

Leucaena leucocephala (Lam.) De Wit. as an alternative fodder resource in Mediterranean agroforestry systems

Journal:	Plant Biosystems
Manuscript ID	TPLB-2021-0262
Manuscript Type:	Rapid Report
Date Submitted by the Author:	29-Jul-2021
Complete List of Authors:	Badalamenti, Emilio; University of Palermo, Department of Agricultural, Food and Forest Sciences Maggio , Antonella; University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Dardi, Angelo; University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Palumbo Piccionello, Antonio ; University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies La Mantia, Tommaso; University of Palermo, Department of Agricultural, Food and Forest Sciences
Keywords:	animal nutrition, fodder legume, HPLC, toxicity, woody species

2 3 4	1	Leucaena leucocephala (Lam.) De Wit. as an alternative fodder resource in Mediterranean									
5	2	agroforestry systems									
6 7	3										
8 9	4	Emilio Badalamenti ¹ , Antonella Maggio ^{2*} , Angelo Dardi ² , Antonio Palumbo Piccionello ² ,									
10 11	5	Tommaso La Mantia ¹									
12 13	6										
14	7	¹ Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy									
15 16	8	² Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF),									
17 18	9	University of Palermo, Palermo, Italy									
19	10	Corresponding author: <u>antonella.maggio@unipa.it</u>									
20 21	11										
22 23	12	Emilio Badalamenti – ORCID 0000-0002-8178-354X									
24	13	Antonella Maggio – ORCID 0000-0002-0861-626X									
25 26	14	Antonio Palumbo Piccionello – ORCID 0000-0003-4402-5798									
27 28	15	Tommaso La Mantia – ORCID 0000-0002-7494-742X									
29 30	16										
31	17	Abstract									
32 33	18	Leucaena leucocephala is worldwide used for wood production, reforestation and for feeding									
34 35	19	livestock. To assess the potential use of Leucaena for animal nutrition, we analysed the composition									
36 37	20	of methanolic extracts of leaf samples of two sicilian varieties, also determining the presence of									
38	21	mimosine, toxic for animals.									
39 40 41	22 23										
42 43	24	Key words: animal nutrition, fodder legume, HPLC, toxicity, woody species									
44 45											
46											
47 48											
49 50											
51 52											
53											
54 55											
56 57											
58 59											
60											

Introduction

In the Mediterranean, the reduction in the coming decades of forage resources, both in quantity and quality, is expected (Ergon et al. 2018). Indeed, the combination of increased temperatures and reduced rainfall due to climate change could seriously lower soil water availability, with detrimental effects on carbon and nutrient balance in plants (Chang et al. 2017; Obermeier et al. 2018). One expected consequence is the seasonal shift towards winter by Mediterranean plants to reach more favourable ecological conditions (Rapacz et al. 2014), especially reducing fodder availability in summer. To overcome this shortage, different strategies could be employed, such as the use of different species or the identification of genotypes more resistant and adapted to the rapidly changing environmental conditions and increasing drought events (Dono et al. 2016; Dalzell 2019). For instance, Komainda et al. (2019) compared the productivity of different forage legumes to identify the most drought-tolerant species, while suggesting the replacement of the less drought-tolerant ones. Leucaena leucocephala (Lam.) de Wit (Fabaceae) (hereinafter Leucaena), native to southern Mexico and Central America, is one of the most widely used trees in agroforestry systems, in fast-growing plantations, for restoration of degraded lands and for forage production throughout tropical and subtropical latitudes (Bageel et al. 2020). Leucaena may be cultivated under a wide range of rainfall conditions (750-1,800 mm of annual amount) and may withstand up to six months of drought periods (Binggeli et al. 1998). The high resistance to biotic damage and abiotic stresses makes *Leucaena* a promising species for Mediterranean areas. Moreover, due to fast-growing traits and high resistance to frequent coppicing, Leucaena is an ideal candidate for wood and biomass production (National Research Council 1980), capable of reaching very high yields in intensive cultivation systems, and promising results have been recently achieved also in Mediterranean conditions (Fernández et al. 2020). It is also appreciated by livestock for high palatability and high nutritive value of foliage (Garcia et al. 1996). However, the species holds two main shortcomings: a high invasive potential (Wolfe and Van Bloem 2012) and the presence of antinutritional factors in leaves. However, the invasiveness seems to be restricted to the shrub-like subspecies 'common leucaena' (Leucaena leucocephala (Lam.) de Wit subsp. leucocephala), while not affecting the tree-like subspecies 'giant leucaena' (Leucaena leucocephala subsp. glabrata (Rose) S. Zárate) (Bageel et al. 2020). Conversely, the major barrier for a wider use of the species is the high leaf content of mimosine, a non-protein amino acid whose degradation products (i.e. isomers of hydroxypyridone or DHP) are toxic to herbivores, mostly ruminants, and can cause alopecia, loss of appetite, salivation, reproduction issues and reduced productivity (Halliday et al. 2013). Up to now, *Leucaena* has been mostly used in tropical and sub-tropical systems, while being rarely tested under Mediterranean conditions. With this contribution, we preliminarily assessed the potentialities of Page 3 of 16

1 2 3

4

5

6

7 8

9 ⁰² 10 63

11

13

14 15

16

17

18

19 20

21 22

23

24 25

28 29

30

31 32

33 34

35 36

37

40 41

42

43 44

45 46

47

48

49

50 51

52

53

54

55

38 79

26 72 27 72

Plant Biosystems

Leucaena for fodder production in Mediterranean agroforestry systems. Particularly, we quantified the mimosine content and we performed qualitative analyses (to assess the nutritive value of leaves) in two varieties occurring in Sicily (Hawaii and Perù), also testing leaf samples obtained from both varieties and subject to oven drying.

12 64 Materials and Methods

65 Plant material

Plant material was collected from mature *Leucaena* individuals belonging to cultivars Hawaii and Perù, as previously identified (Badalamenti et al. 2020). Fresh leaves were stored and air-dried before analyses. Moreover, we analysed leaf samples composed of both varieties and oven-dried for 48 h (hereinafter Mixed/Dry). Five mature individuals per cultivar were considered and leaves were collected from different branches in each selected plant. All the analyses were carried out at the STeBiCeF Department, University of Palermo.

73 *Sample preparation*

The plant matrices were firstly subject to methanol extraction to remove chlorophylls and other possible interfering substances and exploiting the poor solubility of mimosine in this organic solvent. The resulting plant matrices were then subject to water extraction to perform the quantitative assessment of mimosine content, as well as the qualitative characterization of the polar fraction.

80 *Quantification of mimosine content*

Mimosine content was quantified using first colorimetric method and UV-Vis spectroscopy (UV)
and then High Performance Liquid Chromatography (HPLC) and MS-TOF.

For the first method, we considered as reference the calibration curve of the stock solution of Lmimosine (by diluting 5.12 mg of "L-Mimosine from Koa hoale seeds" (Sigma-Aldrich[®]) in 10 ml of H₂O), which was obtained by adding 1 ml 0.1 N HCl and 0.4 ml FeCl₃ (0.5%) to different concentrations of the stock solution (1, 5, 10, 25, 50 µg ml⁻¹). The quantification of mimosine content via UV analysis was performed in a Win Aspect spectrophotometer, analyzing the absorbance at $\lambda = 535$ nm (Ilham et al. 2015). Mimosine content is reported as g Kg⁻¹ of leaf dry matter.

To obtain a more reliable estimate of leaf mimosine content, we also performed an HPLC-MS-TOF analysis. The calibration curve to mimosine has been performed with the standard solution of mimosine at 1, 5, 10, 20, 25, 50 μ g ml⁻¹. The HPLC analysis was carried out in an Agilent

Technologies 1260 apparatus, using HPLC Column ZORBAX Extend C18. The resulting spectra 93 were then analyzed by means of the specific data analysis and processing program Agilent 94 95 MassHunter qualitative.

8 9 10

11

12 13

14 15

16

18

20 103 21

23

25

28

30

32

34 111 35

37

96

1 2 3

4

5

6

7

97 Qualitative analysis

The methanolic and acqueous extracts as previously described were also analyzed by HPLC/MS 98 analyses (High Performance Liquid Chromatography coupled to Mass Spectrometry) in reverse 99 100 phase, and conducted either in negative and positive ion mode, supported by Agilent MassHunter 17 101 Qualitative Analysis software B.06.00. This analysis was performed to characterize the amino ₁₉ 102 acidic, polyphenolic and glycidic components of Leucaena foliar tissue.

22 104 Statistical analysis

24 105 A one-way ANOVA was carried out to determine the effect of Leucaena variety (Hawaii, Perù and ₂₆ 106 mixed/dry ST) on mimosine content, as well as the effect of different methods to quantify mimosine ²⁷ 107 content (colorimetric and HPLC). Significance was determined at the 95% level of confidence. 29 108 Before performing ANOVA, normality and homogeneity of variance of data were verified. 31 109 Statistical analysis was performed using Systat Software, Inc. 2009 (version no. 13.00.05, San Jose, 33⁻110 CA, USA). ich

Results and discussion 36 112

₃₈ 113 Mimosine content

³⁹ 40 114 A number of methods have been employed to reduce the adverse effects of mimosine on animal ⁴¹ 115 health such as the inoculation with Synergistes jonesii, a rumen bacterium capable of degrading 42 toxic substances in not-harmful products (Klieve et al. 2002; Shelton et al. 2019), or physical 43 116 44 45¹¹⁷ treatments (ensiling, heating, ecc.) to reduce leaf mimosine content. Regardless of method, the 46 118 lower the mimosine content in Leucaena leaves is the lower the potential toxic effects for animal 47 48 119 health are. Hence, the search for low mimosine varieties is still ongoing and worthy to be pursued. 49 ₅₀ 120 The concentration of mimosine in plant tissues depends on plant traits (tissue age, plant organ, etc.), 51 52 121 51 as well as on environmental conditions, such as light, soil pH and salts concentrations in soils ⁵³ 122 (Vestena et al. 2001; Ghosh and Samiran 2007; Honda and Borthakur 2019). As mimosine content 54 55 123 is higher in younger organs, shoots and individuals, as well as in more stressful conditions, it is 56 ₅₇ 124 suspected to play an evolutionary role, for instance as a defence against herbivores (Honda and ⁵⁸ 125 59 Borthakur 2019). The toxic effect depends on the effective quantity of mimosine taken with the 60 126 diet, which, in turn, depends on its concentration in plant tissues, which is affected by variety and Page 5 of 16

Plant Biosystems

plant portion. Xuan et al. (2006) reported that mimosine content was higher in young leaves and 127 mature seeds than in xylem and mature leaves, where it ranged from 0.11% to 0.47%, respectively. 128 In effect, the lower concentration of mimosine in mature plants is a common observation (Vestena 129 et al. 2001; Xuan et al. 2006; Zaved et al. 2014; Honda and Borthakur 2019). In our experiment, we 130 10 131 found quite low mimosine content in leaves. The percentage on a dry matter basis ranged from 11 1.1% to 1.5% and from 0.9% to 1.0% in the Hawaii and Perù varieties, with UV and HPLC 12 132 13 analyses, respectively. However, with both methods, the mixed and dry treatment significantly 133 14 15 134 reduced mimosine content (0.4-0.7 %; p < 0.05) (Fig. 1). Our results confirm the positive effect of 16 17 135 heating on lowering the concentration of this toxic substance and reducing its toxic effects on 18 livestock (Halliday et al. 2013; Honda and Borthakur 2019). We sampled dried leaves in mature 19 136 20 137 individuals, conditions that further contributed to the low mimosine content found in our study. We 21 22 138 also found a significantly lower mimosine content (p < 0.05) via HPLC analysis than via the 23 traditional colorimetric method, further proving the higher selectivity of more advanced techniques. 24 139 25 26¹⁴⁰ Regardless of the method, we found very low values compared with those more commonly found in ²⁷ 141 28 literature, where mimosine content generally accounted for more than 2% of total dry matter, even 29 142 reaching up to 8-12% (Soedarjo and Borthakur 1996; Vestena et al. 2001; Garcia et al. 2008; 30 31 143 Barros-Rodríguez et al. 2014; Bageel et al. 2020). However, results in line with ours were found in 32 33²144 four Leucaena varieties in Japan, where mature leaves had a mimosine content of about 0.5% (Xuan 34 145 et al. 2006). The cultivar K8 showed a low mimosine content also in Brazil (Soltan et al. 2017), 35 with percentages ranging from 0.2% to 1.5%. 36 146 37

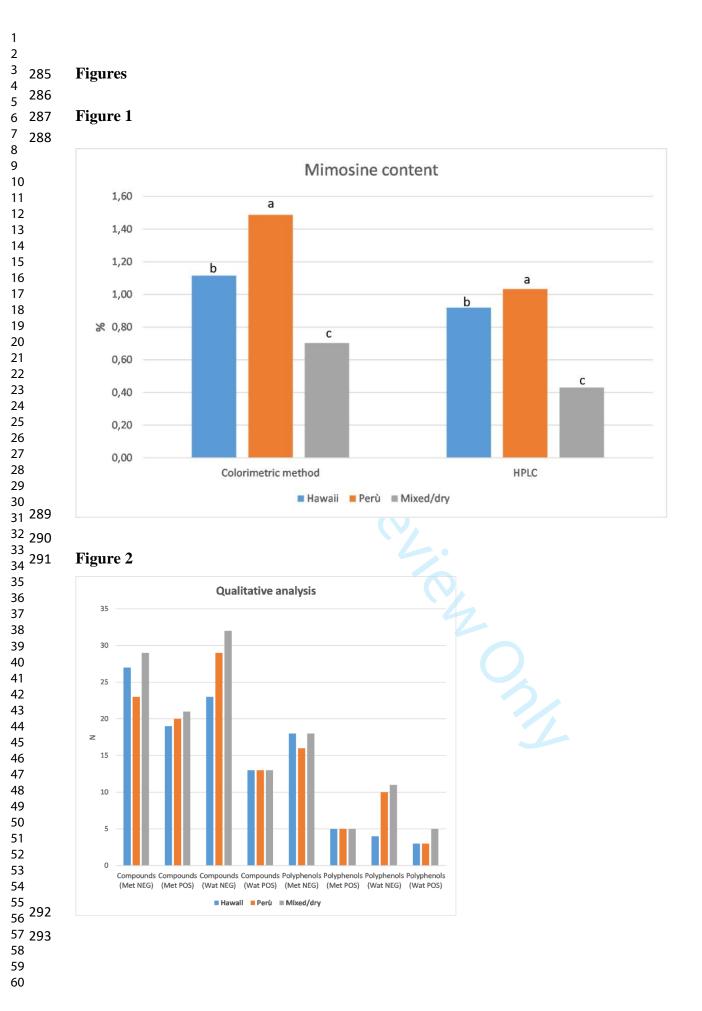
³⁹ 40 148 Qualitative analysis

₃₈ 147

⁴¹ 149 Overall, 67 different metabolites were detected in Leucaena leaf tissues via HPLC/MS analyses 42 (Fig. 2, Table S1). Polyphenols are one of the more representative phytochemicals found in 43 150 44 45¹⁵¹ Leucaena leaves. Thirty-two phenolic compounds were detected (about 48% of total compounds), ⁴⁶ 152 with flavones accounting for the largest part, and it is well known that they are particularly 47 48 153 beneficial for ruminant health (Jiang et al. 2016). They are important plant secondary metabolites 49 with anti-inflammatory and anti-oxidative properties and a primary protective function against 50 154 51 52 155 51 photodamage and as a chemical defense against herbivores and pathogens (Olagaray and Bradford ⁵³ 156 2019; Acet 2020). In accordance to Xu et al. (2018), the most abundant polyphenols in Leucaena 54 55 157 leaves were quercetin-3-O-α-rhamnopyranoside, quercetin, geraldone, apigenin, kaempferol, 56 ₅₇ 158 kaempferol-3-O-α-rhamnopyranoside and myristicin. In addition, we detected 10 amino acids, ⁵⁸ 159 59 including three essential amino acids (leucine, phenylalanine and tryptophan) (Karau and Grayson 60 160 2014). The high protein (22-28% of dry matter) and β -carotene content, making Leucaena

Plant Biosystems

comparable to alfaalfa (Medicago sativa L.) (Garcia et al. 1996; González-García et al. 2009), is accompanied by a well balanced amino acidic composition, including essential amino acids (Ter Meulen et al. 1979), suggesting that Leucaena could be a good alternative forage both for ruminant and non ruminant livestock. Leucaena leucocephala holds many positive traits as a multipurpose 10 165 tree in Mediterranean agroforestry systems, and it seems to be worthy of interest for feeding livestock in the inner and/or marginal Mediterranean regions, where inadequate nutritional supplies 12 166 are one of the major issues for animal nutrition (Bianchetto et al. 2015; Papanastasis et al. 2008). Indeed, the low productivity of animals is not infrequently attributable to the low nitrogen and high 17 169 fiber content of local plants and crop residues that form the most common food base on local 19 170 tradional farms. Hence, the integration of the ordinary diet with woody forage resources has been viewed as a possible way to alleviate the nutritional deficiencies of basic diets (Papanastasis et al. ²² 172 1997). In Mediterranean contexts, one relevant advantage of *Leucaena* is the persistence of foliage during summer, which is the most critical phase for Mediterrean plants and fodder resources. 24 173 26¹⁷⁴ However, woody species may also cointain antinutrional factors (e.g., tannins or toxic compounds) 28 175 in plant tissues, which have to be carefully assessed before deciding to introduce a new species in 29 176 the diet. Based on this study, we deem that *Leucaena* could represent a promising fodder resource 31 177 for feeding livestock in Mediterranean areas, possessing high nutritive and protein foliage (Honda et al. 2019), with a very low mimosine content, as well as being a low-demanding and easily cultivated species, with a good potential for wood and biomass production in agroforestry systems.


2		
3 4	180	References
	181	Acet T. 2020. Determining the phenolic components by using HPLC and biological activity of
6	182	Centaurea triumfetti. Plant Biosyst. 155(9):1-12.
7 8	183	Badalamenti E, Pasta S, Sala G, Catania V, Quatrini P, La Mantia T.2020. The paradox of the alien
	184	plant Leucaena leucocephala subsp. glabrata (Rose) S. Zárate in Sicily: another threat for
	185	the native flora or a valuable resource? Int J Plant Biol. 11:8637.
11 12	186	Bageel A, Honda MDH, Carrillo JT, Borthakur D. 2020. Giant leucaena (Leucaena leucocephala
	187	subsp. glabrata): a versatile tree-legume for sustainable agroforestry. Agrofor Syst. 94:251-
14	188	268.
15 16	189	Barros-Rodríguez M, Sandoval-Castro CA, Solorio-Sánchez J, Sarmiento-Franco LA, Rojas-
	190	Herrera R, Klieve AV. 2014. Leucaena leucocephala in ruminant nutrition. Invited review.
	191	Trop Subtrop Agroecosyst. 17:173-183.
19 20	192	Bianchetto E, Buscemi I, Corona P, Giardina G, La Mantia T, Pasta S. 2015. Fitting the stocking
	193	rate with pastoral resources to manage and preserve Mediterranean forestlands: a case study.
	194	Sustainability 7:7232-7244.
23 24	195	Binggeli P, Hall JB, Healey JR (1998) An Overview of Invasive Woody Plants in the Tropics.
	196	School of Agricultural and Forest Science Publication Nº.13. University of Wales, Bangor.
	197	Chang J, Ciais P, Viovy N, Soussana J-F, Klumpp K, Sultan B. 2017. Future productivity and
27 28	198	phenology changes in European grasslands for different warming levels: Implications for
	199	grassland management and carbon balance. Carbon Bal & Manag. 12:1-21.
	200	Dalzell SA. 2019. Leucaena cultivars - current releases and future opportunities. Trop Grasslands
31 32	201	Forrajes Trop. 7:56-64.
J 2	202	Dono G, Cortignani R, Dell'Unto D, Deligios P, Doro L, Lacetera N, Mula L, Pasqui M, Quaresima
	203	S, Vitali A, Roggero PP. 2016. Winners and losers from climate change in agriculture:
35 36	204	insights from a case study in the Mediterranean basin. Agric. Syst. 147:65-75.
	205	Ergon A, Seddaiu G, Korhonen P, Virkajarvi P, Bellocchi G, Jorgensen M, Ostrem L, Reheul D,
38	206	Volaire F. 2018. How can forage production in Nordic and Mediterranean Europe adapt to
39 40	207	the challenges and opportunities arising from climate change? Eur J Agron. 92:97-106.
40 41	208	Fernández M, Alaejos J, Andivia E, Madejón P, Díaz MJ, Tapias R. 2020. Short rotation coppice of
	209	leguminous tree Leucaena spp. improves soil fertility while producing high biomass yields in
43	210	Mediterranean environment. Ind Crop Prod. 157:112911.
44 45	211	García D, Wencomo H, Gonzáles M, Medina M, Cova L. 2008. Caracterización de diez cultivares
46	212	forrajeros de Leucaena leucocephala basada en la composición química y la degradabilidad
47 40	213	ruminal. Rev MVZ Córdoba. 13:1294-1303.
48 49	214	Garcia GW, Ferguson TU, Neckles FA, Archibald KAE.1996. The nutritive value and forage
	215	productivity of Leucaena leucocephala. Anim Feed Sci Technol. 60:29-41.
51	216	Ghosh MK, Samiran B. 2007. Mimosine toxicity - a problem of Leucaena feeding in ruminants.
52 53	217	Asian J Anim Vet Adv. 2:63-73.
54	218	González-García E, O. Cáceres O, Archimède H, Santana H. 2009. Nutritive value of edible forage
55	219	from two Leucaena leucocephala cultivars with different growth habit and morphology.
50 57	220	Agroforest Syst. 77:131-141.

Halliday MJ, Padmanabha J, Mcsweeney CS, Kerven G, Shelton HM. 2013. Leucaena toxicity: a 58 221 59 222 new perspective on the most widely used forage tree legume. Trop Grasslands Forrajes ⁶⁰ 223 Trop. 1:1-11.

³ 224 Honda MDH, Borthakur D. 2019. Mimosine content of *Leucaena leucocephala* under various environmental conditions. Trop Grasslands Forrajes Trop. 7:164-172.

- Honda MDH, Ishihara KL, Pham DT, Borthakur D. 2019. Highly expressed genes in the foliage of
 giant leucaena (*Leucaena leucocephala* subsp. glabrata), a nutritious fodder legume in the
 tropics, Plant Biosyst. 154(2):1-10.
- Ilham Z, Hamidon H, Rosji NA, Ramli N, Osman N. 2015. Extraction and quantification of toxic compound mimosine from *Leucaena leucocephala* leaves. International Symposium on Applied Chemistry (ISAC 2015). Procedia Chem. 16:164-170.
- Jiang N, Doseff AI, Grotewold E. 2016. Flavones: From Biosynthesis to Health Benefits. Plants. 5(2):27.
- 16 17 234 Karau A, Grayson I. 2014. Amino Acids in Human and Animal Nutrition. In: Zorn H, Czermak P. (eds) Biotechnology of Food and Feed Additives. Advances in 18 235 **Biochemical** 19 236 Engineering/Biotechnology, 143. Springer, vol Berlin, Heidelberg. 20 21 237 https://doi.org/10.1007/10_2014_269
- Klieve AV, Ouwerkerk D, Turner A, Roberton R. 2002. The production and storage of a fermentorgrown bacterial culture containing *Synergistes jonesii*, for protecting cattle against mimosine and 3-hydroxy-4(1H)-pyridone toxicity from feeding on *Leucaena leucocephala*. Aust J Agr Res. 53:1-5.
- Komainda M, Küchenmeister K, Küchenmeister F, Breitsameter L, Wrage-Mönnig N, Kayser M,
 Isselstein J. 2019. Forage legumes for future dry climates: Lower relative biomass losses of
 minor forage legumes compared to *Trifolium repens* under conditions of periodic drought
 stress. J Agron Crop Sci. 205(5):460-469.
- National Research Council. 1980. Firewood crops: shrub and tree species for energy production.
 National Academy of Sciences: Washington DC.
- Obermeier WA, Lehnert LW, Ivanov MA, Luterbacher J, Bendix J. 2018. Reduced summer aboveground productivity in temperate C₃ grasslands under future climate regimes. Earth's Future. 6:716-729.
- Olagaray KE, Bradford BJ. 2019. Plant flavonoids to improve productivity of ruminants A review. Anim Feed Sci Techn. 251:21-36.
- Papanastasis VP, Yiakoulaki MD, Decandia M, Dini-Papanastasi O. 2008. Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim Feed Sci Tech. 140(1-2):1-17.
- Papanastasis, VP, Platis PD, Dini-Papanastasi O. 1997. Productivity of deciduous woody species and fodder species in relation to air temperature and precipitation in a Mediterranean environment. Agroforest. Syst. 37:187-198.
- Rapacz M, Ergon Å, Höglind M, Jørgensen M, Jurczyk B, Østrem L, Rognli OA, Tronsmo AM.
 2014. Overwintering of herbaceous plants in a changing climate: still more questions than answers. Plant Sci. 225:34-44.
- Shelton HM, Kerven GL, Dalzell SA. 2019. An update on leucaena toxicity: Is inoculation with *Synergistes jonesii* necessary? Trop Grasslands Forrajes Trop. 7:146-153.
- Soedarjo M, Borthakur D. 1996. Simple procedures to remove mimosine from young leaves, seeds
 and pods of *Leucaena leucocephala* used as food. Int J Food Sci Technol. 36:103-109.
- Soltan YA, Morsy AS, Lucas RC, Abdalla AL. 2017. Potential of mimosine of *Leucaena leucocephala* for modulating ruminal nutrient degradability and methanogenesis. Anim Feed
 Sci Technol. 223:30-41.

1	
2 ³ 269	Ter Moulen II Struck S. Schulke F. El Herith FA, 1970. A review on the putritive value and toxic
4 270	Ter Meulen U, Struck S, Schulke E, El-Harith EA. 1979. A review on the nutritive value and toxic aspects of Leucaena leucocephala. Trop Anim Prod. 4:113-126.
5 270	Vestena S, Fett-Neto AG, Cortes Duarte R, Gui Ferreira A. 2001. Regulation of mimosine
6 271 7 272	
8 272	accumulation in <i>Leucaena leucocephala</i> seedlings. Plant Sci. 161:597-604.
9 273	Wolfe BT, Van Bloem SJ. 2012. Subtropical dry forest regeneration in grass-invaded areas of
10 274	Puerto Rico: Understanding why <i>Leucaena leucocephala</i> dominates and native species fail.
¹¹ 275 12	For Ecol Manage. 267:253-261.
¹² 13 276	Xu Y, Tao Z, Jin Y, Yuan Y, Dong TTX, Tsim KWK, Zhou Z. 2018. Flavonoids, a potential new
14 277	insight of Leucaena leucocephala foliage in ruminant health. J Agric Food Chem. 66:7616-
15 278 16	7626.
¹⁶ 279 17	Xuan TD, Elzaawely AA, Deba F, Fukuta M, Tawata S. 2006. Mimosine in Leucaena as a potent
₁₈ 280	bio-herbicide. Agron Sustain Dev. 26(2):89-97.
19 281	Zayed MZ, Zaki MA, Ahmad FB, Ho W-S, Pang S-L. 2014. Comparison of mimosine content and
²⁰ 282 21	nutritive values of Neolamarckia cadamba and Leucaena leucocephala with Medicago sativa
₂₂ 283	as forage quality index. Int J Scientific Technology Res. 3:146-150.
23 284	as totage quanty index. Int 3 Scientific Technology Res. 3.140-130.
24 25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36	
37 38	
38 39	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54	
55 56	
57	
58	
59 60	
00	

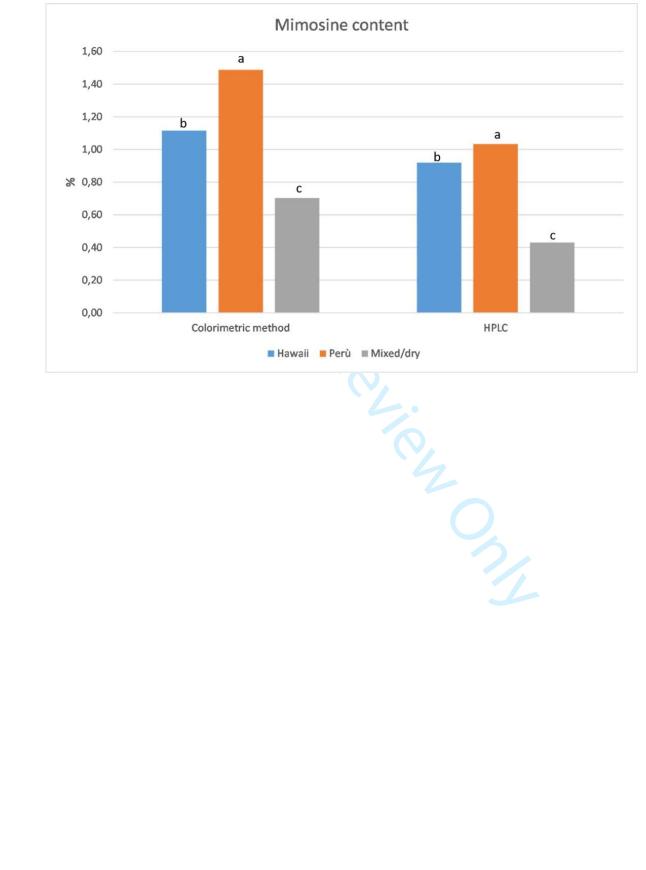
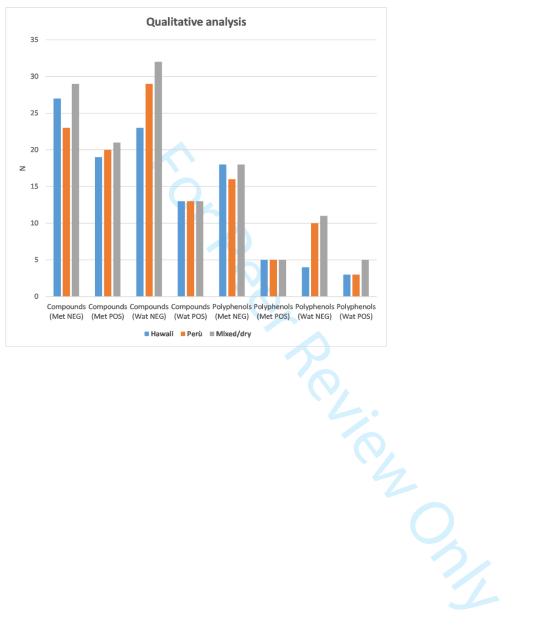


Figure captions


Figure 1 Mimosine content in *Leucaena* leaves sorted by variety and according to the quantification
method (colorimetric or HPLC). Means with different letters are significantly different at P < 0.05,
after Tukey's HSD range test.

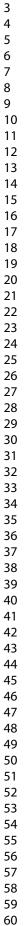

Figure 2 Results of qualitative analysis in *Leucaena* leaves sorted by variety and according to the different extraction methods (Methane or Water). Met = Methanolic extract, Wat = Water extract, NEG = Negative, POS = Positive. to peer peries only

Figure 1 Mimosine content in *Leucaena* leaves sorted by variety and according to the quantification method (colorimetric or HPLC). Means with different letters are significantly different at P < 0.05, after Tukey's HSD range test

Figure 2 Results of qualitative analysis in *Leucaena* leaves sorted by variety and according to the different extraction methods (Methane or Water). Met = Methanolic extract, Wat = Water extract, NEG = Negative, POS = Positive

Compound	Mass (M-H+) Positive mode	Mass Negative mode	Retention time (minutes)	H Water extract	Pe Water extract	MD Water extract	H Metanolic extract	Pe Methanolic extract	MD Methanolic extract
Carbohydrates									
Gluconic acid		195,0467	3,43	Р	Р	Р			
Disaccharides [M+FA]		387,1075	3,46				Р	Р	Р
Arabinose		149,0446	3,57				Р	Р	Р
Aldaric acid $(C_6H_{10}O_8)$		209,0262	3,59	Р	Р	Р			
Pentose $(C_5H_{10}O_5)$		149,0447	3,94	Р	Р	Р			
Aldaric acid $(C_6H_{10}O_8)$		209,0262	4,17	Р	Р	Р			
Aldopentose Amino acids		149,0569	4,24	Р	Р	Р			
Asparagine*	133,0615	131,0462	3,12				Р	Р	Р
Mimosine*	199,0726	197,0559	3,15	Р	Р	Р	Р	Р	Р
Glutamine*	147,0771		3,16				Р	Р	Р
Allysine*	146,0822		3,25	Р	Р	Р	Р	Р	Р
Proline*	116,0711		3,35				Р	Р	Р
Pipecolic acid*	130,0869		3,58	Р	Р	Р	Р	Р	Р
Phenylalanine	166,0871		4,28				Р	Р	Р
Tetrahydropicolinate*	172,0602		4,86				Р	Р	Р
Leucine	132,1023		5,11	Р	Р		Р	Р	Р
Tryptophan	205,0985		15,61				Р	Р	Р
Other									
Deamminated isomer of mimosine (C ₈ H ₉ O ₄)	184,0619		4,23	Р	Р	Р			
Rabelomycin		337,0741	4,94	Р		Р			
Fludarabine	286,0945		5,24	Р	Р	Р			
Anthraquinone	404,1223		5,39	Р	Р	Р			
Rabelomycin		337,07	5,40				Р		Р

Table S1 Composition of water and methanolic extracts. H = Hawaii, Pe = Perù, MD = Mixed/Dry, P = Present; *non essential amino acids

 URL: http://mc.manuscriptcentral.com/tplb

Page 15 of 16

 Plant Biosystems

Citroside A C ₁₉ H ₃₀ O ₈	409,1843	421,1613	22,96				Р	Р	Р
[M+Na] Artomunoxantrione		443,11	27,70	Р	Р	Р			
Silybin		481,1128	32,42	•	•	•	Р		Р
Alkaloids		401,1120	52,72				I		1
Choline	104,1071		2,83				Р	Р	F
Nipecotic acid	130,0868		2,83 5,40				P	P	F
Carboxylic acids	120,0000		5,10					Ĩ	1
Malic acid		133,012	4,36	Р		Р			
Citric acid		191,0192	4,44	P	Р	P	Р	Р	P
α-Ketoglutaric acid		145,0136	5,83	P	P	P	-	-	-
Hydroxy glutarate		147,0295	6,30		Р	Р			
Succinic acid		117,0188	6,38	Р	P	P			
Maleic acid		115,0037	6,56	Р		Р			
Fumaric acid		115,0036	6,71	Р	Р	Р			
Hydroxybutyric acid		103,0400	6,98			Р			
Phenols									
Gallic acid		169,0133	8,78			P.			
Quinic acid		191,0547	12,07	Р	Р	Р			
Caffeoyl glucarate		371,0577	16,74		Р	Р			
isomer							Р		
Gallic acid 3-O-(6- galloylglucoside)		483,0757	19,42				Р	Р	F
Caffeoyl glucuronide		355,0628	19,49		Р	Р			
Caffeoyl glucuronide		355,0628	19,89		P	P			
isomer						_			
Caffeoyl glucuronide		355,0628	20,15		Р	Р		P	
isomer Caffeoyl-		369,0423	20,73	Р	Р	Р			
hydroxycitric acid		567,0125	20,70	•		•			
Catechin		325,0478	20,80				Р		I
Chlorogenic acid		353,085	20,93		Р	Р			
Caffeoyl glucuronide		355,0628	21,86	Р	Р	Р			
isomer Caffeoyl-		369,0423	23,67	Р	Р	Р			
hydroxycitric acid		507,0425	23,07	I	Г	Г			
Epicatechin		289,0702	23,70				Р		F

Page 1	16	of	16
--------	----	----	----

Epigallocatechin gallate	459,1054	457,0741	24,70						Р
Mirecitine 3- rutinoside		625,1373	27,44				Р	Р	Р
Rutin	611,1659	609,1395	28,97	Р	Р	Р	Р	Р	Р
Myristicin	465,1067	463,0752	29,41				Р	Р	F
Vicenin 2		593,1453	29,91				Р	Р	F
Apigenin	271,0644	269,0429	30,32	Р	Р	Р			
Quercetin 3 arabinoside	435,0786	445,41	30,45				Р	Р	F
Quercetin 3 arabinoside	435,08	445.4000	30,61				Р	Р	
Quercitrin	449,1113	447,0909	30,66	Р	Р	Р	Р	Р	F
Apigenin	271,0625	269,0434	31,75		Р	Р	Р	Р	I
Kaempferol 7- xyloside		417,0803	31,79				Р	Р	I
Quercitrin	191,02		31,92	Р		Р			
Kaempferol- 3-O-α- rhamnopyranoside		431,0959	32,03				Р	Р	I
Geraldone	285,0793	283,0615	32,35				Р	Р	I
7,4'- Dihydroxyflavone		253,0495	34,09				Р	Р	Ι
Apigenin glucuronide methyl		465,1159	36,18				Р	Р	I
Cyanidin		285,0396	36,92				Р	Р	F
Quercetin-3-O-α- rhamnopyranoside		301,0337	37,32				Р	Р	Ι