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Abstract

The paper presents a continuous-discontinuous numerical strategy for sim-
ulating localized failure in structures made of quasi-brittle materials using
finite elements. The strategy is based on observing acting stresses scenarios,
when a diffuse degradation is followed by high deformation bands localizing
in certain regions of the structure. The numerical strategy should encom-
pass both situations in accordance with the material’s constitutive model.
This objective is achieved by introducing a thin layer into a finite element
at a certain level of the deformation process. In this study, the thin layer is
modeled for the first time by an interphase mechanical device whose consti-
tutive behavior is the same as the bulk material. This is possible since the
interphase adds internal strains and stresses to the contact ones. As a conse-
quence, no additional constitutive model and parameters are needed, unlike
the zero-thickness interface or cohesive zone models commonly employed.
The proposed numerical strategy is illustrated in detail both at the element
level and at the structural level. A new crack tracking algorithm has been
developed based on decomposition of the model into substructures to allow
cracks to cross arbitrary meshes. Some benchmark examples are presented
showing the mesh-size and mesh-bias independence of results, together with
the convergence behavior of the model.

Keywords: Localization, Interphase, Quasi-brittle materials, Isotropic
Damage Model.

1. Introduction1

During their softening stage, rate independent inelastic solids consist-2

ing of quasi-brittle materials exhibit strain localization in relatively narrow3
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zones. Narrow zones are characterized by the formation of micro-cracks and4

micro-voids whose evolution represents the macroscopic crack.5

A number of researchers have been fascinated by the theoretical and com-6

putational aspects of this mechanical phenomenon. In the pioneering work7

of Rudnicki and Rice [1], later generalized by Ottosen and Runesson [2], the8

onset of localized deformations is triggered by the attainment of a critical9

stability condition at the constitutive level where discontinuous bifurcation10

of the strain state occurs.11

The evolution of the localization band can be modeled using the discrete or12

the continuum approach.13

In the discrete approach the localization band is depicted as a material vol-14

ume confined by two surfaces, called weak discontinuity surfaces. Their dis-15

tance or band thickness is generally considered constant and represents an16

additional constitutive parameter of the material. In the band the strain17

state can be decomposed in the in plane components and in the out of plane18

components, being the former regular and the latter discontinuous. This is19

known as weak discontinuity and can be captured by an apposite enrichment20

of the strain field [3, 4].21

If the thickness of the band is small compared to the typical dimensions of22

the structure, the strain state can be assumed to be uniform throughout the23

thickness. It can be evaluated measuring the displacement of the surfaces24

delimiting the localization area. Adopting the zero thickness interface (ZTI)25

model the in plane strain components are neglected and the out of plane26

components are evaluated on the basis of the displacement jumps between27

the two weak discontinuity surfaces. In literature this kinematic description28

of the strain state of the band is known as strong discontinuity model [5, 6, 7].29

The continuum modelling approach is mainly expressed in the formulation30

of advanced constitutive models as the non-local [8] and gradient models [9],31

where the response of a material point is related to its neighbours. In this32

case the strain discontinuity is regularized on the material volume, enriching33

the physical content of the local material models with one or more intrinsic34

length parameters. Consequently, the constitutive equations describe more35

accurately the real material behavior.36

Most recently, the phase field theory has been applied to the problem of37

strain localization [10, 11] by introducing the phase variable to describe the38

smooth transition from the sound material to the localized material. In this39

sense, phase field models belong to the class of regularized continuum mod-40

els.41
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From a computational point of view research efforts have been mostly con-42

centrated on the simulation of the localization phenomenon, using the finite43

element method and adopting the discrete approach. In this field we can44

distinguish between studies where the strong discontinuity is interelement45

located and studies where it is intraelement located.46

In the first case, the ZTIs are pre-defined between opposite sides of adjacent47

elements or the mesh is rearranged in order to have ZTIs between two ele-48

ments [12]. The specific cracking pattern resulting from the applied load is49

a subset of the spider web depicted by the interface elements [13, 14]. Crack50

formation, branching and coalescing are guided by the interface constitutive51

law.52

In the second case, different strategies have been used to extend the capabil-53

ities of classical finite elements to model intraelement displacement jumps.54

The Generalized-Finite Element Method (G-FEM) [15] and the Extended-55

Finite Element Method (X-FEM) [16] are examples of such numerical strate-56

gies. In both cases the approximation of the field variable is enriched making57

use of the Partition of Unity Method (PUM) which first appeared in the work58

of Babus̆ka et al. [17]. The most significant advantage of these methods is59

modelling discontinuities and their development without requiring the defi-60

nition of a new mesh. These methods only increase the number of degrees of61

freedom in the elements intersected by the crack. However, the numerical in-62

tegration of elements crossed by a discontinuity requires a special treatment,63

which is different in the presence of different interpolation basis (triangles,64

quadrilaterals, etc.), for 2D or 3D cases [18]. Even though the additional65

degrees of freedom cause a small increase in the overall computational cost,66

the implementation itself is time-consuming.67

The Phantom Node Method (PNM) has been derived from the work of68

Hansbo and Hansbo [19] and can be considered as a variant of the X-FEM69

[20, 21] since it reinterprets the approximation of the X-FEM displacement70

field by the superposition of the displacement fields of two overlapped finite71

elements. The advantage of PNM compared to X-FEM is that no discon-72

tinuous interpolation functions are required since each overlapping element73

furnishes the displacement field on one side of the crack.74

A tracking algorithm based on the Virtual Element Method (VEM) has been75

recently proposed [22]. This method introduces cohesive interfaces between76

polygons characterized by any number of edges. The ease of implementa-77

tion, the absence of a parent element, and the high performance even in the78

presence of distorted elements or non-conforming meshes are the main ad-79
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vantages of the method. The main disadvantages are the need to insert new80

nodes or move some of the existing ones, and the difficulty of handling crack81

branching.82

Self-propagating non-continuous crack models have been proposed in the83

framework of meshless method [23] or finite element method [24].84

The Augmented Finite Element Method (A-FEM) [25, 26, 27, 28] operates85

at the element level and does not require enrichment of the shape functions86

to approximate the displacement field. In a different manner with respect87

to the PNM, A-FEM simulates weak and strong discontinuities by splitting88

the element into two mathematically separable standard elements which are89

adjacent to the discontinuity surface. Initially, additional degrees of freedom90

are introduced to decompose the cracked element. Then, they are condensed91

at the element equilibrium level. Hence, they are not present at the global92

level.93

Some of the benefits of A-FEM are [25, 26, 27, 28]:94

• elements are split into standard finite elements, fully compatible with95

standard finite elements packages;96

• possibility to consider different material properties for the sub-elements;97

• no need for level-set information or to necessarily know if a sub-element98

is below or above the discontinuity;99

• reduced computational cost;100

• straightforward implementation to 3D cases.101

The principal difference of our approach with the classical A-FEM and X-102

FEM regards the possibility to follow the material failure from the strain103

localization in a thin layer band to the crack opening by using the interphase104

concept in place of the quite common ZTI model. The IPH was introduced by105

Giambanco and Mróz [29] and implemented in the finite element framework106

by Giambanco et al. [30]. The IPH model can be considered the enrichment107

of the ZTI since it allows to model both the contact and the internal strains108

of the thin layer. In addition, it extends the calculation of stresses also to109

internal components. As a consequence, the thin layer response is more real-110

istic and some phenomena such as the squeezing effect can be captured [30].111

The most relevant point is that, unlike ZTI models, IPH does not require112

a specific traction-displacement jump constitutive law and the constitutive113
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laws adopted for IPH can correspond to those of bulk material.114

Additional efforts have been made to formulate an original crack tracking115

algorithm. The model is decomposed into non-localized elements and sub-116

structures where elements intersected by cracks are grouped.117

The localization analysis is performed for a strain softening homogeneous118

continuum obeying the damage model with strain-based loading functions119

formulated by Jirásek [31]. However, the proposed numerical approach has120

general applicability and any constitutive model could be implemented. At121

the material point, the damage level is linked to a scalar variable representing122

the highest strain ever recorded during loading history. The localization band123

arises at the material point where the constitutive instability is detected but,124

according to the Delayed Embedded Crack (DEC) model [32, 33], the IPH125

is inserted upon stabilization of the band direction.126

The band direction is identified through a spectral analysis of a fracture ten-127

sor introduced in this study. Convergence and validation of the model are128

assessed through benchmark examples and comparisons with experimental129

and numerical data available in the literature.130

The paper is organized as follows. Section 2 shows the basic assumptions131

and derives the equilibrium equations for an IPH element. It also reports the132

fundamentals of the adopted constitutive model. In Section 3 and Section133

4 details about the implementation at the finite element and structural lev-134

els respectively are reported, with particular attention to the crack tracking135

algorithm. Section 5 gathers the results of four different applications, while136

Section 6 gives the main conclusions of this work.137

2. Problem definition138

The mechanical problem regards a solid body Ω (Fig. 1), defined in the139

Euclidean space R3, referred to the orthonormal frame (0, ex, ey, ez). The140

body is constituted by a strain softening material, which under severe load-141

ing conditions presents a narrow zone Ωb where strains concentrate. The142

body is subjected to volume forces f , to tractions t on Γt and to kinematic143

constraints u = u on Γu respectively.144

The thin material layer Ωb has thickness wb and is separated from the re-145

maining parts Ω+ and Ω− by the weak discontinuity surfaces Σ+, Σ− where146

the displacement field is continuous and its gradient suffers discontinuity.147

It is assumed that the band thickness is small if compared with the charac-148

teristic dimensions of the body and is modelled using an IPH model. Typical149
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of IPH or ZTI models, the band is also assumed to be locally planar. This150

means that any mechanical quantity related to band curvature is neglected.151

With these hypotheses at hand, in order to study the static and kinematic152

conditions of the localization band we refer to a local Cartesian coordinate153

system (xb, yb, zb) with xb, yb axes lying within the middle plane Σb of the joint154

and the zb axis coinciding with the normal unit vector nb directed towards155

the body Ω+, Figure 2. The thin layer is subject to the external tractions156

t on the lateral surface Γb and to the contact tractions q+ and q− on the157

physical surfaces Σ+ and Σ−, respectively.158
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Figure 1: Schematic representation of a continuous body with a localization band.

159

160

6



q+

x
b

z
b

x

z

q-

+

-

n
b t

b b
t

b

w
b b mb
mb

-

+

Figure 2: Schematic representation of the band volume.

2.1. Geometry and Kinematics161

The geometric and kinematic assumptions for the localization band are:162

• the localization band is planar;163

• fibers in the zb direction are maintained rectilinear along the deforma-164

tion process;165

• the band thickness wb is small if compared to the characteristic dimen-166

sions of the solid;167

• the strain state is uniform along the band thickness and is obviously168

equal to the average value along the same direction.169

In view of the second hypothesis the displacement field ub in the band170

can be easily obtained from the displacements u+b , u
−

b in Σ+ and Σ−, thus171

ub (xb, yb, zb) =

(

1

2
+

zb
wb

)

u+b (xb, yb) +

(

1

2
−

zb
wb

)

u−b (xb, yb) . (1)
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Due to other hypotheses, the thin layer representing the localization band172

collapses in its middle surface Σb and the strain state can be calculated from173

Eq. (1) in the following way174

εb =
1

wb

∫

wb
2

−wb
2

∇sub dzb =
1

wb

([ub]⊗ nb)
s +∇sûb (2)

where (· ⊗ ·)s is the symmetric part of the resulting tensor, nb is the175

unit vector normal to the middle surface of the localization band, ∇s is the176

symmetric part of the gradient operator and177

[ub] = u+b − u−b , ûb =

(

u+b + u−b
2

)

. (3)

Let us note that the joint curvatures generated by the displacement field178

(1) and the related flexural effects are neglected. Therefore, the strain state179

of the IPH depends on the displacement discontinuity [ub] between the sur-180

faces Σ+ and Σ− and on the displacements ûb of the middle plane Σb of the181

localization band. Eq. (2) illustrates the decomposition of the total strain in182

two parts: the first term is the contact or irregular part εcb while the latter183

is the internal or regular part εib.184

2.2. Forces and Equilibrium185

Let us consider the IPH subject to the contact tractions q+ on the surface186

Σ+, q− on the surface Σ− and to the external load t on the solid boundary Γb.187

The principle of virtual displacements (PVD) asserts that the work produced188

by the contact tractions and the external loads must be equal to the internal189

work developed in the localization band, thus190

∫

Σ+

δu+b · q
+ dΣ +

∫

Σ−
δu−b · q

− dΣ +

∫

Γb

δub · t dΓ =

∫

Ωb

δεb : σb dΩ. (4)

Virtual displacements, preceded by the symbol δ, are assigned while the191

virtual strains must satisfy Eq. (2). Since the strain state is uniform along the192

band thickness, consistently the stress state can also be considered uniform193

along the same direction. Therefore the internal work assumes the following194

expression:195
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∫

Ωb

δεb : σb dΩ =

∫

Σb

[(δ [ub]⊗ nb)
s + wb∇

sδûb] : σb dΣ (5)

which applying the divergence theorem to the second term of the right-196

hand side becomes197

∫

Ωb

δεb : σb dΩ =

∫

Σb

[(δ [ub]⊗ nb)
s : σb − wb δûb · divσb] dΣ+wb

∫

Cb

δûb·(σb ·mb) dC.

(6)
Cb is the contour of the localization band middle surface and mb is the198

unit vector normal to the contour line.199

Substituting the integral (6) in the PVD and assuming that Σ+ ≡ Σ− ≡ Σb,200

using positions (3) and considering that the surface forces on Γb are uniform201

along the thickness of the thin layer, we have202

∫

Σb

δu+b ·

(

q+ +
wb

2
divσb − σb · nb

)

dΣ+

∫

Σb

δu−b ·

(

q− +
wb

2
divσb + σb · nb

)

dΣ+

∫

Cb

δûb · (t− σb ·mb) dC = 0. (7)

Since Cauchy’s Theorem permits to write q+ = σ
+ ·nb and q− = −σ− ·nb203

and (7) is valid for any virtual displacements δu+ and δu−, we finally obtain204

the equilibrium equations of the IPH:205

wb divσb + [σb] · nb = 0 onΣb, (8)

(σb − σ̂b) · nb = 0 onΣb, (9)

σb ·mb = t inCb, (10)

where206

[σb] = σ
+
b − σ

−

b , σ̂b =
σ
+
b + σ

−

b

2
. (11)

Eqs. (8) and (9) can be regarded as internal and external equilibrium207
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equations of the IPH and (10) represents the equilibrium boundary condi-208

tions.209

In the circumstance that the same constitutive behavior of the bulk mate-210

rial is used for the IPH, wb represents the only additional parameter to be211

provided in order to solve Equation (8). It is relevant to note that wb is a212

parameter that needs to be specified in any model where the band is assumed213

to collapse in its middle plane. This is the case with IPH or ZTI models.214

2.3. Constitutive Model215

The proposed computational procedure allows the implementation of any216

constitutive model involving localization bands. The choice of a specific217

constitutive model is strictly related to the material to simulate.218

The numerical examples herein presented are developed with the well-known219

isotropic damage model with a strain-based loading function reported in [31].220

In this simple model the stiffness moduli decrease proportionally in every221

direction and independently of loading direction, on the basis of the value222

assumed by the damage variable D ∈ [0, 1]. Consequently, the damaged223

secant stiffness tensor is expressed as224

Es = (1−D)E (12)

and the stress-strain relation can be written in the form225

σ = Es ε = (1−D)E ε (13)

where E is the elastic stiffness tensor.226

The evolution of damage depends on the internal kinematic variable κ. This227

variable is equal to the maximum value ever reached by the equivalent strain228

ε̃ along the loading path, i.e. a scalar measure of the strain level.229

The elastic domain and the loading-unloading conditions are defined by the230

following damage activation function and related Kuhn-Tucker conditions:231

f(ε̃, κ) = ε̃− κ, (14)

f(ε̃, κ) ≤ 0, κ̇ ≥ 0, κ̇ f(ε̃, κ) = 0. (15)

A different behavior in tension and compression is typical for quasi-brittle232

materials. Microcraks mostly grow when the material is stretched and it233
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is natural to consider this fact in the definition of the equivalent strain.234

Therefore, the so-calledMazars definition of the equivalent strain is adopted:235

ε̃ =

√

√

√

√

3
∑

I=1

〈εI〉2 (16)

where εI (I=1,2,3) are the principal strains and the McAuley brackets 〈·〉236

denote the positive part.237

With the previous definition of the equivalent strain the evolution of the238

damage variable can be defined in the following way239

D = g(κ) =

{

0 if κ ≤ ε0

1− ε0
κ
exp(− κ−ε0

εf−ε0
) if κ > ε0

, (17)

being ε0 and εf the elastic and post-elastic limit strains, respectively.240

3. Numerical procedure at the finite element level241

The solution of a structure subjected to external actions where strains242

concentrate in a narrow band is now implemented in the framework of the fi-243

nite element method. The fundamental relations are here numerically treated244

for a quadrilateral 2D element and an efficient procedure that exploits the245

A-FEM idea [25] is presented. The extension to meshes constituted of trian-246

gular 2D elements or generic 3D elements is straightforward since it involves247

the same fundamental relations. It is important to highlight that, within each248

element, the crack can only be straight in the present formulation. Varia-249

tions in the crack direction and crack branching inside the element will be250

included in future developments.251

Stress and strain states are written using Voigt’s notation.252

3.1. Intraelement band253

Let us suppose that the finite element is crossed by a planar localization254

band identifying the two parts Ω+ and Ω− of the quadrilateral element (Fig.255

3). Depending on the position and orientation of the localization band, the256

quadrilateral element can be split into two quadrilaterals (Fig. 3-a) or into257

a triangular and a pentagonal (Fig. 3-b) sub-element.258

For the 2D problem the band is represented by the line Σb passing through259

point (xbp, zbp) and having the direction corresponding to the unit vector nb260
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Figure 3: Four noded finite element crossed by the localization band: two quadrilateral
sub-elements (a) and a triangular and a pentagonal sub-elements (b) cases.

pointing to the sub-domain Ω+.261

According to the A-FEM procedure the element Ω is replaced by the two262

sub-elements Ω+ and Ω− with degrees of freedom U+ and U−, respectively263

(Fig. 4). In the case of a pentagonal sub-element, this is considered as the264

assembly of three triangles as for Ω− in Figure (4b). The interphase element265

Ωb is embedded between the two elements by adding four additional nodes266

(m, n, r, s) which provide the degrees of freedom Ub of the interphase.267

The subdivisions shown in Figure (4) hold for a 4-node quadrilateral element268

with bi-linear shape functions, which are the easiest numerical assumptions269

used as a first attempt in this work. In the presence of higher-order shape270

functions, in quadrilateral elements with more than 4 nodes, Ω+ and Ω−271

would each be subdivided into triangles, while for the interphase element six272

nodes are used, instead of four.273

Considering the classical isoparametric formulation of quadrilateral finite274

elements, displacement and strain fields are derived from nodal displacements275

u(−,+) = NU(−,+), ε
(−,+) = CNU(−,+) = BU(−,+) (18)

where N is the shape functions matrix and C is the kinematic compati-276

bility matrix for plane problems.277

The PVD for the two finite elements Ω+ and Ω− reads278
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Figure 4: Sub-elements and additional nodes: two quadrilateral sub-elements (a) and a
triangular and a pentagonal sub-elements (b) cases.

δU(−,+)T

(
∫

Ω(−,+)

NT f dΩ +

∫

Γ(−,+)

NT t(−,+)dΓ +

∫

Σ(−,+)

NTq(−,+)dΣ−

∫

Ω(−,+)

BT
σ
(−,+)dΩ

)

= 0. (19)

Solving the integrals by using the Gauss quadrature rule and considering279

that the equality (19) is valid for any virtual displacement field, we obtain280

the equilibrium equations of the two sub-elements:281

F(−,+)
e + F

(−,+)
i = K(−,+)U(−,+), (20)
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where

F(−,+)
e =

∫

Ω(−,+)

NT f dΩ +

∫

Γ(−,+)

NT t(−,+)dΓ (21)

F
(−,+)
i =

∫

Σ(−,+)

NTq(−,+)dΣ (22)

K(−,+) =

∫

Ω(−,+)

BTEt B dΩ. (23)

Fe represents the nodal force array originated by external forces and282

tractions. Fi contains the nodal internal forces originated by tractions due283

to the discontinuity. K is the element tangent stiffness matrix, dependent on284

the elastic tangent operator Et.285

Let us recall the stress-strain relation (13). Et is defined as:286

Et =
∂σ

∂ε
= (1−D)E −Eε

∂D

∂ε
(24)

where287

∂D

∂ε
=

∂D

∂κ

∂κ

∂ε̃

∂ε̃

∂ε
. (25)

With reference to the damage law (17), the first term in (25) is288

∂D

∂κ
= −

exp
(

κ−ε0
ε0−εf

)

ε0(κ− ε0 + εf )

κ2(ε0 − εf )
. (26)

The second term can be easily evaluated as289

∂κ

∂ε̃
=

{

0 if ε̃ < κ

1 if ε̃ = κ
. (27)

Last term is calculated recalling Mazars’ definition of the equivalent strain290

(16). In the plane stress case it results291

∂ε̃

∂ε
=

1

2ε̃
(P 〈εp〉)T (28)

being292
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P =











1 + cos(2α) 1− cos(2α) − 2ν
1−ν

1− cos(2α) 1 + cos(2α) − 2ν
1−ν

sin(2α) − sin(2α) 0











(29)

with α the angle between the principal and the reference directions and293

ν the Poisson’s ratio. εp is the 3 by 1 vector collecting the principal strains.294

It is remarkable that A-FEM permits different elastic tangent operators for295

the two sub-elements.296

Regarding the interphase element, we adopt the 4-nodes element proposed297

in [30]. The kinematic and static quantities are referred to the rotated (xb, zb)298

reference system. The displacement fields in Σ+ and Σ− are expressed as299

linear interpolation of the displacements of nodes lying in the same Σ+ and300

Σ−:301

u+b = N+
b U

+

b , u−b = N−

b U
−

b , (30)

where U
+

b and U
−

b are defined as:302

U
+

b =

[

Ur

Us

]

, U
−

b =

[

Um

Un

]

. (31)

The symbol (·) means that the relative quantity is referred to the inter-303

phase coordinate system. Shape functions matrices are expressed as304

N+
b =

[

N2 0 N1 0
0 N2 0 N1

]

, N−

b =

[

N1 0 N2 0
0 N1 0 N2

]

, (32)

with305

N1 =
1

2
(1− ξ) , N2 =

1

2
(1 + ξ) , (33)

being ξ ∈ [−1, 1] the natural interphase coordinate.306

According to Eq. (2), the interphase strain vector is composed by the contact307

and internal strains:308

εb =
1

wb

Cb1

(

u+b − u−b
)

+
1

2
Cb2

(

u+b + u−b
)

(34)
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where309

εb =
[

εbx εbz γbxz
]T

, Cb1 =





0 0
0 1
1 0



 , Cb2 =





∂
∂xb

0

0 0
0 ∂

∂xb



 . (35)

Substituting the approximate expression of the displacements (30) we obtain310

εb = B+
b U

+

b +B−b U
−

b (36)

with311

B+
b =

(

1

wb

Cb1 +
1

2
Cb2

)

N+
b , B−b = −

(

1

wb

Cb1 −
1

2
Cb2

)

N−

b . (37)

The weak form of equilibrium for the interphase element can be derived312

from (4) considering the kinematic equations (30) and (36). Neglecting the313

external traction applied on the thickness side (t = 0 in Γb) we have:314

δU
+T

b

∫

Σ

(

wb B
+T
b Et B

+
b U

+

b + wb B
+T
b Et B

−

b U
−

b −N+T
b q+

)

dΓ+

δU
−T

b

∫

Σ

(

wb B
b−T

Et B
+
b U

+

b + wb B
−T
b Et B

−

b U
−

b −N−T
b q−

)

dΓ = 0 (38)

which, being satisfied for any value of virtual displacements, gives

K
++

b U
+

b +K
+−

b U
−

b = F
+

b (39)

K
−+

b U
+

b +K
−−

b U
−

b = F
−

b (40)

where

K
++

b =

∫

Σ

wb B
+T
b Et B

+
b dΓ, K

+−

b =

∫

Σ

wb B
+T
b Et B

−

b dΓ, (41)

K
−+

b =

∫

Σ

wb B
−T
b Et B

+
b dΓ, K

−−

b =

∫

Σ

wb B
−T
b Et B

−

b dΓ. (42)

Note that the same expression (24) of the elastic tangent operator for315

bulk material is adopted.316
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3.2. Assembling procedure317

In order to assembly the three finite elements we have to refer the kine-318

matic and static quantities to the global reference system. Since the orien-319

tation of the band is individuated by the unit vector nb =
[

nx nz

]T
, we can320

proceed with a reference system rotation in a classical way:321

U
(−,+)

b = RU
(−,+)
b F

(−,+)
b = RTF

(−,+)

b (43)

where322

R =









nz −nx 0 0
nx nz 0 0
0 0 nz −nx

0 0 nx nz









. (44)

The substitution of Eqs. (43) in Eqs. (41) provides the equilibrium equations323

of the interphase element written in the global reference system.324

Partitioning the displacement vectors U+ and U− of the sub-elements into325

external (e) and internal (i) components, in relation to the Ωb domain, the326

following partitioned Eq (20) is derived:327

[

F
(−,+)
ee

F
(−,+)
ei

]

+

[

0

F
(−,+)
ii

]

=

[

K
(−,+)
ee K

(−,+)
ei

K
(−,+)
ie K

(−,+)
ii

][

U
(−,+)
e

U
(−,+)
i

]

. (45)

It is easy to verify that:328

U+
b = AU+

i , U−

b = AU−

i , (46)

being A an operator defined as329

A =

[

0 I

I 0

]

, (47)

with 0 and I 2×2 null and identity blocks, respectively.330

Substituting Eqs. (46) in the interphase equilibrium equations (39)-(40) and331

pre-multiplying the right and left sides of the same equations by the order332

operator A, finally we have333

K++
b U+

i +K+−
b U−

i = F+
ii , (48)

K−+
b U+

i +K−−

b U−

i = F−ii , (49)
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where334

Kικ
b = LTK

ικ

b L, Fι
ii = LT F̄ι

b with ι, κ ∈ {+,−} (50)

and L = RA.335

We can substitute the expression of the internal forces (48)-(49) in the equi-336

librium equations of the sub-elements (45) in order to evaluate the internal337

displacements:338

U+
i = H+

[

F+
ei −K+

ieU
+
e +M+

(

F−ei −K−

ieU
−

e

)]

, (51)

U−

i = H−

[

F−ei −K−

ieU
−

e +M−

(

F+
ei −K+

ieU
+
e

)]

, (52)

with

H+ =
[

K+
ii −K++

b −K+−
b

(

K−

ii −K−−

b

)

−1
K−+

b

]

−1

(53)

H− =
[

K−

ii −K−−

b −K−+
b

(

K+
ii −K++

b

)

−1
K+−

b

]

−1

(54)

M+ = K+−
b

(

K−

ii −K−−

b

)

−1
(55)

M− = K−+
b

(

K+
ii −K++

b

)

−1
. (56)

Finally, the equilibrium equations of the single quadrilateral element with339

embedded interphase are obtained:340





F−ee −K−

eiH
−

(

F−ei +M−F+
ei

)

F+
ee −K+

eiH
+
(

F+
ei +M+F−ei

)



 =





K−

ee −K−

eiH
−K−

ie −K−

eiH
−M−K+

ie

−K+
eiH

+M+K−

ie K+
ee −K+

eiH
+K+

ie









U−

e

U+
e



 .

(57)
The above-presented formulation of the finite element with the embedded341

localization zone has the peculiar feature that the two sub-elements and the342

interphase in which the initial element is split share the same constitutive343

model. Other than band thickness, no additional material parameters and344

evolution laws are needed. As compared to similar approaches using the345

zero-thickness interface for localization and fracture simulation, this repre-346

sents an important advantage. In the ZTI model, an additional cohesive law347

must be introduced, with the difficulty of evaluating the additional material348

parameters in some way related to those of the continuum model.349
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4. Numerical procedure at the structural model level350

In the present section the macroscale (or structural-scale) problem is fo-351

cused. It requires the formulation of an algorithm capable of predicting the352

formation and propagation of the band/fracture among the finite elements353

of the numerical model.354

This issue has been treated in several papers, with the principal aim to make355

the fracture pattern independent of the finite elements density and orienta-356

tion.357

When the strain localization band is not known a priori, the principal issues358

include:359

• the strain localization band formation;360

• location and orientation of the localization band;361

• the intra-element propagation of the fracture;362

• identification of the crack pattern and the coexistence of multiple cracks.363

The first two aspects are strongly related to the constitutive model adopted364

for the quasi-brittle material. The remaining ones deal with finite element365

mesh processing. They require a specific crack tracking algorithm in order366

to define the discontinuity surface during the loading process. In addition,367

they require the introduction of additional degrees of freedom to describe the368

kinematics of the weak or strong discontinuity.369

The entire numerical procedure has been implemented in a MatLab© code.370

Nonlinear equations are solved using the Newton-Raphson iterative proce-371

dure. The time integration scheme is based on a backward Euler method.372

For the sake of completeness, the pseudo-code for the generic time step n is373

reported in Algorithm 1.374

4.1. Band formation and orientation375

As mentioned in the introduction, the onset of localized deformations is376

considered as the result of an instability in the macroscopic constitutive de-377

scription of inelastic deformation. It corresponds to a bifurcation problem378

[1, 2], i.e. the incremental equations governing the equilibrium show a loss379

of uniqueness and an alternative deformation mode of the evolution of the380

localization band is admitted. Commonly, the discontinuous bifurcation con-381

dition is determined by the negative value of the determinant of the acoustic382
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tensor [34]. A spectral analysis of the same tensor also provides band orien-383

tation and relative localization mode.384

In the case of isotropic damage, where the material stiffness degradation385

simply coincides with the progressive reduction of the Young’s modulus, the386

above reported classical procedure under some circumstances does not return387

the expected band characteristics. In particular, band directions that don’t388

match the loading conditions and kinematic constraints may be observed389

[35]. In several works adopting the continuous-discontinuous models a spe-390

cific transition criterion is formulated in terms of principal stresses, principal391

strains, or damage values locally attained. If the state of stress or strain is392

considered as a strain localization indicator, the Rankine or the De Saint393

Venant - Grashof criteria are adopted, respectively. When the maximum394

principal stress or strain reaches the tensile strength or the limit deformation395

of the material, the condition of diffuse damage is switched to the condition396

of localized damage.397

In the present work the continuous-discontinuous transition is triggered if398

simultaneously the minimum eigenvalue of the element tangent stiffness ma-399

trix becomes null or negative and if the damage variable attains a critical400

value Dcrit, as proposed in [36]. This last criterion has been adopted in recent401

papers dealing with localization in structures made up of damaging material402

[37, 38].403

In particular, if the volume average of the damage variable exceeds the criti-404

cal damage of the material a new interphase is inserted in the element. The405

transition condition reads406

D̂ =
1

Ve

∫

Ωe

D dΩ > Dcrit, (58)

where Ve is the volume of the element.407

In order to locate the interphase middle plane inside the finite element, we408

define the balance point of damage xbp409

xbp =

∑ngp

i=1Di xi
∑ngp

i=1Di

(59)
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and the average localization direction nb, which coincides with the eigenvector410

associated with the maximum eigenvalue of the following tensor:411

Lb =

∑ngp

i=1Di ni ⊗ ni
∑ngp

i=1Di

, (60)

where ngp is the number of the Gauss points and xi and Di are the coor-412

dinates and the values of damage variable at the same points, respectively.413

In Eq. (60) ni is the direction of the maximum principal strain evaluated at414

the Gauss point.415

Once the first two localization conditions are verified, a third check is per-416

formed. This check verifies if the localization direction nb is stabilized be-417

tween two subsequent time steps [39]. When the difference in nb is below a418

fixed tolerance, the finite element is fragmented into two sub-elements Ω+
419

and Ω−, and the interposed interphase Ωb. Depending on the topology of420

the two sub-elements, strain and damage values can be initialized at Gauss421

points of Ω+, Ω−, and Ωb, exploiting the same shape functions as the original422

element. Damage in the sub-elements Ω+ and Ω− is kept frozen and the re-423

sponse is linear and elastic, with the stiffness attained at the fragmentation424

time. Damage, instead, is free to evolve in the interphase element Ωb.425

426

4.2. Crack tracking algorithm427

At the end of the strain localization stage in Algorithm 1, some of the428

elements of the FE mesh could be localized. For these elements the three429

aforementioned localization checks are all verified and the band in each ele-430

ment is identified through its balance point and orientation.431

The number of newly localized elements in a load step is dependent on the432

load step size. As is common in nonlinear FE, in order to avoid inaccurate so-433

lutions in terms of crack-path and mechanical response, the load step should434

be in some way calibrated to the element size and should not be too large. It435

could happen to see clouds of localized elements, usually having sub-parallel436

localization bands, as a consequence of the diffuse damage formulation. In437

these cases not all the localized elements can be crossed by the crack and the438

clouds need to be in a certain sense ’cleaned’.439

An efficient crack tracking algorithm is therefore necessary to correctly trans-440

form the bands inside localized elements into macroscopic continuous cracks.441

The proposed crack tracking algorithm operates in a three-stage process.442
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Algorithm 1 Pseudo-Code at step n

1: ⊲ Update BCs and/or ext. forces

◮ ELASTIC PREDICTION

2: j ← 1 ⊲ Initialize iterations

3: Un ← Un−1 ⊲ Initialize Un

4: F
ext
n ← F

ext
n−1 +∆F

ext
n ⊲ Update ext. forces

5: K
(j)
n ← A

eno−loc

e=1 (Ke
n−1) + Asubs

s=1 (K
s
n−1) ⊲ Assemble global stiffness matrix

6: K
(j)
n ∆U

(j)
n = ∆F

ext
n ⊲ Solve equilibrium equations

7: Un ← Un +∆U
(j)
n ⊲ Update mech. & kin. variables

8: for s = 1 : subs do ⊲ Loop over all substructures

9: U
s
n ← S(Un) ⊲ Extract displ. at subs boundary nodes

10: F
int, s
n ← CALL SOLVE-SUBS(Us

n) ⊲ Solve NL problem for subs imposing U
s
n

11: end for

12: F
int
n ← A

eno−loc

e=1 (Fint,e
n ) + Asubs

s=1 (F
int,s
n ) ⊲ Assemble int force vector

13: if

∣

∣

∣
Err

(j)
n

∣

∣

∣
=

∣

∣F
ext
n − F

int
n

∣

∣ ≥ tol then ⊲ check convergence

◮ NONLINEAR CORRECTION

14: j ← j + 1

15: K
(j)
n ← A

eno−loc

e=1 (Ke
n) + Asubs

s=1 (K
s
n) ⊲ Assemble global stiffness matrix

16: K
(j)
n ∆U

(j)
n = Err

(j)
n ⊲ Solve equilibrium equations

17: go to 7

18: end if

◮ STRAIN LOCALIZATION

19: for e = 1 : eno−loc do ⊲ Loop over not localized elements

20: λe ← eig[Ke] ⊲ Find tangent stiffness eigenvalues

21: D̂e ←
1
Ve

∫

Ωe

D dΩ ⊲ Calculate volume average of damage

22: if (λe ≤ 0) .and. (D̂e ≥ Dcrit) then ⊲ Check localization

23: xbp,Lb ← Use Eqs.(59-60) ⊲ Find balance point & loc. tensor

24: nb ← eig[Lb] ⊲ Evaluate band orientation

25: if
∣

∣n
n
b − n

n−1
b

∣

∣ ≤ tol then ⊲ Check band stabilization

26: eloc ← [eloc e] ⊲ Insert e among new localized elements

27: end if

28: end if

29: end for

◮ CRACK TRACKING ALGORITHM

30: clusters ← CALL NO-BINARY-SEARCH(eloc) ⊲ Partition of eloc into clusters

31: subs ← CALL UPDATE-SUBS(clusters) ⊲ Update existing subs

or create new ones

32: CALL ALIGN(subs) ⊲ Align bands in new localized elements

22



Localized element Cluster/Substructure edge Localized bandNot accepted localized element Crack

(a) (b) (c)

Figure 5: Three-stage process of the crack tracking algorithm. a) Clusters identification.
b) Substructures identification. c) Alignment of bands in substructures.

This process is depicted in a simplified manner in Figure 5. The first stage443

groups the newly localized elements into clusters of elements that are at least444

two-by-two in contact (Fig. 5a). The associated numerical procedure is in-445

spired by the No Binary Search contact detection algorithm [40].446

The second stage transforms each cluster into a substructure (Fig. 5b). At447

this stage, only the localized elements required to maintain a continuous448

crack are retained, converting the remaining elements back into not localized449

elements again. The selection is carried out on the basis of specific checks450

that will be introduced in the next sub-paragraph.451

The third stage deals with crack propagation among elements and performs452

the alignment of bands in order to have continuous cracks (Fig. 5c).453

The crack tracking algorithm has been numerically structured into three cor-454

respondent in-series modules, namely the NO-BINARY-SEARCH MODULE (Algo-455

rithm 1, line 30), the UPDATE-SUBS MODULE (Algorithm 1,line 31), and the456

ALIGN MODULE (Algorithm 1, line 32).457

4.2.1. Substructures of localized elements458

In the second stage of the crack tracking algorithm clusters are converted459

into substructures. These substructures can be defined as portions of the460

whole model containing those elements intersected by a single crack. It fol-461

lows that under specific circumstances not all the elements of a cluster can462

be part of a substructure and they need to be opportunely shortlisted.463

Selection is made on the basis of a total of four checks. Some of these are464

consolidated in the literature, while others are specifically designed according465

to the adopted localization criteria. Two of these checks are always invoked,466
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and two are recalled if the new localized elements extend an existing crack.467

All the four checks are clearly explained in Fig. 6 and listed below:468

• the scalar product between the vector v linking the crack tip and the
centroid of the new localized element and the outgoing versor n normal
to the edge of the element containing the crack tip must be positive, in
order to avoid coming back fractures (Fig. 6a):

v · n > 0;

• band orientations in two adjacent localized elements must not differ469

more than a prescribed limit (Fig. 6b);470

• in the presence of parallel bands in adjacent elements only one crack471

is generated. The accepted elements to be part of a substructure are472

those whose band extremes share the same edge (Fig. 6c). In the case473

of a crack involving a single element, the element showing the highest474

value of the damage variable D̂ is retained (Fig. 6d).475

No ’a priori’ initialization of a crack is required, and multiple cracks are476

admitted.477

4.2.2. Crack propagation478

The last part of the crack tracking algorithm is devoted to the alignment479

of bands in elements constituting the substructure, in order to guarantee480

crack-path continuity. Three possibilities arise:481

1. extension of existing cracks;482

2. merging of existing cracks;483

3. formation of a new crack.484

In general, new elements are usually added to an existing crack. In this485

circumstance, the constraint that the band should pass through the balance486

point is relaxed, while the localization direction is maintained (Fig. 7a). The487

balance point is replaced by the previous crack tip position, and the band488

results shifted inside the element. If more than one element is added, the489

procedure continues with the next element on the list, until the entire list is490

completed. In order to ensure continuity of deformation between the element491

containing the new crack tip and the adjacent not localized element sharing492

the same edge, the new internal nodes placed on the crack tip must move493
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Figure 6: Substructures of localized elements. a) element centroid position check; b) band
slope check; c) new crack length check; d) D̂ check.

together and lie on the same edge. This constraint is removed once a new494

element is added to the substructure and the crack tip moves ahead.495

If the new substructure comes from the fusion of two substructures, old cracks496

are initially extended following the same procedure as in point 1. Occasion-497

ally, two existing cracks should be extended with the same element, which498

is referred to as an enclosed element (Fig. 7b). The previous crack tips are499

directly connected in this case. Additionally, nodes constrained to coincide500

with the two old crack tips are released.501

Once the existing cracks have been scanned over, the remaining new cracks502

are inserted starting from the middle element towards the extremes. For503

the first element the band is inserted as localized, since both the balance504
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Figure 7: Crack propagation. a) addition of a new element; b) addition of an enclosed
element; c) insertion of a new crack with more than one element.

point and localization band orientation are maintained. For the subsequent505

elements the balance point is substituted by the crack tip, while the band506

orientation remains unchanged as for the previous point 1 (Fig. 7c).507

508

The key point of the numerical procedure is to split at the generic time step509

the solution of the substructures from the solution of the remaining part of510

the finite element model. In this sense the procedure contemplates two nested511

nonlinear iterative procedures. One procedure is at the substructure level,512

where the nodal displacements act as boundary essential conditions, and the513

other is at the model level. At the substructure level, the Newton-Raphson it-514

erative procedure leads to the correspondent boundary nodal forces together515
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Table 1: Example 1 - Material parameters

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

1000 0.2 1.0E − 3 100 1 0.1

with the updated substructure stiffness matrix. The stiffness matrix and the516

nodal forces contribute to in turn updating the stiffness matrix and internal517

force vector of the whole structure.518

5. Numerical applications519

In order to show the effectiveness of the proposed numerical method, in520

this section the results of four applications ranging from mode I and com-521

bined mode I-mode II loading stress states are reported. Each application is522

performed under plane stress and under displacement control.523

In Example 1 a single edge notched specimen is loaded in order to create a524

mixed mode I-mode II stress state. This example shows the capability of the525

crack tracking algorithm to follow the correct crack pattern in the absence526

of mesh dependency. The same example is also run with three different load527

step sizes in order to analyze the influence of load step size on the results528

and on the convergence of the iterative solution.529

A classical three-point bending test is examined in Example 2. In order to530

strengthen mesh independence and investigate the interphase thickness pa-531

rameter, two simple meshes are used to discretize the fracture propagating532

zone.533

In Example 3 a mode I test on a double edge notched specimen is run. The534

peculiarity of this example resides in the double crack propagation and the535

comparison of the overall response with the analogous test run by Benvenuti536

et al. [41] who used the regularized X-FEM method.537

Finally, Example 4 illustrates the ability of the code to reproduce the exper-538

imental results for a double edge notched specimen under a combination of539

mode I - mode II stress states. The same example is exploited to show a540

comparison between the IPH model and the ZTI model.541

5.1. Example 1: single edge notched specimen under mixed mode542

A 100 × 100 mm specimen with a unitary thickness and a non-symmetric543

notch is analyzed (Fig. 8). Adopted material parameters are reported in544
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Figure 8: Example 1 - Geometry and boundary conditions. Measures are expressed in
mm.
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Figure 9: Example 1. Different employed RM: a) 16× 16, b) 32× 32, c) 64× 64.
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(a) (b)

Figure 10: Example 1. Different employed SM: a) 16× 16, b) 32× 32.

Table 1. The specimen is constrained on the bottom side and the upper edge545

is subjected to uniform horizontal displacements together with linear vertical546

displacements. These displacements are maximum on the left node and zero547

on the right node.548

The final values of horizontal and maximum vertical displacements are fixed549

to δ̄x = 0.85 mm and δ̄y = 1 mm respectively. In order to investigate mesh550

size and orientation, the example is run using five different meshes, consisting551

of three regular meshes (RM) and two skewed meshes (SM). The three RM552

are reported in Figure 9a-c where, respecting a classical h-refinement rule,553

the three meshes are composed of 16× 16, 32× 32, and 64× 64 quadrilateral554

linear elements. The two SM are instead depicted in Figure 10 using 16× 16555

(Fig. 10a) or 32× 32 (Fig. 10b) quadrilateral linear elements respectively.556

Each crack originates in the notch and propagates in the direction of the right557

edge of the specimen, maintaining the same inclination throughout. Final558

fracture patterns are reported in Figure 11b. Cracks are nearly overlapped,559

with a slight difference due to mesh size. No influence is observed due to mesh560

orientation. This is a remarkable result, since it is known from the literature561

[42] how much the application of a bias factor to the mesh influences the562

response. Load-displacement curves are in good agreement between each563

other, confirming the almost absence of mesh-dependence of the response564

(see Fig. 11a).565

The implemented constitutive model returns nonlinear behavior with soft-566

ening. After the initial elastic phase, the highest principal strains nearby the567

notch lead to strain localization and crack propagation. The nonlinear phase568

reaches its peak at around 45 N , beyond which cracks develop faster dividing569

29



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

A B

C

δy [mm]

F
[N

]

64x64 (RM)

32x32 (RM)

16x16 (RM)

32x32 (SM)

16x16 (SM)

(a) (b)

Figure 11: Example 1 - (a) Load-displacement curves; (b) Crack patterns. Markers A, B,
C indicate three states for which the deformed shapes are plotted in Figure (12).

the specimen into an upper and a lower block.570

In Figure 12 the deformed shape and crack pattern for the 64 × 64 RM571

are reported at the three marked points of Figure 11a, corresponding to a δ̄y572

multiplier λ equal to 0.105 (point A), 0.161 (point B), 0.390 (point C) respec-573

tively. The crack extends from the lower part of the notch to the opposite574

edge of the specimen in a curved path. At point C crack mouth opening575

displacement reaches a value of 0.42 mm.576

The same test is run on the 32× 32 SM in order to show the convergence577

behavior of the numerical code. Three different load step sizes are consid-578

ered, so that the influence of load step size can be highlighted. In the first579

test the amplitude of the imposed vertical displacement in the step is equal580

to ∆δy = 2 ·10−4 mm, for a total of 5000 steps. In the second and third tests581

the step size is 10 times and 15 times larger than the first test, respectively.582

The results in terms of load-displacement curves are shown in Figure (13a).583

As expected from the literature, a loading increment influences the peak force584

value for a fixed grid spacing. Additionally, the crack patterns exhibit dif-585

ferences in their final parts (Fig. 13b), resulting in different residual loads.586

The difference in the residual loads could be explained considering the dif-587

ferent amount of elements remaining between the crack and the right edge588
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Figure 12: Example 1 - Deformed shape at points (a) A, (b) B, and (c) C indicated in
Figure (11)a.

of the specimen. This constitutes a sort of rotational hinge with a different589

stiffness.590

Convergence data are reported in Tables (2)-(3) and (4) for the same mul-591

tipliers λ (A, B, C) and for each load step size respectively. In each table592

the errors at the end of the global time steps are reported, together with593

the number of iterations used to reach convergence at the substructure level.594

As the load step size is increased, quadratic convergence is assured and the595

number of iterations increases.596

Table 2: Example 1 - Convergence data with ∆δy = 2 · 10−4 mm.

Glob. nit

A (Step 525) B (Step 805) C (Step 1950)
Error Total n. Error Total n. Error Total n.

loc. iter. loc. iter. loc. iter.

1 1.11E-4 3 5.48E-5 3 3.61E-6 2
2 5.13E-10 3 3.49E-10 3 2.53E-13 2
3 1.05E-14 3 2.92E-14 3 - -

5.2. Example 2: three-point bending test597

In this example, the embedded interphase model is tested on a classical598

three-point bending test, for which it is known that crack formation occurs599

in pure mode I.600

The specimen has unitary thickness. Geometry and boundary conditions are601
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Table 3: Example 1 - Convergence data with 10∆δy.

Glob. nit

A (Step 52) B (Step 80) C (Step 195)
Error Total n. Error Total n. Error Total n.

loc. iter. loc. iter. loc. iter.

1 2.22E-2 4 8.12E-3 3 1.60E-3 3
2 2.05E-3 4 4.35E-6 3 1.36E-7 3
3 1.85E-8 4 9.76E-13 3 1.12E-13 3
4 9.12E-15 4 - - - -

Table 4: Example 1 - Convergence data with 15∆δy.

Glob. nit

A (Step 34) B (Step 54) C (Step 130)
Error Total n. Error Total n. Error Total n.

loc. iter. loc. iter. loc. iter.

1 3.11E-1 5 3.30E-1 4 9.89E-4 3
2 3.83E-2 4 1.38E-2 4 2.22E-8 3
3 1.59E-4 4 2.49E-3 4 1.15E-13 3
4 6.05E-9 4 4.20E-8 4 - -
5 1.01E-14 4 1.91E-14 4 - -

reported in Figure 14. Material parameters are given in Table 5.602

Due to the simple crack evolution in this case (only vertical fracture), the real603

purpose of the test is to examine the effect of interphase thickness. Moreover,604

this example gives us the chance to highlight the advantages of this model605

with respect to the classic diffused crack model. In fact, it is known that a606

diffused crack model suffers mesh dependency since damage is spread over607

the element. For example, let us consider the two different meshes adopted608

for the strip above the notch, as shown in Figure 15. In particular, the mesh609

in Figure 15a (M1) has one vertical row of elements, with the same width as610

the notch width (5 mm). In contrast, the mesh in Figure 15b (M2) has three611

vertical rows of elements, each with a width equal to one third of the notch612

width (5/3 mm). The mesh outside the localization zone is left unchanged.613

All the elements are quadrilateral and linear.614

Initially two tests are run employing the diffused approach with the two615

M1 and M2 meshes, till a final displacement δ̄y = 0.5 mm. The resulting616

nonlinear behavior is represented by the load-displacement curves plotted as617
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Figure 13: Example 1 - Influence of the load step size: a) Load-displacement curves; b)
crack patterns.

dotted lines in Figure 16. Since damage localizes in elements of different618

widths and is more concentrated when thinner elements are adopted, a lower619

load-displacement curve is obtained when the M2 mesh is used. Considering620

that the same material parameters are used for both meshes, the different621

results are due to mesh size.622

Now, the same test is run on M1 mesh using the proposed model, varying623

the interphase thickness from 0.5 mm to 5 mm. As it is shown in Figure624

16, a wider thickness leads to a higher load-displacement curve, as expected.625

Moreover, when the interphase thickness equals the element width of M1626

or M2 mesh, the load-displacement curve overlaps the corresponding dotted627
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Table 5: Example 2 - Material parameters

E [MPa] ν ε0
εf
ε0

Dcrit

20000 0.2 1.2E − 4 58 0.5

y

x

222.5 222.55

450

5
0

5
0

1
0
0

y= y

Figure 14: Example 2 - Geometry and boundary conditions. Measures are expressed in
mm.

(a) (b)

Figure 15: Example 2 - a) Mesh 1 (M1); b) Mesh 2 (M2).
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line, making the outcome independent of mesh.628

In Figure 17 a comparison between diffused (on the left) and proposed ap-629

proach (on the right) is reported in terms of damage distribution and de-630

formed shape at a multiplier λ = 0.24 of the final imposed displacement.631

Figure 17a refers to points A of Figure 16, while Figure 17b to points B.632

Since the proposed model freezes damage outside the interphase (not visible633

in Figure 17) after element localization, the damage maps look less intense634

with respect to the diffused approach, where damage is distributed over the635

elements.636

0 0.1 0.2 0.3 0.4 0.5
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F
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]

wb=0.5 mm

wb=1 mm

wb=5/3 mm

wb=2 mm

wb=3 mm

wb=4 mm

wb=5 mm

M1-diffused

M2-diffused

Figure 16: Example 2 - Load-displacement curves. Markers A and B indicate two states
for which the deformed shapes are plotted in Figure 17.

5.3. Example 3: double edge notched specimen under tensile load637

Another common test where crack opens in mode I is the tensile test on a638

double edge notched specimen. The peculiarity of this test lies in the propa-639

gation of two cracks which finally merge into one. The test is also chosen to640

compare our results with others available in the literature, in this case those641

obtained by Benvenuti et al. [41]. To this end, same geometry and material642

parameters as in [41] are adopted. Dimensions of the specimen are reported643

in Figure 18a, where the coarser mesh, external constraints and loading con-644

ditions are also visible. Figure 18b shows instead a second adopted denser645

mesh. The thickness of the specimen is 10 mm. Material parameters are in646

Table 6. All elements are quadrilateral and linear. The specimen is fixed at647

its base and loaded by imposing vertical incremental displacements until the648
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Figure 17: Example 2 - Damage maps and deformed shape comparison between the pro-
posed approach (on the right) applied on M1 mesh and diffused approach for (a) M1 and
(b) M2 meshes (on the left).
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Table 6: Example 3 - Material parameters

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

2000 0.2 5E − 4 500 1 0.55

final value δ̄y = 1 mm.649

The load-displacement curves for the two meshes are plotted in Figure 19650

together with the numerical result of the regularized X-FEM model in [41].651

Since the interphase thickness is fixed to 1mm and crack is perfectly horizon-652

tal, both coarse and dense meshes give the same mesh independent response.653

This response is also in very good agreement with ref. [41]. Strain localization654

takes place when the load-displacement curve attains its peak value. Two655

cracks form symmetrically at the two notches, propagate during the soften-656

ing branch and meet halfway merging on the symmetry axis. Crack openings657

and damage patterns are reported, for the denser mesh, on the deformed658

shapes of Figure 20, corresponding to an imposed displacement multiplier of659

0.104 (Fig. 20a), 0.116 (Fig. 20b), and 0.134 (Fig. 20c), respectively.660
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Figure 18: Example 3. Meshes and boundary conditions, with measures expressed in mm.
(a) Coarse mesh, (b) Dense mesh.
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Figure 19: Example 3 - Load-displacement curves. Markers A, B, C indicate three states
for which the deformed shapes are plotted in Figure 20.
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Figure 20: Example 3 - Crack evolution on deformed shape at steps (a) A, (b) B, (c) C of
Figure 19.
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Table 7: Example 4 - Material parameters

E [MPa] ν ε0
εf
ε0

wb [mm] Dcrit

20000 0.2 1.38E − 4 140 1 0.1

25 5

9
7
.5

5 25 150

200

9
7
.5

5
5

5

2
0
0

y

x

Concrete

Steel

30

6
5

(a)

F

Fs

F

Fs

(b)

Figure 21: Example 4 - (a) Geometry and boundary conditions; (b) Numerical mesh.
Measures are expressed in mm.

5.4. Example 4: double edge notched specimen under mixed mode661

This new example is mainly guided by the intention of comparing numer-662

ical results with experimental data. The double edge notched concrete spec-663

imen analyzed by Nooru-Mohamed in 1993 [43], using a mixed-mode loading664

machine, is considered as a reference. This experimental machine consists665

of two independent stiff frames able to induce a combination of shear and666

tensile (or compressive) stress on the specimen. Among the different exper-667

imental tests conducted in [43], we simulate the loading paths ’4a’ and ’4b’,668

regarding a 200 mm square specimen with two symmetrical notches, as in669

Figure 21a. The two loading steel frames are experimentally glued to the670

specimen at its entire depth, equal to 50 mm.671

Experimental load was applied in two phases. In the first phase the speci-672

men was laterally pushed in displacement control until the resultant force Fs673
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Figure 22: Example 4 - Load-displacement curves. Markers A, B, C indicate three states
for which the deformed shapes are plotted in Figure 23. Markers A’, B’, C’ indicate three
states for which the deformed shapes are plotted in Figure 24.

reached the values of 5 kN and 10 kN for the paths 4a and 4b respectively.674

In the second phase, the horizontal Fs force was kept constant, while the test675

continued under incremental vertical displacement.676

In [43] the experimental load-displacement curves are reported in terms of677

vertical resultant force F versus the relative vertical displacement δ between678

the two control points of Figure 21a. The resulting experimental curves are679

plotted in dotted lines in Figure 22. The observed damage pattern consisted680

of two curved cracks starting from the two notches with a steeper inclination681

the higher the Fs lateral force, and propagating in parallel. Nooru-Mohamed682

affirmed that, although the experimental machine was precise and sophisti-683

cated, undesirable eccentricities associated with the skew-symmetry of the684

test were observed. Such effects might result in experimental cracks that are685

not perfectly symmetric and could affect the load-displacement curves.686

Numerical tests are run on the mesh showed in Figure 21b. This is com-687

posed of 910 initially quadrilateral linear elements, with a denser tessellation688

in the crack propagating area. In order to accurately reproduce the exper-689

imental loading phases, the elements representing the steel frames are first690

horizontally pushed under displacement control. The imposed displacements691

are calibrated so that Fs is exactly 5 kN or 10 kN . Once Fs attains its692

prescribed value, horizontal constraints are converted into external applied693

forces which are maintained constant throughout the rest of the test. During694
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this, the specimen is vertically stretched under displacement control. The695

vertical displacement δ reported in Figure 22 is the relative one between the696

two evaluation points marked in Figure 21b. Material parameters are those697

furnished by [44] and reported in Table 7. The localization and final strains698

reported in Table 7 are calibrated on the Fs = 5 kN case for an interphase699

thickness equal to 1 mm.700

The experimental-numerical comparison in terms of load-displacement701

curves in Figure 22 shows a very close match in the 5 kN case, for which nu-702

merical parameters are calibrated. The 10 kN numerical curve, in addition,703

(a) (b)

-0.10  

0.10  

-0.05  

0.00  

0.05  

(c)

Figure 23: Example 4 - Crack evolution at steps (a) A, (b) B, (c) C of Figure 22, when
F = 5 kN .
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Figure 24: Example 4 - Crack evolution at steps (a) A’, (b) B’, (c) C’ of Figure 22, when
F = 10 kN .

shows a peak equal to the experimental one, the same initial stiffness and a704

similar nonlinear trend. In contrast, when cracks begin to propagate, non-705

linear behavior becomes more deformable. Regarding the numerical curve,706

this discrepancy could be possibly related to the value of interphase thickness707

adopted for both cases; regarding the experimental curve, it could be related708

to the declared undesired eccentricities.709

Crack extension at A, B, and C marked points in Figure 22 is reported in710

Figure 23 for the Fs = 5 kN case. In an analogous fashion, Figure 24 shows711

the crack evolution for A’, B’, and C’ marked points in Figure 22. Cracks712
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form and propagate symmetrically, as expected. As found experimentally,713

cracks evolving in the 5 kN case are more flattened than in the 10 kN case.714

Overall, a fairly good match is obtained when comparing numerical and ex-715

perimental results.716

In order to show the influence of internal stresses and strains on the over-717

all mechanical response of the FE model, the Fs = 5 kN case is run ne-718

glecting the components of the stiffness matrix connected to the internal719

strains. Although the fracture process is governed by tensile tractions, the720

load-displacement response in the post-peak stage is lower (Fig. 25a). Not721

much difference is apparent in Figure 25b.722
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Figure 25: Example 4 - IPH/ZTI comparison: a) Load-displacement curves; b) crack
patterns.

6. Conclusions723

The present work deals with simulation of strain localization and fracture724

in structures made up of quasi-brittle material modelled in the framework of725

isotropic damage mechanics.726

To simulate strain localization and its evolution in a pure crack, a numerical727

strategy integrated within the Finite Element Method combines the discrete728

crack approach and a crack tracking algorithm.729
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An advanced augmented finite element method (AAFEM) has been used to730

model the continuous-discontinuous transition, which differs from the clas-731

sical formulation by introducing an interphase element instead of a zero-732

thickness interface. This advancement produces the following advantages:733

• when strain localization occurs, according to localization theory, the734

interphase simulates weak discontinuity since the strain state in the thin735

layer is separated into regular and irregular parts (internal and contact736

strains), the latter of which suffers discontinuity. The ZTI models737

contact strain components only. When the damage value reaches the738

unit value, the interphase simulates the crack since there is no stress739

transfer and the displacement within the finite element is discontinuous.740

Therefore, the advantage of the method is the ability to follow the whole741

process from weak to strong discontinuities;742

• it is no longer necessary to introduce a specific traction-discontinuous743

displacement constitutive law for the localization band, because the744

interphase is a solid with simplified kinematics which has the same745

constitutive behavior as the bulk material. Furthermore, the number746

of constitutive parameters is also reduced. Only the band thickness wb747

needs to be added to the bulk material parameters.748

In relation to the second point, it is noteworthy that two questions arise749

when using classical AFEM. The first is: what constitutive model and what750

related mechanical parameters should be assigned to the interface in some751

way consistent with the constitutive material model that governs the process752

of diffuse damage prior to localization? The second question is: What are the753

values of the internal variables that characterize the response of the interface754

when the continuous-discontinuous transition is activated?755

The proposed approach overcomes the aforementioned issues because the756

quasi-brittle material pre- and post- strain localization have the same con-757

stitutive model. Moreover, at the transition stage, the values of the internal758

variables are evaluated on the basis of the values attained by the same vari-759

ables in the material surrounding the band.760

The localization band or crack tracking procedure is another important as-761

pect of the study. It includes the evaluation of the position and direction of762

each discontinuity in the finite element and the definition of its propagation763

from one element to another.764

The algorithm here proposed presents some original aspects:765
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• the localization band is inserted into the finite element on the basis766

of a double criterion, namely when the minimum eigenvalue of the767

tangential stiffness matrix of the element becomes zero or negative and768

at the same time the damage variable reaches the critical value. The769

critical damage is an additional constitutive parameter whose value770

should not necessarily be close to unity, as is the case in other works771

in the literature. This is because it serves to trigger the localization772

before the pure crack and not the crack itself;773

• the interphase line is positioned in the element using a point and a di-774

rection. The point is the balance point of the damage values evaluated775

at the Gauss sample points. The direction is obtained by spectral de-776

composition of the localization tensor of the element. The localization777

tensor, introduced here, weighs the directions of the maximum princi-778

pal strain at the Gauss points by the damage values associated with779

the same points;780

• a clustering technique groups the elements of the model potentially781

crossed by the localization band or fracture. Each group is converted782

into substructures that are numerically analyzed separately to find the783

nonlinear response at each time step. The transformation of clusters784

into substructures consists in selecting the elements to which the lo-785

calization band actually belongs. This selection is based on simple786

heuristic criteria.787

The proposed numerical strategy was applied to some two-dimensional tests,788

and the results were compared with the same tests whose solution is reported789

in the literature and with available experimental results. These results are790

encouraging, since:791

• the numerical responses, in terms of load-displacement curves and frac-792

ture patterns, agree with the results reported in the literature and they793

are independent of mesh size and mesh bias;794

• the convergence at the sub-structure level and at the overall level is795

acceptable (mostly quadratic).796

Currently, the numerical strategy does not take into account crack branch-797

ing in the element and crack propagation between two adjacent elements798

(interelement crack). Therefore, these two aspects are the subject of future799
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work.800

Since the method presented is general, the authors assume that it can be801

readily applied to elastoplasticity for materials that exhibit strain-softening802

and are particularly subjected to strain localization.803

For instance, in soil mechanics, collapse mechanisms are dominated by the804

formation of shear bands. The method can be used to simulate relevant805

engineering problems such as soil-foundation interaction and slope stability.806
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