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Abstract
A preference–approval on a set of alternatives consists of a weak order on that set and,
additionally, a cut-off line that separates acceptable and unacceptable alternatives. In this
paper, we propose a new method for defining the distance between preference–approvals
taking into account jointly the disagreements in preferences and approvals for each pair of
alternatives. The proposed distance is compared to the existing distance functions to deal with
clustering problems. Specifically, we prove that our metric improves the estimated clusters
in terms of both stability and accuracy.

Keywords Preferences · Approval voting · Preference–approvals · Distances · Clustering

1 Introduction

In social choice theory, preference rankings and approvals are two popular ways to collect
the preferences of a group of agents on a set of alternatives. Preference rankings order the
alternatives from best to worst without distinguishing between acceptable and unacceptable
alternatives. That is, if a is ranked above b, we can only infer that a is preferred to b, but
we cannot infer anything about their absolute acceptability. In contrast, the approval voting
system (Brams&Fishburn, 1978) consists of separating the set of acceptable alternatives from
the set of unacceptable alternatives without considering preferences neither over acceptable
nor over unacceptable alternatives.
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Preference rankings and approval voting are related, but they are basically different types
of information and cannot be inferred from each other.

In this paper, we focus on preference–approval structures. They combine preferences over
the alternatives, through aweak order, and establishwhich alternatives are acceptable (Brams,
2008, Chapter 3; Brams & Sanver, 2009; Sanver, 2010). In preference–approval structures,
voters can pay attention to which alternatives are acceptable and simultaneously rank-order
them. Voters may either rank-order unacceptable alternatives or avoid declaring their prefer-
ences about them1 by (implicitly) showing indifference between these alternatives2.

The distance and correlation between two preference rankings are of particular interest
within this framework. Kendall’s correlation coefficient (Kendall, 1948) is likely the most
well-known ranking metric. Kendall’s correlation coefficient is a measure of similarity that
can be linearly transformed into a measure of dissimilarity (i.e., the Kendall’s distance),
which counts the number of pairwise disagreements between two rankings. Emond and
Mason (2002, p. 20) demonstrated that when indifference between alternatives is allowed
(weak orders), Kendall’s distance violates the triangle inequality. Moreover, the Kendall’s
correlation of the all ties ranking with any other weak order is undefined, resulting in a 0/0.

The Spearman’s distance (Spearman, 1987), another famous ranking metric, between two
rank vectors is calculated by taking the square root of the sum of the squared rank differences.
Spearman’s distance uses rank values as if they were mathematical variates, which leads to
anomalous behaviour. Indeed, Spearman distance suffers from sensitivity to irrelevant alter-
natives (see Emond, 1997, p. 4; Emond &Mason, 2000, p. 16). In short, including additional
irrelevant objects in the ranking exercise may alter the maximum agreement solution.

Kemeny and Snell (1962) took a different approach to this problem. They defined a set of
additional axioms that should be applicable to any distancemeasure between twoweakorders,
and introduced a distance that satisfies all these constraints. Besides the classical properties
(positivity, symmetry, identity of indiscernibles and triangle inequality), theKemeny distance
is not affected by a relabeling of alternatives (neutrality), and it is consistent in measurement
as the number of objects varies (i.e. it is not sensible to irrelevant alternatives). The Kemeny
distance is a city block and a geodesic distance in the permutation polytope (see Heiser,
2004). It takes the shortest path between two rankings.

Generally, extensions to ranking measures have mainly focused on the definition of
weighted distances (see García-Lapresta & Pérez-Román, 2010, Albano & Plaia 2021, Plaia
et al., 2021). In the last years, there has been a dramatic increase in recent publications about
preference–approval structures and the introduction of consensus and distance measures in
that setting.

Erdamar et al. (2014) introduced a family of distances in the preference–approval setting,
and they applied them tomeasure the consensus in that framework. Kamwa (2019) studied the
propensity of the preference–approval voting of electing the Condorcet winner/loser when
they exist.

Dong et al. (2021) established some axioms implying the existence of a distinct distance
function of preference–approval systems. They investigated a preferences aggregation model
in the context of group decision-making based on the proposed axiomatic distance function.

Kruger and Sanver (2021) investigated the compatibility between ordinal and evaluative
approaches to social choice theory under two weak assumptions: respect for unanimity and

1 This is the case of fallback voting in Brams and Sanver (2009).
2 If the number of alternatives is large, voters may have difficulties to rank-order all the alternatives (see
Dummett 1984, p. 243).

123



Annals of Operations Research (2023) 323:1–29 3

independence of evaluation of each alternative. They claimed that there is an incompatibility
between the two, and described some options whenever the second assumption is relaxed.

Long et al. (2021) developed a two-stage consensus reaching method for multi-attribute
group decision making problems with preference–approval structures, promoting the effi-
ciency of consensus reaching.

Barokas and Sprumont (2021) extended the classing Borda count to rank alternative in
preference–approval setting, constructing an axiomatization of a new aggregation procedure
called broken Borda rule.

In this paper, we propose a newdistance for preference–approvals, following the axiomatic
approach of the Kemeny distance. However, while the Kemeny distance can only consider
the preference–discordance, our approach takes into account the approval-discordance as
well, and use an aggregation function to combine the two types of information for each pair
of alternatives.

We show that using, as an aggregation function, the family of weigthed power means (a
class of weighted quasiarithmetic means) brings the benefit of many interesting properties.
The final aggregated distance will thus be the sum of the pairwise preference–approval
discordances. Furthermore, we show that our distance respects the fundamental properties
to be defined as a metric and that, under certain assumptions, it has a precise geometric
interpretation.

Our proposal can be regarded as the generalization of the Erdamar et al. (2014) distance
measure, with the two coinciding for a specific parameter setting. However, we show that the
proposed distance family has some advantages over the existing one as it is more versatile
and performs better in cluster analysis.

Finally, the proposed metric is used to cluster a set of preference–approvals into homoge-
neous groups, considering the whole 2-dimensional universe of preference–approvals and a
real case study.

The paper is organized as follows. Section 2 is devoted to introduce basic notation,
preference–approvals and the codifications used throughout the paper. Section 3 includes
our proposal for measuring distances between preference–approvals and some results. Sec-
tion 4 offers some applications to the clustering task. Finally, Sect. 5 concludes the paper
with some remarks.

2 Preliminaries

Let X = {x1, . . . , xn} a finite set of alternatives, with n ≥ 2. A weak order (or complete
preorder) on X is a complete and transitive binary relation on X . A linear order on X is an
antisymmetric weak order on X . With W (X) and L(X) we denote the set of weak and linear
orders on X , respectively. Given R ∈ W (X), with � and ∼ we denote the asymmetric and
the symmetric parts of R, respectively: xi � x j if not x j R xi , and xi ∼ x j if xi R x j and
x j R xi .

Given a set Y , with P(Y ) we denote its power set, i.e., I ∈ P(Y ) ⇔ I ⊆ Y . In turn,
with #Y we denote the cardinality of Y .

2.1 Preference–approval

Consider that a set of voters V = {v1, . . . , vm}, with m ≥ 2, have to express their opinions
over X . We assume that each voter ranks the alternatives in X by means of a weak order and,
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additionally, assesses each alternative as either acceptable or unacceptable by partitioning X
into A, the set of acceptable alternatives, and U = X \ A, the set of unacceptable alternatives,
where A and U can be empty sets.

We also assume the following consistency condition: given two alternatives xi and x j , if
x j is acceptable and xi is ranked above x j , then xi should be acceptable as well.

Definition 1 A preference–approval on X is a pair (R, A) ∈ W (X) × P(X) satisfying the
following condition:

∀xi , x j ∈ X
(
(xi R x j and x j ∈ A) ⇒ xi ∈ A

)
.

With R(X) we denote the set of preference–approvals on X .

Remark 1 If (R, A) ∈ R(X), then the following conditions are satisfied:

1. ∀xi , x j ∈ X
(
(xi ∈ A and x j ∈ U ) ⇒ xi � x j

)
.

2. ∀xi , x j ∈ X
(
(xi R x j and xi ∈ U ) ⇒ x j ∈ U

)
.

We now illustrate preference–approval structures through the following example.

Example 1 Let us consider (R, A) ∈ R({x1, . . . , x8}) represented by

x4
x1 x6

x2
x3

x5 x7 x8.

It means that alternatives in the same row are indifferent, alternatives in upper rows are
preferred to those located in lower rows, alternatives above the line are acceptable, i.e.,
A = {x1, x2, x4, x6}, and those below the line are unacceptable, i.e., U = {x3, x5, x7, x8}.
Table 1 includes the number of possible approvals, linear orders, weak orders and

preference–approvals when the number of alternatives is n = 2, 3, . . . , 10.
It is well-known that the total number of approvals (subsets of X ) and linear orders are 2n

and n!, respectively. The number of weak orders is n!(log2 e)n+1/2 (see Good, 1980). The
formula for calculating the number of preference–approvals has never been defined in the

Table 1 Number of approvals, linear orders, weak orders and preference–approvals

n Approvals Linear orders Weak orders Preference–approvals

2 4 2 3 8

3 8 6 13 44

4 16 24 75 308

5 32 120 541 2612

6 64 720 4683 25,988

7 128 5040 47,293 296,564

8 256 40,320 545,835 3,816,548

9 512 362,880 7,087,261 54,667,412

10 1024 3,628,800 102,247,563 862,440,068
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literature. For the first time, the exact number of preference–approvals for n = 2, 3, . . . , 10
alternatives is reported herein in Table 1. The formula to compute the exact number of
preference–approvals on a set of n alternatives is

ω(n) =
n∑

r=0

(r + 1)! S(r)
n , (1)

where S(r)
n is a Stirling integer (number) of the second kind defined by David and Barton

(1962, p. 294), Abramowitz and Stegun (1964, p. 824) and more thoroughly in Fisher and
Yates (1953, p. 78), while r denotes the number of distinct positions in a weak order on n
alternatives, also known as buckets. For example, considering four alternatives, if two are
tied for first place and the other two are tied for third place, we can say that the number of
distinct positions, or buckets, is two.

Table 2 shows the quotients between preference–approvals and approvals. In turn, Table 3
shows the quotients between preference–approvals and weak orders.

It is clear that the expressivity of voters explodes with preference–approvals.

Table 2 Quotients between
preference–approvals and
approvals

n Quotients

2 2

3 5.5

4 19.25

5 81.62

6 406.06

7 2316.91

8 14,908.39

9 106,772.29

10 842,226.63

Table 3 Quotients between
preference–approvals and weak
orders

n Quotients

2 2.67

3 3.38

4 4.11

5 4.83

6 5.55

7 6.27

8 6.99

9 7.71

10 8.43
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2.2 Codifications

Assigning positions to alternatives in linear orders is trivial because indifferences among
distinct alternatives are not allowed. Given R ∈ L(X), the position of each alternative
xi ∈ X in R is defined through the mapping PR : X −→ {1, . . . , n} that assigns 1 to the
alternative ranked first, 2 to the alternative ranked second, and so on.

There are different ways of assigning positions to the alternatives in weak orders. One of
them is used by García-Lapresta and Pérez-Román (2011) and it is based on Smith (1973),
Black (1976) and Cook and Seiford (1982).

Given R ∈ W (X), the position of xi ∈ X in R is assigned through the mapping
PR : X −→ [1, n] defined as

PR(xi ) = n − # {xk ∈ X | xi � xk} − 1

2
· # {xk ∈ X \ {xi } | xi ∼ xk} . (2)

Given A ⊆ X , the indicator function (or characteristic function) of A, IA : X −→ {0, 1},
is defined as

IA(xi ) =
{
1, if xi ∈ A,

0, if xi ∈ X \ A.
(3)

Remark 2 Every preference–approval (R, A) ∈ R({x1, . . . , xn}) can be codified in terms of
PR(xi ) [Eq. (2)] and IA(xi ) [Eq. (3)] as follows:

(
PR(x1), PR(x2), . . . , PR(xn)

)
&

(
IA(x1), IA(x2), . . . , IA(xn)

)
. (4)

Example 2 Consider the preference–approval (R, A) ∈ R({x1, x2, x3, x4}) represented by

x4
x1
x2

x3

Following Eq. (4), (R, A) is codified as (2, 3, 4, 1)& (1, 1, 0, 1).

The sign function, sgn : R −→ {−1, 0, 1}, is defined as

sgn (a) =
⎧
⎨

⎩

1, if a > 0 ,

0, if a = 0 ,

−1, if a < 0 .

Taking into account May (1952) and Fishburn (2015), we now introduce an index that
codifies the order between two alternatives in a weak order R ∈ W (X):

OR(xi , x j ) =
⎧
⎨

⎩

1, if xi � x j ,

0, if xi ∼ x j ,

−1, if x j � xi .

(5)

It is worth noting that the index OR(xi , x j ) is also known in the literature as ai j (see
Kemeny & Snell, 1962, p. 11) or score matrix (see Emond & Mason, 2002). In this paper,
to avoid confusion with the approval-discordance notation of Eq. (8), we chose to use the
notation OR(xi , x j ).
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3 The proposal

Given two preference–approvals
(
(R1, A1), (R2, A2)

) ∈ R(X) and two generic alternatives
xi , x j ∈ X , we now introduce two indices that measure the discordances between these
alternatives with respect to preference and approvals, respectively.

The preference–discordance between xi and x j is defined as

pi j = 1

2
· | sgn (

PR1(x j ) − PR1(xi )
) − sgn

(
PR2(x j ) − PR2(xi )

) |. (6)

Taking into account Eqs. (5), (6) can be defined in an equivalent and simpler way:

pi j = 1

2
· |OR1(xi , x j ) − OR2(xi , x j )|, (7)

and therefore, pi j ∈ {0, 0.5, 1}.
The approval-discordance between xi and x j is defined as

ai j = 1

2
· (|IA1(xi ) − IA2(xi )| + |IA1(x j ) − IA2(x j )|

)
, (8)

and again ai j ∈ {0, 0.5, 1}.
In both cases, the values of 0, 0.5 and 1 indicate a null, moderate and high discordance,

respectively. In order to generate a global measure of discordance between two alternatives,
we consider an aggregation function (see Beliakov et al., 2007; Grabisch et al., 2009; Ramík
& Vlach, 2012, Sect. 2, among others).

Definition 2 Given an aggregation function h : [0, 1] × [0, 1] −→ [0, 1], the distance
associated with h, D : R(X) × R(X) −→ [0, 1], is defined as

D
(
(R1, A1), (R2, A2)

) = 2

n · (n − 1)
·

n∑

i, j=1
i< j

h(pi j , ai j ). (9)

Among the huge variety of aggregation functions, in this proposal we consider a class
of weighted quasiarithmetic means3: the family of weighted power means, h : [0, 1] ×
[0, 1] −→ [0, 1], defined as

h(x, y) = (
λ · xr + (1 − λ) · yr ) 1

r , (10)

where λ ∈ [0, 1] and r > 0.

Remark 3 Weighted power means, defined in Eq. (10), have interesting properties [see, for
instance, Beliakov et al. (2007, pp. 45–47)]:

1. Continuity: h is continuous.

2. Monotoniciy: (x ≤ x ′ and y ≤ y′) ⇒ h(x, y) ≤ h(x ′, y′), for all x, y, x ′, y′ ∈ [0, 1].
3. Idempotency: h(x, x) = x for every x ∈ [0, 1].
4. Compensativeness: min{x, y} ≤ h(x, y) ≤ max{x, y} for all x, y ∈ [0, 1].
5. Comparability: h is increasing in r .

3 They are defined as h(x, y) = g−1(λ · g(x) + (1 − λ) · g(y)
)
, where g is a generating function (see, for

instance, Ostasiewicz & Ostasiewicz, 2000; Beliakov et al., 2007, Section 2.3).
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Table 4 Values of h for λ = 0.5
(x, y) h(x, y)

r = 0.5 r = 1 r = 1.5 r = 2 r = 5 r = 10

(0, 0) 0 0 0 0 0 0

(0, 0.5) 0.12 0.25 0.31 0.35 0.44 0.47

(0, 1) 0.25 0.50 0.63 0.71 0.87 0.93

(0.5, 0) 0.12 0.25 0.31 0.35 0.44 0.47

(0.5, 0.5) 0.50 0.50 0.50 0.50 0.50 0.50

(0.5, 1) 0.73 0.75 0.77 0.79 0.88 0.93

(1, 0) 0.25 0.50 0.63 0.71 0.87 0.93

(1, 0.5) 0.73 0.75 0.77 0.79 0.88 0.93

(1, 1) 1 1 1 1 1 1

Table 5 Values of h for
λ = 0.75

(x, y) h(x, y)

r = 0.5 r = 1 r = 1.5 r = 2 r = 5 r = 10

(0, 0) 0 0 0 0 0 0

(0, 0.5) 0.03 0.12 0.20 0.25 0.38 0.44

(0, 1) 0.06 0.25 0.40 0.50 0.76 0.87

(0.5, 0) 0.28 0.38 0.41 0.43 0.47 0.49

(0.5, 0.5) 0.50 0.50 0.50 0.50 0.50 0.50

(0.5, 1) 0.61 0.62 0.64 0.66 0.77 0.87

(1, 0) 0.56 0.75 0.83 0.87 0.94 0.97

(1, 0.5) 0.86 0.88 0.89 0.90 0.95 0.97

(1, 1) 1 1 1 1 1 1

6. Symmetry: h(x, y) = h(y, x) for all x, y ∈ [0, 1] ⇔ λ = 0.5.

7. lim
r→∞ h(x, y) = max{x, y}.

8. lim
r→0

h(x, y) = xλ · y1−λ (weighted geometric mean).

Notice that the inputs of h in Eq. (9) are the pairs of 0, 0.5, 1. In Tables 4 and 5 we show
the values of h for these pairs and different values of the parameter r for λ = 0.5, 0.75,
respectively.

According to Tables 4 and 5 , the parameter r governs the penalty for each pair of values.
Indeed, as r increases, so does the value of h(pi j , ai j ). As a result, taking an excessively
large r value results in very similar penalties and reduces the weight of high discordance
compared to moderate discordance.

Taking into account Eq. (9) with the aggregation function h in Eq. (10), we now introduce
the family of distances on preference–approvals that we analyze in the present paper.

Definition 3 Given λ ∈ [0, 1] and r > 0, the distance associated with λ and r is the
mapping Dr

λ : R(X) × R(X) −→ [0, 1] defined as

Dr
λ

(
(R1, A1), (R2, A2)

) = 2

n · (n − 1)
·

n∑

i, j=1
i< j

(
λ · pr

i j + (1 − λ) · ar
i j

) 1
r
. (11)
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Fig. 1 Preference–approval plane

Remark 4 When r = 2 and λ = 0.5, the geometric interpretation of h(pi j , ai j ) is related
to the Euclidean distance.

Figure 1 reports the preference–approval plane, that is a Euclidean plane having on the
x-axis the preference–discordance, pi j , and on the y-axis the approval-discordance, ai j .

If r = 2 and λ = 0.5, then h(pi j , ai j ) is proportional to the Euclidean distance between
(pi j , ai j ) and the origin, (0, 0), d

(
(pi j , ai j ), (0, 0)

)
:

h(pi j , ai j ) =
√
0.5 · (p2i j + a2

i j ) = √
0.5 · d

(
(pi j , ai j ), (0, 0)

)
, i.e.,

h(pi j , ai j ) ∝ d
(
(pi j , ai j ), (0, 0)

)
.

This means that the aggregation function h can be interpreted as a proper distance in
the preference–approval plane. As a result, the point of greatest discordance, (1, 1), will be
the farthest from the origin of the axes. Conversely, (0, 0) represents the point of greatest
agreement. The red segments in Fig. 1 are proportional to the values h(pi j , ai j ) for each
pi j , ai j ∈ {0, 0.5, 1}.

Thus, the aggregated distance D2
0.5

(
(R1, A1), (R2, A2)

)
[see Eq. (11)] can be interpreted

as the sum of n·(n−1)
2 Euclidean distances in the preference–approval plane. That is,

D2
0.5

(
(R1, A1), (R2, A2)

) = √
0.5 ·

n∑

i, j=1
i< j

d
(
(pi j , ai j ), (0, 0)

)
.

Proposition 1 Dr
λ is a metric on R(X) for all λ ∈ (0, 1) and r ≥ 1. That is, for all

(R1, A1), (R2, A2) ∈ R(X) the following conditions are satisfied4:

1. Positivity: Dr
λ

(
(R1, A1), (R2, A2)

) ≥ 0.

4 If 0 < r < 1, then Dr
λ reduces to a distance since the triangle inequality does not hold.
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2. Symmetry: Dr
λ

(
(R1, A1), (R2, A2)

) = Dr
λ

(
(R2, A2), (R1, A1)

)
.

3. Identity of indiscernibles: Dr
λ

(
(R1, A1), (R2, A2)

) = 0 ⇔ (R1, A1) = (R2, A2).

4. Triangle inequality: Dr
λ

(
(R1, A1), (R3, A3)

) ≤ Dr
λ

(
(R1, A1), (R2, A2)

)+ Dr
λ

(
(R2, A2),

(R3, A3)
)
, for every (R3, A3) ∈ R(X).

Remark 5 If λ ∈ {0, 1}, then Dr
λ is not a metric.

If λ = 0, let (R1, A1), (R2, A1) ∈ R(X) be such that R1 �= R2. Then, we have
Dr

λ

(
(R1, A1), (R2, A1)

) = 0.
If λ = 1, let (R1, A1), (R1, A2) ∈ R(X) be such that A1 �= A2. Then, we have

Dr
λ

(
(R1, A1), (R1, A2)

) = 0.
Consequently, if λ ∈ {0, 1}, then Dr

λ does not verify the identity of indiscernibles, hence
it is not a metric.

Proposition 2 demonstrate that our proposal can be considered as a generalization of the
preference–approval distance proposed by Erdamar et al. (2014).

Given twopreference–approvals
(
(R1, A1), (R2, A2)

) ∈ R(X), its distance, dλ

(
(R1, A1),

(R2, A2)
)
, is generated from the preference distance and the approval distance marginally,

and eventually aggregate them by a convex combination.
The authors measure the disagreement between preferences by using the Kemeny metric

(Kemeny, 1959), dK :

dK (R1, R2) =
n∑

i, j=1
i< j

| sgn (
PR1(x j ) − PR1(xi )

) − sgn
(
PR2(x j ) − PR2(xi )

) |.

Or, equivalently, by considering Eq. (5):

dK (R1, R2) =
n∑

i, j=1
i< j

|OR1(xi , x j ) − OR2(xi , x j )|. (12)

Notice that dK (R1, R2) ∈ [0, n · (n − 1)].
In turn, the approval disagreement is measured through the Hamming metric (Hamming,

1950), dH :

dH (A1, A2) =
n∑

i=1

|IA1(xi ) − IA2(xi )|. (13)

Notice that dH (A1, A2) ∈ [0, n].
In order to aggregate dK and dH as a global distance, the two metrics are normalized to

the same codomain [0, 1] via dividing by their maximum distances.
The mappings dR : R(X) × R(X) −→ [0, 1] and dA : R(X) × R(X) −→ [0, 1] are

defined as

dR
(
(R1, A1), (R2, A2)

) = dK (R1, R2)

n · (n − 1)
,

dA
(
(R1, A1), (R2, A2)

) = dH (A1, A2)

n
.

The two normalized distances are eventually aggregated in a final preference–approval
distance, dλ : R(X) × R(X) −→ [0, 1], defined as

123



Annals of Operations Research (2023) 323:1–29 11

dλ

(
(R1, A1), (R2, A2)

) =
λ · dR

(
(R1, A1), (R2, A2)

) + (1 − λ) · dA
(
(R1, A1), (R2, A2)

)
, (14)

where λ ∈ [0, 1] is a parameter used to control the relative relevance of the two components.
Taking into account Eqs. (12) and (13), (14) can be re-written as

dλ

(
(R1, A1), (R2, A2)

) =
λ

n · (n − 1)
·

n∑

i, j=1
i< j

|OR1(xi , x j ) − OR2(xi , x j )| +

1 − λ

n
·

n∑

i=1

|IA1(xi ) − IA2(xi )|. (15)

Proposition 2 For all (R1, A1), (R2, A2) ∈ R(X) and λ ∈ [0, 1] it holds

D1
λ

(
(R1, A1), (R2, A2)

) = dλ

(
(R1, A1), (R2, A2)

)
.

Note that Proposition 2 is valid for weighted power means. They are the proper weighted
quasiarithmetic means that allow us to generalize the distance between preference–approvals
introduced by Erdamar et al. (2014).

In Proposition 2, we have shown that Dr
λ = dλ when r = 1. We now show that is not

true if r �= 1.

Proposition 3 If r �= 1, Dr
λ

(
(R1, A1), (R2, A2)

) = dλ

(
(R1, A1), (R2, A2)

)
for all

(R1, A1), (R2, A2) ∈ R(X) and λ ∈ [0, 1] is not true.

Proof Let us consider the case of two alternatives. Notice that in Eq. (11), when n = 2, Dr
λ

reduces to the h function computed in i = 1 and j = 2. That is, Dr
λ

(
(R1, A1), (R2, A2)

) =
h(p12, a12) = (λ· pr

12+(1−λ)·ar
12)

1
r . By Proposition 2, we have D1

λ

(
(R1, A1), (R2, A2)

) =
dλ

(
(R1, A1), (R2, A2)

) = λ · p12 + (1 − λ) · a12.
If we force the equality D1

λ

(
(R1, A1), (R2, A2)

) = Dr
λ

(
(R1, A1), (R2, A2)

)
, we have

λ · p12 + (1 − λ) · a12 = (λ · pr
12 + (1 − λ) · ar

12)
1
r , i.e.,

(λ · p12 + (1 − λ) · a12)
r = λ · pr

12 + (1 − λ)ar
12. (16)

We have to prove that there exist p12, a12 ∈ {0, 0.5, 1} and λ ∈ [0, 1] such that Eq. (16) is
not true for any r �= 1.

If p12 = 1 and a12 = 0, then Eq. (16) becomes λr = λ, and it is true if and only if
λ ∈ {0, 1}. In all the other cases, if r �= 1, then Eq. (16) is false. ��

4 Clustering tasks

This section shows how the proposed distance can be used to study the universe of preference–
approvals and to determine clusters.

Section 4.1 examines the universe of preference approvals in the case of two alternatives
in order to observe how the values of r and λ affect the creation of homogeneous clusters.
Afterwards, the influence of the two parameters r and λ when the number of alternatives
n varies is investigated.
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Section 4.2 provides an application on real data, to investigate how the countries of the
European Union can be clustered into groups, according to their preference–approvals on
nine alternatives concerning social values. The dataset used comes from the Eurobarometer
website5.

4.1 Universe of preference–approvals

Let us consider the 2-dimensional preference–approval universe where the set of alternatives
is X = {x1, x2}. Following Eq. (4), the preference–approvals (Ri , Ai ), i = 1, 2, . . . , 8, are
represented by two 2-dimensional vectors:

(2, 1)& (1, 1) ≡ x2
x1

(2, 1)& (0, 1) ≡ x2
x1

(2, 1)& (0, 0) ≡ x2
x1

(1, 2)& (1, 1) ≡ x1
x2

(1, 2)& (1, 0) ≡ x1
x2

(1, 2)& (0, 0) ≡ x1
x2

(1.5, 1.5)& (1, 1) ≡ x1 x2 (1.5, 1.5)& (0, 0) ≡ x1 x2

The distances between preference–approvals on two alternatives for r = 1 and λ = 0.5
(Fig. 2) and λ = 0.75 (Fig. 3) are reported in the heatmaps.

Increasing the value of λ emphasizes the discordance in the preference part, and modifies
the relationships between the corresponding preference–approvals. Indeed, when λ = 0.75,
there is an increase in the intensity of the distances at the top-right hand side of the graph,
which concerns the triples

(2, 1)& (1, 1), (2, 1)& (0, 1), (2, 1)& (0, 0)

and

(1, 2)& (0, 0), (1, 2)& (1, 1), (1, 2)& (1, 1).

The hierarchical relationship between objects is reported in Fig. 4; the dendrograms show
how the hierarchical clustering of the eight preference–approvals changes based on Dr

λ.
Figure 4 shows that the value of λ strongly influences the hierarchical aggregation of

preference–approvals.
A similar analysis can be carried out by varying the value of r . In Fig. 5 the distances

between the corresponding preference–approvals, for r = 2 and λ = 0.5 are shown.

5 https://europa.eu/eurobarometer/screen/home.
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Fig. 2 Distances between preference–approvals for 2 alternatives, r = 1 and λ = 0.5

Fig. 3 Distances between preference–approvals for 2 alternatives, r = 1 and λ = 0.75
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Fig. 4 Hierarchical clustering dendrogram for 2 alternatives, r = 1, λ = 0.5 (left) and λ = 0.75 (right)

Fig. 5 Distance between preference–approvals for 2 alternatives, r = 2, λ = 0.5

Compared to Figs. 2 and 5 shows a general increase of distances determined by the increase
of r . In particular,

D2
λ

(
(R1, A1), (R2, A2)

) ≥ D1
λ

(
(R1, A1), (R2, A2)

)
,

for all (R1, A1), (R2, A2) ∈ R(X). This is due to h being increasing in r .
The dendrograms between preference–approvals objects are reported in Fig. 6.
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Fig. 6 Hierarchical clustering dendrogram for 2 alternatives, r = 1 (left), r = 2 (right) and λ = 0.5

Table 6 Cophenetic dendrogram
correlations for n = 2,
r = 1, 1.5, 2, 5, 10 and
λ = 0.5

n = 2 1 1.5 2 5 10

1 1

1.5 0.99 1

2 0.98 1 1

5 0.94 0.97 0.98 1

10 0.90 0.94 0.97 1 1

Figure 6 shows that an increase in r contributes differently (with respect to an increase
in λ) to the change of the hierarchical aggregation structure. In fact, the two dendrograms
merge preference–approvals in the same way. What changes is the “height” at which there is
the aggregation or, in other words, the distance to be tolerated to aggregate two preference–
approvals. Note that this happens only for two alternatives.

Tables 6, 7, 8 and 9 show the cophenetic correlation coefficient6 (see Sokal &Rohlf, 1962;
Schlee, 1973, pp. 278–284) between dendrograms, for n = 2, 3, 4, 5 and λ = 0.5. The
cophenetic coefficient was computed in R using the dendextend package (Galili, 2015).

Tables 6, 7, 8 and 9 show that dendrogram correlations are strictly related to the values
of r and n. Overall, the correlations between dendrograms tend to decrease as r increases.
This is especially evident when we examine the first column of each table, which reports
the correlation between dendrograms obtained with r = 1 and dendrograms obtained with
r = 1.5, 2, 5, 10. In terms of the number of alternatives, it should be noted that as n
increases, the dendrogram correlations generally decrease with an oscillatory trend.

In other words, Tables 6, 7, 8 and 9 highlight that the parameter r has a considerable
influence, not only on the resulting values of the proposed distance Dr

λ, but also on the

6 The cophenetic correlation coefficient is a measure of similarity between dendrograms. It is particularly
used in biostatistics to investigate how faithfully a dendrogram preserves the pairwise distances between the
original unmodeled data points, or also to study where raw data tends to occur in clumps or clusters. This
coefficient has also been proposed as a nested cluster test (see Rohlf & Fisher, 1968; Saraçli et al., 2013).
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Table 7 Cophenetic dendrogram
correlations for n = 3,
r = 1, 1.5, 2, 5, 10 and
λ = 0.5

n = 3 1 1.5 2 5 10

1 1

1.5 0.76 1

2 0.76 1 1

5 0.63 0.68 0.70 1

10 0.65 0.71 0.73 0.99 1

Table 8 Cophenetic dendrogram
correlations for n = 4,
r = 1, 1.5, 2, 5, 10 and
λ = 0.5

n = 4 1 1.5 2 5 10

1 1

1.5 0.85 1

2 0.80 0.83 1

5 0.71 0.76 0.88 1

10 0.70 0.75 0.86 0.99 1

Table 9 Cophenetic dendrogram
correlations for n = 5,
r = 1, 1.5, 2, 5, 10 and
λ = 0.5

n = 5 1 1.5 2 5 10

1 1

1.5 0.80 1

2 0.72 0.79 1

5 0.61 0.73 0.81 1

10 0.57 0.69 0.79 0.95 1

cluster structure discovered among the observations of the preference–approvals universe.
Specifically, as n increases and the expressiveness of the voters explodes (Table 1), so does
the discriminating power of r , allowing different clustering structures to be highlighted.
Indeed, the proposed family of distances Dr

λ is more flexible than the existing one, and it
ultimately comes down to a new parameter that can be exploited in various applications, such
as maximizing the goodness of a clustering procedure.

To explore further this issue, let us consider a simulation study on the universe of 5
alternatives, which involves three steps:

• generate four groups of clustered preference–approvals;
• apply a hierarchical clustering algorithm for different values of r .
• compute an external validation index, the Adjusted Rand index (Hubert & Arabie, 1985),

to investigate which value of r maximises the similarity between the estimated and the
theoretical clusters.

Therefore, we aim to find the value of r that provides more reliable clusters, i.e. clusters that
are more consistent with the data-generating process.

The number of preference–approvals (on five alternatives) generated within each cluster
was determined by randomly drawing four values from a normal distribution N (50, 4) and
converting them into integer numbers.

Orderings and approvals were generated individually and merged to produce the final set
of preference–approvals. Specifically, orderings within each sub-partition were generated
from a Mallows Model (Mallows, 1957), which was one of the earliest probability models
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Table 10 Cluster central
permutations

Cluster k Central permutation σ0

1 (4.5, 2, 4.5, 3, 1)

2 (1, 3, 4, 2, 5)

3 (4, 3, 1.5, 1.5, 5)

4 (3, 5, 2, 4, 1)

Table 11 Multinomial
probability vectors

Cluster k Approved alternatives i

0 1 2 3 4 5

1 0.10 0.40 0.25 0.15 0.05 0.05

2 0.10 0.10 0.30 0.30 0.15 0.05

3 0 0.05 0.10 0.25 0.35 0.25

4 0.35 0.30 0.15 0.10 0.05 0.05

suggested for rankings and it is still widely used in theoretical and applied research. It is an
exponential model defined by a central permutation σ0 and a dispersion parameter θ . When
θ �= 0, σ0 represents the mode of the distribution, i.e., the permutation with the highest
probability of being generated. The probability of any other ranking decays exponentially
with increasing distance to the central permutation. The dispersion parameter θ controls the
steepness of this decline. The θ values for our simulation studies are {0, 0.5, 1, 1.5, 2}.
Assuming that σ is a generic ranking, the probability for this ranking is function of θ , and it
is given by:

Pr(θ) = exp(−θd(σ, σ−1
0 ))

ψ(θ)
, (17)

where d is a ranking distance measure and ψ(θ) is a normalization constant.
We generated rankings assuming the Kemeny distance dK . The cluster central permuta-

tions, σ0, used in the analysis are reported in Table 10.
Approvals, within each cluster are generated from four multinomial distributions, with

probability vectors, pik , described in Table 11. Specifically, pik is the probability to draw i
approved alternatives into the k-th cluster.

After deriving clusters, the adjusted Rand index (Hubert & Arabie, 1985) is used to assess
their goodness. The adjusted Rand index is a measure of the similarity between two set
of clusterings; it is the corrected-for-chance version of the Rand index (Rand, 1971). The
correction uses the predicted similarity of all pair-wise comparisons between clusterings
described by a random model to generate a baseline. Although the Rand Index can only
provide values between 0 and +1 (0 when the two data clusterings do not agree on any pair of
points, and 1 when data clusterings are exactly the same), the modified Rand Index can return
negative values if the index is lower than the expected similarity of all pair-wise comparisons
between clusterings specified by a random model.

The results (Table 12) are obtained by averaging the adjustedRand index over ten randomly
generated datasets for each value of θ .

Table 12 shows that, except for the case θ = 1.5, our measure Dr
λ with r �= 1 results

in higher average adjusted Rand indices. Thus, r �= 1 allows the true clustered structure of
data to be found more accurately and provides more accurate clusters.
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Table 12 Average adjusted Rand
index over r and θ

θ

0 0.5 1 1.5 2

r 1 0.093 0.267 0.591 0.847 0.801

0.5 0.114 0.249 0.435 0.692 0.822

2 0.080 0.320 0.611 0.665 0.602

3 0.090 0.274 0.568 0.607 0.559

4 0.082 0.313 0.569 0.588 0.530

5 0.081 0.301 0.558 0.553 0.502

7 0.089 0.273 0.534 0.542 0.502

10 0.074 0.276 0.528 0.540 0.502

The bold highlights the highest values of the average adjusted Rand,
column by column. That is, they indicate the best value of r conditionally
to the dispersion parameter

4.2 A real data application

This subsection shows how the proposed metric can be used to perform cluster analysis on
real data retrieved from the Eurobarometer website.

Since 1973, Eurobarometer has undertaken a series of public opinion polls on behalf of
the European Commission and other European Union (EU) institutions. These polls cover
a wide range of topics concerning the EU and its member countries. The data utilized in
these analyses are specifically from question Q5 of the poll titled “Defending Democracy,
Empowering citizens. Public Opinion at the legislature’s midpoint”7.

A group of voters, divided by countries, was asked to indicate which of the following
values should the European Parliament defend as a matter of priority:

• x1: Equality between women and men.
• x2: The fight against discrimination and for the protection of minorities.
• x3: Tolerance and respect for diversity in society.
• x4: Solidarity between EU Member States and between its regions.
• x5: Solidarity between the EU and poor countries in the world.
• x6 The protection of human rights in the EU and worldwide.
• x7: Freedom of religion and belief.
• x8: Freedom of movement.
• x9: Freedom of speech and thought.

As a result, data are stored in a table (see Table 14) with 27 rows (one row for each
EU member country) and 9 columns (each column representing an alternative of X =
{x1, . . . , x9}). The total number of votes cast by the i-th country in favor of the j-th alternative
is shown in the table’s generic cell i j .

In order to transform the original table into a set of preference–approvals, preferences
and approvals need to be derived. For each country, the alternatives are ranked in order of
popularity, beginning with the one that received the most votes and ending with the one that
received the fewest. Furthermore, in order to generate a vector of approvals, those alternatives
that received more votes than the national average were deemed acceptable.

For example, in Table 13 we show the votes expressed in France (the votes of all countries
are included in Table 14).

7 https://europa.eu/eurobarometer/surveys/detail/2612.
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Table 13 Votes in France x1 x2 x3 x4 x5 x6 x7 x8 x9

France 37 17 20 12 13 20 12 12 32

Since the votes’ average is 19.44, the votes in France are transformed into a preference–
approval codification [see Eq. (4)] as

(1, 5, 3.5, 8, 6, 3.5, 8, 8, 2)& (1, 0, 1, 0, 0, 1, 0, 0, 1)

that can be visualized as follows:

x1
x9

x3 x6
x2
x5

x4 x7 x8.

To run the cluster analysis, the distance matrix 27 × 27 was constructed using Eq. (11).
All the alternatives seem important in this example, so a distinction between acceptable and
unacceptable alternatives should not be interpreted as a distinction between valuable and not
valuable, but instead as a distinction betweenmore and less urgent. For this reason, λ = 0.75
was chosen in order to emphasize preference differences more than approvals.

A cluster-wise measure of cluster stability (Hennig, 2007) is used to jointly discover the
optimal value of r and the optimal number of clusters k. Stability refers to the property of
a meaningful and valid cluster that does not change easily when the data set is perturbed
in a non-essential way. That is, when applied to many datasets collected from the same
data distribution, a reliable clustering method should produce similar partitions. The cluster
stability method (Hennig, 2007) employs three steps:

1. use various strategies to resample newdata sets from the original and apply the hierarchical
clustering method to each of them;

2. for every given original cluster, find the most similar cluster using the Jaccard coefficient
(Jaccard, 1901) in the new data set and record the similarity value;

3. assess the cluster stability of every single cluster by the mean similarity taken over the
resampled data sets.

The average cluster-wise stability is shown in Fig. 7 as a function of r (for k = 2, 3, 4
clusters). The procedure suggests that the most stable cluster configuration is k = 2 and
r = 2. It is worth noting that, regardless of the value of k, r > 1 always leads to improved
cluster stability. Indeed, with two clusters (k = 2) the value of r that maximizes stability is
r = 2. Whereas with three or four clusters, the optimal solution is r = 4. In addition, as the
number of clusters k increases, the average stability decreases.

For several reasons, stability is a particularly relevant cluster validation measure in this
example for determining the best value of r . First, it is not possible to use external validation
measures in this case as the true clustered structure of the EU countries is not known. At the
same time, most internal validationmeasures employ the distance between observations (Dr

λ)
to assess the goodness of clusters. However, this may be an issue in our instance since the
distance between observations (Dr

λ) is influenced by r . Therefore, to determine which value
of r yields more accurate clusters, a metric that is independent of r is desirable. Furthermore,
cluster stability has been examined both theoretically and practically (Hennig, 2007; Von
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Table 14 Votes in the EU x1 x2 x3 x4 x5 x6 x7 x8 x9

Belgium 31 15 16 23 12 24 10 14 34

Bulgaria 11 7 14 24 10 23 11 32 21

Czech Republic 12 6 10 22 8 28 4 23 25

Denmark 18 14 17 13 10 30 7 12 27

Germany 15 11 18 21 9 32 6 8 28

Estonia 11 12 14 14 5 20 8 29 24

Ireland 27 19 15 14 9 28 11 27 24

Greece 9 12 8 34 19 31 8 14 35

Spain 35 15 18 15 15 20 4 12 25

France 37 17 20 12 13 20 12 12 32

Croatia 14 14 14 20 16 25 12 28 28

Italy 25 17 14 21 11 20 9 21 29

Cyprus 25 14 5 24 21 37 10 11 24

Latvia 5 14 11 33 5 35 4 20 26

Lithuania 10 12 17 17 8 33 7 18 29

Luxembourg 23 19 17 18 13 19 7 16 22

Hungary 15 17 15 19 11 28 12 20 21

Malta 21 17 15 16 13 28 10 15 18

Netherlands 25 18 25 18 9 34 12 6 31

Austria 24 16 19 19 12 23 9 19 30

Poland 15 15 13 18 11 19 12 24 19

Portugal 32 22 16 30 20 27 7 5 17

Romania 14 12 12 20 16 24 14 28 22

Slovenia 15 8 23 19 9 32 5 24 31

Slovakia 19 10 10 20 9 21 15 35 28

Finland 15 14 15 14 6 30 7 17 26

Sweden 33 12 19 12 11 39 5 12 30

Luxburg, 2010; Ullmann et al., 2022), and it has been shown to be capable of distinguishing
between meaningful stable and spurious clusters.

Figures 8 and 9 show the resulting dendrogram and clusters, respectively, obtained with
k = 2 and r = 2.

The clustering procedure suggests that the EU countries can be separated into two large
groups. Cluster 1 is mainly made up of Western European countries, whereas Cluster 2 of
Eastern European countries.

To provide a more in-depth picture of how the EU countries express their views on the
nine alternatives proposed, the two preference–approvals that represent the two clusters, that
we call representative preference–approvals, are shown in Eq. (18).

To obtain the representative preference–approvals that summarize each cluster, prefer-
ences and approvals need to be aggregated. In each cluster, the set of preferences is combined
into a unique weak order by deriving the average position for each alternative and ranking
them according to it. Note that this aggregation method is equivalent to the the Borda count
(Borda, 1781) extended toweak orders (see Smith, 1973;Black, 1976,Cook&Seiford, 1982).
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Fig. 7 Average cluster-wise stability over r

Fig. 8 EU cluster dendrogram
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Fig. 9 Map of EU voters with clusters

In our example, the extended Borda count assigns a score to each alternative, for each
country, the number of alternatives ranked below plus half of the number of alternatives that
are indifferent to it:

BR(xi ) = # {xk ∈ X | xi � xk} + 1

2
· # {xk ∈ X \ {xi } | xi ∼ xk} .

Similarly, the set of approvals are combined into a unique approval vector by taking the
average approval for each alternative, and then considering those alternatives whose average
approval is greater than 0.5 as approved.

Cluster 1
x1 x9

x6
x4
x2
x3
x8
x5
x7

Cluster 2
x6
x9
x8
x4

x1 x3
x2
x5
x7

(18)

It is worth noting that x6 and x9, namely, “The protection of human rights in the EU and
worldwide” and “Freedom of speech and thought”, respectively, are above the approval line
in the two representative preference–approvals, indicating that they can be considered very
urgent. Regarding x1, that is “Equality between women and men”, it is ranked at the top of
the representative preference–approval of Cluster 1, while it is just below the approval line in
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Table 15 Distance between
countries and representative
cluster preference–approvals

Country Cluster 1 Cluster 2 Cluster assignment

Belgium 0.092 0.246 1

Bulgaria 0.487 0.192 2

Czech Rep. 0.342 0.036 2

Denmark 0.176 0.332 1

Germany 0.286 0.204 2

Estonia 0.355 0.195 2

Ireland 0.267 0.265 2

Greece 0.388 0.318 1

Spain 0.164 0.419 1

France 0.219 0.440 1

Croatia 0.387 0.156 2

Italy 0.200 0.225 1

Cyprus 0.281 0.370 1

Latvia 0.341 0.120 2

Lithuania 0.400 0.094 2

Luxembourg 0.144 0.359 1

Hungary 0.343 0.072 2

Malta 0.096 0.301 1

Netherlands 0.243 0.377 1

Austria 0.096 0.262 1

Poland 0.349 0.132 2

Portugal 0.367 0.537 1

Romania 0.463 0.204 2

Slovenia 0.415 0.105 2

Slovakia 0.354 0.219 2

Finland 0.320 0.123 2

Sweden 0.144 0.274 1

The bold values are the smallest distances between each country and the
two clusters

the Cluster 2 representative preference–approval. Similarly, x4, that is “Solidarity between
the EU Member States and between its regions”, is ranked fourth (above the approval line)
in Cluster 2. Still, it is the first alternative below the approval line in Cluster 1. Furthermore,
Cluster 2 prioritizes x8, that is “Freedomofmovement”, which is at the end of the preference–
approval of Cluster 1. Finally, in both the two representative preference–approvals, x7, that
is “Freedom of religion and belief", is ranked last.

Table 15 reports the D2
0.75 distances of each country to the representative cluster

preference–approvals.
It should be noted that, except forGreece, each country is closer to the preference–approval

of its own cluster than the other. Despite being reasonable, this result is not trivial since the
technique for obtaining the cluster preference–approval does not involve Dr

λ.
Some countries can be considered central in their clusters as they are very close to the

representative preference–approval, e.g. Belgium (0.092), Austria (0.096), Malta (0.096) for
Cluster 1, and the Czech Republic (0.036), Lithuania (0.094), Hungary (0.072) and Slovenia
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(0.105) for Cluster 2. As a rule of thumb, the greater the distance from the own cluster
preference–approval, the more the country disagrees with the other countries in its cluster.
Finally, it is worth noting that some countries, such as Ireland, Italy and Greece, are located in
the middle of the two clusters, as they have a similar distances to the two cluster preference–
approvals.

5 Concluding remarks

In social choice theory, preference rankings and approvals are two popular ways to collect
the preferences of a group of agents on a set of alternatives. In the preference–approval
setting, each agent, in addition to ordering a set of alternatives from best to worst, submits a
cut-off line to distinguish between acceptable and unacceptable. Within this framework, in
this paper, we propose a new distance for preference–approvals, following the approach of
the Kemeny distance.

Given two preference–approvals and two alternatives, we introduce two indices that mea-
sure the discordances between these alternatives with respect to preference and approvals,
and an aggregation function belonging to the class of weighted power means to define a new
distance. This new distance depends on two parameters. The effect of these parameters on
the distance is analyzed and described through some heatmaps. The proposed distance can be
used to study the universe of preference–approvals and to determine clusters of voters: how
the two parameters characterizing the distances affect the clustering process is shown with
some dendrograms and by the cophenetic correlations among them. We have shown that
the new distance family offers some advantages compared to the existing distance function.
Specifically, through a simulation study and the adjusted Rand index, we have proved that Dr

λ

with r �= 1 allows the true clustered structure of data to be found more accurately. Similarly,
through a cluster-wise stability index, we have shown that Dr

λ with r �= 1 produces more
stable clusters on the real data example.

In future work, axiomatizing the new family of distance functions might prove important.
Moreover, future research should examine consensusmeasures basedondistances between

preference–approvals (see Erdamar et al., 2014), algorithms to determine representative
preference–approvals efficiently (see D’Ambrosio, 2017), clustering on alternatives (see
González del Pozo et al., 2017), and also reaching consensus processes (see Palomares et
al., 2014; García-Lapresta & Pérez-Román, 2017; Chao et al., 2021, among others).
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A Appendix: Proofs

A.1 Proof of Proposition 1

1. Positivity holds since h(pi j , ai j ) ≥ 0 for all i, j ∈ {1, . . . , n}.
2. Symmetry holds since pi j = p ji [see Eq. (7)] and ai j = a ji [see Eq. (8)] for all

i, j ∈ {1, . . . , n}.
3. Identity of indiscernibles: Obviously, Dr

λ

(
(R1, A1), (R1, A1)

) = 0. If Dr
λ

(
(R1, A1),

(R2, A2)
) = 0, then (λ · pr

i j + (1 − λ) · ar
i j )

1
r = 0 for all i, j ∈ {1, . . . , n}. Since

pi j , ai j ≥ 0 and λ ∈ (0, 1), we have pi j = ai j = 0 for all i, j ∈ {1, . . . , n}. Then,
OR1(xi , x j ) = OR2(xi , x j ), IA1(xi ) = IA1(xi ) and IA1(x j ) = IA2(x j ) for all i, j ∈
{1, . . . , n}. Consequently, (R1, A1) = (R2, A2).

4. Triangle inequality: If we define

p′
i j = 1

2
· |OR1(xi , x j ) − OR2(xi , x j )|,

p′′
i j = 1

2
· |OR2(xi , x j ) − OR3(xi , x j )|,

p′′′
i j = 1

2
· |OR1(xi , x j ) − OR3(xi , x j )|,

then, we have

p′′′
i j ≤ p′

i j + p′′
i j . (19)

Similarly, if we define

a′
i j = 1

2
· (|IA1(xi ) − IA2(xi )| + |IA1(x j ) − IA2(x j )|

)
,

a′′
i j = 1

2
· (|IA2(xi ) − IA3(xi )| + |IA2(x j ) − IA3(x j )|

)
,

a′′′
i j = 1

2
· (|IA1(xi ) − IA3(xi )| + |IA1(x j ) − IA3(x j )|

)
,

then, we have

a′′′
i j ≤ a′

i j + a′′
i j . (20)

From Eqs. (19) and (20) it follows

p′′′
i j + a′′′

i j ≤ p′
i j + p′′

i j + a′
i j + a′′

i j . (21)

To prove the triangle inequality we need to show

h(p′′′
i j , a′′′

i j ) ≤ h(p′
i j , a′

i j ) + h(p′′
i j , a′′

i j ),

i.e.,

(
λ · (p′′′

i j )
r + (1 − λ) · (a′′′

i j )
r ) 1

r ≤
(
λ · (p′

i j )
r + (1 − λ) · (a′

i j )
r ) 1

r + (
λ · (p′′

i j )
r + (1 − λ) · (a′′

i j )
r ) 1

r (22)

Raising the two members of the inequality by r , Eq. (22) is equivalent to

λ · (p′′′
i j )

r + (1 − λ) · (a′′′
i j )

r ≤ (23)
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((
λ · (p′

i j )
r + (1 − λ) · (a′

i j )
r ) 1

r + (
λ · (p′′

i j )
r + (1 − λ) · (a′′

i j )
r ) 1

r
)r

.

Taking into account that for all a, b ≥ 0 and r ≥ 1, (see Hardy et al., 1952, p. 32 for
more details) it holds:

(a + b)r ≥ ar + br ,

we have
((

λ · (p′
i j )

r + (1 − λ) · (a′
i j )

r ) 1
r + (

λ · (p′′
i j )

r + (1 − λ) · (a′′
i j )

r ) 1
r
)r ≥

(
λ · (p′

i j )
r + (1 − λ) · (a′

i j )
r ) + (

λ · (p′′
i j )

r + (1 − λ) · (a′′
i j )

r ) =
λ · (

(p′
i j )

r + (p′′
i j )

r ) + (1 − λ) · (
(a′

i j )
r + (a′′

i j )
r ). (24)

Because of Eqs. (19) and (20), we have

λ · (
(p′

i j )
r + (p′′

i j )
r ) + (1 − λ) · (

(a′
i j )

r + (a′′
i j )

r ) ≥
λ · (p′′′

i j )
r + (1 − λ) · (a′′′

i j )
r . (25)

Therefore, following Eqs. (24) and (25), we can write:

λ · (p′′′
i j )

r + (1 − λ) · (a′′′
i j )

r ≤
λ · (

(p′
i j )

r + (p′′
i j )

r ) + (1 − λ) · (
(a′

i j )
r + (a′′

i j )
r ) ≤

((
λ · (p′

i j )
r + (1 − λ) · (a′

i j )
r ) 1

r + (
λ · (p′′

i j )
r + (1 − λ) · (a′′

i j )
r ) 1

r
)r

.

for all i, j ∈ {1, . . . , n}.
Hence,

Dr
λ

(
(R1, A1), (R3, A3)

) ≤ Dr
λ

(
(R1, A1), (R2, A2)

) + Dr
λ

(
(R2, A2), (R3, A3)

)

for all (R1, A1), (R2, A2), (R3, A3) ∈ R(X).

A.2 Proof of Proposition 2

The first distance can be expressed in the following way:

D1
λ

(
(R1, A1), (R2, A2)

) = 2

n · (n − 1)
·

n∑

i, j=1
i< j

h(pi j , ai j )

= 2

n · (n − 1)
·

n∑

i, j=1
i< j

(
λ · p1i j + (1 − λ) · a1

i j

)

= 2 · λ

n · (n − 1)
·

n∑

i, j=1
i< j

|OR1(xi , x j ) − OR2(xi , x j )|
2

+2 · (1 − λ)

n · (n − 1)
·

n∑

i, j=1
i< j

|IA1(xi ) − IA2(xi )| + |IA1(x j ) − IA2(x j )|
2

.
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Taking into account Eq. (15), the equality between D1
λ

(
(R1, A1), (R2, A2)

)
and

dλ

(
(R1, A1), (R2, A2)

)
holds if and only if

1 − λ

n · (n − 1)
·

n∑

i, j=1
i< j

|IA1(xi ) − IA2(xi )| + |IA1(x j ) − IA2(x j )|

= 1 − λ

n
·

n∑

i=1

|IA1(xi ) − IA2(xi )|. (26)

Let us define Ii = |IA1(xi ) − IA2(xi )|. Then,

•
n∑

i, j=1
i< j

(|IA1(xi ) − IA2(xi )| + |IA1(x j ) − IA2(x j )|
) =

n∑

i, j=1
i< j

(Ii + I j ),

•
n∑

i=1

|IA1(xi ) − IA2(xi )| =
n∑

i=1

Ii .

Therefore, the equality in Eq. (26) can be re-written as:

D1
λ

(
(R1, A1), (R2, A2)

) = dλ

(
(R1, A1), (R2, A2)

) ⇔
1 − λ

n · (n − 1)
·

n∑

i, j=1
i< j

(Ii + I j ) = 1 − λ

n
·

n∑

i=1

Ii . (27)

To prove Eq. (27):

1 − λ

n · (n − 1)
·

n∑

i, j=1
i< j

(Ii + I j )

= 1 − λ

n · (n − 1)
· (I1 + I2 + I1 + I3 + · · · + I2 + I3 + · · · + In−1 + In)

= 1 − λ

n · (n − 1)
(n − 1) · (I1 + I2 + · · · + In) = 1 − λ

n
·

n∑

i=1

Ii .

The equality Eq. (27) is a necessary and sufficient condition to show that D1
λ = dλ, for

every λ ∈ [0, 1].
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