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Abstract
We propose a mathematical interpolation between several regimes of energy cascade in
quantum turbulence in He II. On the basis of a physical interpretation of such mathema-
tical expression we discuss in which conditions it is expected to appear an intermediate k2

regime (equipartition regime) in the transition region between the hydrodynamic regime and
the Kelvin wave regime (namely, between the k−5/3 and k−1 regions in coflow situations and
between the k−3 and k−1 regions in counterflow situations). It is seen that if the energy rate
transfer from the hydrodynamic region to the Kelvin wave region is sufficiently slow, such
equipartition region will be present, but for higher values of such energy rate transfer it will
disappear. For high rates of the energy rate transfer, the transition regime between the hy-
drodynamic and the Kelvin wave regimes will be monotonous, characterized by a negative
exponent of k between −5/3 and −1 (or between −3 and −1), instead of the positive 2
exponent of the equipartition regime.

Keywords Superfluid helium · Heat transfer · Quantum turbulence · Energy spectrum ·
Kolmogorov cascade · Quantized vortices

1 Introduction

The aim of this paper is to contribute to the current lively discussions on the energy cascades
in turbulent superfluid helium, where different regimes and situations have been found, by
combining experimental data, dimensional analysis, and interpolation proposals between
the several regimes. Interpolation proposals have much interest for the analysis of systems
whose behaviour is well known at two different scales of energy, length or time, but whose
intermediate behaviour is still uncertain and the subject of research. In this case, mathe-
matical proposals combined with physical interpretations are a valuable way of progress. In
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contrast with the classical dimensional description of the Kolmogorov energy spectrum in
the inertial range of classical turbulence — giving the energy distribution E(k) in terms of
the dissipation rate ε and wavevector k —, in quantum turbulence there appear additional
relevant physical quantities (namely, the quantum of circulation κ and the average separation
� between quantized vortices), in such a way that dimensional arguments are inconclusive
to derive the form of the energy spectrum, which shows three different regions depending
on the value of k (namely, k� � 1, k� ≈ 1 and k� � 1) and of the kind of flow. However, a
posteriori, such arguments may be useful to interpret some observations and to grasp some
of the outstanding qualitative features, so that it is convenient not dismissing them a priori.

In more concrete terms, we focus our attention on the results of theoretical, numerical
and experimental observations for the energy cascade in coflow, counterflow and superflow
situations. In coflow, there is a net mass flux, whereas in counterflow there is heat flux but
not mass flux [1–7]. The direct experimental evidence of all the energy spectra of superfluid
helium is a hard task. Most of the experiments have performed to check the existence of
a Kolmogorov spectrum in superfluid helium [1–7], thus focusing on a limited range of
wavevectors. The arguments of this paper are timely as confirmed by the recent publication
in Ref. [8, 9]. In particular, in Ref. [8] the authors try to derive a phenomenological theory
of quantum turbulence in superfluid helium.

Recently, turbulence in Bose-Einstein condensates has also attracted much attention [10–
15]. In some experiments it shows some features typical of two-dimensional turbulence.

Quantum turbulence has several relevant differences with respect to the classical one.
One of them refers to the nature of vortices: the core of a vortex line is of the order of
the atomic size of helium and the circulation of the superfluid velocity around any vortex

line is given by the quantum of circulation κ = h

m
(h being the Planck constant and m

the mass of helium atom) [16–20]. In macroscopic terms, the turbulent state is described
by the vortex length density L, namely the total length of vortex lines per unit volume, or
alternatively, by � = L−1/2, with � the average separation between neighbouring vortices.
Thus, instead of having E(ε, k) the spectra are expected to be of the kind E(ε, k, �, κ). Note
that � is related to κ , but independent of it, since it also depends on the external conditions.
For instance, in a counterflow situation, the average separation of the quantized vortices,
which is of the order of L−1/2, with L the vortex length density per unit volume, is given by
� = L−1/2 = constant (κ/vns), with vns the counterflow velocity and the constant is related to
the coefficients of the production and destruction terms in the Vinen evolution equation for
L [21]. Thus, if quantum effects were null (namely if one sets � = 0), κ would be zero and
� would be zero as well. But � depends not only on κ , but also on vns , which is proportional
to the heat flux q (speaking in terms of one-fluid extended model), and it decreases for
increasing vns .

A second main difference between superfluid helium at very low temperature and any
classical fluid is related to the smallest scales where energy is dissipated: in a classical
fluid the ultimate scale is that where energy is dissipated because of viscosity; in contrast,
in superfluid helium at very low temperature the energy is dissipated by sound (phonon
emission) at very low scales [22, 23]. Indeed, when the transfer of energy reaches scales of
the order of intervortex space � energy is transferred to the Kelvin waves running along the
vortex lines [18, 23, 24]. A nonlinear interaction between Kelvin waves leads to the so-called
Kelvin wave cascade [23, 25] and hence the loss of energy to the ultimate scales by means
of sound emission. For higher temperature, namely 1K � T ≤ Tλ, viscosity and mutual
friction cannot be neglected and Kelvin waves cascade does not take place because waves
are damped. In the context of the two-fluid model there would be another kind of turbulence,
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that of the normal component, which is temperature-dependent because its density depends
on the temperature and it is maximum near Tλ and negligible below 1 K. This means that
two kinds of turbulence may appear for T > 1 K, which interact through the mutual friction
force. These arguments do not occur in the one-fluid extended model (proposed on the basis
of Extended Thermodynamics), because there the two independent vectorial fields are the
mean velocity v and heat flux q, and thus two kinds of turbulence may be interpreted in
terms of turbulence in v and in q.

A third feature of turbulence in superfluid helium is that besides the several classical ways
to trigger turbulence in a classical fluid by stirring the fluid, quantum turbulence may appear
through an external applied heat flux beyond some critical value, which usually refers to
counterflow experiments [1] [16–19]. It has been seen that in mechanical driving energy is
concentrated at large scales, whereas in thermal driving it is concentrated at mesoscales [26].
This possibility of driving at different scales is another difference of quantum turbulence
with respect to classical turbulence.

The presence of � (with dimensions of length) and of κ (with dimensions of length2 ×
time−1) makes that instead of having a single energy cascade from the stirring excitation
scale L0 to the viscous dissipation scale, the cascade is split in three main regions: the
“hydrodynamic region” from the stirring scale L0 to � (L0 � k−1 � �), the “Kelvin wave
region” from � to the acoustic dissipation scale lp (� � k−1 � lP ) and an “intermediate re-
gion” (k−1 � �) strongly affected by interaction and reconnections between quantized vor-
tices. The cascade in the hydrodynamic region may be seen as a cascade between eddies of
different sizes (thought to be made by bundles of vortex lines [27]), whereas in the quantum
scale it may be interpreted as a cascade of nonlinear Kelvin waves of different wavelengths
along quantized vortex lines.

Apart from the three regions introduced above, the behaviour of superfluid helium de-
pends also on temperature and on how energy is supplied to the largest scales. Moreover,
there is not a unique model for studying the energy spectrum at different scales, and the limit
of calculation in the numerical experiments makes these results still not fully confirmed and
in some situations open to debate.

We can state that the Kolmogorov spectrum (k−5/3) is practically confirmed for super-
fluid helium both numerically, experimentally and theoretically in the hydrodynamic regime
when energy is supplied to He II in the same way as in a classical fluid [1–7]. This is mainly
related to the so-called coflow experiments, when normal and superfluid components are
locked by means of the mutual friction, arising from the interaction between vortex lines
and the quasiparticles (rotons and photons) constituting the normal component. However,
this spectrum is found in a small range of wavenumbers, and the fundamental reasons for
its appearance are not yet completely clear (see for instance the discussion in [28]). Also,
a temperature-dependent enhancement of intermittency has been found in some range of
scales.

The behaviour of energy spectra is expected to be different in counterflow and superflow
experiments, where the two mentioned components are not mutually locked [1, 29]. There,
a k−3-slope for the energy spectrum is proposed theoretically [29]. In fact, the spectra for
turbulence in counterflow have recently become a hot topic [30–32]. It has been recently
pointed out that the large-scale energy spectra in the counterflow are strongly anisotropic
and in certain conditions may become quasi two-dimensional, with different mechanisms
defining the spectra in the several dimensions. Regarding the superflow regime, it has been
shown to probably include a direct (not cascade) energy transfer between large and small
scale. Note that regimes without an energy cascade were already considered in [33].

At quantum length-scale (k−1 � �) the behaviour of He II depends strongly on the tem-
perature, and at very low temperature where the friction is practically null, the Kelvin wave
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cascade predominates and two theoretical proposals have been open to debate for the en-
ergy spectrum (k−7/5 and k−5/3) [34, 35]. For higher temperature, Kelvin waves are damped
by the mutual friction and the Kelvin wave cascade is affected by these interactions. In
this region, it is expected that spectral energy decays as k−1 [36]. This is the case for one-
dimensional Kelvin waves cascade along the vortex line; however, for three-dimensional
Kelvin wave cascades it has been shown that the spectrum will be analogous to the classical
Kolmogorov one, namely, k−5/3 [37].

The intermediate region is unclear because the theoretical k2-slope for the energy spec-
trum (corresponding to energy equipartition) is not experimentally observed, probably be-
cause of the limited resolution of the devices used, as argued in [38]. This region corre-
sponds to a kind of bottleneck between the 3D-energy in the hydrodynamical region and the
1D energy cascade of the Kelvin waves along the vortex line [24]. The exchange of energy
between these scales happens through reconnections and interactions between vortices. A
detailed analysis of these features would require a clear microscopic understanding of the
several mechanisms; this is far deeper than the relatively modest abilities of dimensional
analysis. Despite this limitation, we illustrate how a discussion of a phenomenological in-
terpolation between spectra at large scales and long scales may suggest in which conditions
a k2 intermediate spectrum may arise, or what other kinds of behaviours could be expected.

The paper is organized as follows. In Sect. 2 we deal with the energy spectrum of the
superfluid component of Helium II in coflow, counterflow and superflow, and in the absence
of friction of the quasiparticles with quantum turbulence which occurs at very low tempera-
ture and we propose mathematical interpolation of the spectra between k� � 1 and k� � 1
regimes. In Sect. 3 we discuss a physical interpretation of the mathematical interpolation
and on its basis we explore how the energy rate transfer may influence on the possibility of
a k2 intermediate region. This is helpful to understand whether such a region is not practi-
cally observed because it is very narrow, or whether the conditions in which it may exist are
limited. Section 4 is devoted to conclusions.

2 Energy Cascades in Turbulent Superfluid Helium: Dependence on the
Kind of Flow and on the Average Vortex Separation

In this section we discuss some of the main features of the energy spectra of the super-
fluid component in Helium II in coflow, superflow and counterflow by dimensional analysis,
namely, the k−5/3, k−3, k−1 and k2 regimes, and interpolations between several regions of
values of k. The results summarized in Fig. 4 of [1] are qualitatively mimicked in our Figs. 1
and 2, corresponding respectively to our phenomenological analytical proposals (2.5) and
(2.11).

2.1 Coflow

In coflow it is usually assumed that the two components of superfluid helium flow in the
same direction and, that because of the presence of quantized vortices and hence of the
mutual friction between vortices and normal component, the two components match their
velocities in such a way that their relative velocity (counterflow velocity) vns = vn − vs is
negligible. Since the heat flux in the two-fluid model is proportional to vns , because q =
ρsST (vn − vs), with S the entropy per unit volume, then q = 0; thus, energy is mainly
associated to the mean velocity field ρv = ρnvn + ρsvs .
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The evolution equation of the velocity v in the one-fluid theory is

∂

∂t
v + v · ∇v + 1

ρ
∇p − ν∇2v − ν

ST
∇2q = 0, (2.1)

which, neglecting the contribution of the heat flux in the last term, becomes the usual Navier-
Stokes equation, ν being the kinematic viscosity.

Let the energy E(t) = 1

V

∫
1

2
v2dV =

∫ ∞

0
E(k, t)dk so that E(k, t) gives the fraction

of kinetic energy in modes with wavevectors between k and k + dk. In the hydrodynamic
regime it is assumed that viscous dissipation does not take place in a wide range of values
of k (the so-called inertial range), thus E(k, t) satisfies the continuity equation

∂

∂t
E(k, t) + ∂

∂k
ε(k, t) = 0 (2.2)

where ε(k, t) is the energy flux between different modes in spectral space.

In the stationary case, equation (2.2) leads to
∂

∂k
ε(k) = 0 and therefore ε(k) ≡ ε will

be constant, independent of k and t . Using arguments from classical turbulence, E(k),
which has the dimension (length)3(time)−2 (because it is given by kinetic energy per unit
mass per unit wavevector), is a function of the dissipation rate ε, which has dimension of
(length)2(time)−3, and of the wavevector k (which has dimension of (length)−1). Then, it
follows that in this case

E(k) = CK41ε
akb = CK41ε

2/3k−5/3 (2.3)

which is the Kolmogorov cascade and CK41 � 1. Dimensional arguments are sufficient in
this case to lead to the values a = 2/3, b = −5/3 for the exponents a and b in (2.3).

In the so-called intermittent turbulence this cascade changes to [39]

E(k) ∼ εakb ∼ ε2/3k−5/3(kL0)
β (2.4)

where L0 is the characteristic size of the stirring process supplying energy to the system,
and the exponent β is related to the fractal dimension of intermittent turbulence.

The transfer of energy supplied to the largest scales down to smallest scales is still open
to debate. It has been observed that if energy is supplied in the same way as a classical fluid
(using a fork or a grid for instance) superfluid helium behaves as a classical fluid, namely
the transfer of energy from bigger to smaller vortices follows the classical Kolmogorov
spectrum.

The energy spectrum (2.3) is observed in the hydrodynamic region k� � 1, whereas k−1

behaviour is observed for k� � 1 (in Sect. 2.2 we will comment about the k−1 behaviour).
In the intermediate region of k� � 1, it is observed a relatively narrow transition region
with equipartition behaviour k2 [6]. As an interpolation function between the k−5/3 and k−1

regions, with an intermediate k2 shoulder we propose

E(k) = A1k
−1 + AK41k

−5/3

2

[
1 + A1k

−1 − AK41k
−5/3

A1k−1 + AK41k−5/3
tanh [A(k� − 1)]

]
(2.5)

where AK41 = CK41ε
2/3, as given in (2.3), A1 = c1(κ/�)2 with c1 and A dimensionless

constant. In Fig. 1 there is the plot of (2.5). For A = 4, this figure reproduces in a qualitative
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Fig. 1 Plot of (2.5) for A1 = 10, AK41 = 1 and A = 4. The legend on the right-hand side refers to the power-
law behaviour of the straight-lines in the Log-Log plot, and OP stands for “Our Proposal” (2.5), which
reproduces the observed behaviour represented in Fig. 4 of the paper [1]. (Color figure online)

way the observed behaviour reported in Ref. [1], namely a transition from k−5/3 to k−1

behaviour with a k2 shoulder. In Sect. 3 we further discuss the physics behind the parameter
A. In Fig. 1 of [8] there is an analysis of the transition from the behaviour k2 to the behaviour
k−5/3, but there is no information about a region k−1 at shorter values of k.

2.2 Counterflow and Superflow

In terms of the two-fluid model, counterflow and superflow experiments are similar because
both are characterized by a relative velocity between the normal and superfluid components.
In counterflow, both components move in the opposite directions in such a way that the
average velocity v is zero on a transversal section of the channel; in superflow the normal
component is at rest on the average and only the superfluid component flows. In terms of the
one-fluid extended model [19, 40], instead, in counterflow heat q flows whereas the velocity
v fluctuates around the null value, whereas in superflow both heat q and velocity v flow in

such a way that v + 1

ρST
q fluctuates around the null value [19].

In [1, 29], it is seen that counterflow and superflow are in some sense the same situation,
because the main important ingredient is the relative velocity between the two components,
the counterflow velocity vns , whereas the former situation is characterized by v = 0 and the
latter situation by vn = 0. In terms of the one-fluid theory, v = 0 and q �= 0 in counterflow
and v = constant and q �= 0 in superflow. Thus, instead of being the main field (as in coflow)
here v contributes to the heat q through its fluctuations around the constant values of v.

For the superfluid component, or in heat-fluctuations, the relevant physical quantities are
κ (the quantum of circulation, having dimensions (length)2(time)−1), the vortex average
separation � and the wavevector k.

From κ , a reciprocal of time can be easily obtained as (time)−1 ∼ κ/(length)2. Then,
one may have several different combinations with the dimension of E(k, �), namely
(length)3(time)−2. For instance

E(k) ∼
( κ

�2

)2
k−3(�k)β (2.6)
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or

E(k) ∼ κ2

�2
k−1(�k)β (2.7)

or, in general terms, one could write

E(k) ∼ κa�bk−c. (2.8)

From dimensional analysis it follows a = 2, b + c = −1.
The exponent k−3 may be easily understood for k � �. The energy per unit mass of a

vortex with quantized circulation κ is v2 ∼ (κ/�)2, with κ/� being of the order of the speed
of the superfluid around the vortex core at a distance � from the core. For k � �, in a surface
of area k−2 there will be k−2/�2 quantized vortex lines. Thus, the energy per unit mass and
unit k will be

E(k) ∼
(κ

�

)2 k−2

�2
k−1 ∼ κ2�−4k−3. (2.9)

The behaviour in k−1 (for k� < 1) may also be interpreted on the same grounds as k−3,
with the difference that the factor in (k−1/�)2 giving the number of vortices in the area k−2

should be changed to 1, because in the area k−2 only a vortex will be found. Then we simply
have (κ/�)2k−1. However, in the case of k−1 considerably smaller than � one expects to have
intermittent behaviour, because in an area k−2 one will find sometimes one vortex, and some
times zero vortices.

In (2.6) and (2.7) we have singled out scalings in k−3 and k−1 with the corresponding
�−4 and �−2 scalings, and k2 in the transition regime, corresponding to � scaling. Of course,
since �k is a dimensionless quantity, other exponents for k may be obtained, so that in the
quantum case the cascade is not directly given by dimensional arguments. The exponent β

could be related to some kind of intermittence [41–43]. Alternatively, following the analogy
with (2.4) intermittence could be associated to a dependence of the kind (kd)β , with d being
the diameter of the container rather than to (k�)β . Thus, for narrow channels (� � d) one
could have E(k, �, d).

A simple interpolation between k−3 and k−1 behaviour in (2.6) and (2.7) could be

E(k) =
( κ

�2

)2
k−3

(
C3 + C1�

2k2
)
, (2.10)

with C1 and C3 numerical constants, but it does not describe the shoulder in the intermediate
region around k� ≈ 1, where there is a k2-behaviour.

Here, we propose an expression more general than (2.10), similar to (2.5), leading from
the k−3 behaviour to the k−1 behaviour (2.7) through an intermediate regime in k2. Our
proposal reads as

E(k) ∝ A1k
−1 + A3k

−3

2

[
1 + A1k

−1 − A3k
−3

A1k−1 + A3k−3
tanh [A(k� − 1)]

]
(2.11)

where A1 = C1(κ/�)2 (see (2.7) with β = 0) and A3 = C3κ
2/�4 (see (2.7) with β = −2).

Expression (2.11) is plotted in Fig. 2 for A1 = 10, A3 = 10−3.5, A = 2.8. This figure repro-
duces in a qualitative way the behaviour reported in Fig. 4 in Ref. [1]. For other values of
A, instead, the intermediate shoulder regions has not the equipartition form k2 (for instance,
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Fig. 2 Plot of (2.11) for A2 = 10, A3 = 10−3.5 and A = 2.8. The legend on the right-hand side explains
the power-decay of the straight-lines in the Log-Log plot, and OP stands for “Our Proposal” (2.11), which
reproduces the observed behaviour represented in Fig. 4 of the paper [1]. (Color figure online)

for A = 5, the intermediate region has the form k3). The expression (2.11) for k� � 1 and
k� � 1 are the same as the limiting expression from (2.10). In Sect. 3 we discuss a possible
physical interpretation of parameter A.

3 Discussion of Our Interpolation Proposals in Transition Regimes

In this section we discuss the mathematical relation between the value of the parameter A

in the interpolation expressions (2.5) and (2.11) and the exponent m of km in the transition
zone (the elbow in the plots in Figs. 1 and 2) as well as some physical comments about the
possible physical meaning of A.

The relation between A and m in interpolation expression (2.5) for coflow between k−5/3

and k−1 can be found calculating the slope of the straight line in the log-log plot of the
figure. The cumbersome expression is:

m = − 1

6 coth−1
(

2A

cosh−1(2)

)
⎡
⎢⎣3 log

⎛
⎜⎝−

10
(

1 − cosh−1(2)

2A

)2/3

√
3

+ 10

(
1 − cosh−1(2)

2A

)2/3

+ 1√
3

+ 1

⎞
⎟⎠ − 3 log

⎛
⎜⎝

10
(

cosh−1(2)

2A
+ 1

)2/3

√
3

+ 10

(
cosh−1(2)

2A
+ 1

)2/3

− 1√
3

+ 1

⎞
⎟⎠

+10 coth−1

(
2A

cosh−1(2)

)⎤
⎥⎦ (3.12)

which for A = 4 becomes m � 2. For A � 0.66, m reaches its minimum value, m � −1.4.
The first case corresponds to the transition regime with a k2 regime; in the second case,
the behaviour from −5/3 and −1 is always with negative slope, and the slope at k� � 1 is
intermediate between −5/3 and −1.



A Mathematical Analysis of the Intermediate Behaviour of the Energy... Page 9 of 13    14 

The relation between A and m in interpolation expression (2.11) for counterflow between
k−3 and k−1 can be found following the same procedure adopted in (3.12). The result is:

m =
log

(
2.114A

(
1.A2−1.317A+0.434

)

(1.A−0.658)3

)
− log

(
7.886A

(
1.A2+1.317A+0.434

)

(1.A+0.658)3

)

log

(
1 − log

(
2+√

3
)

2A

)
− log

(
log

(
2+√

3
)

2A
+ 1

) , (3.13)

which for A � 2.8 becomes m � 2. For A � 0.66, m reaches its minimum value m � −1.9.
As well as in the previous case, the transition may have a k2 regime (m = 2) or it may be
always with a negative slope such that the slope at k� � 1 is intermediate between −3 and
−1.

On physical grounds, we conjecture that the value of A could depend on the ratio between
some residence time, tres, of the energy in the transition region, and the characteristic time of
exchange of energy, tex , between the several physical modes of the system. If tres � tex there
is time enough to distribute the energy equally in all the physical modes (equipartition). If,
instead, tres � tex , the energy goes directly from the initial mode to the final mode without
time to be redistributed in the several other modes, and a region k2 will not be achieved.

Thus, we heuristically suggest that A could be related to tres/tex as

A = 4 + 4(tres/tex)
γ

6.06 + (tres/tex)γ
(3.14)

for (2.5) and for (2.11)

A = 2.8 + 2.8(tres/tex)
γ

4.24 + (tres/tex)γ
(3.15)

with γ an exponent which is not relevant in the asymptotic regimes.
We have considered our proposal (2.5) and (2.11) for different values of the coefficient

A, according to our proposal (3.14) and (3.15), which are related to the ratio tres/tex and the
exponent γ . More precisely, assuming γ = 1, for the sake of simplicity, we consider three
different value of tres/tex , namely tres/tex = 10, 1 and 0.1, for understanding how changes
the behaviour of our proposal. The results for (2.5) are plotted in Fig. 3 for three values of
A, namely A = 2.73 (blue line for tres/tex = 10), A = 1.13 (red line for tres/tex = 1) and
A = 0.71 (purple line for tres/tex = 0.1). In Fig. 4 instead (2.11) is plotted for three values
of A, namely A = 2.16 (blue line for tres/tex = 10), A = 1.07 (red line for tres/tex = 1) and
A = 0.71 (purple line for tres/tex = 0.1). Note the different behaviour of our proposals in
these figures with respect to the ones plotted in Fig. 1 and Fig. 2.

Indeed, for tres � tex one finds the values corresponding to equipartition (k2 behaviour)
whereas for tres � tex one finds a negative slope intermediate between the negative slopes of
the k� � 1 region and the k� � 1 region. Experimentally exploring the role of tres/tex on the
intermediate behaviour of the energy cascade would require being able to modify tres/tex . A
possibility of doing so would be by changing the temperature, but we do not know at present
the influence of temperature on tres nor tex . A possible guess is that at lower temperature the
exchange time of energy tex will become longer, because the friction is smaller. A deeper
analysis of this topic should be carried out.

The idea that in the intermediate region there could be a bottleneck in the energy transfer
between the k� � 1 and k� � 1 regimes has been proposed by L’Vov et al. [24]. In their
suggestion, the transfer of energy from three-dimensional or two-dimensional excitations
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Fig. 3 Plot of (2.5) for A1 = 10, AK41 = 1 and A = 2.73 (blue line), A = 1.13 (red line) and A = 0.71
(purple line), found for γ = 1 and tres/tex = 10, 1 and 0.1, respectively in (3.14) for “Our Proposal” (2.5).
(Color figure online)

Fig. 4 Plot of (2.11) for A1 = 10, A3 = 10−3.5 and A = 2.16 (blue line), A = 1.07 (red line) and A = 0.71
(purple line), found for γ = 1 and tres/tex = 10, 1 and 0.1, respectively in (3.15) for “Our Proposal” (2.11).
(Color figure online)

(k−5/3 and k−3 scaling, respectively) at k� � 1 to one-dimensional behaviour (Kelvin-wave
excitation along one-dimensional vortex lines) for k� � 1 regime would be slow enough in
order to have time enough to exchange energy between the several modes. However, in the
case that the energy transfer rate in the bottleneck is not sufficiently low, our interpretation
of A suggests how the spectrum could be modified.

4 Conclusions

In this paper we have proposed simple dimensional interpretations of some of the salient fea-
tures of the energy cascade in the hydrodynamic regime and the quantum regime in coflow
and counterflow and superflow experiments. We have used the quantities ε, κ , � and k, but
the diameter d of the container could also appear for turbulence in narrow channels. We



A Mathematical Analysis of the Intermediate Behaviour of the Energy... Page 11 of 13    14 

have also proposed interpolation expressions (2.5) and (2.11) leading from the hydrody-
namic regime to the Kelvin wave regime (namely, from k−5/3 to k−1 in coflow, and from k−3

to k−1 in counterflow), with an intermediate k2 shoulder.
On the other side, we have proposed (3.14) and (3.15) for the physical interpretation of

the parameter A playing a central role in the interpolation expressions (2.5) and (2.11) in
terms of tres/tex, with tres and tex being the característic residence time and exchange time.
Such interpretation may be helpful for the analysis of the k2 behaviour of the shoulder
connecting the hydrodynamical region from L0 to � and the quantum region from � to lP as
energy equipartition between the several k-modes. This region will appear if the energy does
not flow in a fast way from high vortices to small vortices, i.e. if tres � tex , but that it has
some time to redistribute in the several vortices, either smaller or higher. In this region, the
vortex lines begin to be sufficiently separated from each other, and there is a combination
of energy exchange between different vortices, and energy exchange between Kelvin-wave
excitations inside the same vortex. In contrast, if the energy transfer rate is not low enough,
i.e. if tres � tex , a k2 region is not expected to appear. This is helpful to understand whether
such a k2 region becomes narrower and narrower when the energy transfer rate increases,
in such a way that it is not practically observed because it is too narrow, or whether the
k2 region simply disappears because the exponent in the intermediate region of the cascade
changes with the energy rate transfer. Our analysis suggests that the latter is indeed the
case. These conclusions do not depend in a crucial way on the use of a tanh function for
interpretation in (2.5) and (2.11), but they would be analogous if alternative interpolations
were used.

Dimensional analysis is not able to yield univocal predictions for the cascade, but any-
way it has some limited but potentially useful predictive power. Indeed, in (2.6), (2.7), the
behaviour in k is linked in a definite way to the behaviour in �. Thus, the scaling laws in k

and in � are linked. Future researches on the dependence of the cascade on �, for a given k,
could test whether these scaling laws are indeed related to the essential physics of the prob-
lem in the several range of wavevectors. For instance, it has been suggested that a reason
for a bottleneck in the energy transfer from the hydrodynamic region to the Kelvin region
(and therefore a low value of the rate of the energy transfer) is the contrast between the three
dimensional character of the former one and the one-dimensional character of the latter one.
Thus, our suggestion is that turbulence in wide channels would exhibit a k2 intermediate
region, whereas for narrower channels the energy rate transfer between both regions would
become higher and the k2 region would disappear, by changing the exponent 2 to lower
values of the exponent.

Instead, for coflow one observes the classical k−5/3 behaviour for k� small and k−1 for k�

high. Note that k� small means that the average vortex separation � is much smaller than the
wavelength, i.e. there are many vortices per unit length. When k increases (and wavelength
diminishes), there are fewer vortices per unit length, and k−1 behaviour dominates. In this
case, the energy cascade is in the form of Kelvin waves in quantized vortex lines, rather than
in hydrodynamic vortices. Indeed, if the vortex lines are too much separated their mutual
interaction is small, and the cascade is due to processes taking place separately in any single
vortex line.
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