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Abstract

The paper presents a continuous-discontinuous numerical strategy for sim-
ulating localized failure in structures made of quasi-brittle materials using
finite elements. The strategy is based on observing acting stresses scenarios,
when a diffuse degradation is followed by high deformation bands localizing
in certain regions of the structure. The numerical strategy should encom-
pass both situations in accordance with the material’s constitutive model.
This objective is achieved by introducing a thin layer into a finite element
at a certain level of the deformation process. In this study, the thin layer is
modeled for the first time by an interphase mechanical device whose consti-
tutive behavior is the same as the bulk material. This is possible since the
interphase adds internal strains and stresses to the contact ones. As a conse-
quence, no additional constitutive model and parameters are needed, unlike
the zero-thickness interface or cohesive zone models commonly employed.
The proposed numerical strategy is illustrated in detail both at the element
level and at the structural level. A new crack tracking algorithm has been
developed based on decomposition of the model into substructures to allow
cracks to cross arbitrary meshes. Some benchmark examples are presented
showing the mesh-size and mesh-bias independence of results, together with
the convergence behavior of the model.

Keywords: Localization, Interphase, Quasi-brittle materials, Isotropic
Damage Model.

1 1. Introduction

2 During their softening stage, rate independent inelastic solids consist-
s ing of quasi-brittle materials exhibit strain localization in relatively narrow
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zones. Narrow zones are characterized by the formation of micro-cracks and
micro-voids whose evolution represents the macroscopic crack.

A number of researchers have been fascinated by the theoretical and com-
putational aspects of this mechanical phenomenon. In the pioneering work
of Rudnicki and Rice [1], later generalized by Ottosen and Runesson [2], the
onset of localized deformations is triggered by the attainment of a critical
stability condition at the constitutive level where discontinuous bifurcation
of the strain state occurs.

The evolution of the localization band can be modeled using the discrete or
the continuum approach.

In the discrete approach the localization band is depicted as a material vol-
ume confined by two surfaces, called weak discontinuity surfaces. Their dis-
tance or band thickness is generally considered constant and represents an
additional constitutive parameter of the material. In the band the strain
state can be decomposed in the in plane components and in the out of plane
components, being the former regular and the latter discontinuous. This is
known as weak discontinuity and can be captured by an apposite enrichment
of the strain field [3, 4].

If the thickness of the band is small compared to the typical dimensions of
the structure, the strain state can be assumed to be uniform throughout the
thickness. It can be evaluated measuring the displacement of the surfaces
delimiting the localization area. Adopting the zero thickness interface (ZTT)
model the in plane strain components are neglected and the out of plane
components are evaluated on the basis of the displacement jumps between
the two weak discontinuity surfaces. In literature this kinematic description
of the strain state of the band is known as strong discontinuity model [5, 6, 7].
The continuum modelling approach is mainly expressed in the formulation
of advanced constitutive models as the non-local [8] and gradient models [9],
where the response of a material point is related to its neighbours. In this
case the strain discontinuity is regularized on the material volume, enriching
the physical content of the local material models with one or more intrinsic
length parameters. Consequently, the constitutive equations describe more
accurately the real material behavior.

Most recently, the phase field theory has been applied to the problem of
strain localization [10, 11] by introducing the phase variable to describe the
smooth transition from the sound material to the localized material. In this
sense, phase field models belong to the class of regularized continuum mod-
els.
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From a computational point of view research efforts have been mostly con-
centrated on the simulation of the localization phenomenon, using the finite
element method and adopting the discrete approach. In this field we can
distinguish between studies where the strong discontinuity is interelement
located and studies where it is intraelement located.

In the first case, the ZTIs are pre-defined between opposite sides of adjacent
elements or the mesh is rearranged in order to have ZTIs between two ele-
ments [12|. The specific cracking pattern resulting from the applied load is
a subset of the spider web depicted by the interface elements [13, 14]. Crack
formation, branching and coalescing are guided by the interface constitutive
law.

In the second case, different strategies have been used to extend the capabil-
ities of classical finite elements to model intraclement displacement jumps.
The Generalized-Finite Element Method (G-FEM) [15] and the Extended-
Finite Element Method (X-FEM) [16] are examples of such numerical strate-
gies. In both cases the approximation of the field variable is enriched making
use of the Partition of Unity Method (PUM) which first appeared in the work
of Babuska et al. [17]. The most significant advantage of these methods is
modelling discontinuities and their development without requiring the defi-
nition of a new mesh. These methods only increase the number of degrees of
freedom in the elements intersected by the crack. However, the numerical in-
tegration of elements crossed by a discontinuity requires a special treatment,
which is different in the presence of different interpolation basis (triangles,
quadrilaterals, etc.), for 2D or 3D cases [18]. Even though the additional
degrees of freedom cause a small increase in the overall computational cost,
the implementation itself is time-consuming.

The Phantom Node Method (PNM) has been derived from the work of
Hansbo and Hansbo [19] and can be considered as a variant of the X-FEM
20, 21] since it reinterprets the approximation of the X-FEM displacement
field by the superposition of the displacement fields of two overlapped finite
elements. The advantage of PNM compared to X-FEM is that no discon-
tinuous interpolation functions are required since each overlapping element
furnishes the displacement field on one side of the crack.

A tracking algorithm based on the Virtual Element Method (VEM) has been
recently proposed [22]. This method introduces cohesive interfaces between
polygons characterized by any number of edges. The ease of implementa-
tion, the absence of a parent element, and the high performance even in the
presence of distorted elements or non-conforming meshes are the main ad-
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vantages of the method. The main disadvantages are the need to insert new
nodes or move some of the existing ones, and the difficulty of handling crack
branching.

Self-propagating non-continuous crack models have been proposed in the
framework of meshless method [23] or finite element method [24].

The Augmented Finite Element Method (A-FEM) [25, 26, 27, 28] operates
at the element level and does not require enrichment of the shape functions
to approximate the displacement field. In a different manner with respect
to the PNM, A-FEM simulates weak and strong discontinuities by splitting
the element into two mathematically separable standard elements which are
adjacent to the discontinuity surface. Initially, additional degrees of freedom
are introduced to decompose the cracked element. Then, they are condensed
at the element equilibrium level. Hence, they are not present at the global
level.

Some of the benefits of A-FEM are [25, 26, 27, 28|:

e clements are split into standard finite elements, fully compatible with
standard finite elements packages;

e possibility to consider different material properties for the sub-elements;

e 1o need for level-set information or to necessarily know if a sub-element
is below or above the discontinuity;

e reduced computational cost;
e straightforward implementation to 3D cases.

The principal difference of our approach with the classical A-FEM and X-
FEM regards the possibility to follow the material failure from the strain
localization in a thin layer band to the crack opening by using the interphase
concept in place of the quite common ZTI model. The IPH was introduced by
Giambanco and Mroéz [29] and implemented in the finite element framework
by Giambanco et al. [30]. The IPH model can be considered the enrichment
of the ZTT since it allows to model both the contact and the internal strains
of the thin layer. In addition, it extends the calculation of stresses also to
internal components. As a consequence, the thin layer response is more real-
istic and some phenomena such as the squeezing effect can be captured [30].
The most relevant point is that, unlike ZTI models, IPH does not require
a specific traction-displacement jump constitutive law and the constitutive

4
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laws adopted for IPH can correspond to those of bulk material.

Additional efforts have been made to formulate an original crack tracking
algorithm. The model is decomposed into non-localized elements and sub-
structures where elements intersected by cracks are grouped.

The localization analysis is performed for a strain softening homogeneous
continuum obeying the damage model with strain-based loading functions
formulated by Jirdsek [31]. However, the proposed numerical approach has
general applicability and any constitutive model could be implemented. At
the material point, the damage level is linked to a scalar variable representing
the highest strain ever recorded during loading history. The localization band
arises at the material point where the constitutive instability is detected but,
according to the Delayed Embedded Crack (DEC) model [32, 33], the IPH
is inserted upon stabilization of the band direction.

The band direction is identified through a spectral analysis of a fracture ten-
sor introduced in this study. Convergence and validation of the model are
assessed through benchmark examples and comparisons with experimental
and numerical data available in the literature.

The paper is organized as follows. Section 2 shows the basic assumptions
and derives the equilibrium equations for an IPH element. It also reports the
fundamentals of the adopted constitutive model. In Section 3 and Section
4 details about the implementation at the finite element and structural lev-
els respectively are reported, with particular attention to the crack tracking
algorithm. Section 5 gathers the results of four different applications, while
Section 6 gives the main conclusions of this work.

2. Problem definition

The mechanical problem regards a solid body € (Fig. 1), defined in the
Euclidean space R®, referred to the orthonormal frame (0,e,,ey,€,). The
body is constituted by a strain softening material, which under severe load-
ing conditions presents a narrow zone (), where strains concentrate. The
body is subjected to volume forces f, to tractions t on I'; and to kinematic
constraints u = u on I', respectively.

The thin material layer €2, has thickness w;, and is separated from the re-
maining parts Q and Q~ by the weak discontinuity surfaces X1, ¥~ where
the displacement field is continuous and its gradient suffers discontinuity.

It is assumed that the band thickness is small if compared with the charac-
teristic dimensions of the body and is modelled using an IPH model. Typical
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of IPH or ZTI models, the band is also assumed to be locally planar. This
means that any mechanical quantity related to band curvature is neglected.
With these hypotheses at hand, in order to study the static and kinematic
conditions of the localization band we refer to a local Cartesian coordinate
system (zp, s, 25) With xp, yp axes lying within the middle plane ¥, of the joint
and the z, axis coinciding with the normal unit vector n, directed towards
the body Q7. Figure 2. The thin layer is subject to the external tractions
t on the lateral surface I', and to the contact tractions g7 and q~ on the
physical surfaces ¥ and X7, respectively.

Figure 1: Schematic representation of a continuous body with a localization band.
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Figure 2: Schematic representation of the band volume.

w1 2.1. Geometry and Kinematics

162 The geometric and kinematic assumptions for the localization band are:
163 e the localization band is planar;

164 e fibers in the z, direction are maintained rectilinear along the deforma-
165 tion process;

166 e the band thickness wy is small if compared to the characteristic dimen-
167 sions of the solid;

168 e the strain state is uniform along the band thickness and is obviously
169 equal to the average value along the same direction.

170 In view of the second hypothesis the displacement field u, in the band
i can be easily obtained from the displacements u;, u, in ¥ and X, thus

1 z 1 z _
w, (T, Yo, 2) = (5 + _b) uzf (w5, yp) + (5 - JI;) u, (s, ys) - (1)

Wy

7



172

173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

193

194

195

Due to other hypotheses, the thin layer representing the localization band
collapses in its middle surface ¥, and the strain state can be calculated from
Eq. (1) in the following way

1 [, 1 s e
Ep = — \V4 Uy de = — ([ub] & Ilb) +V Uy (2)
Wy *wa Wy

where (- ®-)® is the symmetric part of the resulting tensor, n; is the
unit vector normal to the middle surface of the localization band, V¢ is the
symmetric part of the gradient operator and

+ —
u, —|—ub

(W] =w —u,, = (T) : (3)

Let us note that the joint curvatures generated by the displacement field
(1) and the related flexural effects are neglected. Therefore, the strain state
of the IPH depends on the displacement discontinuity [u,] between the sur-
faces X1 and X~ and on the displacements 1, of the middle plane Y, of the
localization band. Eq. (2) illustrates the decomposition of the total strain in
two parts: the first term is the contact or irregular part ej while the latter
is the internal or regular part €j.

2.2. Forces and Equilibrium

Let us consider the IPH subject to the contact tractions q* on the surface
YT, q~ on the surface ¥~ and to the external load t on the solid boundary I',.
The principle of virtual displacements (PVD) asserts that the work produced
by the contact tractions and the external loads must be equal to the internal
work developed in the localization band, thus

/ 5ub+-q+d2+/ 5ug-q—d2+/ 5ub~tdF=/ Sy opdQ. (4)
D B I Qb

Virtual displacements, preceded by the symbol §, are assigned while the
virtual strains must satisfy Eq. (2). Since the strain state is uniform along the
band thickness, consistently the stress state can also be considered uniform
along the same direction. Therefore the internal work assumes the following
expression:



/ 581, Oy dQ = / [(5 [ub} & nb)s + waS(Sﬁb] o dX (5)
Qp b

196 which applying the divergence theorem to the second term of the right-
107 hand side becomes

(SEZ(, L Oy dQ2 = [((S [ub] X Ilb)S Oy — Wy (5ﬁb . diVO’b] dEerb 5flb'(0'b : mb) dcC.
Qp 3y Cp (6)

108 Cy is the contour of the localization band middle surface and my, is the
199 unit vector normal to the contour line.

20 Substituting the integral (6) in the PVD and assuming that X7 = X~ = %,
201 using positions (3) and considering that the surface forces on I'y, are uniform
22 along the thickness of the thin layer, we have

b b
/ 5u,f- (q+ + %divab — oy nb> d2+/ ouy - (q_ + %divab + oy - nb> dX+
S N

/ (5ﬁb-(t—a'b-mb)dC:0. (7)
Cy

203 Since Cauchy’s Theorem permits to writeq™ = o™-nyand q~ = —o~ -n,
and (7) is valid for any virtual displacements du™ and ou~, we finally obtain
s the equilibrium equations of the IPH:

2

o
=

2

o

wydivey, + [op] -np, =0 on Xy, (8)
(ab—&b)-nb:O OHZ(,, (9)
Op -1y — t in Cb, (10)
206 where
Jr —
o] = o) — 0oy, oy = %. (11)
207 Egs. (8) and (9) can be regarded as internal and external equilibrium
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equations of the IPH and (10) represents the equilibrium boundary condi-
tions.

In the circumstance that the same constitutive behavior of the bulk mate-
rial is used for the IPH, w, represents the only additional parameter to be
provided in order to solve Equation (8). It is relevant to note that wy is a
parameter that needs to be specified in any model where the band is assumed
to collapse in its middle plane. This is the case with IPH or ZTI models.

2.83. Constitutive Model

The proposed computational procedure allows the implementation of any

constitutive model involving localization bands. The choice of a specific
constitutive model is strictly related to the material to simulate.
The numerical examples herein presented are developed with the well-known
isotropic damage model with a strain-based loading function reported in [31].
In this simple model the stiffness moduli decrease proportionally in every
direction and independently of loading direction, on the basis of the value
assumed by the damage variable D € [0,1]. Consequently, the damaged
secant stiffness tensor is expressed as

E,=(1- D)E (12)

and the stress-strain relation can be written in the form

oc=E;e=(1-D)Ee (13)

where E is the elastic stiffness tensor.
The evolution of damage depends on the internal kinematic variable x. This
variable is equal to the maximum value ever reached by the equivalent strain
¢ along the loading path, i.e. a scalar measure of the strain level.
The elastic domain and the loading-unloading conditions are defined by the
following damage activation function and related Kuhn-Tucker conditions:

f(é, k) =€ — &, (14)
FER) <0, £>0, &f(5 k) =0. (15)

A different behavior in tension and compression is typical for quasi-brittle
materials. Microcraks mostly grow when the material is stretched and it

10
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is natural to consider this fact in the definition of the equivalent strain.
Therefore, the so-called Mazars definition of the equivalent strain is adopted:

(16)

where ¢; (I=1,2,3) are the principal strains and the McAuley brackets (-)
denote the positive part.
With the previous definition of the equivalent strain the evolution of the
damage variable can be defined in the following way

D:g(/@):{o . if Kk < e (17)

_ & _ 1 ’
1 — =0 exp( pp— if kK > ¢

being gp and ¢ the elastic and post-elastic limit strains, respectively.

3. Numerical procedure at the finite element level

The solution of a structure subjected to external actions where strains
concentrate in a narrow band is now implemented in the framework of the fi-
nite element method. The fundamental relations are here numerically treated
for a quadrilateral 2D element and an efficient procedure that exploits the
A-FEM idea [25] is presented. The extension to meshes constituted of trian-
gular 2D elements or generic 3D elements is straightforward since it involves
the same fundamental relations. It is important to highlight that, within each
element, the crack can only be straight in the present formulation. Varia-
tions in the crack direction and crack branching inside the element will be
included in future developments.

Stress and strain states are written using Voigt’s notation.

3.1. Intraelement band

Let us suppose that the finite element is crossed by a planar localization
band identifying the two parts Q7 and Q= of the quadrilateral element (Fig.
3). Depending on the position and orientation of the localization band, the
quadrilateral element can be split into two quadrilaterals (Fig. 3-a) or into
a triangular and a pentagonal (Fig. 3-b) sub-element.

For the 2D problem the band is represented by the line ¥ passing through
point (zy,, 2z,) and having the direction corresponding to the unit vector n,

11
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Figure 3: Four noded finite element crossed by the localization band: two quadrilateral
sub-elements (a) and a triangular and a pentagonal sub-elements (b) cases.

pointing to the sub-domain Q.
According to the A-FEM procedure the element € is replaced by the two
sub-elements Q7 and Q~ with degrees of freedom U™ and U™, respectively
(Fig. 4). In the case of a pentagonal sub-element, this is considered as the
assembly of three triangles as for Q~ in Figure (4b). The interphase element
)y, is embedded between the two elements by adding four additional nodes
(m, n, r, s) which provide the degrees of freedom Uy, of the interphase.
The subdivisions shown in Figure (4) hold for a 4-node quadrilateral element
with bi-linear shape functions, which are the easiest numerical assumptions
used as a first attempt in this work. In the presence of higher-order shape
functions, in quadrilateral elements with more than 4 nodes, Q" and Q~
would each be subdivided into triangles, while for the interphase element six
nodes are used, instead of four.

Considering the classical isoparametric formulation of quadrilateral finite
elements, displacement and strain fields are derived from nodal displacements

u ) =NUCD O =—cNUSH =BUD (18)

where N is the shape functions matrix and C is the kinematic compati-
bility matrix for plane problems.
The PVD for the two finite elements QF and Q™ reads

12
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Figure 4: Sub-elements and additional nodes: two quadrilateral sub-elements (a) and a
triangular and a pentagonal sub-elements (b) cases.

suEHT ( / NTfAQ + / NT¢(=Hdr + / NTq—Hdz—
Q=+ (=)

(=)
/ BTcr(’HdQ) =0. (19)
Q=+
279 Solving the integrals by using the Gauss quadrature rule and considering

20 that the equality (19) is valid for any virtual displacement field, we obtain
281 the equilibrium equations of the two sub-elements:

FOH 4 FlH = KEHUEH), (20)

13



where

F) = / NTfdQ + / NTt=Hdar (21)
Q(=+) T(=+)
Fo) / NTq—)ds (22)
»(=+)
Kt = / B"E,Bd. (23)
Q=+
28 F. represents the nodal force array originated by external forces and

s tractions. F; contains the nodal internal forces originated by tractions due
24 to the discontinuity. K is the element tangent stiffness matrix, dependent on
s the elastic tangent operator E;.

2

@

2

@

286 Let us recall the stress-strain relation (13). E; is defined as:
oo oD
Ei=—=(1-D)FE— Ee— 24
t= 5 = ( ) € e (24)
287 where
oD 0D 0k 0¢
T 25
Je Ok O€ Oe (25)
288 With reference to the damage law (17), the first term in (25) is
oD exp (ﬁ) co(k — €0 +€5)
—_— = . (26)
Ok k2(go — €f)
289 The second term can be easily evaluated as
oK 0 ife<k
b , 27
0¢ {1 ifée=r 27)
200 Last term is calculated recalling Mazars’ definition of the equivalent strain
21 (16). In the plane stress case it results
0og 1
= — —(PleP)T 28
= 52(P(e) (28)

292 being

14
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1 +cos(2a) 1—cos(2a) —32%

1-v
P = |1-cos(2c) 1+ cos(2a) —:2% (29)
sin(2a) — sin(2a) 0

with a the angle between the principal and the reference directions and
v the Poisson’s ratio. €” is the 3 by 1 vector collecting the principal strains.
It is remarkable that A-FEM permits different elastic tangent operators for
the two sub-elements.

Regarding the interphase element, we adopt the 4-nodes element proposed
in [30]. The kinematic and static quantities are referred to the rotated (s, z;)
reference system. The displacement fields in X1 and ¥~ are expressed as
linear interpolation of the displacements of nodes lying in the same ¥ and
P

U =N{U,, 1w =N;T,, (30)
where U, and U, are defined as:

—+ U, —— U,,

The symbol (*) means that the relative quantity is referred to the inter-
phase coordinate system. Shape functions matrices are expressed as

Ny 0O Ny O Ny, 0 Ny O
R DA 1 N PAYY 2
Ny = {o Ny 0 NJ - Ny = {o N0 NJ’ (82)
with ) .
N1:§(1—€)7 N2:§(1+5)> (33)

being ¢ € [—1, 1] the natural interphase coordinate.
According to Eq. (2), the interphase strain vector is composed by the contact
and internal strains:

1 1
Ep = ECbl (Ll;_ — ub_) + §Cb2 (uf{ + ub_) (34)
b

15



309

310

311

312

313

314

315

316

where

. 00 a0
Efb:[é‘bz Eb, /szz] s Cblz 01 s Cb2: 0 0 (35)
10 0 2

dxzyp
Substituting the approximate expression of the displacements (30) we obtain

e, =B/U, +B; U, (36)
with

1 1 1 1
Bf=|—C -C N, By =—-(—C, —=-C N, . 37
b (wb b T 9 bz) b b (wb b1 9 b2> b ( )

The weak form of equilibrium for the interphase element can be derived
from (4) considering the kinematic equations (30) and (36). Neglecting the
external traction applied on the thickness side (t = 0 in I';) we have:

50, " / <wb B!"E,B; U, + w,B,"E,B; U, — N;Tq+) dr+
¥
5T, " / (wb B' "E,B;U, +w,B;"E,B; U, — N;Tq—> dl =0 (38)
%

which, being satisfied for any value of virtual displacements, gives

K, U +K, U, =F, (39)
K, U +K, U, =F, (40)
where
K &= / w,BiTE,B/dl, K, = / w, B "E, B, dI, (41)
) )
K, = / w, B TE,Bfdl, K, = / wy By TE B, dl. (42)
) b))

Note that the same expression (24) of the elastic tangent operator for
bulk material is adopted.
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3.2. Assembling procedure

In order to assembly the three finite elements we have to refer the kine-
matic and static quantities to the global reference system. Since the orien-
tation of the band is individuated by the unit vector n, = [nm nz] T, we can
proceed with a reference system rotation in a classical way:

U, =Rru;"  F Y =R'F, (43)

where

(44)

The substitution of Egs. (43) in Egs. (41) provides the equilibrium equations
of the interphase element written in the global reference system.
Partitioning the displacement vectors U and U~ of the sub-elements into
external (e) and internal (i) components, in relation to the €, domain, the
following partitioned Eq (20) is derived:

P 0 ] _|K&T KT Ul 5
peo | T FOO| T | KCH kCH| gt (45)

It is easy to verify that:

Uf = AUf, Uj =AU, (46)

being A an operator defined as

A= [;’ (I)] , (47)

with 0 and I 2x2 null and identity blocks, respectively.

Substituting Eqgs. (46) in the interphase equilibrium equations (39)-(40) and
pre-multiplying the right and left sides of the same equations by the order
operator A, finally we have

K,/ UM+ K,/ U, =F} (48)

)

K, "U/ +K; U; =F;

i)

17
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where - ~

K =L'K, L, F,=L"F, with t,x¢e{+, —} (50)
and L = RA.
We can substitute the expression of the internal forces (48)-(49) in the equi-

librium equations of the sub-elements (45) in order to evaluate the internal
displacements:

U = H' [F} - KLU; + MY (F; — K, U)], (51)
U, =H [F, - K,U, + M (F; - K:U/)], (52)

with
Ht — [K+ ~KT K (K, - K ) K;*} - (53)
Ho- KK KKK TR 6
M=K} (K; - K; ") (55)
M= (1K) 50

Finally, the equilibrium equations of the single quadrilateral element with
embedded interphase are obtained:

F,-K_H" (ng + M_F;) K, -K HK, -KHMK;,][U
F! —K/H" (F:Z + M*F;-) ~-K/H"M'K,, K -K H'K!| |US
(57)

The above-presented formulation of the finite element with the embedded
localization zone has the peculiar feature that the two sub-elements and the
interphase in which the initial element is split share the same constitutive
model. Other than band thickness, no additional material parameters and
evolution laws are needed. As compared to similar approaches using the
zero-thickness interface for localization and fracture simulation, this repre-
sents an important advantage. In the ZTI model, an additional cohesive law
must be introduced, with the difficulty of evaluating the additional material
parameters in some way related to those of the continuum model.
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4. Numerical procedure at the structural model level

In the present section the macroscale (or structural-scale) problem is fo-
cused. It requires the formulation of an algorithm capable of predicting the
formation and propagation of the band/fracture among the finite elements
of the numerical model.

This issue has been treated in several papers, with the principal aim to make
the fracture pattern independent of the finite elements density and orienta-
tion.

When the strain localization band is not known a priori, the principal issues
include:

e the strain localization band formation;

e location and orientation of the localization band;

e the intra-element propagation of the fracture;

e identification of the crack pattern and the coexistence of multiple cracks.

The first two aspects are strongly related to the constitutive model adopted
for the quasi-brittle material. The remaining ones deal with finite element
mesh processing. They require a specific crack tracking algorithm in order
to define the discontinuity surface during the loading process. In addition,
they require the introduction of additional degrees of freedom to describe the
kinematics of the weak or strong discontinuity.

The entire numerical procedure has been implemented in a MatLab(C) code.
Nonlinear equations are solved using the Newton-Raphson iterative proce-
dure. The time integration scheme is based on a backward Euler method.
For the sake of completeness, the pseudo-code for the generic time step n is
reported in Algorithm 1.

4.1. Band formation and orientation

As mentioned in the introduction, the onset of localized deformations is
considered as the result of an instability in the macroscopic constitutive de-
scription of inelastic deformation. It corresponds to a bifurcation problem
[1, 2], i.e. the incremental equations governing the equilibrium show a loss
of uniqueness and an alternative deformation mode of the evolution of the
localization band is admitted. Commonly, the discontinuous bifurcation con-
dition is determined by the negative value of the determinant of the acoustic
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tensor [34]. A spectral analysis of the same tensor also provides band orien-
tation and relative localization mode.

In the case of isotropic damage, where the material stiffness degradation
simply coincides with the progressive reduction of the Young’s modulus, the
above reported classical procedure under some circumstances does not return
the expected band characteristics. In particular, band directions that don’t
match the loading conditions and kinematic constraints may be observed
[35]. In several works adopting the continuous-discontinuous models a spe-
cific transition criterion is formulated in terms of principal stresses, principal
strains, or damage values locally attained. If the state of stress or strain is
considered as a strain localization indicator, the Rankine or the De Saint
Venant - Grashof criteria are adopted, respectively. When the maximum
principal stress or strain reaches the tensile strength or the limit deformation
of the material, the condition of diffuse damage is switched to the condition
of localized damage.

In the present work the continuous-discontinuous transition is triggered if
simultaneously the minimum eigenvalue of the element tangent stiffness ma-
trix becomes null or negative and if the damage variable attains a critical
value D, as proposed in [36]. This last criterion has been adopted in recent
papers dealing with localization in structures made up of damaging material
(37, 38].

In particular, if the volume average of the damage variable exceeds the criti-
cal damage of the material a new interphase is inserted in the element. The
transition condition reads

1

ey DdQ2 > Dcm'ty (58)

D
Ve Ja.

where V, is the volume of the element.
In order to locate the interphase middle plane inside the finite element, we
define the balance point of damage x;,

i1 Dix;
Xpp = % (59)
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and the average localization direction ny, which coincides with the eigenvector
associated with the maximum eigenvalue of the following tensor:

Z?:g}f D;n; ®n;
ngp )
Zi:l D,

where ngp is the number of the Gauss points and x; and D; are the coor-
dinates and the values of damage variable at the same points, respectively.
In Eq. (60) n; is the direction of the maximum principal strain evaluated at
the Gauss point.

Once the first two localization conditions are verified, a third check is per-
formed. This check verifies if the localization direction n; is stabilized be-
tween two subsequent time steps [39]. When the difference in n; is below a
fixed tolerance, the finite element is fragmented into two sub-elements QF
and €27, and the interposed interphase €),. Depending on the topology of
the two sub-elements, strain and damage values can be initialized at Gauss
points of O, Q~, and €, exploiting the same shape functions as the original
element. Damage in the sub-elements Q1 and €~ is kept frozen and the re-
sponse is linear and elastic, with the stiffness attained at the fragmentation
time. Damage, instead, is free to evolve in the interphase element €.

L, =

(60)

4.2. Crack tracking algorithm

At the end of the strain localization stage in Algorithm 1, some of the
elements of the FE mesh could be localized. For these elements the three
aforementioned localization checks are all verified and the band in each ele-
ment is identified through its balance point and orientation.

The number of newly localized elements in a load step is dependent on the
load step size. As is common in nonlinear FE, in order to avoid inaccurate so-
lutions in terms of crack-path and mechanical response, the load step should
be in some way calibrated to the element size and should not be too large. It
could happen to see clouds of localized elements, usually having sub-parallel
localization bands, as a consequence of the diffuse damage formulation. In
these cases not all the localized elements can be crossed by the crack and the
clouds need to be in a certain sense 'cleaned’.

An efficient crack tracking algorithm is therefore necessary to correctly trans-
form the bands inside localized elements into macroscopic continuous cracks.
The proposed crack tracking algorithm operates in a three-stage process.
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Algorithm 1 Pseudo-Code at step n

1:

—_ = =

—_
w

14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:

32:

» ELASTIC PREDICTION

71
Un < Un—l
Firt « Fpthy + AFG
K e Acy (K ) + AL (K )
K AU = AFe
U, + U, + AUY
for s =1 : subs do
Us « S(U,)
Firts « CALL SOLVE-SUBS(U?)
: end for
DEI e AT (B  ASUY (Fint)
if ‘Errﬁg‘) = |Fest — Fint| > tol then
» NONLINEAR CORRECTION
jej+1
K e AL (KG) + A (K
Kslj) AUng) = Errglj)
go to 7
end if

» STRAIN LOCALIZATION
fore=1:¢e,0_i0c dO
¢ <+ eig[K€)
D¢« ¢ [, DAQ
if (A <0).and. (D> D) then
Xpp, Lip <— Use Eqgs.(59-60)
ny, < eig[Ly]
if !ng — n271| < tol then
€loc  [€loc €]
end if
end if
end for

> Update BCs a