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Polθ: emerging synthetic lethal partner in homologous
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The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring
defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the
synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors
experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening
new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between
biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and
theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key
component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when
the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several
cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the
characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as
BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss
of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated
tumors.

This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ
inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the
novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.

Cancer Gene Therapy; https://doi.org/10.1038/s41417-024-00815-2

INTRODUCTION
The concept of synthetic lethality (SL) opened novel therapeutic
avenues for targeting homologous recombination (HR) deficient
tumors [1]. Several SL-based targeted therapies have been
approved in clinical practice, starting from the simple genetic
concept of the interaction between two genes, whose simulta-
neous perturbation causes cell death [2].
The therapeutic approach of synthetic lethality primarily

focused on targeting DNA damage response (DDR) pathways.
The synthetic lethal action of PARP-inhibitors (PARPis) in Breast
cancer susceptibility gene 1 (BRCA1) and breast cancer suscept-
ibility gene 2 (BRCA2)-deficient tumors provided key improvement
in the clinical outcomes of patients with homologous recombina-
tion deficiency (HRD), mainly ovarian, breast and prostate cancer
patients [3]. Currently, the biggest challenge of the research in
these tumors is the SL-targeted drug resistance.

Building upon the crucial role of DDR pathway in SL, several
potential synthetic lethal genes have been identified, such as
Ataxia-Telangiectasia Mutated (ATM), Enhancer of Zeste Homolog-
2 (EZH2), Ataxia Telangiectasia and Rad3-related (ATR), and
Checkpoint Kinase 1 (CHK1) genes [4]. An expanded concept of
SL is opening new ways and includes novel forms of synthetic
lethal interactions, investigating not only traditional SL of pairs
genes but also SL between two biological pathways that regulate
the same essential survival cell function [4]. In this context, recent
research showed that Homologous Recombination Repair (HRR)
and theta-mediated end joining (TMEJ) pathways exhibit SL [5].
TMEJ, also known as alternative non-homologous end joining (alt-
NHEJ) or microhomology-mediated end joining (MMEJ), is an
essential backup pathway to repair resected double-strand breaks
(DSBs) when the canonical repair pathways non-homologous end
joining (NHEJ) and HR repair (HRR) are impaired [6].
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Activation of TMEJ involves several enzymes, including PARP-1,
and the repair of DSBs is facilitated by specific DNA polymerase,
primarily DNA polymerase theta (Polθ) [7]. The depletion of the
POLQ gene, coding for Polθ, seems to be synthetically lethal when
combined with BRCA1/2 pathogenic variants (PVs). Thus, Polθ
recently emerged as a novel and potential therapeutic target in
HRD tumors [8].
Although the genetic concept of LS seems to be simple, the

DDR pathway is composed of intricate mechanisms and genes,
making the identification of suitable targets challenging [9]. At the
same time, SL interactions that work in one tumor type are
sometimes ineffective in another. The findings in preclinical
research only provide a potential mechanism to be explored, and
whether the Polθ-inhibitors may have clinical relevance in the
BRCA-mutated tumors still needs confirmation in the ongoing
clinical trials.
In this review, we focused on the expanding landscape of the

SL-driven discovery framework, with a focus on Polθ as a novel,
targetable, vulnerability in HRD cancers.

FROM DNA DAMAGE TO UNFUNCTIONAL DNA REPAIR
SYSTEMS: AN ITINERARY TOWARDS SYNTHETIC LETHALITY
Cell survival relies on genome integrity and accurate cell function.
DNA repair pathways represent an intricate intersection of
processes, where specific perturbations can potentially lead to
genetic instability. Among DDR pathways, four key mechanisms of
DSBs play a central role: HR, the NHEJ, the alt-NHEJ or MMEJ, and
the single-strand annealing (SSA) [10] (Table 1). Cancer cells can
exploit these DNA repair mechanisms to their advantage,
predominantly upregulating alternative repair pathways to main-
tain the integrity of their DNA: this interchange of pathways can
ultimately boost the cancer cells’ survival [11].
This survival strategy is evident in the context of BRCA1/2

mutated cancers, where the loss of one repair pathway is
compensated by another, leading to tumoral resilience and
progression [12].
However, this compensatory reliance also presents a therapeu-

tic vulnerability, placing the key concept that underlies synthetic
lethality. The clinical success of small-molecule inhibitors of PARP
in BRCA-mutated cancers demonstrated the success of this
approach [13, 14]. In 2005, the identification of synthetic lethal
interaction between the loss of BRCA1/2 and the PARP-inhibition,
emerged as a new paradigm for the identification of synthetic
lethal targets in cancer, going beyond the traditional concept of
oncogene addiction, where targeted alterations are druggable
oncogenes [14, 15].
BRCA1/2 function in HR, the repair pathway that utilizes the

replicated sister chromatid as a template for precise DSB repair.
PARPi effectively impedes the base excision repair (BER) mechan-
ism of DNA single-strand break (SSB), with the consequent
transition from SSB to DSB. In patients with BRCA1/2 PV, cancer
cells are incapable of completing DSB repair through the high-
fidelity HRR, and the use of alternative repair mechanisms results
in genomic instability, leading to hypersensitivity to PARP
inhibition [16] (Fig. 1).
PARPis, including olaparib, niraparib, rucaparib, and talazoparib,

have been approved by the FDA as maintenance therapy in
ovarian, primary peritoneum, fallopian tube, breast, pancreatic,
and prostate cancers that have BRCA1/2 PVs or the HRD status,
with differences in therapy indications across the tumor type
[17–31]. Unfortunately, the clinical benefit of PARPi is limited by
the emergence of acquired or inherent resistance mechanisms in
approximately 40–70% of patients [17, 18] (Table 2). Furthermore,
the recent expansion of approved PARPis, not restricted to
patients carrying BRCA1/2-PVs, produced a strong clinical need to
explore a new wave of genetic cancer targets for synthetic lethal
interactions [19, 20] (Created with BioRender.com).Ta
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EXPANDING THE SYNTHETIC LETHALITY PARADIGM: BEYOND
PARP INHIBITION IN BRCA AND P53-DEFICIENT TUMORS
Clinically, the penetrance of the synthetic lethal interactions between
BRCA1/2 genes and PARPi is incomplete. Thus, some HRD patients,
especially those with advanced tumors, despite the presence of a
BRCA PV, showed either de novo or acquired PARPi-resistance [32].
Acquired resistance occurs through multiple mechanisms: from
reverse BRCA1/2 mutations, in which the molecules’ function is
reacquired and the HR repair system restored, to non-reverse
mutations occurring in other aside pathways, like epigenetic
modifications and restorations of ADPribosylations, better and
efficient drug efflux, ultimately causing the resistance to PARPis
[32]. This reversion and non-reversion resistance, not only under-
scores the extreme adaptability of cancer cells but also highlights the
urgency for novel synthetic lethal interaction identification [21].
Furthermore, as our understanding of the complexity of cancer-cell
DNA repair networks continues to evolve, numerous gene pairs are
being identified as further potential candidates for synthetic lethal
therapy.
In this context, several molecules involved in different shelter

systems, such as Ataxia-Telangiectasia Mutated (ATM), Enhancer of
Zeste Homolog-2 (EZH2), Ataxia Telangiectasia and Rad3-related
(ATR), and Checkpoint Kinase 1 (CHK1), have been considered to
overcome PARP resistance in BRCA-mutated cancers as well as in
other tumors [22].
Among these molecules, EZH2 and ATM, still involved in the HR

repair system, emerged. EZH2, is an enzymatic catalytic subunit of
polycomb repressive complex 2 (PRC2) that modulates target gene
expression via trimethylation of Lys-27 in histone 3 (H3K27me3) [23].
In BRCA-deficient cancers, EZH2 is often found to be overexpressed,

which makes it a potential tumor target [23]. Research by Ratz et al.
has explored the benefits of combining EZH2 inhibitors, like the
GSK126, with chemotherapy agents such as cisplatin, to improve
cancer cells’ death, using cell lines derived from BRCA1-deficient and
-proficient mouse mammary tumors [23]. The effect of EZH2 was
also maximized by ATM, a crucial molecule for DSB repairs, whose
inhibition was already found effective in BRCA1-deficient cells
[23, 24]. ATM is also involved in the MRN complex, a key HR player.
ATM recruitment and activation lead to its target phosphorylation,
blocking the cell cycle and initiating DNA repair [25]. Studies have
shown that simultaneous inhibition of EZH2 and ATM in BRCA-
deficient cells amplifies DNA damage, leading to increased
apoptosis and significantly reduced tumor growth. This effect is
particularly notable when using GSK126 (EZH2-inhibitor) in combi-
nation with AZD1390 (ATM inhibitor), compared to their use alone.
Interestingly, cells with functional BRCA genes do not exhibit the
same level of cytotoxicity, suggesting an effectiveness of EZH2/ATM
inhibition specific to the presence of BRCA1 mutation context [26].
Despite these advances, the lack of clear and significant data on

these molecules is still predominant and affects their use in clinical
practice to overcome PARPi resistance.
Several studies have highlighted another potential synthetic

lethal interaction between ATR and CHK1 within the broader context
of p53-mutated cancers. Tumors harboring mutant p53 (mutp53)
often are resistant to conventional cancer therapies, tend to
progress more rapidly, and generally, have poorer prognosis. Given
that mutations in p53 enhance cancer metastasis and proliferation,
targeting this signaling pathway might represent a new strategic
approach [27]. Tumor cells with p53 mutations are particularly
vulnerable to cell cycle arrest in the intra-S and G2 phases, a

Fig. 1 PARP inhibition and synthetic lethality in BRCA-deficient cells. a In the BRCA-proficient cells the HR repair system is physiologically
involved in DNA repair, with DNA damage correctly repaired; b In the BRCA-deficient cells, the absence of efficient homologous
recombination, along with the PARP-inhibition, leads to the use of base excision repair (BER) as compensatory pathway, resulting in genomic
instability and cell death.
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vulnerability also attributed to checkpoint regulators like ATR. By
phosphorylating CHK1, ATR manages the cell cycle and DNA
damage response by recognizing specific single-stranded DNA
locations [28]. ATR/CHK1 inhibitors, able to block such response,
could potentiate the effects of cytotoxic drugs or radiation therapy,
increasing tumor cells’ death in p53-deficient scenarios. ATR
inhibitors, for instance, stall replication forks and cause chromoso-
mal breakage, sensitizing tumors to DNA-damaging therapies [29].
This is especially effective in cancers experiencing replication stress
or with deficient DNA repair mechanisms, such as triple-negative
breast cancer, castration-resistant prostate cancer, and other
cancers with BRCA1/BRCA2 mutations [30, 31, 33–35]. Furthermore,
they can resensitize tumor cells to PARP inhibitors when resistance
develops, such as in the presence of mutations that overcome
BRCA1-mediated DNA repair pathways [32, 36, 37]. Similarly, CHK1
inhibitors target cells under replication stress, amplifying the effects
of chemotherapeutic agents like gemcitabine, cisplatin, and
camptothecin, enhancing damage from PARP inhibitors [38, 39].
When used with immune checkpoint inhibitors, such as the anti-PD-
L1 therapy, they showed synergistic anti-tumor responses, as
demonstrated in mouse models of small-cell lung cancer [40].
Currently, clinical trials involving these inhibitors are investigating
the optimal timing and dosage for using these inhibitors in
combination with both conventional chemotherapies and new
therapeutic agents to minimize side effects and maximize treatment
efficacy.
Other synthetic lethal interactors of BRCA genes are explored,

represented by proteins with physiological functions in DDR
pathways, including Fanconi anemia complementation group D2
(FANDC2), radiation sensitive 52 (RAD52), apurinic/apyrimidinic
endodeoxyribonuclease 2 (APE2), and Flap structure-specific
endonuclease 1 (FEN1) [41]. Among these molecules, Polθ
represents an attractive target.

POLθ AND BRCA: CONVERGING ROLES IN DNA DSB REPAIR
Deficiency in one DNA repair pathway in cancer cells leads to
genetic instability and hyper-dependence on compensatory
pathways. This dependency represents a key tumor vulnerability
that can be exploited to target cancer cells [22].
Polθ is a DNA polymerase, encoded by the POLQ gene, involved

in numerous DNA repair pathways, including TMEJ, a backup
pathway for DNA repair when NHEJ, HR, or BER are compromised
[42]. TMEJ is intrinsically mutagenic. Resected DNA DSBs, which
cannot be repaired through HR in BRCA1/2-mutant cancer cells,
enter the Polθ-dependent TMEJ, introducing typical sequence
alterations represented by the microhomology-flanked deletions
and the templated insertions.
Notably, HRR-deficient tumor cells present the characteristic

mutational signatures caused by the high mutagenicity of the
driving force of the error-prone TMEJ pathway [43]. According
to this observation, the loss of HRR proteins, such as BRCA1 or
BRCA2, contributes to increasing the TMEJ-specific genomic
profile, suggesting synthetic lethal interactions between loss of
the POLQ gene and HRR genes like BRCA1/2, ATM, and FANCD2,
and resulting in the emerging interest for Polθ as a potential
therapeutic target in BRCA1/2-associated tumors.
Interestingly, the similarity between genomic scar signatures

of HRD in BRCA-associated tumors and TMEJ genomic scar pattern
indicates the hyperactive TMEJ as a mechanism to investigate a
potential driver of genomic scar in many cancer types, maybe
involved in the lack of full correlation between HRD genomic
signatures and functional HRR assays [44, 45].
Moreover, using a CRISPR genetic screen, a recent study

identified 140 synthetic lethal genes with Polθ. In this study,
29.7% of breast cancers in the TCGA cohort having genetic
alterations in at least one of these 140 Polθ synthetic lethal
genes and genomic scar pattern of TMEJ hyperactivity,Ta
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underlining the potential benefit to target Polθ to improve
cancer patients clinical outcomes [41, 44]. Consistent with these
results, Polθ-inhibition enhances cell death in HRD cells exposed
to cisplatin or PARPi [46]. Therefore, depletion of Polθ using Polθ
inhibitor in combination with or after a PARPi or platinum salts
has been proposed as a new strategy to treat HRD tumors and
to overcome BRCA-gene reversion mutations responsible for
therapeutic resistance [22].

POLθ: THE SYNTHETIC LETHAL INTERACTIONS WITH OTHER
DDR-RELATED GENES AND THE EFFECT ON INNATE IMMUNITY
ACTIVATION
Although Polθ inhibition is emerging as a strategy to improve the
synthetic lethality and cell death in BRCA-mutated tumors, Polθ
showed synthetic lethal interactions also with other DNA repair-
related genes that control DSB repair and HR.
The first example is the Tp53BP1. BRCA1 functions in HR

promoting DNA end resection through inhibition of proteins that
inhibit this pathway, such as the Tp53BP1 [47]. Thus, Tp53BP1 loss-
of-function enhances DNA end resection, induces end-joining
pathway hyperactivation, and Polθ-dependent survival [48].
Defects in the 53BP1/Shieldin DNA repair complex are known
sources of PARPi resistance [22]. Therefore, Polθi not only has
clinical potential as a therapeutic strategy in BRCA-associated
tumors but could also be used to target PARPi resistance [22].
A recent study showed that the type of HR gene mutation had

an impact on DNA end resection, and represents a key
determinant of TMEJ pathway addiction and the specific response
to Polθi. In this study, human isogenic PALB2- and BRCA2-deficient
cells, were more sensitive to Polθi compared to BRCA1-deficient
cells, with clinical implications for future therapy of mutation-
dependent Polθ vulnerabilities [48].
Another study demonstrated that synthetic lethality with Polθ

loss required mammalian RAD52 [49]. RAD52 is involved in the HR
repair pathway by promoting numerous recombination-mediated
repair and replication mechanisms and showed a critical role in
cells lacking BRCA1/2 or PALB2 genes. Interestingly, in 53BP1-
mutated and BRCA2-deficient cells, RAD52 influenced Polθ
inhibition. RAD52 provided toxicity by suppressing DNA synthesis
and promoting DNA resections, chromosomal breaks, and
micronucleus formation, with subsequent cell death. Instead, a
BRCA1-mutated context did not produce similar results. These
observations underline the importance of the patient’s genetic
background during the treatments for the resistance onset
[49, 50]. The mechanistic basis associated with a genotype-
dependent influence of Polθ inhibitor mechanisms remains to be
clarified.
Some recent studies explored the potential innate immunity

activation mediated by Polθ depletion through the cyclic GMP-
AMP synthase–stimulator of interferon genes (cGAS-STING)
signaling pathway [51]. Polθ inhibition causes the accumulation
of cytosolic DNA and activates the cGAS-STING signaling pathway
in BRCA2-mutated pancreatic cancers. This enhances the expres-
sion of Type I interferon (IFN), the transcription and secretion of
several inflammatory cytokines and chemokines, thus increasing
the intratumoral T cell infiltration [52]. The preliminary evidence
on Polθi and STING agonists synergy represents a potential
therapeutic strategy to combine DDR inhibitors and immunother-
apy in the population of HR-deficient pancreatic adenocarcinoma
[51, 52].
Another two molecules showing synthetic lethal interactions

with Polθ are FANCD2 and APE2. FANCD2 acts in the HR, but also
in the Fanconi anemia pathway, which repairs the inter-strand
DNA crosslinks [53]. FANCD2 also facilitates the Polθ recruitment
at the DNA damage sites during TMEJ activation. Preclinical and
clinical studies demonstrated a synthetic lethality relationship
between Polθ and FANCD2 in several cancers, such as esophageal

squamous cell carcinoma [51]. Double knockdown of POLQ and
FANCD2 resulted in hypersensitivity to cisplatin in lung cancer cell
lines [54], and hypersensitivity to PARP inhibitors in FANCD2-
deficient ovarian carcinoma cells while, in vivo, the double
knockdown reduced the tumor volumes of xenotransplants of
human ovarian tumors [46].
Recent discoveries have highlighted how APE2 nuclease is a key

effector of MMEJ repair and it is partly related to the Polθ-
mediated repair pathway. The role of APE2 in MMEJ contributes to
the addiction of HR-deficient cells to APE2, and this feature could
be explored for the treatment of HRD tumors [55].
Another interesting scenario includes Polθ as an adjuvant of

radiotherapy. ART558 and, even better, the more recent and
stable, ART899 made different tumor cells more susceptible to
radiotherapy. The radiosensitivity is favored in S-phase and
hypoxic conditions, characteristics predominant in tumor cells,
often limiting chemotherapy response and generating resistance
development. Evaluation of Polθ in combination with radio-
therapy is now under investigation in a clinical trial
(NCT04991480). A clinical confirmation would open a new
promising therapeutic front, more precise and with less off-
target effects [56].
Data provided so far only proved Polθ‘s potential. Despite its

intricate nature and the research at a preliminary level, this
enzyme could represent a promising target for innovative
therapeutic strategy (Fig. 2).

POLθ: THE ROLE IN CANCER PROGNOSIS AND CLINICAL
OUTCOMES
Polθ is emerging as a prognostic marker, as well as how potential
therapeutic target in BRCA-associated tumors. Polθ begins to show
broader implications in tumor biology and cancer patient clinical
outcomes [57].
Overexpression of Polθ has been consistently reported across a

wide spectrum of cancers, including breast, ovarian, lung, gastric,
colorectal, and prostate cancers (Table 3) [57–61]. Conversely, in
non-tumor cells, it is expressed at a low level or completely not
expressed [62–64]. The overexpression was associated with
aggressive tumor behavior and adverse clinical prognosis, high-
lighted by shorter relapse-free survival and overall survival [65].
As previously highlighted, the expression of Polθ is character-

istically linked to distinct mutational signatures, predominantly in
cancers with HRD, suggesting Polθ upregulation as a compensa-
tory survival mechanism for HR-deficient cancer cells. Intriguingly,
Polθ expression is not solely beneficial to HR-deficient cancer cells
but appears to offer HR-proficient cells an enhanced ability to
survive DNA replication stress, thereby contributing to genomic
stability. This multifaceted role of Polθ underlines its prognostic
relevance, with overexpression being a marker of poor outcomes
in diverse cancer types [66]. In breast cancer, high levels of Polθ
are linked with estrogen receptor (ER) negative tumors and higher
tumor grades, which are known markers of poor prognosis [58,
67]. Recent studies suggest that Polθ overexpression is associated
with an intrinsic mechanism of resistance to genotoxic treatments
and radiotherapy. Higgins GS et al. showed that the depletion of
Polθ resulted in a marked radio-sensitization in tumor cells
contrasting with minimal effects on normal tissue cells, indicating
a potential for tumor-specific therapeutic exploitation [58]. Further
inquiry into the therapeutic potential of Polθ-inhibition revealed
its role in the response to chemotherapeutic agents that generate
replicative stress. Studies in ovarian cancer revealed a strong
association between Polθ expression and platinum chemotherapy
resistance. Lower expression levels of Polθ have been associated
with increased chemo-sensitivity, indicating its role as a negative
predictor of chemotherapy response [59]. In prostate cancer, Polθ
overexpression has been associated with the development of
castration-resistant prostate cancer (CRPC) and resistance to
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olaparib. This resistance identifies Polθ as a critical determinant of
treatment outcomes and highlights the enzyme as a candidate for
targeted therapy. Targeting Polθ could enhance the effectiveness
of treatments like docetaxel and olaparib, making prostate cancer
cells more responsive to standard therapy [57, 68].
Recently, several studies have explored the mutational status of

other functionally related HR genes, beyond BRCA1/2 and the
established HR-associated genes such as ATM, CHEK2, and PALB2.
Particularly, the study of D. R. Principe et al. in a large pan-cancer
cohort, showed high rates of mutations in many HR-associated
genes unexplored in the predictive setting of PARP inhibition,
including POLQ, and frequently associated with poor clinical
outcomes in tumors like cutaneous melanomas adenocarcinoma
and squamous lung carcinoma, gastric, esophageal and head and
neck cancers [69]. Therefore, Polθ‘s overexpression and/or POLQ
mutation across various malignancies and its correlation with poor
clinical outcomes position it as a significant prognostic marker. It
plays a pivotal role in cancer cell survival under stress, particularly

in HR-deficient contexts, making it an attractive target for
therapeutic intervention. The current focus on Polθ inhibitors
and their capacity to resensitize cancer cells to standard
treatments opens new avenues for cancer therapy, warranting
further exploration into their clinical applicability across both HR-
proficient and HR-deficient tumors. The therapeutic manipulation
of Polθ expression and function, therefore, holds substantial
promise for improving the prognosis of cancer patients and
overcoming resistance to conventional therapies.

POLθ-INHIBITORS: A CHEMICAL OVERVIEW
The potential to exploit the synthetic lethal effects of the POLQ/HR
genes has been investigated through novel small-molecule
inhibitors.
From a structural point of view, Polθ is a multifunctional protein

divided into two domains linked by an undefined central region: a
DNA polymerase domain (Polθ-pol, residues 1819–2590, Fig. 3a)

Endoplasmic 

reticulum

A

Nucleus

STING

ATPAA cGASPP
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Fig. 2 Pleiotropic Polθ influence of different repair mechanism systems and molecular pathways. Beyond BRCA-mutated tumors, Polθ
showed synthetic lethal interactions also with other DNA repair-related genes that control DSB repair and HR, such as 53BP1, RAD52, PALB2,
and FANCD2. Furthermore, the effect of the cGAS-STING immunological and inflammatory pathway, on the MMEJ repair system through APE2,
and the synergy with radiotherapy, was recently highlighted (Created with BioRender.com).
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and a helicase-like domain (Polθ-hel, residues 32–899; Fig. 3a).
These domains are essential in the TMEJ process, while the central
part plays a regulatory role [70, 71]. In this light, selective
inhibition of Polθ-pol and/or Polθ-hel represents a promising
efficient strategy in anticancer selective treatment development
[22, 72, 73]. In the last decade, several studies led to the
identification of different Polθ-hel and/or Polθ-pol inhibitors, and,
given the increasing interest at a clinical level, new more powerful,
and selective Polθ inhibitors are still being investigated and here
highlighted.

Polθ-polymerase Inhibitors
Among the Polθ inhibitors landscape, DNA nucleotide derivatives,
first analyzed by Temple University in 2017, are considered the
ancient ones. These size-expanded nucleotides recognized by
Polθ as their substrates inhibit the polymerase activity. Differently
from the physiological ones, these synthetic derivatives present a
4, 5, or 6-membered additional ring modified with different
substituents. The incorporation of these two consecutive deoxyr-
ibonucleoside monophosphates led to an effective Polθ inhibition,
probably due to a polymerase active site distortion [74, 75].
Figure 3b-1 shows the generalized 2D-chemical structure of such
size-expanded nucleotides.
Other classes of Polθ-pol inhibitors, presenting a completely

different chemical structure, were heteroarylmethylene and
acetamido derivatives, both consisted of two (hetero)aromatic
groups (Ar1 and Ar2) separated by four atoms (N/C-C-C-X). In some

derivatives, the atoms N/C-C are part of a heteroaromatic ring (A3),
while in the acetamide derivative, the atoms N-C are part of a
tertiary amide. The distance between the two aromatic groups
(Ar1 and Ar2) plays a pivotal role in their activity and effectiveness
[76, 77]. Figure 3b-2 highlights the 2D-chemical compound
structures, which exhibit high and significant affinity, with an
IC50 in the range of 0.2–10 μM.
The evolution of these inhibitors arrived in 2021 when Ideaya

and collaborators synthesized cyclic acetamido derivatives, in
which a nitrogen heterocycle, blocking the stereochemistry of
the molecule, was added. Among this new category, com-
pound ART558 (Fig. 3b-3) was extensively investigated,
showing the best potency with an IC50 of 7.9 nM, 3 orders of
magnitude lower [22, 78]. At the same level ART812 (Fig. 3b-3),
in which additional hydroxyl and carbonyl groups increased
the metabolic stability. ART812 exhibited good oral bioavail-
ability in both mouse and rat models, as well as moderate-to-
high exposure after a single oral dose, a relevant feature for a
clinical application. In vivo pharmacodynamic studies deter-
mined ART812 target engagement and a twofold increase
induction of micronuclei in reticulocytes, a marker of DNA
damage, after 4-day treatment at the maximum tolerated
dose of 150 mg/kg BID, a result analogous to Polθ loss in
knockout mice.
Concurrently, a new series of Polθ-pol inhibitors are reported,

such as the RP-6685 (Fig. 3b-3), with an IC50 of 5.8 nM. Structurally,
RP-6685 still presents two linked aromatics groups, fundamental

Table 3. Overview of POLQ expression across various cancer types and its correlation with molecular, pathological and prognostic features.

Cancer type Setting POLQ expression Methods Molecular, pathological, and
prognostic features

Breast Cancer [58, 67] All stages, untreated patients High RT-PCR -Triple-negative BC
-High tumor grades
-Poor OS

Early-stage breast cancer High Microarray gene
expression analysis

-Poor OS
-Worse RFS

Ovarian Cancer [59] All stages, untreated patients Low qRT-PCR, Western Blot -Better response to platinum-
based chemotherapy
-Median OS and DFS

Pancreatic Cancer
[52, 60]

Cell lines and genetically
engineered mouse models
(GEMMs)

Low qPCR, Western Blot -cGAS-STING activation and
decreased tumor growth
-Higher survival rates, regardless
of KRAS status

Prostate Cancer [57,
68]

Metastatic CRPC High RT-PCR, qPCR, Western
Blot

-Risk factor for cancer recurrence
-Development of CRPC
-Poor response to docetaxel or
irradiation treatment
-Poor OS

HRD prostate cancer High RT-PCR -Olaparib resistance
-Shorter PFS
-Higher immune score

Esophageal Cancer
[51]

All stages Low RNA-seq, qPCR -cGAS-STING activation
-Upregulation of ISGs
-Increased sensitivity to
genotoxic agents

Lung Cancer [111,
112]

All stages High qRT-PCR, RNA-seq, IHC -Advanced pathologic stage
-TP53-mutated and ALK-mutated
status
-Increased TMB
-Poor OS

IHC, Western Blot -Advanced pathologic stage
-EGFR-WT status
-Increased TMB

BC breast cancer, CRC colorectal cancer, CRPC castration-resistant prostate cancer, DFS disease-free survival, IHC immunochemistry, ISGs interferon-stimulated
genes, OS overall survival, PFS progression-free survival, qPCR quantitative PCR, qRT-PCR quantitative reverse transcription polymerase chain reaction, RNA-
seq RNA sequencing, RFS relapse-free survival, TMB tumor mutational burden.
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6XBU); b 2D-Chemical structures of Polθ-hel inhibitors: size-expanded nucleotides [1]; heteroarylmethylene and acetamido derivatives [2];
ART558, ART812 and RP-6685 [3]; thiazoleurea and heterocyclic substituted urea derivatives [4]. 2D-Chemical structures of Polθ-pol inhibitors:
thiadiazole derivatives and novobiocin [5].
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for inhibitors’ activity. In this compound, the usual linker
N-C(=O)-C-X was shortened by deleting the X atom.
A very high affinity was also reported with thiazoleurea and

heterocyclic substituted urea derivatives. These derivatives,
structurally different, are characterized by the presence of a
central urea moiety connected to thiazole/pyrazine [79, 80]. Such
compounds (Fig. 3b-4) with a Polθ IC50 of 7 nM and 2 nM,
respectively, lead to a strong and effective affinity.

Polθ-helicase inhibitors
To enhance Polθ effective inhibition, many efforts, even though
not comparable to the Polθ-pol subunit, have been made also in
Polθ-hel inhibitors research. Among them, thiadiazolyl derivatives,
characterized by the presence of a central N-thiadiazolyl
acetoamide group with a methoxyl side, stand out. Here, two
aromatic groups are linked to the acetoamide methoxy moieties.
Figure 3b-5 shows an example of such compounds, which possess
an IC50 < 200 nM [81, 82].
Still, in this scenario, the 2-oxo-2H-chromene, naphthalene, and

quinoline derivatives are of particular interest [83]. Among the
synthesized compounds, Novobiocin (NVB) (Fig. 3b-5), an anti-
biotic derived from streptomyces, is the only one already studied.
In vivo studies have shown that the use of NVB reduces tumor
growth in genetically modified mice with a BRCA1 deficiency, and
also increases the survival of tumor-bearing mice [72]. Currently, a
clinical trial with NVB is now ongoing.
Over the last decade, chemical research on Polθ-inhibitors has

progressed beyond the initial discovery phase, identifying always
new promising candidates as potential anticancer drugs.

POLθ-INHIBITORS IN THE CLINICAL SETTING: AN OVERVIEW
OF THE ONGOING PHASE I/II TRIALS
Breakthroughs on Polθ, already led to the same phase I/II clinical
trials. These trials are ongoing and will play the role of critical
milestones in bringing Polθ inhibitors from preclinical promises to
clinical applications, addressing essential aspects such as efficacy,
safety, and potential benefits for cancer patients (Table 4).
The NCT05898399 is a Phase I/II trial enrolling up to 250 patients

with advanced or metastatic cancer. It explores the combination
of ART6043 with olaparib or talazoparib, both oral PARPi. The
study was designed in four different parts: part A1 (ART6043 as
monotherapy), part A2 and A3 (ART6043 in combination with
olaparib or talazoparib, respectively), and part B (ART6043 in
combination with a PARPi or a PARPi alone). Participants are
treated with these drugs in 21-day cycles. Primary outcome
measures included the number of participants with dose-limiting
toxicities (DLTs) and progression-free survival (PFS). Secondary
outcome measures focus on the number of participants with
adverse events, best overall response (BOR), objective response
rate (ORR), disease control rate (DCR), duration of response (DOR),
change in tumor size, and change in cancer antigen 125 (CA-125)
levels.
The NCT04991480 is a Phase I/II trial evaluating the efficacy of

drug ART4215 in 390 estimated patients with advanced or

metastatic solid tumors, specifically focusing on safe and
recommended doses, either alone and in combination with
talazoparib or niraparib. This study aims to understand the side
effects and effectiveness of ART4215 in these settings. The trial
includes various experimental parts, such as part B2 for participants
with solid cancers showing sensitivity to Polθ inhibition and part
B3 for participants with HER2-negative BRCA breast cancer patients.
Primary outcome measures include the number of participants
with DLTs and PFS, while secondary outcomes focus on BOR, ORR,
DCR, DOR, and changes in tumor size.
The NCT06077877 was a Phase I/II study designed to evaluate

GSK4524101 administration, alone or in combination with nir-
aparib, for the treatment of 135 patients with advanced solid
tumors. It is structured in two parts: part 1 focuses on the food
effect of GSK4524101 and part 2 combines GSK4524101 with
niraparib. The primary outcome measures for part 1 include the
number of participants with DLTs, treatment-emergent adverse
events (AEs), serious adverse events (SAEs), and the percentage of
participants who receive all planned doses. In part 2, the confirmed
ORR is the key outcome. Secondary outcomes involve pharmaco-
kinetic parameters like Area Under Curve (AUC) and maximum
Concentration (Cmax) of GSK4364973, a metabolite of GSK4524101,
and plasma concentration of niraparib.
Finally, the NCT05687110 (Phase I, National Cancer Institute, NCI)

trial, was designed to evaluate the safe and optimal novobiocin dose
in up to 30 estimated patients with solid tumors characterized by
DNA repair gene alteration. Participants are receiving novobiocin
sodium and are undergoing procedures like tumor biopsy, biospeci-
men collection, and medical imaging scans. The primary outcome
measure is the maximum tolerated dose (MTD) and recommended
phase 2 dose for continuous Novobiocin administration. Secondary
outcome measures include plasma concentrations of Novobiocin and
biological effectiveness, defined as an increase in RAD51-foci positive
cells. Other outcome measures focus on Polθ mRNA levels and ATM
immunohistochemistry (IHC).
Each of the trials encounters typical challenges of early-phase

research, such as difficulties in patient recruitment and the
necessity for accurate patient selection. Additionally, potential side
effects and the determination of the optimal dosage for clinical
use are still in need of careful evaluation. These challenges
underscore the complexities of translating preclinical promising
molecular targets into effective clinical therapies, emphasizing the
need for cautious optimism.
Emerging data from preclinical studies are providing hopeful

signs that these ongoing trials may confirm. The current trials on
Polθ inhibitors, particularly in combination with PARPi such as
olaparib, niraparib, and talazoparib, highlight an emerging trend
in cancer treatment. This strategy aims to discover synergistic
effects that could improve the overall effectiveness of these
therapies. Notably, the use of Polθ inhibitors has the potential to
be effective, in a clinical setting, not just in treating cancers with
BRCA-gene defects but also in overcoming resistance to PARPi,
which often occurs due to reversion mutations [22, 72].
Looking forward, the outcomes of these trials are anticipated to

significantly shape the future of Polθ inhibitor research. If

Table 4. Summary of ongoing clinical trials on Polθ inhibitors.

Clinical Trial ID Phase Agent Combination Enrollment
(estimated)

Start Date Completion date
(estimated)

NCT05898399 I/II ART6043 Monotherapy, Olaparib,
Talazoparib

250 06/23 12/26

NCT04991480 I/II ART4215 Monotherapy, Talazoparib,
Niraparib

390 09/23 01/26

NCT06077877 I/II GSK4524101 Monotherapy, Niraparib 135 10/23 11/25

NCT05687110 I Novobiocin Monotherapy 30 07/23 05/24
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successful, they could pave the way for expanded investigations
into Polθi across various cancer types, validating their clinical
utility. Furthermore, positive results may encourage the explora-
tion of combination therapies, refining patient selection criteria,
and potentially positioning Polθi as a standard component in
cancer treatment protocols.

CONCLUSION
The most remarkable finding in synthetic lethality is the
hypersensitivity to PARPis and the benefit in clinical outcomes
of HRD-associated cancer patients, mainly ovarian, breast, and
prostate cancer patients. Approximately 50% of HRD tumors
show innate or acquired drug resistance to PARPis, and
overcoming the resistance mechanism is one of the major
challenges of clinical research in the BRCA and other non-BRCA,
HR-associated, tumors.
Polθ is largely explored as a drug target and potential synthetic

lethal partner of a novel form of SL. Exploiting the central role of
Polθ in TMEJ, and the emerging link between TMEJ, Polθ, and
BRCA-gene reversion mutations, Polθ inhibitors seem to have
clinical potential not only in targeting HRD-defective tumors but
also to prevent or delay the onset of PARPi resistance.
Encouragingly, although the clinical trials exploring these Polθ/

HR-genes interaction are only at an early stage, preliminary reports
demonstrated that the inhibition of Polθ is a promising cancer
treatment strategy, and identify Polθ as emerging target for
rational combinations with PARP inhibitors.
In addition, Polθ showed synthetically lethal interactions with

other DDR genes, such as RAD52 controlling in SSA, the ATM, ATR,
and FANCD2 genes working in the HR pathway, and TP53BP1
involved NHEJ, expanding the landscape for future clinical
applications. Other pleiotropic effects, like the improved radio-
sensitization of p53-mutated tumor cells, and the new role in the
tumor immune environment through the cGAS-STING signaling
pathway activation, pave the way for the development of
unexplored synthetic lethality strategies. Further work is needed
to optimize the therapeutic window, bridging the genetic and
molecular insights to oncological clinical practice.
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