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Abstract

In recent years, the widespread adoption of Machine Learning (ML) at the core
of complex information technology systems has driven researchers to investigate
the security and reliability of ML techniques. A very specific kind of threats
concerns the adversary mechanisms through which an attacker could induce a
classification algorithm to provide the desired output. Such strategies, known
as Adversarial Machine Learning (AML), have a twofold purpose: to calculate
a perturbation to be applied to the classifier’s input such that the outcome is
subverted, while maintaining the underlying intent of the original data. Although
any manipulation that accomplishes these goals is theoretically acceptable, in real
scenarios perturbations must correspond to a set of permissible manipulations of
the input, which is rarely considered in the literature.

In this thesis, two different problems are considered related to the matter of
generating effective perturbations in an AML attack. First, an e-health scenario is
addressed, in which an automatic system for prescriptions can be deceived by in-
puts forged to subvert the model’s prediction. Patients clinical records are typically
based on binary features representing the presence/absence of certain symptoms.
In this work it is presented an algorithm capable of generating a precise sequence of
moves, that the adversary has to take in order to elude the automatic prescription
service

Secondly, this thesis outlines an AML technique specifically designed to fool the
spam account detection system of an Online Social Network (OSN). The proposed
black-box evasion attack is formulated as an optimization problem that computes
the adversarial sample while maintaining two important properties of the feature
space, namely statistical correlation and semantic dependency.
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Chapter 1

Introduction

The need to provide people with more and more sophisticated smart services has
recently fostered a renewed interest in the topics of Artificial Intelligence (AI) and
Machine Learning (ML). At the same time, it has now been widely accepted that
the fallibility of intelligent systems can lead to diffuse, and potentially serious,
errors. This is especially true in certain critical scenarios, where the misbehavior
of AI and ML can threaten the security of a cyber system. For instance, intel-
ligent algorithms are commonly adopted to analyze large amounts of data and
recognize anomalous behaviors, such as network intrusions, cyber-attacks, slander
campaigns, or spam activities. In all these cases, a failure will quickly propagate
from the cyber space to the real world. The issue is even more severe when the
malfunctioning of ML algorithms is induced by attackers exploiting automated
Adversarial Machine Learning (AML) strategies, whose applications are as broad
as ML itself.

AML [8] techniques aim to exploit the same optimization mechanism at the
core of ML with an opposite intent: to let the model be sure, with high confidence,
about an erroneous prediction. Adversarial samples are defined as “those that
change the verdicts of Machine Learning systems but not those of humans” [12].
To be more specific, adversarial attacks can be characterized on the basis of dif-
ferent traits, the most general of which is whether they aim to directly alter the
input data, or the corresponding feature values. In the simplest scenario, we can
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assume that the classifier operates directly on the input data; thus, the adversary
calculates a perturbation to be added to the input in order to obtain an adversarial
sample. In the case of image analysis, for instance, this would result in modifying
individual pixel values directly. Most works consider AML in this scenario since
it is straightforward for a human to verify the appearance of a certain image and
assess the correctness of the classifier. In this context, the attacks are aimed at
creating noise patterns [84] that exhibit two main characteristics: their superim-
position over the original image is invisible to the human eye, and they cause an
error in the classification algorithm. Moreover, algorithms for adversarial images
corruption can heavily exploit the very large number of features (i.e., all the pixels
of the image), as well as their scale of variability depending on the adopted encod-
ing, so that the ascent along the gradient can proceed simultaneously in multiple
directions at the same time. Moreover, algorithms for adversarial images corrup-
tion can heavily exploit the very large number of features (i.e., all the pixels of
the image), as well as their scale of variability depending on the adopted encod-
ing, so that the ascent along the gradient can proceed simultaneously in multiple
directions at the same time.

In other application domains, understanding the best way to corrupt the input
with adversarial noise can be very challenging.

For instance, considering a malware detection algorithm based on the API calls
made by a software, one possible adversarial noise may consist in adding innocuous
calls [3], while preserving the malicious behavior of the software. In an ambient
intelligence scenario, sensors’ raw data can be altered through a vector of carefully
selected real values, in order to let a smart anomaly detection system raise false
irregularity alerts regarding users’ behaviors, or interrupt the operation of an intel-
ligent energy-saving system. Assuming the presence of a Reputation Management
System capable of identifying malicious entities in a sharing environment, chang-
ing the released feedback patterns can refresh the bad reputation of an adversary.
Conjugated in Online Social Networks, slight modifications in spammers behavior
(e.g., inflating the number of innocuous tweets) can hide their malicious intent to
an intelligent detector [20]. Systems relying on smartphones sensors to recognize
the activities carried out by users, may be trained on corrupted labeled data and
fail in their identification task worsening the end services provided.
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1.1 Motivations and Goals

In many scenarios, guaranteeing that the final verdict of the human remains un-
changed even in front of input perturbations is not straightforward. In a healthcare
scenario, for example, it would mean that an expert clinician should not alter his
judgment in the face of an altered clinical record. However, if the adversary’s move
consists in altering the patient’s record, it is highly likely that the final decision
made by the clinician will change, especially in cases where the clinical record
is composed of binary features. Nonetheless, perturbed clinical records may still
be regarded as adversarial examples, as they share both the final goal to fool a
machine learning algorithm, and the methodology used to get to the specific noise
through the formulation of an optimization problem. In this thesis, this issue is
addressed in order to show how an adversary may alter binary entries in the clinical
record of a patient in order to elude a smart prescription system.

As an additional problem, when ML algorithms operate on complex feature
sets that indirectly represent the input, and have no meaning to a human, it is
burdensome to find out how to manipulate the feature values while also preserving
the nature of the input. In these cases, two alternatives exist. In the easiest one,
the features are independent; thus the single feature value can be modified without
impacting the others. Otherwise, if the features are dependent, i.e., if they cap-
ture aspects that influence each other, only a subset of all possible manipulations
ensures that such an interconnection is not broken, and of these, the most effective
must be identified. In this thesis, the last setting is considered in the context of
a ML system aimed to detect and block spam accounts in Online Social Networks
(OSNs). The high availability of OSNs, that is, the fact that they can be easily
accessed at any time from anywhere, is the key factor in their success and, at the
same time, the main reason for the interest of malicious entities. Since spammers
may adopt different strategies to achieve their goal, ML algorithms are usually
trained on a wide set of features capable of capturing various aspects, such as in-
formation concerning the properties of the account, the history of shared content,
and the degree to which a user is connected to the rest of the network. While such
a comprehensive set of characteristics allows to identify different types of threats,
large feature sets may also extend the attack surface of ML systems, making them



1. Introduction 4

more easily deceived. From an AML point of view, features describing the user
of an OSN are closely interrelated (e.g., adding or deleting a message containing
a URL would impact multiple feature values at the same time) and the steps re-
quired to fool a classifier cannot be made on a trial-and-error basis. In this context,
accomplishing an attack means finding a way for the adversary to automatically
alter the feature vector describing a spammer so that it is recognized as genuine,
without impairing the malicious behavior.

1.2 Contributions

The activities carried out during the doctoral studies were focused on the study of
AML problems and techniques. The studied problems included the vulnerability
of risk score models, which are simple linear models useful in scenarios where
the explainability is the first aim to reach (e.g., healthcare). Another addressed
problem regarded the minimisation of the adversary’s moves in perturbing the
adversarial samples. Moreover, the study focused on the reduction of queries to
the oracle in scenarios where the attacked model is not known. The employed
techniques ranged from white- to black-box attacks with different influence on
the input data. A preliminary result has been published in the International
Conference of the Italian Association for Artificial Intelligence. In this work, a
system for crafting perturbed records of patients has been described, where the
aim of the adversary consists in increasing the prescriptions of a target medicine by
changing few binary features of the clinical reports. In order to better understand
the dangerousness of adversarial samples in the real world, the focus has been
shifted from white-box attacks to black-box attacks, where the classification model
to attack is not known. To this aim, the study focused on techniques to craft
optimal samples able to elude different classifiers, regardless of their architecture
or internal parameters. This study lead to an algorithm which has been tested in
a scenario of spam account recognition on social networks. The findings of this
study have been published in the ACM Transactions on Privacy and Security.

The main contributions of the doctoral work presented in this dissertation are:
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• Firstly, a binary features AML attack is proposed, which is based on esti-
mating the most important features that contribute in the variation of the
model’s loss gradient.

• Secondly, novel AML strategy is proposed, which explicitly preserves the
statistical correlation among the features of the input space. This is achieved
by formulating the attack as an optimization problem in which the search for
the adversarial sample is constrained by the maintenance of the correlation
coefficients observed in the original data.

• In this strategy the adversarial perturbation is chosen while preserving the
semantic dependency that occurs when multiple features are computed from
the same data. Without this constraint, the algorithm would produce per-
turbations that are numerically admissible, but not obtainable through real
(legitimate) account manipulations.

• Such strategy also allows to deceive unknown classifiers by forging an adver-
sarial sample that has minimum distance from the original sample (so as to
preserve the input nature), while showing characteristics that are referable
to the desired class samples (so as to maximize the probability of deceiving
different target models).

• In order to make the results easily reproducible, the experimental analyses
were carried out using two public datasets: one of medical prescriptions for
the treatment of urinary tract infections, and one of spammer and genuine
Twitter accounts.

• Experiments involved several models, and the performance were compared
with different state-of-the-art attacks. Such a robust evaluation is essential
to guarantee the generalisation capacity of the AML techniques.

• Moreover, a concrete case is presented aimed at exploring the manipulations
to be applied to a real OSN account in order to carry out the proposed
attack.

• The evaluation also includes the analysis of its robustness to three adver-
sarial defense mechanisms, namely, two state-of-the-art approaches and a
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confidence-based technique specifically designed to counter the peculiarities
of the proposed attack.

• Finally, the source codes of the proposed algorithms have been released to
the public 1 2 in order to practically contribute to the idea of open science.

1.3 Dissertation Outline

The remainder of this dissertation follows this structure.
Chapter 2 provides the essential background to understand the core aspects of

an AML strategy. Moreover, it discusses recent and relevant works in the field of
AML, providing a categorization based on the adversary attributes and the appli-
cations domain explored is also given. In Chapter 3 a binary features AML attack
is presented, conjugating it into a e-health application scenario. In Chapter 4 a
correlation-aware AML attack is described, conjugating it into a spammer account
detection application scenario. Chapter 5 draws the conclusions of this thesis.

1.4 Publications

Parts of the work in this thesis have been published in referred conference pro-
ceedings and journals:

• S. Gaglio, A. Giammanco, G. Lo Re, and M. Morana. Adversarial Ma-
chine Learning in e-Health: Attacking a Smart Prescription System. In-
ternational Conference of the Italian Association for Artificial Intelligence.
Cham: Springer International Publishing, 2021. [37] Github code repository:
https://github.com/agiammanco94/AIxIA2021

• F. Concone, S. Gaglio, A. Giammanco, G. Lo Re, and M. Morana. Ad-
verSPAM: Adversarial SPam Account Manipulation in Online Social Net-
works. ACM Transactions on Privacy and Security 2024. [23] Github code
repository: https://github.com/agiammanco94/AdverSPAM

1https://github.com/agiammanco94/AIxIA2021
2https://github.com/agiammanco94/AdverSPAM

https://github.com/agiammanco94/AIxIA2021
https://github.com/agiammanco94/AdverSPAM
https://github.com/agiammanco94/AIxIA2021
https://github.com/agiammanco94/AdverSPAM
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During the PhD, the following other works were produced:

• V. Agate, F. Concone, S. Gaglio and A. Giammanco. A Hybrid Recom-
mender System for Cultural Heritage Promotion. 2021 IEEE International
Conference on Smart Computing (SMARTCOMP). IEEE, 2021. [1]

• A. De Paola, S. Gaglio, A. Giammanco, G. Lo Re and M. Morana. A multi-
agent system for itinerary suggestion in smart environments. CAAI Trans-
actions on Intelligence Technology 6.4: 377-393, 2021. [28]



Chapter 2

Background and Related Works

In this chapter, an overview on the problems of Adversarial Machine Learning is
provided, together with the introduction of the notations used in this thesis, and
a discussion of the most relevant works in the field.

Properly crafted input perturbations, either in training or testing, can subvert
the predictions of machine learning algorithms. The perturbed inputs to ML
models are generally referred to adversarial samples. The study of the vulnerability
of learning algorithms to these adversarial examples, and the study of related
countermeasures, defines the field of research of the Adversarial Machine Learning.
Much attention to this area comes from the study of [76], which shows how deep
networks for object recognition can be fooled with imperceptibly perturbed input
images.

The security of machine learning algorithms can be imagined as a arms race
between adversaries producing perturbed samples and defenders of the ML models
effectiveness [8]. It has often been thought of countering the actions of malicious
actors through ML algorithms, for example in the context of intrusion or anomaly
detection. But ML algorithms themselves introduce new vulnerabilities, which
experienced attackers can exploit to their advantage.

Indeed, there is an assumption that is violated in operating in adversarial
environments which makes Machine Learning models to become vulnerable. This
is the independent and identically distributed data assumption: train and test
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data are assumed to be sampled from the same distribution. This means that the
test data, which is encountered in the operational phase of the system, is very
similar to the training data, so the algorithm will have good accuracy on the test
data if a reasonable amount of noise is present. When working in the presence of
adversaries, the noise that the adversary creates is not random, it is created ad-hoc
to fool the algorithm. The injection of this noise causes a deviation (shift) between
the train and test distributions. If the attacker had no constraints in its actions,
then the challenge between learning algorithms and adversaries would always be
won by the latter. In the scenario of spam email filtering, the attacker must still
preserve the readability of the email in order to convey a message to the human
reader.

Supervised learning algorithms consist of a mapping L : L(x) = ŷ, whose aim
is to assign the independent variables x with the dependent variables ŷ according
to the observed ground truth labels y. In order to learn the best mapping from
inputs to predictions, the classifier has to be trained on a set of measurements;
generally, the aim of such a procedure is to find a model L which is an acceptable
approximation of the training data labels. This is pursued by minimising a loss
function, ℓ(·), between the real y and the predicted ŷ label:

min
θ

ℓ(θ,x, y) + λ(θ) , (2.1)

where θ is the set of L’s adjustable parameters, and λ is a regularization term
which is typically employed to counter overfitting, i.e., the inability of the learnt
model to generalize on new instances of the data.

An adversarial attack consists of an optimization algorithm which aims at
finding the optimal perturbation to add to the input in order to let it change the
prediction label of a ML model. Adversarial attacks can be categorized based on
three characteristics of the attacker [8]:

1. the aim;

2. the possessed knowledge on the model to attack;

3. the perturbing capability over the inputs.
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The attacker, based on these three of his characteristics, defines an optimization
problem to identify an optimal attack strategy. The solution of this optimization
problem represents the way to manipulate the input data and achieve the attacker’s
intended goal.

The attacker’s purpose is defined in terms of three aspects [8]:

• Desired security breach: the attacker may aim to commit several
breaches:

– integrity violation: to evade detection without compromising the normal
operational flow of the system;

– availability violation: to compromise normal system functionality avail-
able to legitimate users;

– privacy violation: to obtain private information about the system, its
users, or data through reverse-engineering the learning algorithm.

• Specificity of attack: can vary between targeted and untargeted, depending
on the attacker’s purpose of causing misclassifications of a specific set of
samples, or any sample.

• Specificity of Error: can be specific if the attacker aims to have a sample
misclassified as a specific class; or generic if the attacker aims to have a
sample misclassified as any among the available classes different from the
true class.

The attacker may have different levels of knowledge about the targeted system,
may know:

• the training data D;

• the feature set F ;

• the learning algorithm L, and the loss function ℓ minimized during training;

• the parameters θ learned by training.
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Concisely, it is then possible to denote the attacker’s knowledge as
Ω = (D,F ,L, θ). Depending on the nature of Ω, several attack scenarios
can be described [8]:

• Perfect-knowledge (PK) white-box attacks: the attacker knows every-
thing about the targeted system, i.e., ΩPK = (D,F ,L, θ). This scenario
makes it possible to simulate a worst-case evaluation and assess the security
of the learning algorithm by providing upper bounds on the performance
degradation of the system under attack under extreme conditions.

• Limited-knowledge (LK) gray-box attacks: the attacker knows the
feature representation F and the type of learning algorithm L: the fact that
it is a linear classifier, or a neural network with a certain structure), but the
attacker does NOT know the training data D, nor the learned parameters
θ. However, it is assumed that the attacker is able to collect a surrogate
dataset D̂1 (ideally sampling from the same underlying distribution as the
data), and receive feedback from the classifier about the label. The attacker
can then estimate the parameters θ̂ from D̂, training the surrogate classifier.
This type of attacks is called LK attacks with Surrogate Data (LK-SD), and
is denoted by: θLK−SD = (D̂,F ,L, θ̂). If the attacker does not even know
the type of learning algorithm L, the category is LK attacks with Surrogate
Learners (LK-SL): θLK−SL = (D̂,F , L̂, θ̂). Constructing a surrogate learning
algorithm L̂ is also useful to evaluate the transferability of attacks between
different learning algorithms.

• Zero-knowledge (ZK) black-box attacks: it is possible to compro-
mise machine-learning algorithms even without any knowledge of the feature
space, as long as the attacker can query the system, as if it were a black-
box, obtaining feedback on labels or confidence scores. There is, however,
a minimum amount of knowledge that the attacker possesses, even in this
case: he knows the purpose for which the classifier was designed (e.g., object
recognition, malware classification), and he knows the type of transformation
he wants to apply to cause changes in features: for example, if the attack

1̂· indicates limited knowledge of a certain component
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target is a malware detector based on dynamic analysis, injecting static code
that will never be executed will have no outcome. This setting is denoted as
θZK = (D̂, F̂ , L̂, θ̂).

A particular class of black box attacks, named model based, exploits the trans-
ferability property [61] of adversarial samples: a surrogate model mimicking the
unknown target algorithm is leveraged to synthesize adversarial samples that will
transfer to the target black box [50]. Reasons for such a property include orthogo-
nality of the models’ gradient directions, the alignment of their decision boundaries
as well as geometric correlations between different regions of such boundaries [58],
and magnitude of input gradients [33].

The ability of the attacker indicates the influence the attacker has on the input
data, and on specific data constraints. An attacker’s influence can be causative
if the attacker can manipulate both training and test data, or explorative if the
attacker can alter only test data. These scenarios are known as poisoning and
evasion attacks, respectively. In order to effectively conduct attacks, there are still
constraints that the attacker must meet: the initial attack samples D can only
be modified by a set of transformations, which constitute the space of possible
transformations Φ(D). In practice, this space of possible transformations gives
indications of the amount of perturbation added to create evasion attacks, or
the number of poisoning attack points injected into the training data. The most
common poisoning attacks are aimed at compromising the availability of a service.
Poisoning attacks are also spreading to compromise integrity by manipulating
training data or the trained model to cause specific misclassifications.

Adversarial Machine Learning stems from the observation that the same opti-
mization procedure can be used by an adversary for leading a learning algorithm
to a wrong prediction. The strategy is to forge an adversarial sample x̃ = x + δ,
where the value of the perturbation δ is found by subverting Eq. 2.1:

max
x̃

ℓ(θ, x̃, y) . (2.2)

Indeed, the goal of the adversary is to find the perturbation that maximises the
error between the ground truth and the predicted labels. Since the creation of x̃
starts from following the positive direction of the loss function, depending on the
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magnitude of δ it may happen that x̃ succeeds in escaping L’s decision boundary,
so altering the final predicted label ŷ. Thus, the value of δ should be large enough
to allow the decision boundary to be crossed. However, it also have to be small
enough not to completely alter the sense of the input x. Both of these requirements
are addressed in the methods proposed in this thesis.

Let T be the target learning algorithm that the adversary wants to evade,
and S the local surrogate model available to the adversary, the corrupted version
of sample x, i.e. x̃, built by adding perturbation δ computed from S, is said to
transfer towards model T if: S(x) ̸= y∗ ̸= T (x)

S(x̃) = y∗ = T (x)
, (2.3)

where y∗ is the adversary’s desired output label.
In order to measure the distance between the original and the corrupted input

samples, several metrics based on the Hölder norm Lp are commonly adopted [2].
The Lp norm between two samples x and x̃, is defined as:

Lp(x̃,x) = ||x− x̃||p = p

√√√√ d∑
i=1

(|xi − x̃i|p) , (2.4)

where p ∈ Z, x and x̃ are two vectors of d components with d ∈ N, and subscript
i denotes the i-th component [13]. Starting from defining 00 = 0, the L0 norm is
computed as:

L0(x̃,x) =
d∑
i=1

(|xi − x̃i|0), (2.5)

which provides a measure of how many single components are different in the two
samples compared. The L2 norm computes the euclidean distance between samples
in order to measure their offset in the feature space:

L2(x̃,x) =

√√√√ d∑
i=1

(|xi − x̃i|2) . (2.6)
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Another type of widely used Lp norm for adversarial attacks is the L∞ norm, which
computes the maximum drift between the original and perturbed components of
the input and is defined as:

L∞(x̃,x) = max
i
|xi, x̃i|. (2.7)

Using different metrics for determining the imperceptibility of an adversarial per-
turbation has a strong effect on the attack’s outcome. By minimising L2, for
instance, it is possible to forge adversarial samples where multiple features have
been slightly perturbed, thus performing a dense attack. On the other hand, fo-
cusing on L0 permits to modify only a limited set of features, which results in a
sparse attack [70].

The adopted notations and abbreviations used throughout the thesis are listed
in Table 2.1.

Given the above overview of the core concepts underneath the Adversarial
Machine Learning research, in what follows the main scientific works of the field
are discussed in order to provide the context to which this manuscript contributes.

Over the past two decades, ML has become one of the core pillars of information
technology and has acquired a central role in our daily lives. In this sense, the
scientific community has invested a considerable effort in defining learning-based
pattern classifiers that, so far, show impressive performance in several application
domains. More recently, it has been shown that adversarial perturbations, carefully
created in both training and testing phases, can easily subvert predictions made by
ML algorithms. The vulnerability of ML to forged adversarial patterns, along with
the design of appropriate countermeasures, is addressed in a quite novel research
area, known as Adversarial Machine Learning (AML).

The effectiveness of AML is frequently demonstrated on computer vision sce-
narios [84], in which it is easier to visually assess the validity of an adversarial
sample. In fact, the imperceptibility of the perturbed input is a desired property
of any AML attack [39]. Among the most popular approaches in AML, the Fast
Gradient Sign Method (FGSM) [39] paved the way for many studies exploring eva-
sion strategies against image classifiers. In [61], the FGSM is used for creating
adversarial images on the MNIST dataset, and testing their effectiveness against
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Table 2.1: Notations used in the thesis.

Symbol Description
L A general learning model.
S Surrogate model.
T Target model.
θ Set of L’s adjustable parameters.

ℓ(θ,x, y) Loss function of L.
∇x Gradient taken w.r.t. x.
D Training data.
F Feature set.
X Set of input samples.
x Original sample.
X̃ Set of perturbed samples.
x̃ Adversarial sample.
ŷ Predicted label.
δ Adversarial perturbation.

Lp(x̃,x) p-norm between original and perturbed samples.
ξ Real-valued adversarial perturbation vector.
γ Maximum number of features to perturb.
dbS Decision boundary for S.
αi i-th coefficient of dbS .
β Intercept of dbS .
Rj,i Linear regression between xj ,xi.
mj,i Slope of Rj,i.
qj,i Intercept of Rj,i.

z(x̃,x) Cost function for x̃.
λ Controlling factor for z(x̃,x).
ψ Maximum distance from the decision boundary.

classifiers hosted on Google and Amazon. A thorough analysis of this property,
known as transferability, is provided in [33], where the root causes of this phe-
nomenon are connected with the magnitude of the loss’ gradient, implying that
strongly regularized learning algorithms are more robust to attacks. DeepFool
(DF) attack [57] introduced the idea of reasoning on the particular structure of
the decision boundary to evade, testing approaches against well known convolu-
tional neural network architectures. Carlini and Wagner (C&W) approach [13]
focuses on the formulation of the adversarial evasion as an optimization problem,
where the cost function tends to maximize the confidence of the attacked classifier
about the misclassification; such approach, originally tested against image classi-
fiers, has become a milestone for testing the efficiency of novel evasion strategies.
The attack proposed in [17] is one of the first effective methods for evading un-
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known classifiers, where the adversary has the capability to query such models for
reasoning on the provided label. AML may also regard the perturbation of audio
signals in speech recognition systems. The goal of [68] is to let such a system
transcribe a prefixed target sentence by perturbing only those frequencies that are
un-listenable by humans. A stochastic compression technique is proposed in [7]
for creating more robust models for speech recognition in smart home devices.
Attacks are simulated through Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD), aiming at the execution of unwanted commands by the
intelligent assistants deployed in the house. When the target model is unknown
and its only observable output is composed of classes probabilities, authors of [79]
propose a technique based on the computation of the gradient in a limited set of
selected coordinates, with the momentum iterative method for creating the audio
adversarial sample.

Other application scenarios include cybersecurity domains in which ML plays
a dominant role in threat detection. Malware detection systems, for instance, can
be attacked by adversaries through the manipulation of different sections of the
source code [31]. In [65], the authors formalize a novel problem-space attack with
the aim of automatically generating realistic and inconspicuous evasive adversarial
applications for Android devices. Malware can also spread through the infection
of PDF files; a comprehensive analysis of PDF-based AML attacks is provided
in [53]. On the same topic, a methodology designed to evade structural PDF mal-
ware detection systems is presented in [52]. Similarly, Adobe Flash files may be
perturbed by acting both on structural features which do not alter the functionali-
ties, and content features through the addition of specific ActionScript commands.
In this context, authors of [54] use a bisect line search algorithm for finding the
most efficient step along the loss gradient direction for producing the adversarial
sample. Windows malware are targeted in [30], where a genetic algorithm is used
for generating adversarial executables, in which only a small set of functionality-
preserving manipulations have been applied, such as header fields changes, slack
space filling, or shifting the content before the start of a program section. Attack-
ers may insert malicious code in users’ browser, which will be activated upon visit
of webpages and usually imply the gathering of sensible data contained in cookies.
By targeting specific aspects of HTML and JavaScript syntaxes, authors of [80]
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leverage Soft Q-learning for creating adversarial samples able to evade cross-site
scripting detectors. Considering the robustness of ML models deployed in this sce-
nario, authors of [32] propose a method for learning uniformly distributed feature
weights, which have been shown to strengthen the resistance of the model towards
adversarial attacks, since adversaries have to perturb a larger number of features
in order to succeed in their intent. Intrusion Detection Systems (IDSs) are also fre-
quently considered as targets of AML attacks. In [5], the Jacobian-based Saliency
Map Attack is leveraged in order to raise false alarms for short-circuit faults and
other sensible threats. Authors of [4] use several approaches for creating adver-
sarial traffic vectors for camouflaging malicious network flows, such approaches
include Generative Adversarial Networks and genetic algorithms. It has been ob-
served that features of network traffic present several statistical correlations, and
the approach in [64] addresses such aspect by proposing a black-box attack that
leverages the Mahalanobis distance between traffic vectors.

Other relevant scenarios include electronic healthcare [37], biometric authenti-
cation [10], recommender systems [77], graph-based ML [93, 16], mobile edge com-
puting [92, 90], wireless network security [71, 48], and spam detection [26]. With
regard to the last topic, it is worth highlighting the difference between spam de-
tection, which refers to the identification of unwanted content, and spam account
detection, which instead aims to distinguish spammers, be they human or bots,
from genuine users. With regard to the healthcare domain, in [59] the authors eval-
uated the impact of several attack algorithms against models trained on a dataset
containing ten vital signs of patients, showing how both attacks during training
and test phase can have perilous implications. However, it is not formulated a
precise sequence of steps the adversary has to make in order to achieve his goal,
given that the perturbation is a real number which is difficult to interpret, and
thus, inject into the data in a realistic scenario.

Over the years, spam detection has evolved from naive systems capable of rec-
ognizing common spammy words [20], to more reliable algorithms that consider
wide sets of interconnected features. This led to the definition of more sophisti-
cated attack strategies. The authors of [70], for instance, propose a sparse evasion
attack based on L1 norm aiming at adding or removing specific terms for letting a
Support Vector Machine recognize spam emails as genuine. Similarly, by perform-
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ing several other manipulations such as synonym replacement, ham word injection
and spam word spacing, adversaries can fool a Bayesian model trained to detect
spam emails [46]. In [89] the impact of feature selection on evasion attacks is eval-
uated; in particular, it has been observed that a drastic decrease in the number
of features easily allow adversaries to fool the ML spam detectors by altering only
few words in emails.

Spam account detection exploiting ML algorithms has also been discussed in
a number of works [21, 24]. State-of-the art solutions usually exploit feature sets
that are aimed to capture different attributes of a spammer, such as its connection
with the rest of the social network, or data/metadata associated with the content
shared [22]. These characteristics can be analyzed by means of a variety of models
that typically include Neural Networks (NNs), Support Vector Machines (SVMs),
and Random Forests (RFs), where the last one proved to be the most proper
classifier when dealing with large feature sets [83]. Spam account detection in
OSNs clearly has unique traits compared to other application domains because
of the many ways a user can operate within social networks, hiding its malicious
behavior, and thus achieving its disturbance objective. However, the study of the
literature has revealed that the only intersections between AML and OSNs analysis
regards fake news and social bots detection systems [25].

A summary of the related work is reported in Table 2.2, which highlights the
characteristics of each approach according to the properties discussed in this Chap-
ter.
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Table 2.2: Distance norms and threat models of relevant attacks at the state-of-
the-art. 2

Domain Ref. Norm Threat Model

Image Processing

[39] L∞ I, U W E
[33] L∞ I, A, U B P
[61] L1 I, U W, B E
[57] L2 I, U W E
[13] L0,L2,L∞ I, T W E
[17] L2 I, U B E
[84] L2 I, U W E

Malware Detection

[31] L0 I, T W, B E
[65] L0 I, T W E
[52] L0 I, T B E
[54] L1 I, T W E
[32] L1 I, T W E
[30] L1 I, T B E

Intrusion Detection
[4] L0 I, T B E
[5] L0 I, T G E
[64] L2 I, U B E

Speech Recognition
[68] Lϖ I, T W E
[7] L∞ I, T, U B, W E
[79] L∞ I, T G E

Spam Email Detection
[46] L0 I, U W E
[70] L1, L2 I, T W E
[89] L1 I, T W E

Other

[37] L0 I, U W E
[10] L1 I, T B E
[77] L0 A, T G P
[80] L0 I, T B E
[93] L0 A, I, T B E, P
[59] L2 I, T, U W, B E, P
[16] L0 I, U W E
[92] L0 I, T B E
[90] L0 I, T W E
[71] L† A, U B P
[48] L2 I, U B E

2Abbreviations: (I)ntegrity/(A)vailability, (T)argeted/(U)ntargeted;(W)hite-/(G)ray-
/(B)lack-box; (E)vasion/(P)oisoning.



Chapter 3

Binary Perturbations in e-Health
Prescription Classification

This Chapter shows how an adversary may alter binary entries in the clinical
record of a patient in order to elude a smart prescription system. In this scenario,
given that economic return is one of the most common motivations to conduct
adversarial attacks in the healthcare domain [36], we can imagine as adversary an
agent of a pharmaceutical company that produces a particular active ingredient,
and wants to increase the sales by artificially inflate the number of prescriptions. In
order to elude the smart prescription system, it is proposed an algorithm capable
of generating the precise sequence of moves that the adversary has to take, i.e.,
which binary entries on the clinical record of the patient need to be flipped. In
particular, it is assumed that the target model to evade is a neural network, whose
parameters can be reasonably emulated by probing the smart prescription service
as a black box [8]. The remainder of the Chapter is organized as follows. Section 3.1
outlines the healthcare scenario considered as case study. Section 3.2 formalizes
the model of the adversary. Section 3.3 describes the algorithm to generate the
adversarial perturbation for the clinical records of the patients. Section 3.4 presents
the experimental analysis to validate the proposal.



3. Binary Perturbations in e-Health Prescription Classification 21

3.1 Scenario

Electronic healthcare represents an ideal scenario to describe an adversary attack
because of the strong economic interests that move the pharmaceutical production.
In this Chapter a typical scenario is considered, schematically represented in Figure
3.1, where Alice and Bob are the doctor and the patient respectively. Bob reports
his symptoms to Alice, who compiles a medical record also including his personal
information, so that a decision about which treatment to prescribe can be made.
In order to refine her decision, Alice relies on a trusted Smart Prescription Service
on cloud, which is able to reason about the information in the medical record and
suggest appropriate treatment. It is assumed that the model beneath this service
is a neural network. In this context, a pharmaceutical company infiltrator named
Darth, gains an economic return when a drug of its corporation is prescribed.
Darth suggests Alice to install a software in the host that will interact with the
cloud service, whose stated purpose is to optimize response times and effectiveness
of the prescription system. Actually, this program performs an AML algorithm
able to elude the Smart Prescription Service and induce the prescription of Darth’s
intended treatment. In particular, this middleware software identifies a restricted
set of features which have to be altered in order to deceive the predictor in the
cloud. Altering just a few features is a characteristic of the utmost importance in
this scenario, since the Smart Prescription Service may return a detailed report
including the altered clinical record received as input, which therefore needs to
contain no striking changes in order not to make any doctor suspicious. Finally,
Alice will weigh her judgment based on the response of the intelligent service,
resulting in the prescription of Darth’s intended drug with high probability. The
following sections describe the attack.

3.2 Threat Model

Following the guidelines proposed in [8], in this section the model of the adversary
is framed according to three main aspects: what is the pursued security breach
(attacker’s goal); what is the degree of acquired knowledge on the problem do-
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Figure 3.1: A Smart Prescription System with adversary.

main (attacker’s knowledge); what are the concrete viable actions to achieve the
malevolent intent (attacker’s capability).

Attacker’s goal: the adversary carries out an integrity violation of the pre-
dictive algorithm in order to flip its belief without disrupting the system in the
whole, thus protecting himself from the risk of being caught. The attack speci-
ficity is indiscriminate, since the adversary does not make any distinction between
the patients he wants to fool at his benefit. Accordingly, the error specificity is
specific, as the target label, i.e., the active principle, that the adversary wants to
be prescribed to raise an economic return for his company, is prefixed.

Attacker’s knowledge: it is assumed that the adversary has perfect knowl-
edge on the domain at hand, in other words, he conducts a white-box attack. The
parameters (weights and biases) and hyperparameters (number of layers, number
of neurons per layer) of the neural network under attack are known to the ad-
versary, as well as the feature representation of the data. What needs not to be
necessarily known are the portion of samples being part of the training set, and
certain hyperparameters of the training process such as the batch size, the num-
ber of epochs, the learning rate, the weight decay factor adopted as regularizer,
and the momentum coefficient for gradient descent. Although these assumptions
may seem highly unlikely, it is common practice to test the strength of a machine
learning model against the worst case scenario, so that under real and softer con-
ditions the security of the system should not decrease. Moreover, in light of the
transferability property of adversarial attacks [33], the model’s parameters can be
estimated by querying repeatedly, until a surrogate model capable of providing the
same answers as the target model can be built.

Attacker’s capability: the attack influence is exploratory, as the adversary
has no access to the training data, and can only corrupt data belonging to the
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Algorithm 1 Binary Adversarial Perturbation
Input:

x: the input binary feature vector to perturb;
y: the ground truth label for x;
mask: a binary indicator of alterable features;
θ: trained parameters of the neural network;
γ: number of binary features the adversary may perturb;
ytarget: the desired output label.

Output:
δ: perturbation to add to the input sample such that: hθ(x+ δ) = ytarget ̸= ŷ.

1: ŷ ← hθ(x)
2: δ ← zeros_like(x)
3: if ŷ == ytarget then
4: return δ
5: ξ ← ∇xL(θ,x, y)
6: ξranked ← sort_descending(ξ, key = abs)
7: flippable← mask & (x⊕ sign(ξ))
8: counter ← 0
9: for value ∈ ξranked do
10: if counter == γ then
11: break
12: idx← ξ.index(value)
13: if flippable[idx] == 1 then
14: if x[idx] == 0 then
15: δ[idx]← +1
16: else if x[idx] == 1 then
17: δ[idx]← −1
18: counter ← counter + 1
19: return δ

test set. The data manipulation constraints strongly depend on the particular
scenario we are addressing in this study, where data are in the form of binary
feature vectors. It is thus clear that the adversary has to respect the range of
allowed values in the clinical records of the patients, i.e., values either of 0 or 1.

3.3 Methodology

The target Smart Prescription Service is a neural network, whose structure will
be further investigated in Section 3.4.1. The pseudocode for the proposed strategy
to create an effective perturbation against this model is provided in Algorithm 1.
The proposed approach leverages the logic behind the Fast Gradient Sign Method
(FGSM) [39], by first computing the gradient of the model’s loss function L(θ,x, y)
with respect to the input vector x, ground truth label y, and trained parameters
θ. It then selects the least amount of features whose perturbation leads to the
most precipitous step taken along the direction of the gradient. In what follows it
is retraced the complete logical flow of the proposed algorithm.
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This algorithm is executed by the malicious code injected by Darth into Alice’s
PC. The first step of the attack consists in computing the forward pass of the neural
network w.r.t. the input vector x Darth wants to perturb. If the hypothesis of the
model ŷ is different from the target label ytarget, Darth’s objective is to flip the
predicted label for the input vector x to the intended one. In other terms, the goal
of the attack is to find the perturbation δ such that hθ(x + δ) ̸= ŷ. First, Darth
puts in place a revised version of FGSM [39]. The traditional approach aims at
climbing up the gradient by adding the perturbation ξ = ϵ · sign(∇xL(θ,x, y)), for
a given ϵ > 0, so that the perturbation vector ξ is composed by values equal to ±ϵ.
∇x symbolizes the gradient taken w.r.t. the input vector. In this work only the
term ξ = ∇xL(θ,x, y) is considered, so that each single ξi ∈ R. The reason lies in
the need to select only a small subset of the input features to perturb. Opposed to
the image processing domain, where each pixel may be perturbed with a small step
in its scale of representation, in different domains where the features may assume
a limited set of values (in this case, binary values), each single perturbation added
to the input features has to be selected with care. Therefore, from the real-valued
perturbations vector ξ, Darth has to craft a binary perturbation mask to add to
the input sample in order to flip the neural network’s prediction. Initially, Darth
sorts the perturbation vector ξ according to the absolute values of its components.
The higher the value in ξ for a specific feature, the higher the contribute along
the error that its perturbation will induce, thus becoming the optimum target.
Let us now suppose that the application domain imposes some constraints on the
features that may be altered; these constraints are represented in the form of a
binarymask as input to the proposed algorithm, where the presence of a 1 indicates
that the related feature may be perturbed. This mask explicates those features
whose alteration is risky, because they can easily lead to the possibility of being
disclosed during the attack. Another input parameter to the attack algorithm is
the maximum number of features γ that Darth may alter from the input vector.
A single input feature xi may be altered in two cases:

1. xi == 1 and the perturbation which results from ascending along the gradi-
ent of the loss function has negative sign, i.e. sign(ξi) = −, so that xi may
be flipped by adding δi = −1. In other words, a feature value of 1 can be
altered to 0 only if the sign of the gradient along that feature is negative;
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2. xi == 0 and the perturbation has positive sign instead, i.e. sign(ξi) = +, so
that in order to flip xi, δi = +1 may be added.

To achieve this aim, firstly the sign of the perturbation vector ξ is considered,
sign(ξ), which is then XORed with the input vector x: x⊕sign(ξ), so as to obtain
a True value only when the input feature is 1 and the perturbation has negative
sign, and vice versa. The sign(ξ) is represented as a binary vector where 1 stands
for the sign ’+’ and 0 for ’-’. The result of this operation is then processed with
a bit-wise AND with the input mask: flippable = mask & (x ⊕ sign(ξ)). This
operation results in a binary vector, flippable, which signals all those features that,
if altered, make the neural network increase the error, because their alteration is
concordant with the direction of the loss’s gradient. Finally, having the list of
features he may alter to deceive the neural network, Darth chooses the γ features
with maximum absolute value, in order to take the gradient’s sharpest stride.

In order to achieve the attack, Darth must have a deep knowledge of the medical
domain he is going to infiltrate. This implies the awareness of both the set of
alterable features to compose the mask and, most importantly, the parameters θ
of the model beneath the smart prescription service. The latter can be achieved
by probing the service as a black box, and building a surrogate model which
responds in the most similar manner to the smart prescription service [8]. This
approach finds his justification in the demonstrated transferability property of
adversarial attacks [33]. When Alice provides Bob’s clinical record to Darth, he
first decides a threshold γ of maximum binary feature values to perturb. He
computes the loss’ gradient ∇x of the surrogate model’s parameters with respect
to Bob’s record. The most proficient features to alter are those which posses three
properties: they do not appear in the mask of inconvenient features; they have
the highest correspondent module in ∇x; their alteration is concordant with the
respective sign of ∇x. The perturbed clinical record is then provided to the smart
prescription service, which will return, with high probability, a report to Alice
containing Darth’s intended medicine as the suggested prescription. It is Darth’s
concern to select γ as a good trade-off between an higher probability of subverting
the smart prescriber prediction, and a lower probability of raising Alice’s doubts
towards the model’s outcome.
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3.4 Experimental Analysis

In order to validate the proposal, the AMR-UTI dataset1 [38, 60, 45] has been
adopted, which contains electronic health records of patients with urinary tract
infections. Each record consists of demographic information, past clinical data such
as previous antibiotic exposure or resistance, and the antibiotic prescription chosen
by a clinician to treat the patient. This dataset, allows to train a model able to pre-
scribe the so-called “empiric antibiotic treatment”, which the patient should take
while waiting the necessary three days for the accurate response from his urinal
specimen analysis. In this scenario, the interest of the adversary lies in altering the
treatment chosen by the model, simultaneously respecting any contraindications
w.r.t. the patient’s clinical status. In particular, the patients who were treated
with a first-line antibiotic have been considered, which is one of two classes: ni-
trofurantoin (NIT) and trimethoprim-sulfamethoxazole (SXT). The authors of the
dataset provided a train/test division based on the years: specimen samples of the
train set have been collected during the years 2007-2013, whereas the specimen
in the test set refers to the period 2014-2016. Respecting this original division,
the train set of first-line prescriptions contains 6815 samples, while the test set
contains 2618 samples. Among the train set, 1892 samples received an empirical
prescription of nitrofurantoin (NIT), and 4923 the trimethoprim-sulfamethoxazole
(SXT). In the test set, 1358 samples where prescribed nitrofurantoin (NIT), the
remaining 1260 trimethoprim-sulfamethoxazole (SXT).

Among the features exposed in the AMR-UTI dataset, the patients’ demo-
graphic information have been considered as “not-corruptible” (which have been
modeled through the input mask in Algorithm 1), in the sense that the adversary
has no interest in altering these information in the clinical record of the patient,
because of their ease of counter-proofing with reality. By performing other pre-
processing steps which are released as part of the source code2, a set of 564 binary
features has been obtained, which are represented with different time granulari-
ties. In this work, the analysis is restricted to the features registered within 180
days, also because this is the time window most commonly shared between all the

1https://www.physionet.org/content/antimicrobial-resistance-uti/1.0.0/
2https://github.com/agiammanco94/AIxIA2021

https://www.physionet.org/content/antimicrobial-resistance-uti/1.0.0/
https://github.com/agiammanco94/AIxIA2021
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features, for a total amount of 135. Finally, the κ best features have been selected
according to the chi-square independence test [55], where κ is considered as one
of the hyperparameters whose exploration will be further described in the next
subsection. Having fixed a specific value for κ, all those samples with equal binary
features values but different label have been removed.

3.4.1 The classification network

Experiments were performed starting from an existing neural network3, which has
been extended by adding the cross entropy loss function, the softmax activation
layer, the momentum gradient descent, the regularization through weight decay,
the random search algorithm for hyperparameters tuning [40], the FGSM [39], and
the attack algorithm proposed in this work. The random search approach [40] has
been employed to explore different structures for the neural network (in terms of
number of layers, and number of neurons per layer) and different configurations
of the training phase (the learning rate, weight decay, and momentum factors for
the gradient descent algorithm). Table 3.1 shows the range of values explored
for each of the hyperparameters: in each experiment, a uniform probability with
Min and Max as extremes is sampled for every hyperparameter. In particular,
once the number of neurons for the first layer had been selected, the neurons for
the subsequent layers are halved, given that a preliminary experimental evaluation
proved this architectural choice to be more effective. The number of neurons in the
last layer is equal to 2, since there are two classes (NIT and SXT) in the addressed
problem. The activation functions employed are the ReLU for all the intermediate
layers, and the Softmax for the output layer. This choice led to the adoption of
the weights initialization procedure described in [41], which has been proved to be
the optimal choice to combine with ReLU layers.

The f-score measure [40] has been employed to evaluate the effectiveness of
the neural network classification; to be more specific, f-score values have been
computed for each of the two classes separately, thus by assuming NIT and SXT
as the positive class in turn. Then, in order to evaluate the effectiveness of the
attack algorithm, the analysis was restricted to the portion of samples of the test
set that the neural network identifies correctly, and the error percentage of the

3https://github.com/RafayAK/NothingButNumPy

https://github.com/RafayAK/NothingButNumPy
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Table 3.1: Ranges of values for the hyperparameters explored with Random Search.
Category Hyperparameter Min Max

Network Number of layers 2 7
Number of neurons in 1st layer 50 500

Dataset Number of κ features 20 70
Learning rate α 1e−4 1e−3

Training Weight decay λ 1e−5 1e−3

Momentum ν 1e−3 8e−1

model w.r.t. the corrupted input samples of a specific class has been measured as:

error < class >= |hθ(x+ δ) ̸= class & hθ(x) = class = y|
|hθ(x) = class = y|

,

where hθ is the hypothesis of the model with the trained parameters θ, x is the set
of samples in the test set, δ is the perturbation created with the attack algorithm,
and y is the ground truth class.

3.4.2 Results and discussion

50 batches of experiments have been performed where the neural network architec-
ture hyperparameters are sampled from ranges shown in Table 3.1. For each batch,
50 different samplings of training hyperparameters have been explored while keep-
ing fixed the network structure sharing such values in all neurons, thus resulting
in a total number of 2500 configurations. Results have been analyzed according to
the value of κ; in particular we considered three ranges of values, i.e., κ in [20; 30],
[31; 50], and [51; 70]. For the sake of clarity, in Table 3.2 the most significant re-
sults from each group are presented, while the corresponding hyperparameters are
reported in Table 3.3. In particular, Table 3.2 shows the f-scores of the selected
models w.r.t. the two classes, as well as the error percentage due to the injection of
γ ∈ [1, 2, 3, 4, 5] binary feature values into the test data with the proposed attack
algorithm. When the dataset is preprocessed in order to select only the κ = 29
most meaningful features (first row), the proposed attack procedure with γ = 3
allowed to completely mislead the neural network for all the test data. This result
can be due to the extreme sparsity of the AMR-UTI dataset, in which the vast
majority of the binary features have value 0. For such a reason, when a binary
feature value is flipped from 0 to 1 in the direction of the loss’ gradient, it is ex-
tremely likely that the new feature becomes “characteristic” for the target class,
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Table 3.2: F-score and errors of the best performing experiment in each group.
Exp. f-score f-score error NIT error SXT

NIT SXT ψ = 1 ψ = 2 ψ = 3 ψ = 4 ψ = 5 ψ = 1 ψ = 2 ψ = 3 ψ = 4 ψ = 5
1 0.80 0.72 0.74 1.00 1.00 1.00 1.00 0.71 0.96 1.00 1.00 1.00
2 0.73 0.70 0.58 0.87 0.97 1.00 1.00 0.78 1.00 1.00 1.00 1.00
3 0.64 0.67 0.31 0.70 0.89 0.96 1.00 0.29 0.60 0.84 0.95 1.00

Table 3.3: Hyperparameters of the most significant experiments.
Experiment Neurons κ α λ ν

1 145, 2 29 6.70e−4 1.71e−4 4.38e−1

2 177, 2 42 5.40e−4 1.36e−4 7.49e−3

3 215, 2 59 5.18e−4 3.25e−5 7.65e−1

thus flipping the label with high probability. As the number of features consid-
ered increases, an higher quantity of features needs to be perturbed in order to
completely subvert the predictions, in particular, for κ = 42 and κ = 59 (second
and third row of Table 3.2), the best performances of the algorithm are achieved
by altering 4 and 5 features respectively.

In order to provide a more in-depth analysis of the features that have actually
been altered in the experiments carried out, Figure 3.2 shows the percentage of
times that a given feature has been chosen by the proposed algorithm, and the
corresponding success rate in deceiving the model. The two heatmaps are com-
puted aggregating the results of the three experiments reported in Table 3.2. It is
important to note that the percentages of feature selections depicted in the first
heatmap have unitary sum for a fixed value of γ, meaning that the shown set of
features contains all the perturbed ones. Instead, the percentages of success due
to feature perturbations represented in the second heatmap sum to the error rate
of the model, e.g., when γ = 5 the percentages of success add up to 1, since results
shown full model deception in all the experiments by altering 5 features. The most
selected feature (38) is related to breathing difficulties, and it has been chosen for
the 13.67% of times across both all the experiments and γ values, leading to suc-
cess in 8.89% of cases w.r.t. the total of all other perturbation attempts. The
motivation behind this fact can be traced back to the adverse effects of the two ac-
tive principles. Indeed, among the side effects of nitrofurantoin assumption4 there

4https://www.msdmanuals.com/professional/infectious-diseases/
bacteria-and-antibacterial-drugs/nitrofurantoin

https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/nitrofurantoin
https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/nitrofurantoin
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Figure 3.2: Heatmaps of the perturbed features by the proposed attack algorithm,
and the respective success percentage in changing the prediction of the model.

is pulmonary toxicity, which is instead absent in trimethoprim-sulfamethoxazole’s
side effects5. In light of this consideration, the proposed approach realized the
shrewd behavior of the doctor prescribing SXT treatment for patients who have
recently experienced breathing complications.

5https://www.msdmanuals.com/professional/infectious-diseases/
bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole

https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole
https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-antibacterial-drugs/trimethoprim-and-sulfamethoxazole


Chapter 4

Correlations-Aware Perturbations
in Spam Account Detection

The high availability of OSNs, that is, the fact that they can be easily accessed
at any time from anywhere, is the key factor in their success and, at the same
time, the main reason for the interest of malicious entities. Since spammers may
adopt different strategies to achieve their goal, ML algorithms are usually trained
on a wide set of features capable of capturing various aspects, such as information
concerning the properties of the account, the history of shared content, and the
degree to which a user is connected to the rest of the network. While such a
comprehensive set of characteristics allows to identify different types of threats,
large feature sets may also extend the attack surface of ML systems, making them
more easily deceived.

From an AML point of view, features describing the user of an OSN are closely
interrelated (e.g., adding or deleting a message containing a URL would impact
multiple feature values at the same time) and the steps required to fool a classifier
cannot be made on a trial-and-error basis. In this context, accomplishing an attack
means finding a way for the adversary to automatically alter the feature vector
describing a spammer so that it is recognized as genuine, without impairing the
malicious behavior.
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In order to achieve this goal, here it is proposed AdverSPAM 1, an evasion
adversarial attack against OSN spam account detection systems that allows to
find the optimal perturbation to deceive the target model, while preserving the
inter-relationships among the features describing the user behavior.

The remainder of the chapter is organized as follows. Section 4.1 outlines the
OSN scenario considered as case study. Section 4.2 formalizes the model of the
adversary. Section 4.3 describes the algorithm to generate the adversarial pertur-
bation for the spammer account in order to be recognized as genuine. Section 4.4
presents the experimental analysis to validate the proposal. This includes a de-
scription of the experimental setup, a preliminary assessment of the attack followed
by a comparative analysis with five baselines, a concrete case study with a real
example of the modifications made by AdverSPAM, and the evaluation of three
mitigation strategies. Discussion on advantages and limitations of the approach is
provided in Section 4.5.

4.1 Scenario

OSNs are protected by intelligent systems that are able to identify and block ma-
licious accounts. Usually, the detection algorithms exploit heterogeneous features
to describe the different behaviors that spammers may adopt [22]; these can be
logically organized into four categories, according to their aims [35]:

• Metadata-based features describe the general characteristics of the ac-
count, such as its creation date, the geographic location, or the average
tweet time. These features can be obtained very easily and can be quite
effective in recognizing clear malicious behaviors.

• Content-based features are useful to evaluate the quality of the content
shared by an account. In order to be effective, spammers need to reach
a large number of users; thus, their messages frequently include mentions,
hashtags, and URLs. Spam account detection algorithms may look for these
elements in order to determine whether an account is genuine or not.

1https://github.com/agiammanco94/AdverSPAM
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• Interaction-based features allow to model the friendship network of the
account under analysis. Neighborhood information can be very useful to
distinguish influential accounts (characterized by many followers and gen-
erally by almost no followings), listener accounts (few followers and many
followings), isolated accounts, or even sub-networks that could be used for
orchestrated attacks.

• Community-based features are able to capture the characteristics of ac-
count groups that have similar interests, physical locations, professions or
other relevant social aspects. The general idea is that the behavior of an
account can be inferred by observing those of the community to which it
belongs [35], e.g., an account with a good reputation network is unlikely to
be a spammer.

In order to bypass the detection systems, the attacker should make the feature
vector describing a spammer resemble that of a genuine user. This goal can be
achieved through trial and error strategies, however deceiving the OSN can take a
long time, during which actions (e.g., banning or blacklisting) can be taken against
the spammer. Altering metadata-based features, for instance, would require a shift
in the account habits, which is very complicated to achieve. Content-based fea-
tures may be altered by forging ad hoc content in order to re-balance those feature
values that might suggest a malicious behavior, e.g., creating new “clean” tweets,
or removing those that clearly refer to a spam campaign. These alterations may
be implemented manually or automatically, depending on the nature of the user.
In either case, a large number of changes are required for the features to undergo
a significant change. Interaction- and community-based features can also be mod-
ified by creating new connections within the social network, which is usually done
by purchasing followers or followings [85] from third-party providers, by creating
fake accounts, or by exchanging followers with other users.
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Figure 4.1: The proposed AML strategy in OSN security scenario.

4.2 Threat Model

The proposed attack strategy (see Figure 4.1) follows the general structure of
black-box adversarial attacks [61] while capturing the peculiarities of the scenario
just described.

The attacker (Darth) aims to perform an integrity violation of the defense
mechanism of the OSN (i.e. Spam Account Detector) so as to be mis-classified as a
genuine user, although showing a typical spammer behavior. The attack specificity
is targeted since the intent is to hide the spammer behavior to the smart detector.

Even though in a black-box scenario the target model T is not known to Darth,
we can make a common assumption [33] by supposing the adversary knows the
feature representation X of the data. The model T can be queried by Darth,
while meeting time constraints and consecutive query limits, in order to collect a
training dataset DS for a local surrogate model S, which mimics the functioning
of the target (unknown) ML system; this configures the proposed approach as a
query-limited setting black-box attack [42]. In particular, DS can be obtained
by following a strategy known as mimicry attack [32, 62], according to which a
group of satellite agents is exploited to create a balanced set of spam and genuine
accounts. Since Darth knows S, he can build a perturbation vector δ to be added
to the original feature vector x so that the perturbed feature vector x̃ is classified
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Figure 4.2: Simplified example of binary classification with only two features. (a)
The decision boundary dbS (blue line) separates spammers (circles) from genuine
users (triangles). The goal of the attack is to project one chosen spammer sample
(red) into the opposite region by crossing the decision boundary. (b) The adver-
sarial sample must be generated within a certain distance (dashed blue line) from
the decision boundary, which depends on a parameter ψ. (c) The regression line
(black) provides a good approximation of the correlation between the spammer
samples. (d) In order to preserve the nature of the input, the feasible region (yel-
low area) for the adversarial sample is further constrained by a margin around the
regression line. (e) The adversarial sample (green triangle) is finally computed by
solving the optimization problem within the feasible region.

by S as genuine. Finally, by exploiting the transferability property, Darth may
obtain that x̃ eludes even the unknown model T .

The computation of δ must satisfy some constraints; indeed, in the scenario
considered here, some features may be mutually dependent and therefore not all
δ values are valid. Some works, addressing other application scenarios [64], have
proposed the generation of perturbations capable of preserving the statistical cor-
relation between features; this means that a change in a given feature value should
propagate proportionally to the others. However, such a numerical dependency,
although being able to highlight the hidden relationships between feature values,
is not really able to describe the semantic dependencies of the elements of the fea-
ture set. More specifically, two features are defined to be semantically dependent
if their computations require one or more common raw data.

The remainder of the section describes the proposed attack algorithm. For the
sake of clarity, the adopted notations and abbreviations are listed in Table 2.1.
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4.3 Methodology

The requirements discussed so far translate into ensuring the fulfilment of three
constraints, namely (i) allowing the computation of an adversarial sample, x̃, be-
yond the decision boundary of the surrogate model, S, while maintaining the (ii)
the statistical correlation and (iii) the semantic dependency of the features. In
order to better explain the meaning of these constraints, the description is com-
plemented with figures that illustrate a simplified classification example in which
only two features are employed (see Figure 4.2).

Given the problem of associating an observation {x1, . . . ,xκ} with a class from
the binary set Ω = {ω−,ω+}, the goal of the attacker is to take an original sample,
x ∈ X , that lies in the region ω+ and project it into ω− so obtaining a perturbed
sample x̃. Since low-complexity surrogate models have been shown to transfer
attacks more effectively [33], S it is assumed to be any model based on a linear
decision function:

dbS :
∑
i

αi xi + β = 0, (4.1)

where αi and β are the learned coefficients and intercept, respectively. Therefore,
crossing the decision boundary dbS means performing a search in one of the two
regions (see Figure 4.2a) delimited by Eq. 4.1. To be more specific, every perturbed
sample x̃ must satisfy one of the following conditions:


∑
i αi x̃i + β > 0 if ω− is above dbS ,∑
i αi x̃i + β < 0 otherwise.

(4.2)

It is also useful to choose x̃ on the basis of its distance from the decision boundary.
In fact, the farther x̃ is from dbS , the greater the probability of evasion success on
the target model. On the other hand, points that are too far from the decision
boundary would exhibit characteristics too dissimilar from x, resulting in the at-
tack being meaningless. Thus, in order to regulate the maximum allowed distance
from the decision boundary (Figure 4.2b) is chosen through a parameter ψ, whose
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Algorithm 2 Crossing the Decision Boundary
Input:
S: Surrogate model to attack;
X : The set of input samples for S.

Output:
dbc: The decision boundary constraint;
dbψ: The constraint on the parallel to dbS .

1: dbS ← S.getDecisionBoundary()
2: [αi,β]← dbS .getParameters()
3: x← X .getRandomSample()
4: ŷ ← S.predict(x)
5: ψ ← getOffset(dbS)
6: if test(x, [αi,β]) ≥ 0 then
7: if ŷ ∈ ω− then
8: dbc ← “

∑
i αi x̃i + β > 0”

9: dbψ ← “
∑
i αi x̃i + β − ψ < 0”

10: else
11: dbc ← “

∑
i αi x̃i + β < 0”

12: dbc ← “
∑
i αi x̃i + β + ψ > 0”

13: else if test(x, [αi,β]) < 0 then
14: if ŷ ∈ ω− then
15: dbc ← “

∑
i αi x̃i + β + ψ < 0”

16: dbψ ← “
∑
i αi x̃i + β + ψ > 0”

17: else
18: dbc ← “

∑
i αi x̃i + β − ψ > 0”

19: dbψ ← “
∑
i αi x̃i + β − ψ < 0”

20: return dbc, dbψ

sign depends on the position of ω− with respect to the dbS :
∑
i αi x̃i + β − ψ < 0 if ω− is above dbS ,∑
i αi x̃i + β + ψ > 0 otherwise.

(4.3)

The procedure that implements this last constraint is described by Algorithm 2.
The search in the region beyond the decision boundary is further driven by the

need to ensure that the statistical correlation and the semantic dependency of the
features originally extracted from x are preserved in the forged adversarial sample
x̃. These two properties are defined as follows.

Definition 1. Statistical Correlation: two features are statistically correlated if
having a strong linear relationship with each other.
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Definition 2. Semantic Dependency: two features are semantically dependent if
their computations require one or more common raw data.

In AdverSPAM, the statistical correlation among features is leveraged by con-
sidering the regression line fitting the data. In particular, since the aim of the
adversary is to preserve the core properties of the spammers, only the samples of
the positive class ω+ are considered (see Figure 4.2c). Formally, the regression line
regarding features j and i for all samples x ∈ ω+, is defined by:

Rω+

j,i (xi) = mω+

j,i xi + qω
+

j,i , (4.4)

where mω+
j,i and qω

+
j,i represent its slope and intercept, respectively. In order to

maintain the statistical correlation between the features, it is therefore necessary
that the manipulated sample does not deviate too far from Rω+

j,i . Hence, x̃ must
lie within a certain margin from this line (see Figure 4.2d), that it is computed as
the squared root of the Residual Sum of Squares (RSS) of the regression model:

marginj,i =
√ ∑
x∈X

(Rω+
j,i (xi)− xj)2, (4.5)

where the squared root is adopted for dimensional homogeneity. When RSS is
approximately 0, the regression line is a good predictor of the data, resulting in a
particularly tight margin of allowable displacement; conversely, a high value of RSS
means Rω+

j,i is an unreliable model of the data, thus leading to a wide margin of
possible perturbations. In other words, this margin actually outlines the minimum
and maximum perturbations permitted on the j-th feature of x̃:

x̃j ≤ mω+
j,i x̃i + qω

+
j,i + (marginj,i)

x̃j ≥ mω+
j,i x̃i + qω

+
j,i − (marginj,i).

(4.6)

Furthermore, the notation sd(i, j) is adopted to indicate whether a semantic
dependency between the features i and j exists. As stated in Definition 2, such
a relationship occurs when multiple features capture similar traits of the account,
so requiring the same information (e.g., the number of followers, or the amount of
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Algorithm 3 Maintaining Correlations and Dependencies
Input:
X : The set of input samples for S.

Output:
C̃: List of constraints.

1: C ← []
2: for all x ∈ X do
3: for all i ∈ F do
4: for all j ∈ F do
5: sd←checkSemanticDependence(i, j)
6: if i ̸= j and sd == True then
7: Rω+

j,i ← getRegressionLine(X , j, i)
8: [mω+

j,i , qω+

j,i ]← Rω+

j,i .getParameters()
9: marginj,i = sqrt(

∑
x∈X (Rω+

j,i (xi)− xj)2)
10: C.add(“x̃j ≤ mω+

j,i x̃i + qω
+

j,i + (marginj,i)”)
11: C.add(“x̃j ≥ mω+

j,i x̃i + qω
+

j,i − (marginj,i)”)
12: return C

posted URLs) to be computed. Therefore, the maintenance of statistical correlation
is strictly related to the existence of semantic dependency:

x̃j ≤ mω+
j,i x̃i + qω

+
j,i + (marginj,i) ∀i, j s.t. sd(i, j) = true,

x̃j ≥ mω+
j,i x̃i + qω

+
j,i − (marginj,i) ∀i, j s.t. sd(i, j) = true.

(4.7)

Conversely, features that are not in a direct cause-effect relationship can be ma-
nipulated independently of each other. The steps required to compute these last
constraints are described in Algorithm 3.

Once the feasible region has been defined (Figure 4.2e), the attack proceeds
by determining the best adversarial sample within it. This corresponds to finding
a set of new feature values which pursues a twofold purpose. Firstly, the overall
distance of the adversarial sample x̃ from the input x has to be limited, in order
to ensure that the (malicious) nature of x is not actually altered. Secondly, the
adversarial sample has to be transferable, that is, x̃ has to be general enough to
evade the unknown target classifiers. These two aspects have been modeled as a
weighted sum [29] of two objectives controlled by a factor λ ∈ [0, 1]:

z(x̃,x) : λL2(x̃,x) + (1− λ)L2(x̃,xψ⊥), (4.8)
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Figure 4.3: The objective function conjugating the minimisation of the distance
imposed over the adversarial samples and the maximization of the evasion capa-
bility against unknown classifiers.

where xψ⊥ is the projection of the input sample x over the parallel to the decision
boundary.

In order to understand the meaning of this objective function, let us consider
Figure 4.3. If the need of the adversary is to evade the local surrogate model
with the minimum effort possible, then, setting λ = 1 allows to only perform
the minimization of the euclidean distance between the input and the adversarial
sample. Conversely, when the adversary wants to deceive unknown black-box
models, since their decision boundaries may greatly differ from the one of the
local surrogate, a reasonable amount of additional distance has to be imposed
over the adversarial sample; this can be achieved by setting λ = 0. Any other
value of λ ∈ [0, 1] will constitute a trade-off between such two opposing situations.
Hence, AdverSPAM calculates the final adversarial sample by solving the following
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Algorithm 4 AdverSPAM
Input:
S: Surrogate model to attack;
X : The set of input samples for S;

Output:
X̃ : The set of adversarial samples.

1: X̃ ← []
2: dbc, dbψ ← Algorithm1(S, X )
3: for all x ∈ X do
4: C ← []
5: C.append(dbc)
6: C.append(dbψ)
7: C.append(Algorithm2(X ))
8: z ← getCostFunction(x̃, x)
9: x̃← solveoptimizationProblem(′min′, x, z, C)

10: X̃ .append(x̃)
11: return X̃

optimization problem:

x̃ = min
x̃

λL2(x̃,x) + (1− λ)L2(x̃,xψ⊥),

s.t.

(as reported in Eq. 4.2):
∑
i

αi x̃i + β > 0 or
∑
i

αi x̃i + β < 0

(as reported in Eq. 4.3):
∑
i

αi x̃i + β − ψ < 0 or
∑
i

αi x̃i + β + ψ > 0 (4.9)

(as reported in Eq. 4.7): x̃j ≤ mω+

j,i x̃i + qω
+

j,i + (marginj,i) ∀i, j s.t. sd(i, j) = true

x̃j ≥ mω+

j,i x̃i + qω
+

j,i − (marginj,i) ∀i, j s.t. sd(i, j) = true

x̃ ∈ [0, 1]n

The entire procedure is described by Algorithm 4, which exploits the other two
algorithms discussed in this section. In the realized implementation, the problem
was solved using COBYLA [67], which operates iteratively by generating local
linear approximations of the objective function and constraints. The solution x̃ is
searched in [0, 1]n, which represents the range of admissible values for the feature
set of n elements that will be described in the next section.
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Table 4.1: The list of features used to model the accounts.

Category Acronym Description

Metadata

RR Retweet Ratio
AR Automated Tweet Ratio
TSD Tweet Time Standard Deviation
TISD Tweet Time Interval Standard Deviation

Content

UUR Unique URL Ratio
UMR Unique Mention Ratio
CHS Content and Hashtag Similarity Ratio
UR URL Ratio
MR Mention Ratio
HTR Hashtag Ratio
AUR Automated Tweet URL Ratio
ATS Automated Tweet Similarity

Interaction

FR Follower Ratio
MFFFR Mean Follower’s Followings to Follower Ratio

FBR Follower-based Reputation
R Reputation

CC Clustering Coefficient

Community CBR Community-based Reputation
CBCC Community-based Cluster Coefficient

4.4 Experimental Analysis

The effectiveness of the proposed technique, whose code is publicly available 2,
has been evaluated in different steps. The first part of this section describes the
experimental setup, the metrics adopted for the assessment, as well as the tuning
of AdverSPAM internal parameters. Then, comparisons with five state-of-the-art
attack techniques are presented, discussing both the performance obtained and the
quality of the forged adversarial samples. The section continues with the intro-
duction of a concrete case study aimed at exploring the manipulations that should
be applied to a real OSN account in order to accomplish the considered attacks.
The results of adopting three mitigation strategies follow; finally, advantages and
limitations of AdverSPAM are outlined.
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4.4.1 Experimental Setup

The choice of the classifiers to adopt as target and surrogate models was driven by
the analysis of the literature in the field of AML. A preliminary consideration con-
cerned whether to select ML or Deep Learning methods. When low-dimensional
features spaces are considered, it has been shown that classical ML algorithms can
produce superior results, which also tend to be better interpretable than those
based on deep neural networks [43]. Conversely, the latter are recommended es-
pecially in domains characterized by large, high-dimensional data, such as image,
video, and audio data processing [27]. Hence, this work focused on five classi-
fiers that are the most commonly chosen for the final assessment of adversarial
attacks [9, 75], namely: Neural Network (NN), Support Vector Machine (SVM),
Logistic Regression (LR), Ridge Regression (RR), and Random Forest (RF). All
the considered models has been examined as possible targets, while only SVM
(with linear kernel) and LR were chosen as surrogates since they satisfy the re-
quirement of linear decision boundary needed in AdverSPAM.

Moreover, since the attack transferability strongly depends on the complex-
ity of the target model [33], this assessment considers high-complexity (H) and
low-complexity (L) variants. The complexity of a ML model is measured by the
number of hyperparameters it has. In general, a model characterized by a large
set of hyperparameters (high degree of complexity) may be able to capture more
variations in the data, but it will also be more difficult to train and may be more
prone to overfitting. Conversely, a low complexity model may be easier to train,
but may not be able to capture all the relevant information in the data.

In order to properly tune the parameters of the classifiers, a 10-fold Cross-
Validation has been performed with the objective of letting all the models achieve a
f-score of about 90%. To this aim, a public dataset [35] consisting of 10.000 genuine
users and 1.000 spammers, each described by a set of 19 features (see Table 4.1),
was used. Being this dataset unbalanced, we employed SMOTE augmentation
technique [15] so as to obtain a new dataset of 10.000 users per class. This was
split with 80:20 ratio leading to 16.000 accounts for the training and 4.000 for
the test set. The former was further split in two parts representing the datasets

2https://github.com/agiammanco94/AdverSPAM
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Table 4.2: The surrogate and target models used in the experiments, and the corre-
sponding tuned parameters. For all the models, low (L) and high (H) complexity
variants are evaluated. Furthermore, two different SVM kernels are considered,
namely, linear (lnr) and radial basis function (rbf).

Surrogates SVML
lnr, SVMH

lnr, LRL, LRH

Targets RFL, RFH , NNL, NNH , SVML
lnr, SVMH

lnr, SVML
rbf , SVMH

rbf , LRL, LRH , RRL, LRH

Parameters

RFL trees = 30; max_depth = 8

RFH trees = 30; max_depth = no-limit

NNL learning_rate = 0.01; weight_decay = 0.01; neurons_layers = [50, 50, 2]

NNH learning_rate = 0.01; weight_decay = 0; neurons_layers = [50, 50, 2]

SVML
lnr C = 1

SVMH
lnr C = 100

SVML
rbf C = 1

SVMH
rbf C = 100

LRL C = 1

LRH C = 10

RRL α = 10

RRH α = 1

DS and DT (see Figure 4.1), each containing 4.000 genuine and 4.000 spammer
accounts. Finally, DT was also used to perform the adversarial training described
in Section 4.4.5.

A summary of the adopted models and their tuned parameters is provided in
Table 4.2.

4.4.2 AdverSPAM Assessment

The behavior of AdverSPAM is mainly influenced by two parameters, namely ψ

(Eq. 4.3) and λ (Eq. 4.8). Given the definition of ψ, it is calculated as the value
that guarantees a desired percentage (ratio) of samples of the opposite class ω−

lies between the decision boundary and its shift by a quantity ψ. The higher the
ratio, the greater the probability that the adversarial sample will be located in a
region with a higher density of ω− samples. On the other hand, greater distances
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Figure 4.4: AdverSPAM tuning. Mean FNRs over the 12 targets (top row), and
L2 (middle) and L∞ (bottom) distances measured while varying the parameters
ratio and λ for every surrogate model (columns).

from the decision boundary would lead to an over-distortion of the original sample.
For this reason, the choice of the best ψ value was determined on the basis of a
set of evaluation metrics.

In particular, being the main goal of the algorithm to create a perturbed sam-
ple capable of deceiving the target model, a good measure of its effectiveness is the
percentage of actual spammers that are misclassified as genuines. This informa-
tion is provided by the False Negative Rate (FNR), which is defined as the ratio
between false negatives and true positives. Moreover, the L2 and L∞ distance
norms, can be exploited to evaluate the distortion introduced in the adversarial
samples.
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Tests were run on four surrogate models while varying both the ratio and the
value of λ, i.e., the weight of the two components of the objective function. Results
are shown in Figure 4.4, organized as a matrix in which each column refers to a
different surrogate. The first row summarizes the mean FNR values obtained on
the 12 target models for every pair (ratio,λ); highest values are represented with
darker colors. The 3-D plots in the second and third rows reveal how varying the
parameters ratio and λ impacts on the values of L2 and L∞. As a general trend
we can notice that both the FNRs and the distance values grow proportionally to
ratio, but inversely to λ. Indeed, small values of λ (i.e., λ ≤ 0.4) cause the objective
function to push the adversarial sample away from the decision boundary, which
leads to both a greater transferability and higher peaks in the distance metrics.

As the considered surrogate model varies, the specific optimal values of the
parameters change accordingly. In particular, by analyzing the last two columns
of Figure 4.4 (i.e., LRL and LRH models), it can be noticed that the best FNRs
values are obtained when the ratio ∈ [0.2, 1] and λ ∈ [0, 0.4]. Considering the L2

and L∞ values measured in these ranges, a good trade-off between success rate
and perturbation degree is reached by choosing ratio = 0.2 and λ = 0.4. The
same assessment can be made for the SVML

lnr and SVMH
lnr models, resulting in

ratio = 1 and λ = 0.2. The obtained ratio values correspond to ψ equals to 1.91,
5.44, 3.78, and 5.47 for SVML

lnr, SVMH
lnr, LRL, and LRH , respectively.

Further experiments were carried out in order to evaluate the capability of
AdverSPAM to preserve the statistical correlations of the features. In literature,
statistical correlation is expressed in terms of linear correlation between pairs of
features; an indicator typically used in this regard is the Pearson’s coefficient [6, 49,
47, 82]. In order to assess what type of correlation exists between the 19 features
considered, some preliminary tests were carried out on the original dataset by
representing all the pairs of features in a two-dimensional space and fitting them
with polynomials of degree from 1 to 4. For each pair, the Mean Square Deviation
(MSD) of the points w.r.t. the fitting polynomials was calculated as an indicator of
approximation quality. The results shown in Table 4.3 indicate that polynomials
of a higher degree correspond to a smaller fitting error, which is intrinsic in the fact
that the higher the degree the greater the freedom in fitting the data. Thus, the
variance of the deviations was also computed, which should decrease if a certain
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Table 4.3: Average and variance of the Mean Square Deviation (MSD) computed
by different degree polynomials fitted on the features of the spammer class.

metric

degree
I II III IV

avg(MSD) .032 .029 .028 .027

var(MSD) .002 .002 .002 .002

curve was actually able to better follow the distribution of the data. The results,
instead, indicate that the variance is stable as the degree of the polynomial changes;
thus, it can be concluded that linear dependency fairly accurately represents the
distribution of the data.

The correlation matrix of the feature set before and after the adversarial attack
was performed is shown in Table 4.4, where, for each pair of features, the following
5 values (columns) are reported: original Pearson correlation coefficients (blue);
variations of these coefficients (red) after creating the adversarial samples with
SVML

lnr, SVMH
lnr, LRL, and LRH , respectively. As a general rule, the stronger the

correlation between the features, the smaller the changes in Pearson’s coefficients
caused by the attack should be. Thus, if correlations are maintained, light-red
colored cells are expected in correspondence with dark-blue ones, and vice versa;
this trend is clearly visible for almost any feature in Table 4.4. Moreover, because
of the constraint in Eq. 4.7, features that are not semantically dependent on each
other are more likely to be strongly modified. This is particularly evident when
looking at FBR (Follower-based Reputation), which belongs to the interaction
category (see Table 4.1). Features ranging from RR to ATS are not semantically
dependent with FBR because they belong to different categories; moreover, they
are lowly correlated with FBR as indicated by the corresponding Pearson coeffi-
cients. Hence, these features are good candidates for manipulation. This is indeed
confirmed by the results, which show greater variations (darker red values) in the
rows from RR to ATS, regardless of the surrogate model used.
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Table 4.4: Correlation matrix. For each feature, the following 5 values (columns)
are shown: Pearson correlation coefficients (blue) measured on the samples of
the spammer class before the attack is launched; variations of these values (red)
after creating the adversarial samples with SVML

lnr, SVMH
lnr, LRL, and LRH ,

respectively.
initial correlation 0 1 variations 0 1

RR AR TSD TISD UUR UMR CHS UR MR HTR AUR ATS FR MFFFR FBR R CC CBR CBCC
RR
AR

TSD
TISD
UUR
UMR
CHS
UR
MR

HTR
AUR
ATS
FR

MFFFR
FBR

R
CC

CBR
CBCC

4.4.3 Comparing AdverSPAM with the baselines

State-of-the-art AML attacks can be classified into two main categories, namely
white-box and black-box [34, 69]. In order to cover both classes, AdverSPAM
was compared with both gradient-based white-box attacks (i.e., FGSM , DF ,
and C&W ), and decision-based black-box attacks (i.e., Cheng and Peng). While
FGSM , DF , and C&W attacks are widely adopted in the literature for the com-
parative analyzes [86, 63, 88, 19, 44, 91, 7, 31, 59], the other two methods are
less known but no less important. In particular, Peng is the only technique that
addresses the problem of statistical correlation between features, just like Ad-
verSPAM. Thus, the comparative analysis is based on the following baselines:

• Fast Gradient Sign Method (FGSM) [39], where the adversarial perturbation
is computed considering the sign of the targeted classifier loss function’s
gradient, and projecting the adversarial sample on a sphere of radius ϵFGSM
around the input sample.

• DeepFool (DF) [57], where the adversarial sample is shifted along the di-
rection of the gradient of the target model loss w.r.t. the input, until the
decision boundary is crossed. The obtained perturbation is then scaled by a
factor (1 + ηDF ), which is useful for getting adversarial samples farther from
the decision boundary.
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Table 4.5: The chosen parameters for the adopted algorithms.

FGSM DF C&W

Model

Parameter
ϵFGSM ηDF cC&W

SVML
lnr 0.37 0.35 0.5

SVMH
lnr 0.42 0.75 0.5

LRL 0.45 0.5 0.85

LRH 0.45 0.2 0.95

• Carlini and Wagner L2 (C&W) [13], where an optimization problem is for-
mulated with a loss function leveraging the representation in the logits layer
(the layer prior to the final softmax layer, containing the probabilities that a
sample belongs to a specific class) as a measure of attack success. The prop-
erties of such a loss function depend on a regularization parameter cC&W > 0,
which controls the confidence that the adversarial sample belongs to the op-
posite class. When the attacked model is not a Neural Network, the equiva-
lent of the logits layer is represented by the class memberships probability.

• Cheng et al. method (Cheng) [17], where the model to attack is considered
as a black box, whose decision boundary is estimated by considering the
vector connecting the input sample to a sample belonging to the desired
class. The adversarial perturbation is computed taking incremental steps
along such direction until the decision boundary is crossed; then, a gradient
descent procedure is followed in order to consider the direction minimizing
the euclidean distance between the input and the adversarial sample.

• Peng et al. method (Peng) [64], which is an extension of the Cheng method
where the optimal direction on which to project the adversarial sample is
searched by minimizing the Mahalanobis distance, thus preserving the sta-
tistical correlations between features.

The methods just introduced require a calibration phase to tune the corre-
sponding parameters. Similarly to the analysis described in Section 4.4.2, they
were computed by maximizing the FNRs of the target models, while minimizing
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the distance metrics. The chosen values are listed in Table 4.5, in which Cheng
and Peng methods are omitted because their functioning parameters are indicated
in the respective original works.

Table 4.6 reports the transfer matrices of the six attacks launched against
twelve targets (columns), while using the surrogates previously discussed. For
each subtable, the last column and row indicate the average transfer rate of the
attacks and the average FNR against every target, respectively.

A first consideration can be made about the performance achieved using SVMs
and LRs. Indeed, basing the attacks on logistic regression models, regardless of
their complexity, results in a stronger transferability capacity than SVMs, as re-
vealed by the values highlighted in green. This corroborates the thesis that simpler
sources of adversarial samples are preferable for transferring against unknown mod-
els [33], as they are less specialized and thus less prone to drive the perturbations
toward regions which will not translate in miss-classification against black boxes.

By analyzing Table 4.6 by columns, it is also possible to observe some de-
pendency between the measured FNRs and the complexity of the target models.
In particular, high-complexity targets seem to be less resistant to transferred ad-
versarial samples, as pointed out by the average values highlighted in pink. For
instance, when the surrogate is SVML

lnr, the average FNRs against NNL and
NNH are 0.48 and 0.81, respectively. This could depend on the learned decision
curve of higher complexity targets, which is highly fitted (very close) to the input
data; thus, a small perturbation on the input sample is often sufficient to cross
the decision boundary. The same consideration applies to almost all surrogates
and targets, except for a few cases where the performance of the low- and high-
complexity versions are equivalent. Among these are the FNRs measured against
Random Forest (RF), which are quite low (in average) for all attacks.

Nevertheless, the transfer capacity of AdverSPAM over RF is about 80% for
SVML

lnr and 90% considering all other surrogates. These values are better than
all competitors except FGSM and DF. The reason is that RF does not use a
differentiable learning function, but rather relies on a set of decision trees that
establish the class of a sample based on the values assumed by individual features.
Thus, if a group of features is altered significantly (i.e., exceeds the threshold
value learned by the tree), the probability of misclassification is very high. This
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Table 4.6: Transfer matrices (FNR values) of five attack strategies compared
with AdverSPAM exploiting four different surrogate models, namely low and high
complexity SVMs (a) and LRs (b). Each attack is carried out against 12 target
models (columns).
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AdverSPAM 1 1 .81 .81 1 1 1 1 1 1 1 1 .97
FGSM .56 1 1 1 .99 1 .19 .99 .68 1 .92 1 .86
DF 1 .98 .74 .74 1 .99 1 1 1 1 1 1 .95
C&W .27 .69 .03 .03 .73 .73 .10 .73 .42 .73 .71 .72 .49
Cheng .02 .73 .43 .43 1 .98 0 1 0 .99 1 1 .63
Peng .03 .48 .37 .37 .63 .58 0 .63 0 .63 .25 .57 .38
average .48 .81 .56 .56 .89 .88 .38 .89 .52 .89 .81 .88
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AdverSPAM 1 1 .91 .91 1 1 .98 1 1 1 1 1 .98
FGSM .76 1 1 1 1 1 .35 1 .94 1 .99 1 .92
DF 1 .99 .93 .93 1 1 .98 1 1 1 1 1 .99
C&W .19 .36 .03 .03 .29 .68 .10 .34 .18 .36 .26 .66 .29
Cheng 0 .51 .48 .48 .88 .93 0 .95 0 .55 .54 1 .53
Peng 0 0 .06 .06 0 .02 0 .05 0 0 0 0 .02
average .49 .64 .57 .57 .70 .77 .40 .72 .52 .65 .63 .78

(a)

N
N
L

N
N
H

R
F
L

R
F
H

S
V
M

L ln
r

S
V
M

H ln
r

S
V
M

L r
bf

S
V
M

H r
bf

L
R
L

L
R
H

R
R
L

R
R
H

av
er

ag
e

L
R

L

AdverSPAM 1 .99 .91 .91 .99 .99 1 .99 1 1 1 1 .98
FGSM 1 1 1 1 .80 1 .95 .72 1 1 1 1 .96
DF 1 .99 .99 .99 1 .99 1 .99 1 1 1 .99 1
C&W .88 .97 .42 .42 .93 .99 .98 .90 .99 .99 .99 .99 .87
Cheng .80 .95 .68 .68 .99 .99 .33 .99 .99 .99 .99 .99 .86
Peng .23 .23 .15 .15 .23 .23 0 .23 .23 .23 .23 .23 .20
average .82 .86 .69 .69 .82 .87 .71 .80 .87 .87 .87 .87

L
R

H

AdverSPAM 1 1 .90 .90 .99 .99 1 .99 1 1 1 1 .98
FGSM .99 1 1 1 .86 1 .96 .78 1 1 1 1 .97
DF 1 1 1 1 1 1 1 1 1 1 1 1 1
C&W .91 .97 .44 .44 .96 .98 .97 .91 .99 .99 .99 .99 .88
Cheng .26 .99 .59 .59 1 1 0 1 .02 1 1 1 .70
Peng .40 .41 .23 .23 .44 .43 0 .44 .44 .44 .44 .44 .36
average .76 .90 .69 .69 .88 .90 .66 .85 .74 .91 .91 .91

(b)

is the case of FGSM and DF, that apply to each feature a perturbation equal
to ϵFGSM and proportional to ηDF , respectively. Then, the altered feature values
differ greatly from the original ones (defined in [0, 1]), so producing a high transfer
rate.

By observing the results of the C&W attack, it can be noticed that this is
quite effective when the surrogate is LR, while it frequently fails in the case of
SVMs. This can be explained because the decision boundaries learned from Lo-
gistic models are farther from the ω+ samples than those computed by SVMs;
this results in higher L2 values and thus greater transferability of the samples.
The low performances of both Cheng and Peng methods depend on the idea at
their basis: in order to moderately perturb the input, they generate adversarial
samples that slightly cross the decision boundary. This impacts on transferability
as the examples will fail to evade the target model whenever its decision boundary
is different from that of the surrogate.

Actually, FNRs alone are not good predictors of the attack’s performance
as excessively altered samples could still lead to high transfer rates. To better
investigate this aspect, we measured the quality of the manipulated samples in
terms of their distance from the original ones. The results shown in Figure 4.5
summarize the average L2 and L∞ values calculated for the six attacks, while
varying the underlying surrogate model.



4. Correlations-Aware Perturbations in Spam Account Detection 52

Surrogate Models

2

4

6

L2

0.81 0.84 0.74 0.70

2.04
2.76

2.13 2.18

0.57 0.80

3.25

5.70

0.51 0.34
0.89 0.910.78 0.74 0.96 0.851.14

0.44 0.57
1.02

 
AdverSPAM FGSM DF C&W Cheng Peng

SVML
lnr SVMH

lnr LRL LRH

 

0

.5

1

L
0.77 0.73 0.69 0.65

0.38 0.43 0.45 0.45

0.71 0.74 0.82
0.92

0.26 0.21

0.48 0.48

0.77 0.76 0.78 0.77

0.48

0.19 0.19
0.36

 

Figure 4.5: The average L2 and L∞ distances calculated for the six attacks while
varying the surrogate models.

By considering the results of Figure 4.5 and Table 4.6 together, it can noticed
that the two methods having FNRs comparable with AdverSPAM are charac-
terized by L2 values that are always worse than the proposed attack (as in the
case of FGSM ), or highly variable depending on the surrogate used (DF). On the
contrary, AdverSPAM exhibits fairly controlled L2 variations for every surrogate;
this is due to the intrinsic nature of the proposed algorithm that adjusts the max-
imum allowed distance of the adversarial samples through the ψ parameter, which
is automatically tuned on the specific surrogate.

As regards L∞, the values measured on DF and Cheng are comparable with
AdverSPAM, and in some cases higher (i.e., worse); conversely, the distances ob-
tained by applying FGSM, Peng, and C&W attacks are generally lower. These
differences depend on how each approach defines the search region for the adver-
sarial sample. For instance, the L∞ distances observed for FGSM and DF are
very similar to the values of ϵFGSM and ηDF . The same considerations apply to
C&W and Cheng approaches, whereas a more thorough evaluation is required for
Peng, which exhibits the lowest L∞ among all the baselines and is the only method
explicitly accounting for feature correlation maintenance.

In order to further examine this aspect, a final comparative analysis was car-
ried out between AdverSPAM and Peng to measure their ability to preserve the
statistical correlation between features. As indicator, the Frobenius norm has been
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Table 4.7: Comparing the correlation distances induced by AdverSPAM and Peng
methods. The best values are shown in bold, whereas the second best values
in italics. In the header of the table, a single s stands for statistical correlation
preservation, whereas ss signals both statistical and semantic maintainment.

Surrogate

Attack
AdverSPAM (s) AdverSPAM (ss) Peng (s)

SVML
lnr 1.28 0.49 3.59

SVMH
lnr 2.15 1.11 2.57

LRL 1.27 0.91 3.06

LRH 1.08 0.89 3.71

average 1.45 0.85 3.23

chosen:
||A−B||F =

√∑
i

∑
j

|ai,j − bi,j|2, (4.10)

where A and B are the Pearson correlation matrices of the features in the actual
spammers and in the generated adversarial samples, respectively. Furthermore, in
order to highlight the contribution of the semantic dependency, the AdverSPAM
analysis is differentiated by whether statistical correlation alone, or both properties
are considered. Table 4.7 summarizes the obtained results, where higher Frobenius
values correspond to stronger changes in the correlations among features of the
adversarial samples. It can be observed that AdverSPAM exhibits a lower average
correlation distance w.r.t. Peng (1.45 vs 3.23); this also holds for the single chosen
surrogate models. Moreover, when the semantic dependencies are considered, the
distortion is even lower (0.85).

In conclusion, AdverSPAM provides better average FNR values than the con-
sidered baselines, which translates to higher success rates on most of the tested
target models. When the performances are equivalent to the competitors, the
analysis of distance metrics suggests that AdverSPAM perturbs the samples less
drastically, which is a desired property for any AML strategy. Finally, maintaining
statistical correlation and semantic dependency helps to keep the core properties
of the feature set unchanged before and after the attack.
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Table 4.8: Example of features describing a spammer account. Original values
(first row) and variations produced by AdverSPAM and the five baselines. Stronger
differences are highlighted with darker colors.

Features Metedata Content Interaction Community
RR AR TSD TISD UUR UMR CHS UR MR HTR AUR ATS FR MFFFR FBR R CC CBR CBCC

Original 0 0 0 0 0 0 0 .5 1 0 0 0 .04 0 .75 .03 0 .44 .08
AdverSPAM .04 .05 .02 0 .04 .04 .01 .44 .84 0 0 .03 0 0 .2 .02 0 .39 0

FGSM .45 .45 .45 0 .45 .45 .45 .05 .55 0 0 .45 0 0 .3 0 0 0 0
DF 1 1 1 0 1 1 .67 0 1 0 0 1 0 0 0 0 0 0 0

C&W 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .03 0 0 0
Cheng .03 .04 .01 0 .03 .03 .01 .45 1 0 0 .02 0 0 .31 .02 0 .4 0

Peng .04 .22 .15 0 .03 .28 0 .45 1 .01 0 .03 0 0 .34 0 0 .39 0

4.4.4 Impact of AdverSpam: a concrete case study

AdverSPAM belongs to that category of adversarial attacks that aim to perturb the
input of the target model, without directly addressing the so-called inverse feature-
mapping problem [53], i.e., how to modify the original data given the perturbed
feature vector. Hence, the attacker must find on his own the set of actions to
manipulate the input (the OSN account in the considered case) in order to obtain
the feature vector suggested by AdverSPAM. This can be achieved by relying either
on a manual or an automatic strategy.

The former, also known as opportunistic [72], consists in performing a certain
action (e.g., add/remove data), measuring the resulting feature values, and reiter-
ating until the desired values are reached. As an example, let us consider Table 4.8
which reports the changes made by AdverSpam and its competitors to the feature
vector describing one of the spammers available in the dataset. The AdverSPAM
row indicates that the most perturbed features are the Mention Ratio (MR) and
the Follower-based Reputation (FBR), while the other values are quite close to
the original ones. The feature MR, which is defined as:

MR(account) = number_of_mentions
number_of_posts , (4.11)

is quite simple to alter. Since the modification suggested by AdverSPAM is to
lower MR to 0.84, the attacker could replace tweets containing a mention with
others that have the same content, but not the mention. As the number of posts
do not change, the other content-based features are not influenced by this action.
However, altering the tweets may change some metadata-based features that cap-
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ture the tweet time, such as TSD and TISD; then, tweet replacement should
follow the same posting frequency that characterized the original account. Please
note that the attacker could also use an existing account only to get x̃ from Ad-
verSPAM, and then create a new account that is described by that perturbed
feature vector.

A similar strategy can be adopted to alter the FBR of an account, which is
defined as the average of the reputation of its followers [35]:

FBR(account) =
∑
followers reputation(follower)

|followers|
. (4.12)

Then, in order to change FBR from 0.75 to 0.2, the attacker could i) reduce
the overall reputation of its followers (numerator), or ii) increase the number of
followers (denominator). The reputation of the followers can be modified by re-
placing a subset of n followers with others having a lower reputation; this allows
to keep the number of followers unaltered, which is essential to not impact on the
other interaction-based features. Such a modification is quite simple to achieve
by exploiting black markets, where followers having specific characteristics can be
bought [73, 74]. Conversely, increasing the number of followers is somewhat more
complicated as it should be done while guaranteeing that the new followers have
a similar reputation to those already existing, so that the numerator of Eq. 4.12
does not change, nor do other related features such as MFFFR or R.

It is worth noting that attacks modifying the feature vectors in a more exten-
sive way are difficult to manage with an opportunistic strategy, because the more
values are changed the more constraints must be met while altering the account.
In these cases, automatic strategies can help in finding the optimal set of actions
that lead to the desired feature values. A common approach, for instance, is to
model a numerical optimization algorithm which follows the negative gradient of
the objective function [66]. However, it is not possible to directly apply gradient
descent-based techniques when the feature space is not invertible, nor differen-
tiable. A more general strategy consists in modeling the inverse mapping problem
as a game. In [11], for instance, Monte Carlo Tree Search (MCTS) is adopted to
generate a chain of mutations to be applied on malware with the goal of bypassing
the target API-based classifier. In the scenario considered in this work, the pos-
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sible mutations could be those provided by the Twitter’s API to post and remove
tweets, or to control the followers and followings of an account.

4.4.5 Mitigation Strategies

As a final evaluation of AdverSPAM, its ability to accomplish the attack when
a defense mechanism is available has been tested. The remainder of this section
discusses the results obtained by considering three mitigation strategies, namely,
Adversarial Training, Magnet, and a confidence-based defense designed to counter
the specificities of AdverSPAM.

Adversarial Training

Adversarial Training (AT) [39] is one of the most widely adopted [19, 86, 14, 63,
18, 88, 87, 78, 91] defenses against adversarial attacks because of its effectiveness
and theoretical simplicity. The idea is to enable the target model to identify
adversarial samples by incorporating them into the training process. The creation
of AT samples is commonly based on the Projected Gradient Descent (PGD)
attack [51], which is an iterative variant of FGSM. This approach has been applied
in this work to strengthen the target models and test whether their robustness to
adversarial attacks is improved.

Since the maximum perturbation amount that PGD can apply to a sample
depends on a parameter ϵPGD, the assessment was repeated while varying ϵPGD in
[0.005, 0.1], with step 0.005. Results are shown in Figure 4.6a, where the different
curves indicate the average FNRs achieved by AdverSPAM and the five baselines
(see Section 4.4.3 for references) when AT is performed.

In terms of the reference FNRs, i.e., those measured without using any defense,
the three best performing attacks are AdverSPAM, DF and FGSM (see the figure
legend). After applying AT, FGSM is heavily penalized since, like PGD, exploits
the gradient of the loss function; thus, the samples generated by PGD are very
similar to those created by FGSM. On the other hand, the performances of Ad-
verSPAM and DF do not change significantly. This may be because the samples
generated by PGD are very different from those created by the two attacks, and
therefore the AT -based defense cannot exploit them to recognize the adversarial
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Figure 4.6: Average FNRs achieved by each attack when (a) Adversarial Training,
(b) Magnet, and (c) Confidence-Based defenses are used. The legend also reports
the reference FNRs (indicated between square brackets) achieved by the attacks
without using any mitigation technique.

samples. As regards the other baselines, all trends are decreasing as the perturba-
tions increase. Similarly to FGSM, this may depend on the fact that PGD samples
are alike to those generated by C&W, Cheng, and Peng.

It is worth noting that, since PGD needs to access the gradient of the loss
function of the model being attacked, RF and RR classifiers are not eligible for
this type of attack. In order to face this limitation, two other defense techniques
have been tested, which can be applied to all the adopted target models; the results
are discussed in the following subsections.

Magnet

Magnet [56] aims to detect adversarial samples by leveraging autoencoders,
i.e., neural networks trained for learning and reproducing the exact same distri-
bution of the data while minimizing the reconstruction error of the inputs in the
training set. In particular, Magnet pre-trains an autoencoder over the distribution
of the ground truth samples; then, when a new sample is proposed to the tar-
get model, this is fed into the autoencoder in order to compute its reconstruction
error, which roughly represents its similarity to the data distribution observed
during the training phase. If the reconstruction error exceeds a prefixed input
threshold σmag, the input sample is recognized as an out-of-distribution sample
and will be rejected; this prevents adversarial samples from being evaluated by the
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target model. Magnet was implemented according to the specifications provided
in [56], and σmag ∈ [0.05, 0.5] has been explored with step 0.025.

Figure 4.6b shows that higher values of FNR are obtained as σmag increases;
this means that if the threshold is set too high, the defense mechanism will not be
able to reject any input and therefore its effect is null. In fact, for σmag > 0.3, all
attacks reach the reference FNRs. On the other hand, choosing a value of σmag too
restrictive, although it guarantees to cope with the adversarial attacks, might be
impractical in a real scenario as it would result in a high number of non adversarial
data rejection.

Confidence-Based Defense

As a third defense mechanism, the attention was focused on one of the charac-
teristics that most differentiates AdverSPAM from other baselines, namely the fact
that perturbed samples are chosen as close as possible to the decision boundary.
However, some target classifiers could implement a mechanism to check the confi-
dence of their prediction: the higher the distance of the predicted sample from the
learned decision boundary, the greater the confidence in the prediction. According
to these considerations, the proposed Confidence-Based Defense (CBD) aims to
reject the “genuine” class predictions of the target model when the confidence lies
below a fixed threshold σconf .

Results shown in Figure 4.6c indicate that as the confidence threshold increases,
the effectiveness of the attacks decreases. For AdverSPAM, FGSM, DF and C&W
it is possible to identify a cutoff when σconf is about 0.75. Since Cheng and Peng
produce samples that lie close to the targeted decision boundary, the confidence
in the prediction of such adversarial samples is relatively low, and a moderate
cutoff threshold is sufficient for defending against these attacks. Finally, as in
the case of Magnet, choosing high σconf values could result in high rejection rate.
Therefore, good trade-off values could be those in the range σconf ∈ [0.8, 0.9],
where adversarial samples may be effectively filtered out while non discarding non
adversarial data.
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Figure 4.7: Kernel Density Estimation (KDE) of the AdverSPAM samples com-
pared to the ground genuines and spammers, computed for the first (a) second (b)
and third (c) principal components describing the feature space.

4.5 AdverSPAM: advantages and limitations

The experimental analysis presented so far allowed to measure the performances
of AdverSPAM and compare them with some significant baselines. The results
showed the effectiveness of the proposed approach in attacking different target
models while applying perturbations that preserve both statistical correlation and
semantic dependence between features.

Besides these results, a further aspect to consider is whether the perturbation
of one or more features could impair the malicious behavior of spam accounts. In
order to make it easier to visualize the properties of the feature space, Principal
Component Analysis (PCA) [81] was used to reduce its dimensionality. Experi-
ments were conducted by considering the three principal components that char-
acterize the set of feature vectors; then, the Kernel Density Estimation (KDE) of
each component was computed in order to evaluate the distributions represent-
ing both the original samples (genuines and spammers) and those generated by
AdverSPAM.

By observing Figure 4.7, it is possible to appreciate how the densities of the
genuine samples (green) strongly differ from the others. Conversely, the density
estimation of the spammers (red) and AdverSPAM (blue) samples are highly sim-
ilar, apart from a slight shift introduced by the adversarial perturbations. Such
analysis confirms the capability of AdverSPAM in generating adversarial samples
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that, while preserving the key characteristics of the spam accounts, are able to
evade unknown classifiers.

Although experimentally proved to be a promising adversarial attack, the pro-
posed approach exhibits some intrinsic limitations. The first is related to the need
for choosing a surrogate model with a linear decision boundary. Such require-
ment is closely tied to the necessity of formulating the attack by considering linear
constraints, which makes AdverSPAM particularly efficient.

Adapting AdverSPAM to different scenarios, or even different feature sets, may
be computationally burdensome, as the number of constraints in the proposed
optimization problem increases according to the number of features pairs standing
in a semantic dependence relationship. Moreover, operating in scenarios where
there are no significant statistical correlations would tamper the effectiveness of
the proposed approach. Furthermore, if the relationships between features are
non-linear, AdverSPAM would require a change in its constraints and a different
statistical indicator from the Pearson’s Correlation coefficient. For instance, the
accuracy of the best-fitting second-order polynomial can be used in the case of
quadratic correlations between data.

The robustness of AdverSPAM has been studied against three different adver-
sarial defenses, however, another interesting approach a defender may follow is the
one outlined in [31], where an analysis of the sequence of consecutive requests orig-
inated from the same source is conducted. Such a countermeasure could inhibit
the attack when an offline surrogate model cannot be built, and it is therefore
necessary to query the online target model directly. In this extreme case, the it-
erative nature of the optimization solver would imply making multiple queries to
the target model, which would result in a straightforward attack detection.



Chapter 5

Conclusions

The widespread diffusion of Machine Learning algorithms in modern society poses
serious problems related to the robustness of such algorithms against malevolent
intents. This is witnessed by the rise of the Adversarial Machine Learning research
field, whose focus is the analysis of techniques to perturb the input data for altering
the predictions of ML models. Such techniques exploit the optimization procedure
at the core of ML models in order to find the smallest perturbation to add into
the inputs for changing the predicted labels.

Research on Adversarial Machine Learning highlighted risks that may rise in
several applications. Object detection models can be deceived with carefully se-
lected noise added into images or videos, which can lead to conceal dangerous
activity to a video surveillance system. Electronic healthcare systems can be cir-
cumvented with perturbations on the clinical records for the benefit of financial
interests of private entities. Threat detection models can be bypassed for spread-
ing new typologies of viruses, and spam filters can be deceived in order to spread
unsolicited messages to acquire attention on social media.

These problems can be counteracted through defense mechanisms which are
generally focused on understanding the key characteristics defining the nature
of the samples, and detecting any malicious attempt to alter it. However, per-
turbations can be effective and not noticeable, carefully designed not to alter the
statistical properties of the samples belonging to a class. The higher the awareness
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of the scientific community on this kind of threat, the more efficient the defense
mechanisms will be, resulting in the design of safer ML systems, which are robust
against modern dangers.

This thesis represents an attempt at addressing some of the challenges related
to this research area. In particular, it is described the design and implementation
of two Adversarial Machine Learning attack strategies. Such strategies dealt with
the problem of generating effective perturbations in two different ways.

Firstly, it has been proposed an algorithm for the generation of adversarial
examples in scenarios with electronic health records in the form of binary data.
In particular, it has been studied how an adversary may alter the medical record
of a patient in order to fool an intelligent system for antibiotic prescription. The
experimental results showed that even only modifying three fields in the patient
record, a trained neural network can almost always be induced into suggesting a
prearranged treatment. As part of future works, the time granularity as input
parameter to filter the dataset can be eliminated. For example, if the adversarial
noise produced by an attack algorithm suggests to modify a feature with time
granularity equal to 14 days from 0 to 1, then, all the features falling in the same
category and with a granularity > 14 should be set to 1. Moreover, an automatic
strategy for dynamically choosing the number of γ features to perturb based on the
magnitude of the gradient can be defined, so that γ does not need to be specified as
input to the approach. Finally, the feasibility of the approach can be investigated in
other smart environments such as university campuses, where adversarial attacks
aim at disrupting the provision of intelligent services to users [28].

This dissertation also presented an AML algorithm, AdverSPAM, designed to
deceive Online Social Networks spammer detection systems. The strategy attack
is formulated as an optimization problem whose constraints capture the essence
of AML, i.e., finding the optimal perturbation to fool the target model, while pre-
serving the inter-relationships among the features that describe the user behavior.
The proposed algorithm explicitly imposes the maintenance of the statistical corre-
lation and the semantic dependency of related features. By neglecting this aspect,
the attack would produce numerically admissible perturbations, which could not
actually be implemented by the attacker. The effectiveness of AdverSPAM was
assessed by considering Twitter as case study, although the attack can be easily
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applied to any other AML scenario where preserving the consistency of the feature
space is mandatory. Experimental analysis was conducted on a well-known public
dataset of spammer and genuine accounts. Experiments involved the assessment
of the method by testing four distinct surrogate models and twelve possible target
models, as well as an overall evaluation of the performance of AdverSPAM as com-
pared to five state-of-the-art attacks. Results revealed how AdverSPAM is a solid
competitor in terms of transferability, with FNR indicators that outperformed all
the baselines on 10 out of 12 considered target (black-box) models. With regard to
the forged adversarial features, AdverSPAM exhibited the lowest distortion degree
introduced in data, thanks to the formulation of constraints explicitly account-
ing for the maintenance of features dependencies. Moreover, the effectiveness of
AdverSPAM has been tested against three different adversarial defenses, proving
the robustness of the approach to state-of-the-art mitigations. As part of future
work, it is planned to test AdverSPAM effectiveness on multiple public datasets,
and evaluate its ability to be more widely applicable to different scenarios charac-
terized by similar AML requirements, such as Network Intrusion Detection. It is
also planned to extend the constraint on the decision boundary of the surrogate
classifier to include also non-linear classifiers, and test their efficiency as sources
of adversarial samples.
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