TRACE CODIMENSIONS OF ALGEBRAS AND THEIR EXPONENTIAL GROWTH
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ABSTRACT. The trace codimensions give a quantitative description of the identities satisfied by an algebra with trace.
Here we study the asymptotic behaviour of the sequence of trace codimensions c!"(A) and of pure trace codimensions
cﬁtr (A) of a finite dimensional algebra A over a field of characteristic zero. We find an upper and lower bound of both

codimensions and as a consequence we get that the limits limp o0 Y/cf7(A) and limp— oo "\/cﬁ"(A) always exist and
are integers. This result gives a positive answer to a conjecture of Amitsur in this setting. Finally we characterize the
varieties of algebras whose exponential growth is bounded by 2.

1. INTRODUCTION

This paper is concerned with finite dimensional algebras over a field F' of characteristic zero endowed with a trace
function. Recall that a trace function on an algebra A over F'is an F-linear map tr : A — Z(A), where Z(A) is the
center of A, satisfying tr(ab) = tr(ba) and tr(tr(a)b) = tr(a)tr(b), for all a,b € A. A typical example is M (F'), the
algebra of k£ x k matrices over F' with the usual trace.

One defines in a natural way F(X, Tr), the free algebra with (formal) trace Tr over F on a countable set X. Its
elements are called trace polynomials and the elements of the commutative subalgebra generated by the elements
Tr(M), where M is any monomial in the elements of X, are called pure trace polynomials. Whenever any such
polynomial f vanishes in a given algebra with trace A, we say that f is a trace identity or a pure trace identity of A,
respectively.

For instance since the characteristic of F' is zero, the coefficients of a Cayley-Hamilton polynomial C'Hg(a) of
a € My(F), can be expressed as pure trace polynomials evaluated in a ([1]). Hence CHy(x) is an example of a trace
identity of My (F).

The set of trace identities of a given algebra A is a T-ideal 1d""(A) of F(X,Tr), i.e., an ideal invariant under all
endomorphisms of the free algebra with trace and this is the main object of our study. Probably the most significant
result obtained in this area is due to Procesi ([15]) and Razmyslov ([18]) who showed that the trace identities of My (F')
are consequences of the Cayley-Hamilton polynomial CHj, = CHy(x); in other words C'Hj, generates Id"" (M, (F))
as a T-ideal. Another important and inspiring result is due to Procesi ([16]) who proved that if an algebra with
trace A satisfies a formal Cayley-Hamilton polynomial of degree k, then it can be embedded in k& x k matrices over a
commutative algebra and the trace on A coincides with the usual trace of matrices.

Here we want to study T-ideals of trace identities through some growth functions that can the attached to them.
This point of view comes from the theory of polynomial identities. Recall that an algebra A over F' is a Pl-algebra if
it satisfies a non-trivial polynomial identity, i.e., a polynomial of the free algebra F(X) without trace.

The polynomial identities of A form a T-ideal in F(X) denoted Id(A). It is known that over a field of characteristic
zero, every proper T-ideal is finitely generated as a T-ideal ([14]). Nevertheless to exhibit such generators is a difficult
problem. For instance the generators of Id(Mj(F)) are known only for k£ < 2 ([5, 17]). Then one introduces a growth
function that can be attached to any T-ideal ([19]) as follows. Because of the hypothesis on the characteristic, one
studies only multilinear polynomials and let P, be the space of multilinear polynomials in the variables x1, ..., x,.
Let A be any Pl-algebra and let ¢, (A) be the dimension of P,, modulo the identities of A4, i.e., ¢, (4) = dimp Pnrﬁiﬁ(A)'
It was proved in [19] that the sequence ¢, (A), n =1,2,..., called the sequence of codimensions of A, is exponentially
bounded. Later in [6] and [7] it was also proved that for some constants C; > 0,C2,t, s,d we have that

Cintd" < cp(A) < Con®d™,

where d is an integer. As a consequence we get that d = exp(A) = lim,, o V/¢n(A) exists. It is called the PI-exponent
of A. This answers in the positive a conjecture of Amitsur. It should be also mentioned that in [2, 4] (see also [10]) it
was proved that in the above inequalities ¢ = s is a half integer and if 1 € A, C; = Cs.

Here we want to extend the above result to trace identities. As in the ordinary case since the trace identities are
completely determined by their multilinear polynomials, we consider MT,,, the space of multilinear trace polynomials
in the first n variables z1,...,z, and PT,, the space of pure trace polynomials in the same variables. Then we define
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two codimensions
MT, PT,
mpg tr tr ?
MT, N1d"(A) PT, NId"""(A)

called the n-th trace codimension and the n-th pure trace codimension of A, respectively.

The asymptotic behaviour of the trace codimensions of the matrix algebra My (F') was studied by Regev ([21]) who
proved that the codimensions and the trace codimensions of My (F') are asymptotically equal.

In general even if a PI-algebra has a trace function, the trace codimensions could have an overexponential behavior.
Nevertheless recently Berele in [3] proved a trace analogue of Regev’s theorem by showing that a PI-algebra has
exponentially bounded trace codimensions if and only if it satisfies a special trace identity.

In [11] the authors characterized algebras with trace with polynomially bounded trace codimensions. An analogous
characterization concerning the pure trace codimensions will be proved here (see Theorem 21).

The main results of this paper are as follows. We shall consider unitary finite dimensional algebras with trace tr
over a field F' of characteristic zero. We shall assume that tr(J) = 0, where J is the Jacobson radical of the algebra
A. In analogy with the ordinary case, we shall prove that c£"(A) and ¢!’ (A) are bounded from above and below,
up to a polynomial factor, by d" and d'™, respectively, where d and d’ are two integers that are the dimensions of
suitable semisimple subalgebras called trace admissible. As a consequence we shall obtain that such codimensions

cr(A) = di

. and ' (A) = dimp

either are polynomially bounded or grow exponentially. Moreover lim,, ., /¢t (A) and lim,,_, {/ch"(A) exist and

are integers. We refer to such limits as the trace exponent exp'”(A) and the pure trace exponent expP"(A) of A,
respectively.

In the last section we shall characterize the identities of finite dimensional algebras with trace having trace exponent
and pure trace exponent bounded by 2. As a consequence, we obtain new results concerning the varieties of trace
algebras of minimal (pure) trace exponent.

2. THE GENERAL SETTING

Let F be a field of characteristic zero and A a unitary finite dimensional associative F-algebra with trace tr (a trace

algebra). Recall that a trace tr on A is an F-linear map tr: A — A satisfying, for any a,b € A, the following axioms:
1. tr(a)b = btr(a),
2. tr(ab) = tr(ba),
3. tr(tr(a)b) = tr(a)tr(b).

Notice that, for any a € A, tr(a) € Z(A), where Z(A) denotes the center of the algebra A.

In what follows we shall consider only trace algebras whose trace takes values in F' = F - 1, where 1 is the unit of
the algebra.

In order to talk about polynomial identities in the setting of algebras with trace, the first step is to introduce
F(X,Tr), the free algebra with trace on a countable set X = {x1,x2,...}, where Tr is a formal trace. Let M denote
the set of monomials in the elements of X. Then F (X, Tr) is the algebra generated by the free algebra F'(X) together
with the set of central (commuting) elements Tr(M), M € M, subject to the conditions Tr(MN) = Tr(NM) and
Tr(Tr(M)N) = Tr(M)Tr(N), for all M, N € M. In other words,

F(X,Tr) = F(X)® F[Te(M) : M € M].

The elements of the free algebra with trace are called trace polynomials or pure trace polynomials in case all the
variables appear inside a trace.

An element f = f(z1,...,z,, Tr) € F(X,Tr) is a trace identity for A if, after substituting the variables x; with
arbitrary elements a; € A and Tr with the trace tr, we obtain 0. A pure trace polynomial is called a pure trace
identity. We denote by Id""(A) (resp. Id”*"(A)) the set of trace identities (resp. pure trace identities) of A, which is a
trace T-ideal (T -ideal) of the free algebra with trace, i.e., an ideal invariant under all endomorphisms of F(X,Tr).

As in the ordinary case, Id""(A) and Id”""(A) are completely determined by their multilinear polynomials. We
denote by MT,, the vector space of multilinear trace polynomials in the first n variables x1, ..., z,. Its elements are
linear combinations of expressions of the type

’I‘Il(wll ...xia> ...’I‘I‘(:L‘jl ...:L‘Jb)wll ...mlc7

where {i1, ..« @ay- ey J1ye ey dbslly eyl =9{1,...,n}.
The non-negative integer
MT,

trA:d. o n
en (A) = dimr T Ay

n

is called the n-th trace codimension of A.
Also we denote by PT,, the vector space of multilinear pure trace polynomials:

PT,, = spanp {Tr(x;, - -2, ) - Tr(zy, - xj,)  {in, .. 0y ={1,...,n}}.
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The n-th pure trace codimension of A is defined as

PT,
PT,, N1d"(A)
The vector spaces MT,, and PT,; are isomorphic and we have that

dimp MT,, = dimp PT, 11 = (n+1)!

P (A) = dimp

(see [1, Proposition 2.3.15]).
For any non-zero « € F', let ¢, : F(X,Tr) — F(X, Tr) be the linear map sending a monomial m into a®m, where
s is the number of traces appearing in m. Notice that:

L. 9al(f9) = pa(f)palg), for any f,g € F(X, Tr),
2. Pa-1 (¢a(f)) = Pa (Soa—l(f)) = f, for any f S F<Xa TI'>.

For any f € F(X, Tr) we shall denote by f* = p.(f)-
Given any algebra (A, t) with trace t, for any non-zero a € F'; we denote by ¢, the corresponding proportional trace
to t, i.e., to, = at. The following result holds.

Lemma 1. Let f € F(X, Tr). Then f € Id"((A,t)) if and only if oo-1(f) = f* € Id"((A,ta)).
Proof. The result follows since, for any aq,...,a; € A, f(a1,...,ax,t) = fo‘_l(al, cey gy ). a
Now we are in a position to prove the following theorem.

Theorem 2. Let (A,t) be an algebra with trace and assume that each trace identity of (A,t) is a consequence of some
trace polynomials f1,..., fn. For any non-zero a € F, if f = f(x1,...,2) € Id"((A,t4)), then f is a consequence of

i
Proof. By Lemma 1, we have that f € 1d""((A,t,)) if and only if o, (f) = f® € Id"((A,t)). By hypothesis, f® is a
consequence of f1,..., fn. It follows that
O DI (19, n )
j

i=1

where the kl(j )’S, the hY)s and the le )’s are suitable trace polynomials. Now, as a consequence of the properties of

%

the map ¢, we get
f=¢a-1(palf)) = a1 (/)

- SR (1) nY
= J

i=1

=3 (St (W) 127 (19, D) s (1)
=1 i

In conclusion, f is a consequence of f{fl ey f,$71 and the proof is complete. ([l

Now let us consider the algebra M (F) of k x k matrices over F' endowed with the usual trace ¢, defined, for each
matrix, as the sum of all the elements in the main diagonal. We remark that every trace on My (F') is proportional to
t, i.e, if tr is a trace on M, (F'), then there exists a € F' such that tr = at. We shall use the notation M,i“ to indicate
the algebra M (F) endowed with the trace t,. In particular M,zl will denote the algebra My (F') with the usual trace.

Given a permutation o = (i1 -+ ip, ) (j1 - Jry) -+ (l1 - -1r,) € Sk41 written as the product of disjoint cycles, includ-
ing one-cycles with 1 > ry > --- > ry, we associate to it the pure trace monomial:

ptry = Tr (a:il .- a:,l) Tr (le . ij,Q) - Tr (xll - -ml”) .

In the following theorem we recall a celebrated result proved independently by Procesi and Razmyslov ([15, 18]).

Theorem 3.

a) 1dP"" (M ,il) is generated by the single pure trace polynomial g = Z sgn(o)ptr,.
cESK41

b) Id"(M}') is generated by the k-th Cayley-Hamilton polynomial C Hy.
As a consequence of the previous two theorems we get the following.

Corollary 4. For any non-zero « € Fllldptr-(M,ia) is gemerated by the pure trace polynomial g“_1 and Id”(M,ﬁ") is
generated by the trace polynomial CH . Moreover

(M) = (M) and el (M) = ¢ (M),
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Recall that two functions f(x),g(x) of a real variable are asymptotically equal, and we write f(z) ~ g(z), if

limy o0 £ gig = 1. We have the following.

2
Theorem 5. For any non-zero a € F, cB (M) ~ Cn="=" (k?)™, where C is a constant.

Proof. By the previous corollary cP!" (M) = cb'"(M,"). Now the result follows from [20]. O

3. A CANDIDATE FOR THE TRACE EXPONENT AND THE PURE TRACE EXPONENT

In what follows A will always denote a unitary finite dimensional trace algebra over an algebraically closed field F'
of characteristic zero. By the Wedderburn-Malcev theorem for algebras with trace ([11, Theorem 26]) we can write
A=A+,
where A is a maximal semisimple subalgebra of A and J = J(A) is the Jacobson radical of A. Moreover, since F is
algebraically closed we have that
(1) A=A @ DAy =M,(F)®--- &M, (F),

where M, (F) is the simple algebra of n; x n; matrices over F, i = 1,...,m. Clearly A is a trace-subalgebra, i.e., it
is stable under the trace.

From now on we shall assume that the trace on J is zero.
We should remark that each simple component in (1) is not in general a trace-subalgebra. Nevertheless for every
simple component A; we consider

tr:A; > F-13 > F-1a,,

where the second map is the projection onto the i-th component. In this way we may think of A; as a simple algebra
with induced trace. A similar remark applies to a direct sum of simple components.

Now, for any a =ay + -+ am +j € A, a; € M, (F), j € J,

tr(a) = tr(ar) + - - + tr(am),

since tr(j) = 0. Let us denote by ez(-f) the matrix units of the full matrix algebra M, (F'). By taking into account that
tr(ab) = tr(ba), for any a,b € A, it easily follows that tr(el(-;-c)) =0if i # j and tr(el(-f)) = tr(e;-?)), fo any 4,j. Hence,
for any matrix a € M, (F), ax = Z aijeg-c), we get that

.3
nk
tr(ag) = tr (Z aijegf)) = Z a;jtr (eyj)) =tr (e%’?)t’f(a),
i j=1
(k)

where #¥ is the usual trace on the matrix algebra M, (F). In conclusion, if we write ay = tr (en ) € Fand t,, = agth,
k=1,...,m, we get that

tr(a) =tr(ar + -+ am +7) = Ztak (ak).
k=1

One of the aims of this paper is to determine the exponential rate of growth of the sequences of the trace and pure
trace codimensions of A. We make the following,.

Definition 6. Let C1,...,Cy be distinct subalgebras of A from the set {A1,..., Am}. The algebra C =C1 & -+ & Cy,
1s called

- admissible if C1J -+ JCp_1JCy # 0,

- pure trace admissible if tr(Cy) - - tr(Cy) # 0,

- trace admissible if tr(Cy) - tr(C))Cig1d -+ JC14mn—1JCiom # 0, for some l,m > 0,1+ m = k.

Notice that an admissible or pure trace admissible algebra is trace admissible. Clearly a pure trace admissible

algebra takes into account only the simple components with non-zero trace. The algebra C7; @ -+ ® Cy + J is called a
reduced algebra in the first case, a pure trace reduced algebra in the second case and a trace reduced algebra in the

last case.
We then define the following three integers:

(2) dy = di(A) = max (dim C), where C runs over all admissible subalgebras of A,
(3) dy = d3(A) = max (dim C), where C runs over all pure trace admissible subalgebras of A,
(4) d = d(A) = max (dim C), where C runs over all trace admissible subalgebras of A.

It is well-known that d; equals lim,, o ¥/c,(A4) and is the Pl-exponent exp(A) of the algebra A ([6, 7]).
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Here we shall prove that

dy = lim {/&"(A) and d= lim {/cr(A).
n—oo n— o0

In order to reach our goal we shall show that c2"(A) and cf"(A) are bounded from above and below, up to a
polynomial factor, by dy and d", respectively.

4. A COMBINATORIAL APPROACH TO THE LOWER BOUND

Let A=A ®---® A,, + J be a unitary finite dimensional algebra with trace tr over an algebraically closed field
F of characteristic zero, tr(J) = 0. The goal of this section is to find a lower bound for cP"(A) and ¢t (A).
We start with the following remark.

Remark 7. Forn > 1, let fi,...,fi € PT, be linearly independent modulo 1d"*"(A). If g1,...,9; € PT,41 are
obtained from the f;’s by substituting a fized variable, say x1, with x1x,41, then g1, ..., g; are still linearly independent
modulo 1A' (A). In particular cP!"(A) < cﬂl( ) and the pure trace codimensions are non decreasing.

Proof. Suppose that Z?zl a;g; € 1d? t’"(A), for some scalars a;’s. By evaluating the variable z,,11 into the unit element

of A we get Y. | a;fi € IdP""(A). Since the f;’s are linearly independent mod Id”""(A), then a; = 0, for all i. O
Notice that the result is still true if we take f1,..., fy € MT,. Hence ¢/ (A) < ¢lJ,(A) and the trace codimensions
are non decreasing.
Now for some k € {1,...,m}, assume that

tl“(Al) i -tI‘(Ak;) 7é 0.
Take any n > 1 and write n = ny + - - - + ny as a sum of non-negative integers. Divide the variables z1,...,x, into

k disjoint sets of order ny, ..., ng, respectively. There are (m " nk) ways of doing so and we consider one of them

{z1,.. . an} =1, U---Ul,,.

We add to each set I,,,...,I,, one extra variable and call them yi,...,ys, respectively. Consider the spaces

PT,,11,...,PT,, +1 of multilinear pure trace polynomials in the corresponding sets of variables. If n; # 0 consider

a basis of PT},, modulo Id”*"(A;) and by the above remark construct the corresponding polynomials gii), cey gy(a? €

PT,,, .1 that are linearly independent modulo Id”""(A;). If n; = 0, we set g( 9= = Tr(y;) € PT,,+1. Hence

ggl), e ,gﬁl) € PT,, 11 are linearly independent modulo PT},, 1 NI1d"""(A;),

(k) (k)

g1 s> 9y, € PTy, 41 are linearly independent modulo PT5,, y1 N Id"" (Ay).

Lemma 8. The set of polynomials

Froontn, = 19092 g™ |1 <iy <, 1<y < mi} € PTosy,

is linearly independent modulo Idp”(A).

Proof. The proof is by induction on k, the case k = 1 being trivial.
Suppose that there is a non-zero linear combination

f= Z iy - ..,Z,cgl1 gl(k) € IdP"" (A).

U1,eeeylk

Pick a non-zero coefficient which we may assume for simplicity to be ay j, ... j, and write f=> "1, ﬂsggl), where
(2 k
Z Cssig i i) 01,

Since ay j, ... j, 7 0, then B is a non-zero linear comblnatlon. Now, by induction the set of polynomials
2 k . .
{gfz) .. .gfk) | 1< ry,...,1 < < 7";.3} C Pl tnptkh—1

is linearly independent modulo Id”""(A). Hence there is a non-zero evaluation ¢ : F(X) — A such that ¢(3;) # 0.

Then we get >_.1, tp(ﬁs)ggl) € 1dP""(A;). Since g( ). ,g§ ) are linearly independent modulo Id”*"(A;), we get that

©(Bs) =0, for all 1 < s < r;. In particular p(f;) = 0, and this is a contradiction. O
Now for any decomposition n = nj + - - -+ ny into a sum of non-negative integers, and any fixed distribution of the

variables {z1,...,2,} = I, U---UL,,, we write

nyseeslny, = SPANEFT,

As a consequence of the previous lemma we have the following.
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Corollary 9. We have that

ol
o = Che (Ar) - b (Ay),

where we set ci] (A;) =1 if n; = 0.

In the previous discussion and lemma we have added to each set I; the extra variable y; for convenience since we
are going to use it in the next lemma. Nevertheless we have the following.

Remark 10. The conclusion of Lemma 8 still holds without adding the extra variables to the sets I, or, which is the
same, if we evaluate the variables y; into the unit element of the corresponding simple algebra A;.

Next for a decomposition n = nj + - - - + ny, we consider all possible distributions of the variables {z1,...,z,} and
we write Gy, ... n, for the set of polynomials which is the union of the (n1 " nk) sets of polynomials corresponding to

all distributions of the variables (they are of the type Fr, . In, ). We have the following.

Lemma 11. The set U Gny,ooony C© PTqy is linearly independent modulo IdP""(A).

ni+--+ng=n
Proof. Suppose that a non-zero linear combination f of all these polynomials is a trace identity of A and assume that
a polynomial g = ggll) e gi(::) in one of the sets ]-'IM,,,,,I,,% has a non zero coefficient.

Recall that each set I,,;, 1 <i <k, contains an extra variable called y;.

Let ¢ : F(X) — A be an evaluation of f such that ¢(g) # 0, where the variables y; are evaluated in the unit
element of the corresponding simple algebra. Such evaluation exists by Remark 10.

Now let h = hg) . hgj) be any polynomial in ]-"In,l,__ﬂ]n, , for some nj + --- 4+ nj = n. Notice that even for this
decomposition each set I,;, 1 <14 <k, contains the extra Val}iable Y-

Clearly if a variable of the set I,,, appears in a set In} with j # i, then ¢(h) = 0 since In;_ contains the variable
y; that has been evaluated in the unit element of A; and A;A; = A;A; = 0. Hence if ¢(h) # 0 we must have that
I,, = Ing7 for all . Thus we have obtained a non-trivial linear combination of polynomials in F. Loy seonsIny, that vanishes
under any evaluation ¢ in A where the variables y; have been evaluated in the unit element of the corresponding
simple algebra.

By Remark 10 we have that the polynomials of Fj where we have evaluated the variables y; into the

SO
unit elements of the corresponding simple algebra A;, are linearly independent modulo Idptr(A). This completes the
proof. O

We can now compute the lower bound of the pure trace codimensions.
Lemma 12. For the unitary finite dimensional trace algebra A we have that
BT (A) = On'd,
for some constants C > 0,t, where dy = da(A) is the integer defined in (3).

Proof. Let dy be the maximal dimension of a pure trace admissible subalgebra C' of A. We assume that C' =
Al ® - ® Ay, and, so, tr(Ay)---tr(Ag) # 0. Take any N > k and write N = n + k. Recall that by Theorem 5
I (A;) ~ C;nli(dim A;)™, for some constants C; > 0,¢;, and then by Lemma 11 we have:

Pl
U gnl,“.,nk = Z dim S nkt
ny+-Angp=n Pr1 In,, Nn1d” T(A)

nyotey

R (A)

v

Ingseiisdng,
nit-+ng=n

n tr tr
2 (nl,...,nk>cﬁl () e (4y)

ni+--Fng=n

DY <n1 ” nk>(dimA1)nl -+ (dim Ay )"

ni+--F+ng=n

= Cn'(dim Ay + - + dim Ay)" = On'dy > C'N'dY.

for some constants C’ > 0, . (Il

Next we shall determine a lower bound for the trace codimensions sequence ct"(A).
Suppose that
tI‘(Al) tee tr(Al)Al+1JAl+2J s JAH—m 7& O,

for some I, m > 0. Take any n > 1 and write n = n; + n,, as a sum of two non-negative integers. Let

€1+1J1€14272 - Jm—1€14m 7# 0,
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where e; is the unit element of A;, and consider the subalgebra B of A generated by the simple algebras By =
Ait1, .-+, B = Ajy, and by the elements

Ero =ep1j1ei12, Baz =eaj2€iy3, -y Bmo1m = €lym—1Jm—1€14m-

It is well known that the algebra B is isomorphic to the algebra of upper block triangular matrices UT(By, ..., B,) =
UT(r1,...,mm) where r; = v/dim B;. Also, for some constants C' > 0, s,

(5) cn(UT(r1y . yrm)) = Cns(rf + -+ +72)" = On®(dim Ajq + - - + dim A; )"
(see [9, Theorem 8.6.1]).

Now recall that n = n;+n,, and divide the variables 1, ..., z, into two disjoint sets of order n; and n,,, respectively.
Clearly there are () ways of doing so and we consider one of them {z1,...,2,} = In, UT,,,.

Consider the spaces PT,, and P,  of multilinear pure trace polynomials and ordinary polynomials in the corre-
sponding sets of variables, respectively. Let fi,..., fo € PT,,4+; be the polynomials containing the extra variables
Y1, - ..,y constructed in Lemma 11, that are linearly independent modulo Idp“"(A). Let also ¢g1,..., gy be a basis of

P, modulo Id(B).
Remark 13. The set of polynomials

Fr ={figj |1<i<a,1<j<b}ec MT,y,

ny 7In7n
is linearly independent modulo 1d"" (A).

Proof. Suppose we have a linear combination h = Z” aijfigy € Id""(A), and say, aq; # 0. Write
(6) h=> vg; €1d"(A),
J

where v; = >, a4 fi. Then 1 = >, a;1 f; is a non-zero linear combination and since the polynomials f1,..., f, are

linearly independent modulo Id""(A), we get that there is a non-zero evaluation ¢ : F(X) — A such that ¢(y;) # 0.
Then from (6) we get 2221 ©(vj)9; € Id(A) C Id(B). Since gy, ..., gp are linearly independent modulo Id(B), we

get that ¢(y;) =0, for all 1 < j < b. In particular ¢(y1) = 0, and this is a contradiction. a

Now we write Py, 1, ~=spanpFy, 1, . Then by the proof of Lemma 12 and (5) we have that

)
:l:ﬁ”(A) > Cn*(dim Ay + - -+ + dim A;))™ (dim Aj4q + - - - + dim Aj )",

7 di
(7) im P

I

for some constants C > 0, u.

As above, for any fixed decomposition n = n; + n,, we consider all possible distributions of the variables between
two sets of order n; and n,,, respectively. We write G,,, ,,, for the set of polynomials which is the union of the (:l)
sets of polynomials in the variables belonging to each distribution.

We claim that the set U, n,,=nGn,.n,, is linearly independent modulo Id™" (A).

In fact suppose that a non-zero linear combination of all these polynomials

(8) Zaijfigj € Idtr(A)

Is a trace identity of A and assume that a polynomial, say fig1, in one of the sets F7, , ~has anon zero coefficient
a11.

Let ¢ : F/(X) — A be an evaluation such that ¢(f1g1) # 0 and the extra variables y;, t = 1,...,l, of the pure trace
polynomial f; are evaluated in the unit element of the corresponding simple algebra.

Let f;g; be any polynomial in F7 , ; , , for some nj +n], = n. Notice that even for this decomposition f; contains

Ty

the extra variables y1,...,¥;. If one of the variables of the set I,,, appears in the set Ly, then ¢(fig;) = 0 since the
polynomial f; contains the extra variables y,...,y;. Hence I, C I, . If I, % I, , then there is a variable x of
the set I,, such that x € I, D I, and, so, ¢(fig;) = 0 since p(g;) = 0. Thus I, = Ly and I, = Iy .

We have proved that if ¢ is any non zero evaluation of the polynomial f; g1, then by (8) we have that (3 a4; fig;) =
0 where we have restricted the summation to all f;g; € F Ty oI - Since by Remark 13 the polynomials in F; ;  are

nm nystnm

linearly independent modulo Id"" (A), we get a contradiction and the claim is established.
Now we are in a position to prove the following result.
Lemma 14. For the unitary finite dimensional trace algebra A we have that
cr(A) > Cntd",

for some constants C' > 0,t, where d = d(A) is the integer defined in (4).
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Proof. Let A1 @ ---® Ay, be a trace admissible subalgebra of A of maximal dimension d and suppose
tI‘(Al) tee tr(Al)Al+1JAl+2J e JAl+m 7£ 0.

If 1 = 0 or m = 0 the result follows from [6, 7] and Lemma 12, since c"(A) > P (A), cn(A), for all n > 1. Now assume
that { > 0 and m > 0. Let N > [ any integer and write N = n 4 . Then by the previous discussion and (7) we have
that

Proy Lum

NId"(A)

N (4) >

U Gninm | =

ni+nm=n

Z dimp

In, I

Ing Ingm, m

nptnm=n

> COnt Z (2) (dim Ay + - - -+ dim 4)™ (dim A; 41 + - - + dim A4 )"
ni+nm=n

= Cn'(dim Ay + -+ +dim Ay, ,,,)" = Cnfd" > C'N'd",

for some constants C’ > 0, t. ]

5. THE EXPONENTIAL GROWTH IS INTEGRAL

We recall our general setting: A = A; & --- @ A, + J is a unitary finite dimensional associative algebra with
trace tr over an algebraically closed field F' of characteristic zero, s > 0 is the smallest integer such that J*™! = 0,
A =My, (F),1<i<m.

Fix a basis {u1,...,u;} of A which is the union of the standard bases of the A;’s and of a basis of J.

For 1 <4 <n consider the generic elements

l
9) =) Lj®ueFl&;[1<i<n1<j<IoFA,
j=1
where the elements ; ; are commutative variables.
Let U = F{&1,...,&,} be the algebra over F generated by the &’s, i =1,...,n.
It is easy to check that U can be endowed with a trace function ¢ by defining

(&5 ®ui) = &,j @ tr(u;).
Since a multilinear trace polynomial is a trace identity of A if and only if it vanishes on the generic elements &;, it
follows that
¢ (A) = dimp span{ f (o1 - > Eo (k) )o(ht1) - Ea(n) | 0 € Sn, 0 <k <n}
and
A (A) = dimp span{ f(§,1), - - - €om)) | 0 € S},
where f(z1,...,x;) € PT) is a pure trace monomial.
Lemma 15. For the unitary finite dimensional trace algebra A we have that
dT(A) < CnFd™  and cPIT(A) < Cintdy,

for some constants C,Cy, k,t, where d and dy are the integers defined in (4) and (3), respectively.

Proof. We start by computing an upper bound of ¢! (A).
By (9) we replace each §; and we get

l
Forys s §ok))Eothr1) ** o(n) = Z Eo()jr  Eon)gn @ S (Wjys ooy U5 gy, - U,

J1seedn=1

(10) z l
= Z Z Oéjl""j"’hgo(l)vjl e 50—(”)7]77 & Uh,
h=1j1,....Jn=1
where the above equalities follow from the fact that tr takes values in F' and, so, f(uj,,...,u;, )uj.,,,--.,u;, can be

written as a linear combination of basis elements. Hence
) cT(A) < dimp span{&o1),5, - o(n), @Un | 0 € Sy 1< g1, 0, Jn, A <1}
<l ’{5‘7(1),31 o 'fﬂ(n),jn | f(u’jl’ <. ’U'jk)ujk+1 C Uy, #0, 085, 1<j1,...,0n < l}’ .

Thus in order to find an upper bound of ¢! (A), we have to count (or to find an upper bound of the number of) the

monomials £,(1yj, -+ &x(n),j, Such that f(u;,, ..., uj )uj ., ---uj, is non-zero.
Now, this product is non-zero only if ¢ < s basis elements u;, come from J. How many monomials can we write
with ¢ basis elements from J? Since the trace is zero on any radical element, only wj, ,,...,u;, can be elements of

n

J. Hence there are n — k < n possible positions for ¢ elements of J, so there are in all < ( t) monomials, but in each

position we can write any element of a basis of J, so in all we have < (})(dim J)* < (7)(dim J)* monomials.



TRACE CODIMENSIONS OF ALGEBRAS AND THEIR EXPONENTIAL GROWTH 9

Now that we have taken care of the u;,’s that come from J, all the other basis elements come from the semisimple
part. But f(uj,,...,uj )uj, ., ---uj, 7 0 only if this product comes from a configuration of the type

tI‘(All) cee tr<AlT'>Al'7'+lJ cee JAlk #0,

i.e., only if the semisimple basis elements come from a trace admissible subalgebra.
We fix a trace admissible subalgebra B = A;, @ --®A;,. How many possible monomials w;, - - - u;, with the semisim-
ple variables coming from B can we write? If there are ¢ radical elements, such number is (%) (dim J)!(dim B)"~".
Thus if the semisimple variables come from the trace admissible subalgebra B, we can write at most
S S
z:(?)mhnjymhnByltg(dmLDSE:<?>mnn3y%gon%mnuﬂ”
t=0 t=0
monomials, for some constant C'. Notice that we do not know how many basis elements of J come in a product, so
we have to count all possibilities 0, 1,...,s.
Now, the number of trace admissible subalgebras is finite, say r, hence the number of possible non-zero monomials
is < Cn®rd™, where d is the maximal dimension of a trace admissible subalgebra. It follows that

ct(A) < Cynfd",

as claimed.

Finally, recalling that no radical elements can appear inside a non-zero trace, it is clear that each f(u;,,...,u;,)
involves only semisimple elements. If ds is the maximal dimension of a pure trace admissible subalgebra, we get that
cPr(A) < Cdy, for some constant C' and the proof is complete.

O

We are in a position to prove the main result of this paper.

Theorem 16. Let A = A+ .J be a unitary finite dimensional algebra with trace tr over a field F of characteristic zero
and let tr(J) = 0. Then there exist constants a,a’ > 0 and b,V t,t',r,r" such that

an'd™ < cl"(A) < bn"d" and  d'ntd" < cPT(A) < b'nrld’",

where d and d' equal the dimensions of some subalgebras of A.
Hence the trace exponent of A exp'"(A) = lim, oo V/ci7(A) and the pure trace exponent of A expP'™(A) =

limy, 00 1/ cﬁtT(A) exist and are integers.

Proof. Since the trace and the pure trace codimensions do not change by extending the ground field, we may assume
that the field is algebraically closed. Now the result follows by putting together Lemmas 12, 14 and 15. O

As an immediate consequence of the above theorem we get the following.

Corollary 17. Under the hypotheses of Theorem 16 both sequences ct(A) and cP'™(A), n = 1,2,... either are
polynomially bounded or grow exponetially.

Let A be a finite dimensional algebra as above. Clearly exp?'"(A) = D tr (A0 dim A;.
We remark that if A1 @ ---@® A4 is a trace admissible subalgebra of A and tr(A;)---tr(A) A1 -+ JAi4m # 0,
then, by constructing the algebra B given in (5), it follows that A contains a subalgebra isomorphic to

Ay 0 0 0
1 o A0 0
D=4@ - ®A®UT(A1,.. Aiem) = | 0 A X
0 0 0 Aiim
If in D we assume that tr(A;41) = -+ = tr(A;4m) = 0, then expP”(4) = dim(A; & --- & A;) and exp(A) =

dim(A;41 @ -+ @® Aj1m). This shows that in general exp?®"(A) and exp(A) are not comparable. Nevertheless the
following relations hold: exp(A),expP'"(A) < exp'(A) and exp’ (A) < exp(A) + exp?*"(A).

6. POLYNOMIALLY BOUNDED TRACE CODIMENSIONS

In this section we shall present two results concerning algebras with trace having the trace codimension sequence
and the pure trace codimension sequence bounded by a polynomial. We recall that A=A+ J=A4, - - DA, +J
is a unitary finite dimensional algebra with trace which is zero on J.

We start by introducing some algebras with trace.
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We denote by UTy, = UTs(F) the algebra of 2 x 2 upper-triangular matrices endowed with zero trace and by
Dy = Do(F) the commutative algebra of 2 x 2 diagonal matrices. For any «, 8 € F, it is possible to define on D5 the

following trace function:
a 0
ta,g (<O b>> = aa + Bb.

We denote by D;‘*'B the algebra D, endowed with the trace t, g. Such trace algebras have been extensively studied
in [11, 12, 13] where it was proved that their trace codimensions grow exponentially. Here we remark that, up to
isomorphism, we can define on D5 only the following trace functions:

® t,0, for any a € F,

e ig 3, for any non-zero § € F,

e t, 5, for any distinct non-zero y,6 € F.

The following result is a particular case of a more general result [11, Theorem 30] without any restriction on the
value of the trace on J.

Recall that, if A is an algebra with trace, then var”(A) (the variety generated by A) is the class of all algebras
with trace satisfying all the trace identities satified by A.

Theorem 18. Let A = A+ J be a unitary finite dimensional algebra with trace tr over a field F of characteristic
zero, tr(J) = 0. Then the sequence ct"(A), n = 1,2,..., is polynomially bounded if and only if UTy, D;"”O, D;B’B,
Dy & var*™ (A), for any choice of a, 8,7,6 € F\ {0}, v # 6.

As a consequence we recover the result of Corollary 17.

Our next goal is to prove the pure trace analogue of the above theorem. The list of trace algebras to be excluded
from the variety will be smaller. In fact, since Tr(z) = 0 is a pure trace identity of UTy then c¢P'"(UTy) = 0, for all
n > 1. Moreover, Dé”’o satisfying the pure trace identity Tr(zq)Tr(zs) — aTr(z1z2) = 0 has pure trace codimensions
PIT(DE°) =1, for a # 0.

Next we collect some results about the pure trace identities and pure trace codimensions of the algebras D;‘”j and

D;”. We omit the proofs since they are easily obtained following the ones given in [11] and the relation between pure
trace codimensions and trace codimensions, in the non-degenerate case.

Proposition 19. Let § € F\ {0}. The pure trace T-ideal IdptT(D;B’ﬁ) is generated by the polynomials:
o fi = Tr(xi[zs, x3]),
o fo = Tr(xy) Tr(xe) Tr(x3)+8° Tr(z12073)+ B2 Tr(xex 23)— B Tr(z122) Tr(x3)—BTr(x123) Tr(x2)—BTr(xe23) Tr(21).
Moreover
cgr)Ltr(D;ﬁ,ﬁ) — 271—1'
Proposition 20. Let v,§ € F\ {0}, v # §. The pure trace T-ideal Idptr(D;”) 1s generated by the polynomials:
o f1=Tr(zi|z2,3)),
o f3 = Tr(zy) Tr(z2) Tr(zs) Tr(xs) — (702 + v20) Tr(wy22w324) + YO Tr(w12074) Tr(3) + 70 Tr(z10324) Tr(22) +
V6 Tr(zoxswy) Tr(z1) — (v +6) Tr(z1w4) Tr(wa) Tr(z3) + (V2 +70 + 62) Tr(z124) Tr(waz3) — v8 Tr(wozs) Tr(z123) —
Y0 Tr(xsxa) Tr(x122) + v0 Tr(zix02s) Tr(zy) — (v + ) Tr(xy) Tr(xoxs) Tr(zy),
o fy = Tr(xy) Tr(xs) Tr(zszy) — Tr(zizy) Tr(ae) Tr(zs) + Tr(xizs) Tr(zs) Tr(zs) — Tr(xexs) Tr(xy) Tr(xy)
+ (v + 0)[Tr(x124) Tr(xoxs) — Tr(zixe) Tr(zsey)].
Moreover

ET(DY) = 2" — .

Now, we shall prove the following result. We denote by varP®”(A) the class of all algebras with trace satisfying the
pure trace identities of A.

Theorem 21. Let A = A+.J be a unitary finite dimensional algebra with trace tr over a field F of characteristic zero,
tr(J) = 0. Then the sequence cP'"(A), n =1,2,..., is polynomially bounded if and only if Déﬂ’ﬂ,Déw & varP'"(A), for
any choice of B8,7v,6 € F\ {0}, v #9.

Proof. By Propositions 19 and 20, the pure trace codimensions of the algebras D5 and D5 grow exponentially.
Hence, if ¢P*"(A) is polynomially bounded, then D;B’B, D;”"S ¢ varP!"(A), for any 3, v, 6 € F'\ {0}, v # 4.

Conversely suppose that D;B’B, D;”’é ¢ varP'"(A), for any B, v, d € F \ {0}, v # 4. Since we are dealing with
codimensions, and these do not change under extensions of the base field, we may assume that the field F' is algebraically
closed. By the Wedderburn-Malcev decomposition for trace algebras, we get that

A=M, (F)& @& M, (F)+J, m>1,
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and there exist constants «; such that, for a; € M,,(F), we have

m
tr(ay,...,a) = Ztai (a;).
i=1

Since D;‘m ¢ var'”(A), by [11, Lemma 28] we get that n; = 1, for every i =1, ..., m. Hence
A=A1®--- A+ J
where for every ¢ =1, ..., m, A; = F and the trace on it is ¢,,. Now, if a; = 0 for any ¢, we are dealing with an

algebra A with zero trace. Hence cP'"(A) = 0 and we are finished in this case. On the other hand, if there exist i and
bog o -
j such that a;, o # 0, as in [11, Theorem 30], we get that D, """’ € var'”(A), a contradiction.

Hence we must have A = A1 &---® A, +J, where for every i = 1, ..., m, A; 2 F and there exists just one a; # 0.
Since the pure trace polynomials Tr(z1)Tr(x2) — a;Tr(z122) = 0 and Tr(xq[x2, z3]) = 0 are identities of A, it follows
that cP"(A) = 1 and the proof is complete. O

As a consequence we have the following.

Corollary 22. Under the hypotheses of the above theorem, if cE'™(A) is polynomially bounded then either cP"(A) =0
or P (A) =1, for alln > 1.

7. EXPONENTS BOUNDED BY 2

In this section we shall characterize the varieties of algebras with trace having trace exponent and pure trace
exponent < 2.
We start by introducing some algebras with trace (or pure trace) exponent equal to 3.
Let UT3; = UT5(F) be the algebra of 3 x 3 upper-triangular matrices. For any «, 8,7 € F, it is possible to define
on UTj; the following trace:
a d
to, B,y 0 b
0 0

We denote by UT;O“B " the algebra UT3 with such a trace.
Now consider the following trace subalgebras of U T;"'B i

e
f = aa + b+ ~ye.
c

Dga’ﬁ’”, the commutative algebra of 3 x 3 diagonal matrices with induced trace tn,3,;
Lg“’ﬁ’” = Feq1 + Fegs + Fegs + Feys, with induced trace to g -

Clearly Dga‘ﬁ v C Lg‘*'f’ 7 is a trace subalgebra.

Remark 23. The following facts are easily proved.
1. For any o, B,y € F, exp'” (UT;“"’”) =3.

ta, Y
2. For any o, B,y € F, B #0, exp“"(L3 s )—3.
r ta,s,y
3. For any o, 3,7 € F, a, B # 0, exp’ (D3 s ) =3.

4. For any o, B,v € F \ {0}, expP®" (Dg""“) =3.
5. For any a € F, exp'™ (M4~) = 4. In case a # 0, exp?*™ (M3") = 4.
Now we are in a position to characterize algebras with trace A with exp'"(A) > 2.

Theorem 24. Let A = A+ J be a unitary finite dimensional algebra with trace tr over a field F of characteristic zero
t

with tr(J) = 0. Then exp'"(A) > 2 if and only if B € var'"(A), for some B € {UT;O’U‘O,L;O’g‘U,Dg"“’B’”,D;‘“*“,Mé”},
where a, 5,7,0,¢6,§£ € F\ {0}, k€ F.
Proof. Suppose that egp“”(A) > 2. Without loss of generality we may assume that the field F' is algebraically closed.

Hence we can write A = A1 & - ® Ay, = My, (F) ® -+ ® M,,(F) and, for any i« = 1,...,m, A; can be viewed
as a "trace subalgebra” of A with trace t,, = a;t! (¢! is the usual trace on My, (F)). If for some j € {1,...,m}

dimp A; > 4 then, by [11, Lemma 28], M;aj € var'”(A). Then suppose that dimp A; < 4, for every j =1,...,m. It
follows that A; = F, for any j € {1,...,m} and, since exp’ (A) > 2, there exist distinct A4;, A;, Aj, such that one of
the following conditions occurs:

1. tr(A;)tr(A;)tr(Ag) # 0;

2. tr(A;)tr(A;)Ar # 0 and tr(A4;) = 0;

3. tr(A;)A;JA, # 0 and tr(4;) = tr(Ag) = 0;

4. A;JA;JA, # 0 and tr(4;) = tr(4;) = tr(4g) = 0.
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Let e1, ez, e3 be the unit elements of A;, A;, Ay, respectively and let tr(e1) = «, tr(e2) = § and tr(ez) = =, for some
a, B,y € F.
Suppose first that tr(A;)tr(A;)tr(Ax) # 0. Hence tr(e;)tr(es)tr(es) # 0. If we consider the subalgebra with trace

U generated by the elements eq, 2, €3, then the linear map ¢: U — Dga’ﬂ’” defined by
pler) = e,  plea) =ex, ples) = ess,

is an isomorphism of algebras with trace. Hence Dé“‘ﬂ 7 e var™(A), a, 8,y # 0 and we are done in this case.
Now suppose that tr(A4;)tr(4;)Ar # 0 and tr(Az) = 0. As in the proof of case 1., it is possible to get that

Dé“”j'o € var'"(A), o, 8 # 0.
At this point assume that 3. holds: tr(A;)A;JA; # 0 and tr(A;) = tr(Ax) = 0. Hence there exists j € J such that
tr(ey)esjes # 0. In this case we consider the subalgebra with trace U generated by the elements

e, e, €3, exjes.
The linear map ¢: U — Lgo’“’o, defined by
pler) = ez,  ple2) =en, plez) =es3,  pezjes) = e,

is an isomorphism of algebras with trace. Hence Ly"*° € var'”(A), e # 0, and we are done in this case.

In the last case A;JA;J Ay # 0 and tr(4;) = tr(4;) = tr(Az) = 0, by [8] we get that UT3**° € var'”(A) and this
direction of the theorem is proved.

The opposite implication clearly follows by Remark 23. ([

Our next goal is to prove that the above list of algebras cannot be reduced.
Proposition 25. If B,C € {UT?fO*O*O,Lgo*é’D,Dg“*B”,D};‘S*“O,Mﬁﬁ} are distinct, then 1" (B) ¢ 1d""(C).

Proof. In order to prove the result we need to observe the following facts.

" IBe {UT?f"’O'O,L;O’f"", D;W,D;&e’o}, then 1d"" (B) ¢ 1d"" (ML) since exp'” (B) = 3 < 4 = exp!" (MLr).

- Since UTy"*° has zero trace, we get that 1A (UT3**°) ¢ 1d""(C), C € {Lgo’g’o, Dg“’B’W,D?’E’O}.

- Since D3 is commutative, we get that Idtr(Dg"’B”) ¢ 14" (0), C € {UT;”*O‘O,L?’M,MEK}. Here ~ can be
Zero.

- 14 (DY) ¢ Id”(D;‘l’ﬁ’”).t In fact, the polynomial g4 of [13, Theorem 19] is an identity of D5 but
ga(e11, €22, €33, €33) # 0 on D37,
- Idtr(Déa’E’o) ? Id”(Dg"’ﬁ’”). In fact, the identity f of Dga’ﬁ’” (cited in [12, Lemma 7]) does not vanish on
Dgs,g,o.
t

- 1d" (M) ¢ 1d7(0), C € {UT;O'O’O,Lgo’g’o,DPf’ﬁ’”,D;‘;’e'”}, k # 0. In fact, if & # 7, we have that the

polynomial C’Hg_1 is an identity of Mi* but CH§_1(633,633) # 0 on C. In case k = v we have that
CHS ' (e11,€22) # 0 on Dy#* (notice that CHS ' (ess, es3) = 0 on Di").

- 1d"(M3°) € 1d7(C), C € {Lgo’g’o, Dga’ﬂ’”,Dg‘s’e’o} since Tr(x) is an identity for M2° but not for C.
- Idtr(Méo) 4 IdtT(UTéo’U'O) since [[ml,xQ]Q,xg} is an identity for Méo but [[612, e21)?, 623] # 0 on UT;O’O’O.
- Id”’(Lgo’g’O) g Idtr(UTéo’o’O). In fact, the polynomial [x1, z2][z3,24] = 0 on L§0'§’° but [e11, e12][eas, s3] # O
t0,0,0
on UT5™"".
- Id”’(L?’E'O) ¢ Idtr(Dga‘B‘”). In fact, the polynomial h = {Tr(z1z2) — Tr(z1)Tr(z2) = 0 on Lgovao but
h(e11,ea2) # 0 on D;‘”’ﬁ’”. Here v can be zero.
O

As a consequence of Theorem 24, we get the following corollary.

Corollary 26. Let A = A+ J be a unitary finite dimensional algebra with trace tr over a field F of characteristic
zero with tr(J) = 0. Then exp' (A) = 2 if and only if

1. B & var"(A), for all B € {UTStO“”O, ploeo ples ploco, MS“}, where a, B,7, 0,6, € F\ {0}, k € F,
2. C € var'™(A), for at least one algebra C € {D;”"O,Déﬁl’ﬂ’,D;/";',UTQ}, o, B,9,8 e F\{0}, v #7¢.
Now we present the analogous characterization concerning the pure trace exponent.

Theorem 27. Let A = A+ J be a unitary finite dimensional algebra with trace tr over a field F of characteristic zero
with tr(J) = 0. Then expP™ (A) > 2 if and only if D5**" or M belong to var™(A), o, 8,7,0 € F \ {0}.
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Proof. As in the proof of Theorem 24 we may assume that the field F is algebraically closed and A= A, @---® A,, =
M, (F)&---@®M,, (F) and, for any i = 1,...,m, the trace on A; is to, = a;ti. If for some j € {1,...,m} dimp A; >4
then, by [11, Lemma 28], M;aj € varP'"(A) and we are done. Hence we may assume that dimp A; < 4, for every
j=1,...,m, and, so, A; =2 F, for any j € {1,...,m}. Since exp'"(A) > 2, there exist distinct A4;, 4;, Ay such that
tr(A;)tr(A;)tr(Ax) # 0. As in Theorem 24, we get that Dé‘*’ﬁ” € var’'"(A), o, B,y # 0 and we are done.

The opposite implication clearly follows by Remark 23. O

Notice that IdP!"(D5**) € IdP*" (ML) since expP'™ (D5**7) = 3 < 4 = expP'™(M%). On the other hand, the pure
trace polynomial Tr(xy[ze, z3]) is an identity of Dga’ﬁ’” but Tr(eq1[e12, €21]) = 6 # 0 on M3°. This says that the above
list of algebras cannot be reduced.

As a consequence of Theorem 27 we get the following.

Corollary 28. Let A = A+ J be a unitary finite dimensional algebra with trace tr over a field F of characteristic
zero with tr(J) = 0. Then expP®” (A) = 2 if and only if Dé"’ﬁ’”, M3 & var®'™(A), for any choice of o, 3,7,6 € F\ {0}
and either D;‘V’B/ or D;”/"V € var'"(A), for some §',~',6' € F\ {0}, v # 4.

Now we recall that a variety V' of algebras with trace is minimal with respect to the trace exponent if for any
proper subvariety 4", generated by a unitary finite dimensional trace algebra with zero trace on its Jacobson radical,
we have that exp!™ (V') > exp!" (U'"). Here the trace exponent of a variety is the trace exponent of a generating
algebra. In a similar way one defines a minimal variety with respect to the pure trace exponent.

By using this definition we get the following.

Corollary 29.

1. The algebras D;“'O, D;[”’, D;V"s, UTs, for every choice of a, B, v, § € F\ {0}, v # 8, are the only algebras,
up to Tt -equivalence, generating minimal varieties of trace exponent 2.

2. The algebras D**, D for every choice of B, v, § € F\ {0}, v # 6, are the only algebras, up to T'"-
equivalence, generating minimal varieties of pure trace exponent 2.

3. The algebras UT§°’°’07Lgo’ﬁ’o,D;””M,D?"”o, where a, 3,7,6,¢,6 € F\ {0}, are the only algebras, up to T -
equivalence, generating minimal varieties of trace exponent 3.

4. The algebras D;"“ﬂ‘” a,B,7,0 € F\ {0}, are the only algebras, up to T -equivalence, generating minimal
varieties of pure trace exponent 3.

5. The algebras Mé, Kk € F, generate minimal varieties of trace exponent 4.

6. The algebras Mé‘s, d € F\ {0} generate minimal varieties of pure trace exponent 4.

Proof. We prove only the statement 3., since any other statement can be proved in the same way. Let
B e {UT?TOYO’O,Lgo’f"j?Dg”’ﬁ’A’,D;‘S"’O}

and let V" be a proper subvariety of var'”(B). Clearly B ¢ V'*. By Proposition 25, UTy""°, L?’E’O, Dg“’ﬁ’”, D?’E’“,
Mé" ¢ V. Then, from Theorem 24, exp” (V') < 2 and we are done. Now suppose that there exists a minimal
variety U'" of trace exponent 3 which is not generated by any of the algebras in 3. Then, since its trace exponent
is 3, My~ ¢ U, k € F. Moreover, since it is minimal of exponent 3, UT;O’O'O,Lgo’g’o,Dé‘*’ﬁ”,D?"’o ¢ U'". Then by
Theorem 24 we should have exp'” (i) < 2, a contradiction. O
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