in some speci�c cases, LoRa
RAP Min SF introduces a slight improvement in the FML round time, as
compared to its vanilla version. The reason is the following: in some speci�c
cases, the node number can not exactly match the load balancing criteria. For
instance, let us consider a network made up of 8 nodes. if the airtime over SF
x is always double the airtime over SF x+1, i.e. ATSF,x+1 = 2 ∗ATSF,x, then
the load balancing condition is {4x, 2x, x}, i.e. 4 nodes assigned to SF 7, two
nodes to SF 8, and one to SF 9. In this case, however, this condition can not
be satis�ed, and the resulting allocation is instead {4, 2, 2}. The maximum
transmission time is therefore 2 ∗ ATSF,9. Under proper channel conditions,
one extra one could instead be allocated to SF 8, resulting in the distribution
{4, 3, 1}, and in a smaller transmission time of 3 ∗ ATSF,8 = 1.5 ∗ ATSF,9.
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Figure 6.7: Testbed - LoRa-RAP vs baselines: Average per-node Energy Consumption

Figure 6.8: Testbed - LoRa-RAP vs baselines: FML Round Time
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Chapter 7

Conclusions

This work described a two-fold paradigm at the network edge, where AI and
Resource Allocation techniques are intertwined and can reciprocally bene�t
from each other. More speci�cally, this work �rst analyzed the usage of
AI for Resource Allocation at the network edge, as opposed to traditional
model-based optimization approaches. Moreover, the thesis has outlined two
speci�c use cases, i.e. UAV cellular networks and vehicular networks. In
both scenarios, AI has provably improved the management of the available
resources, as well as the network performance.

Then, this thesis dealt with an opposite perspective, i.e. the usage of Re-
source Allocation frameworks to support AI in edge networks, with a speci�c
focus on the IoT. Accordingly, this work �rst described the implementa-
tion of the LPWAN protocol over SDR. Such an implementation has proven
crucial to design, experiment, and validate the e�ectiveness of FedLoRa, a
resource allocation framework for LoRa to improve the performance of Fed-
erated Learning in the IoT. As expected, the proper allocation of commu-
nication resources improves the speed of the learning procedures, up to an
impressive 35%, as compared to the baselines.

On the overall, this work of thesis has demonstrated why AI and ML will
play a key role in 5G and beyond networks. These techniques will indeed
enable a fully-distributed and model-free management of the few resources
available at the network edge, to the bene�t of the network latency, through-
put, and lifetime. The importance of AI and ML will become crucial and
will therefore stimulate a shift towards the paradigm of AI-centric networks.
In such a view, not only AI and ML contribute to the improvement of the
network e�ciency, but, vice-versa, the network itself is programmed and
managed to boost the performance of distributed learning schemes, such as
Federated Learning.
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Appendix A

Derivation of the Markov

Decision Process Matrices of the

VMEC-in-a-Box Framework

A.1 Transition probability matrix of the Markov

Decision Process Σ

In order to evaluate the transition probability of the Markov Decision Process
Σ, let us apply the total probability theorem to the number of possible arrivals
from both the areas, i.e. λ1 and λ2. We have:

P
(Q1,Q2|a)
[(s

′
Q1,s

′
Q2),(s

′′
Q1,s

′′
Q2)]

(s
′′

N1, s
′′

N2) =
∑

∀λ1 ∈ ℑ(Λ1)

∀λ2 ∈ ℑ(Λ2)

B
(Λ)

[(s
′′
N1,s

′′
N2),λ1,λ2]

· Pr

{
S(Q1)(n) = s

′′

Q1

S(Q2)(n) = s
′′

Q2

∣∣∣∣∣
S(Q1)(n− 1) = s

′

Q1,

S(Q2)(n− 1) = s
′

Q2, A(n) = a

Λ1(n) = λ1,Λ2(n) = λ2

} (A.1)

The probability term of the previous equation can be evaluated by con-
sidering that, according to the choice made for the slot duration ∆, kept
equal to the mean job service time on a MEC CE, b1 jobs, if present, will
be served in the queue Q1, and b2 jobs, if present, in the queue Q2. The
probability term in A.1 can be written as follows:
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P
(Q1,Q2|a)
[(s

′
Q1,s

′
Q2),(s

′′
Q1,s

′′
Q2)]

(s
′′

N1, s
′′

N2) = f (Q1)

(
s
′

Q1, s
′

Q2, s
′′

Q1, σ,

b1, b2, λ1, λ2

)
·f (Q2)

(
s
′

Q1, s
′

Q2, s
′′

Q2, σ,

b1, b2, λ1, λ2

)
(A.2)

where f (Q1) and f (Q2) are functions providing us the one-slot evolution
probabilities of the two MEC queues. Let us de�ne three Boolean variables to
decide the MEC server that can perform o�oad, according to the comparison
between the queue lengths:

INo-OL =
[
s
′

Q2 = s
′

Q1

]
IQ1→Q2 =

[
s
′

Q2 < s
′

Q1

]
IQ2→Q1 =

[
s
′

Q2 > s
′

Q1

]
(A.3)

They are used as follows: if INo-OL is true, none of the two MEC servers
performs o�oad; otherwise, o�oad can be done by the MEC Server 1 if
IQ1→Q2 is true, or by the MEC Server 2 if IQ2→Q1 is true.

The �rst function in A.3 can be calculated taking into account that,
according to the event sequence illustrated so far, the queue state at the
beginning of the slot, s

′
Q1, is decreased by the number of served jobs, b1, and

increased by the non-o�oaded jobs, min{σ, λ1}. In case of queue over�ow,
it is truncated to the value K. So, we have:

f (Q1)

(
s
′

Q1, s
′

Q2, s
′′

Q1, σ,

b1, b2, λ1, λ2

)
={

1 if (INo-OL and H(Q1)
No-OL

) or (IQ1→Q2 and H
(Q1)
Q1→Q2) or (IQ2→Q1 and H

(Q1)
Q2→Q1)

0 otherwise
(A.4)

The Boolean conditions H(Q1)
No-OL

, H(Q1)
Q1→Q2, and H

(Q1)
Q2→Q1 consider the tran-

sitions of the MEC Server 1 queue when no o�oads are done, when there
are possible o�oads from the MEC Server 1 to the MEC Server 2 and when
there are possible o�oads from the MEC Server 2 to the MEC Server 1,
respectively. They can be obtained as:

H
(Q1)
No-OL

=
[
s
′′

Q1 = min
{(

max {s′Q1 − b1, 0}+ λ1
)
, K
}]

H
(Q1)
Q1→Q2 =

[
s
′′

Q1 = min
{(

max {s′Q1 − b1, 0}+min {σ, λ1}
)
, K
}]

H
(Q1)
Q2→Q1 =

[
s
′′

Q1 = min

{(
max {s′Q1 − b1, 0}+ λ1 + (λ2 −min {σ, λ2})

)
, K

}]
(A.5)
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Dually, we can de�ne f (Q2)
(
s
′
Q2, s

′
Q2, s

′′
Q1, σ, b1, b2, λ1, λ2

)
for the MEC

Server 2.

A.2 Short-Term reward matrix of the Markov

Decision Process Σ

In order to calculate the short-term reward matrix of the Markov Decision
Process Σ, let us de�ne the expected value of the immediate reward for a
given transition from the state s

′
Σ to the state s

′′
Σ, and for a given action a

for the state s
′
Σ. It is a weighed sum of the four key performance parameters

characterizing the MEC Domain behavior, that is, the mean power consump-
tion, the mean net revenue, the mean delay for a job processed by the MEC
Domain and its loss probability. More in deep, we de�ne the immediate
reward associated to that transition as follows:

Ψ
(Σ|a)
[s

′
Σ,s

′′
Σ]
= −c1ξ(a)− c2θ(s

′′

Λ, a)− c3ϕM(s
′′

Σ, a)− c4ψM(s
′′

Σ, a) (A.6)

A.2.1 The �rst term in A.6: power consumption penalty

The �rst term regards the penalty (it becomes a reward thanks to the minus
sign) received for power consumption due to the active CEs, when the action
a = (b1, b2, σ) is performed according to the starting state s

′
Σ. It is given by:

ξ(a) = (b1 + b2) · ℘CE (A.7)

where ℘CE is the power consumption of each active CE. The terms b1 and
b2 are the numbers of CEs that have been decided to be active, as part of
the action a, in the current slot.

A.2.2 The second term in A.6: net revenue due to of-
�oad

The net revenue due to o�oad is constituted by two parts:

1. a revenue that is proportional to the amount of received jobs that
have been o�oaded by the Vehicular Domain, i.e. E{ΛV→M} , with a
constant of proportionality, Θ(OL)

V→M , representing the price applied by
the MPS to process one job in the MEC Domain;
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2. a penalty that is proportional to the mean number of o�oaded jobs to
another MEC server, E{ΦM→M |a} , with a constant of proportionality,
Θ

(OL)
M→M , representing the per-job o�oad cost from the MEC Server 1

to the MEC Server 2.

Therefore, we have

θ(s
′′

Λ, a) = −Θ
(OL)
V→M · E{ΛV→M}+Θ

(OL)
M→M · E{ΦM→M |a} (A.8)

The term E{ΛV→M} can be derived by applying the total probability
theorem to all the possible numbers of arrivals from the Areas 1 and 2 when
the state of the underlying Markov chain of the bi-dimensional Markov mod-
ulated process is s

′′
Λ:

E{ΛV→M} =
∑

∀λ1∈ℑ(Λ1)

∑
∀λ2∈ℑ(Λ2)

(λ1 + λ2) ·B(Λ)

[s
′′
Λ,λ1,λ2]

(A.9)

Likewise, the E{ΦM→M |a} can be derived considering the MEC server
that can perform some o�oad when the system state is s

′′
Σ:

E{ΦM→M |a} =
∑

∀λ1∈ℑ(Λ1)

∑
∀λ2∈ℑ(Λ2)

B
(Λ)

[s
′′
Λ,λ1,λ2]

·[
(λ1 −min {σ, λ1}) · IQ1→Q2 + (λ2 −min {σ, λ2}) · IQ2→Q1

] (A.10)

A.2.3 The third term in A.6: mean delay in the MEC
Domain

The third term in A.6 regards the delays su�ered in the MEC Server 1 and
MEC Server 2 queues. To this purpose, we indicate the number of jobs
arriving from the Areas 1 and 2 and not lost, as λ̃1 and λ̃2, respectively.
respectively. In order to calculate λ̃1 and λ̃2, we have to account that each
queue state goes through two di�erent steps before the possible arrival of the
o�oaded jobs coming from the other MEC server. For example, for the MEC
Server 1, starting from the state s

′
Q1 and after the departures, it reaches the

state s
′′
Q1,INT1 = max {s′Q1 − b1, 0}; then, after the arrivals from the Area 1,

we have two cases:

1. if o�oad from the MEC Server 1 is not allowed, all the λ1 jobs arriving
from the Area 1 are sent to Q1, and therefore the queue state becomes
s
′′
Q1,INT2 = min {s′′Q1,INT1 + λ1, K};

2. if the MEC Server 1 is enabled to o�oad jobs to the other server, its
queue state becomes s

′′
Q1,INT2 = min {s′′Q1,INT1 +min {σ, λ1}, K}.
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Therefore, the number of job arrivals from the Area 1 that are accommo-
dated in Q1 are λ̃1 = s

′′
Q1,INT2−s

′′
Q1,INT1. Likewise, the number of job arrivals

from the Area 2 that are accommodated in Q2 are λ̃2 = s
′′
Q2,INT2 − s

′′
Q2,INT1.

They will su�er a delay due to the queues they �nd in the MEC Servers 1
and 2, respectively. More speci�cally, the mean queue lengths they �nd are:

qa1→Q1 =
[
s
′′

Q1,INT2 +
(
s
′′

Q1,INT1 + 1
)]
/2 (A.11)

qa2→Q2 =
[
s
′′

Q2,INT2 +
(
s
′′

Q2,INT1 + 1
)]
/2 (A.12)

Instead, the number of o�oaded jobs from the MEC server with the
shortest queue to the other one is:

� λ̃OL − min {λOL, K − s
′′
Q2,INT}, where λOL = λ1 − min {σ, λ1}, if the

o�oading MEC server is the MEC Server 1;

� λ̃OL − min {λOL, K − s
′′
Q1,INT}, where λOL = λ2 − min {σ, λ2}, if the

o�oading MEC server is the MEC Server 2.

The mean queues the o�oaded jobs �nd on the other server where they
are o�oaded are:

qa1→Q2 = IQ1→Q2 ·
s
′′
Q2 +

(
s
′′
Q2,INT2 + 1

)
2

(A.13)

qa2→Q1 = IQ2→Q1 ·
s
′′
Q1 +

(
s
′′
Q1,INT2 + 1

)
2

(A.14)

where the terms IQ1→Q2 and IQ2→Q1 indicate whether there is some o�oad
from the MEC Server 1 to the MEC Server 2 or vice versa. Therefore,
applying the total probability theorem to the number of jobs arriving from
both the areas, the mean delay that the MPS estimates when the system is
in the state s

′
Σ and the action a is performed, is:

ϕM(s
′′

Σ, a) =
∑

∀λ1∈ℑ(Λ1)

∑
∀λ2∈ℑ(Λ2)

B
(Λ)

[s
′′
Λ,λ1,λ2]

· 1

λ̃1 + λ̃2 + λ̃OL

·

[
λ̃1
b1
qa1→Q1 +

λ̃OL

b2
qa1→Q2 +

λ̃2
b2
qa2→Q2 +

λ̃OL

b1
qa2→Q1

] (A.15)

where we have divided the mean queue lengths experienced by the arrived
jobs with the current queue service rates, and weighed them with the number
of jobs that enter each queue.
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A.2.4 The fourth term in A.6: loss probability in the
MEC Domain

The loss probability su�ered by jobs in the MEC Domain can be calculated as
the ratio between the number of jobs lost in the two MEC servers, LM1+LM2,
and the number of jobs arrived to the MEC Domain in the same slot, λ1+λ2:

ψM(s
′′

Σ, a) =
∑

∀λ1∈ℑ(Λ1)

∑
∀λ2∈ℑ(Λ2)

B
(Λ)

[s
′′
Λ,λ1,λ2]

· LM1 + LM2

λ1 + λ2
(A.16)

The number LM1 of lost jobs in the MEC Server 1 is the sum of:

� LQ1, representing the number of jobs arrived from the Area 1, which
have not been o�oaded and have not found any room in Q1;

� LOF1, representing the number of jobs that should be o�oaded (ac-
cording to the MPS decision) to Q2, but are discarded by the OFMEC

block of the MEC Server 1 because they would not found any rooms in
Q2.

In order to calculate LQ1, we consider that it only depends on the arrivals
from the Area 1, since jobs from the Area 2 are o�oaded by the OFMEC

block of the MEC Server 2 only if they are able to be accommodated in Q1.
Therefore, let us consider the Q1 starting state, s

′
Q1. It is decreased by the

departure of b1 jobs, and then increased by the arrival of either min {σ, λ1}
or λ1 jobs (whether the MEC Server 1 is not enabled or not for o�oading,
respectively). The term LQ1 is not null only if the resulting queue length is
higher than K after departures and local arrivals. Therefore, its value is:

LQ1 = max

{[
max {s′Q1 − b1, 0}+
(1− IQ1→Q2) · λ1 + IQ1→Q2 ·min {σ, λ1} −K

]
, 0

}
(A.17)

The term LOF1, on the other hand, is the di�erence between the number
of jobs that the OFMEC block has to o�oad to the MEC Server 2 and the
number ρ2 of available rooms in Q2 after departures and local arrivals, that
is:

LOF1 = max {IQ1→Q2 ·min{σ, λ1} − ρ2, 0} (A.18)

where ρ2 is the di�erence between the maximum queue size K and the Q2

queue size after departures and local arrivals from the Area 2:

ρ2 = max

{
K −

[
max {s′Q2 − b2, 0}+
(1− IQ2→Q1) · λ2 + IQ2→Q1 ·min {σ, λ2}

]
, 0

}
(A.19)

The terms needed to calculate the number LM2 of lost jobs in the MEC
Server 2 can be calculated at the same way.
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A.2.5 Battery model to calculate the service outage prob-
ability of a MEC server

In this section, we derive the transition probability matrix of the battery
behavior S(BT )(n) of a MEC server, aimed at deriving its service outage prob-
ability. Its generic element can be written as the product of three terms:

PBT
[s

′
BT ,s

′′
BT ]

= PRG
[s

′
RG,s

′′
RG]
· PCF

[b′ ,b′′ ]
· PQB

[s
′
QB ,s

′′
QB ]

(s
′′

RG, b
′′
) (A.20)

The matrix PRG is the transition probability matrix of the SBBP process
RG(n) describing the behavior of the microeolic power generator. This,
together with the matrix B(RG) giving us the probability distribution of the
amount of charge generated for each state of the wind, is an input of the
problem. They are de�ned as follows:

PRG
[s

′
RG,s

′′
RG]

= Pr
{
S(RG)(n) = s

′′

RG

∣∣∣∣S(RG)(n− 1) = s
′

RG

}
and

BWG
[s

′′
RG,βRG]

= Pr
{
(RG)(n) = βRG

∣∣∣∣S(RG)(n) = s
′′

RG

} (A.21)

In order to calculate the matrix P (CF ), let us de�ne the subset ℑ(Σ,1)
b

of ℑ(Σ) whose states are the ones that are characterized by an action that
activates b CEs in the MEC Server 1 ( it can be calculated in the same way
for the MEC Server 2):

ℑ(Σ,1)
b =

{
sΣ ∈ ℑ(Σ) such that a∗sΣ = (b, b2, σ),∀b2,∀σ

}
(A.22)

where a∗sΣ a indicates the best action associated to the state sΣ.
Now, the probability of transition for the process S(CF (n), representing

the number of active CEs in the MEC Server 1, from the generic state b
′
of

the process S(CF )(n) (i.e. b
′
active CEs) to b

′′
can be easily calculated as

follows:

PCF
[b′ ,b′′ ]

= Pr
{
S(CF )(n) = b

′′
∣∣∣∣S(CF )(n− 1) = b

′
}
=

∑
∀s′Σ∈ℑ

(Σ,1)

b
′

∑
∀s′′Σ∈ℑ

(Σ,1)

b
′′

P
(Σ)

[s
′
Σ,s

′′
Σ]
·

π
(Σ)

[s
′′
Σ]∑

∀s̃Σ∈ℑ
(Σ,1)

b
′

π
(Σ)
[̃sΣ]

(A.23)

where ℑ(Σ,1)

b′
and ℑ(Σ,1)

b′′
are the subsets of the state space ℑ(Σ) containing

the states sΣ characterized by an action that activates, in the MEC Server
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1, b
′
and b

′′
CEs, respectively. Finally, as far as the matrix PQB(s

′′
RG, b

′′
)

in A.20 is concerned, it contains the transition probabilities of the battery
charge level from the slot n− 1 to the slot n. It depends on the state of the
wind generator and the load (constituted by the active CEs of the considered
MEC Server) in the arrival slot n. Let us indicate the number of QoCs
that b

′′
active CEs drain from the battery as ξCF . Since it may be not an

integer, we approximate it to the closest integers with probabilities depending
on the distance from them. More speci�cally, we will approximate ξCF to
ξ
(−)
CF = ⌊ξCF ⌋ with probability p(−)

CF , and to ξ
(+)
CF = ⌈ξCF ⌉ with probability p(+)

CF ,
where p(−)

CF = ξ
(+)
CF − ξCF and p(+)

CF = ξCF − ξ(−)
CF . For example, if ξCF = 3.7,

it will be rounded to ξ+CF = 4.0 with probability p(+)
CF = 0.7, or to ξ−CF = 3.0

with probability p(−)
CF = 0.3. Therefore, the generic element of P (QB)(s

′′
WG, b

′′
)

can be calculated as follows:

PQB

[s
′
QB ,s

′′
QB ]

(s
′′

RG, b
′′
) =∑

∀βRG∈Ψ(RG)

B
(WG)

[s
′′
RG,βRG]

· Pr
{
S(QB)(n) = s

′′

QB

∣∣∣∣S
(QB)

(n − 1) = s
′
QB , S

(RG)
(n) = s

′′
RG

S
(CF )

(n) = b
′′

}
=

∑
∀βRG∈Ψ(RG)

B
(RG)

[s
′′
RG,βRG]

·

{B
(WG)

[s
′′
RG

· p(+)
CF

if C
+
QB

B
(WG)

[s
′′
RG

· p(−)
CF

if C
−
QB

0 otherwise

}
(A.24)

where C(+)
QB and C(−)

QB are two Boolean conditions representing the transi-
tion of the battery charge level (expressed in QoBs) from the state QB s

′
QB

to the state s
′′
QB when βRG QoBs arrived to the battery from the wind gen-

erator during the slot n, and either ξ(+)
CF or ξ(−)

CF QoBs have been drained by
the active CEs during the same slot:

C
(+)
QB =

[
s
′′

QB = min {max {s′QB + βRG − ξ+CF , 0}, KQoB}
]

(A.25)

C
(−)
QB =

[
s
′′

QB = min {max {s′QB + βRG − ξ−CF , 0}, KQoB}
]

(A.26)

The maximum with 0 and the minimum with KQoB avoid that s
′′
QB as-

sumes negative values or values greater than KQoB.
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