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Abstract
The use of network analysis to investigate social structures has recently seen a rise

due to the high availability of data and the numerous insights it can provide into

different fields. Most analyses focus on the topological characteristics of networks

and the estimation of relationships between the nodes. We adopt a different per-

spective by considering the whole network as a random variable conveying the

effect of an exposure on a response. This point of view represents a classical

mediation setting, where the interest lies in estimating the indirect effect, that is, the

effect propagated through the mediating variable. We introduce a latent space model

mapping the network into a space of smaller dimension by considering the hidden

positions of the units in the network. The coordinates of each node are used as

mediators in the relationship between the exposure and the response. We further

extend mediation analysis in the latent space framework by using Generalised

Linear Models instead of linear ones, as previously done in the literature, adopting

an approach based on derivatives to obtain the effects of interest. A Bayesian

approach allows us to get the entire distribution of the indirect effect, generally

unknown, and compute the corresponding highest density interval, which gives

accurate and interpretable bounds for the mediated effect. Finally, an application to

social interactions among a group of adolescents and their attitude toward substance

use is presented.
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1 Introduction

Past decades have witnessed an explosion of network data in all corners of science

(Kolaczyk and Csárdi 2014). The increasing availability of interactions data, where

by interaction we indicate any relation between actors, and the wide range of fields

where networks find applications, have contributed to developing several techniques

for analysing network data. Most analyses focus on the topological characteristics of

networks and the estimation of relationships between the nodes. Graph theory is

used to examine the network structure. Fast and efficient algorithms are used to

detect network communities, and a number of statistical models are adopted to

understand the formation of connections between units. A review of statistical

networks models, algorithms and software can be found in Salter-Townshend et al.

(2012). See also Newman (2010) for a general introduction to networks and Ni et al.

(2021) for a recent review on the applications of Bayesian graphical models in

biology.

In this work, we address the network as a random variable M having a role in the

mechanism through which an explanatory variable X affects a response Y. The aim

is to decompose the total effect of X on Y into a direct and an indirect effect.

Mediation analysis is a statistical technique widely used for this purpose

(VanderWeele 2009). The intermediate variable conveying the indirect effect is

called mediator. As an example, we consider an empirical analysis in which the

social network of a sample of adolescents is regarded as a mediator in the

relationship between gender and substance use, and between the amount of pocket

money each participant had per month and substance use. The goal is to understand

how social interactions can represent the intermediate variable in the mechanism

through which gender or pocket money availability can affect the adolescent

propensity to smoke (tobacco or cannabis) and drink alcohol.

A major issue is related to the mismatch of dimensions between the network and

the other variables. Following Liu et al. (2021), to deal with this evident mismatch,

we do not use the network directly. Instead, we reduce its dimension through the

latent space model proposed by Hoff et al. (2002). This model projects the network

into a space of smaller dimension, where each unit in the network is assumed to

have an unknown position. These latent positions are estimated by modelling the

link between two units in the network as dependent on their distance and possibly on

additional covariates, which may explain the relationship. The coordinates of each

node in the latent space become the mediators of the relationship between the

exposure and the outcome of interest.

When variables are linked via linear relationships, the mediated effect can be

obtained as a product of two coefficients (MacKinnon 2008). However, when

relationships are nonlinear, the computation of the indirect effect is not straight-

forward. We use an approach based on derivatives, as proposed by Stolzenberg

(1980) and Geldhof et al. (2018), which allows us to obtain several indirect effects,

conditional on the different values taken by the exposure.

Inference on confidence intervals of the mediated effect is complex even in the

linear case since the distribution of the product of two coefficients is generally
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unknown and challenging to obtain in closed form. Bayesian methods are

particularly suited to overcome the latter problem: using Monte-Carlo Markov

Chains (MCMC), one can get the entire posterior distribution of the indirect effects,

making it easy to compute the highest density credibility intervals (HDIs).

Liu et al. (2021) analyse network data with a binary response, but they use the

latent response approach. They assume the existence of a latent normally distributed

response Y�, such that when it exceeds a certain threshold the observed response is

one, zero otherwise. This approach allows them to estimate the indirect effect as a

product of regression coefficients and avoid the difficulties related to a link function

different from identity.

However, in some cases, this approach may not be the most appropriate. As an

example, imagine to make a survey on a group of adolescents between 13 and 17

years and ask them if they have ever experienced bullying. It is diffcult to imagine

an underlying latent variable which, adequately categorised, may give rise to the

binary variable ‘ having experienced bullying’. In addition, even leaving aside

binary variables, many other distributions are hard to cope with in a mediational

context and for some of them it is challenging to conceive a corresponding normal

latent variable.

In this paper, we extend and generalise Liu et al. (2021) approach by integrating

it with that of Hayes and Preacher (2010), and Geldhof et al. (2018). This union

allows researchers to handle different kinds of mediators and outcomes without

resorting to the latent response formulation. The indirect effect is no more a unique

value constant over units. It still is a product but involving nonlinear terms

dependent on the values taken by the exposure and possibly other covariates, as will

be explained in the following sections.

The remainder of the paper is organised as follows: in Sect. 2, the latent space

model approach is introduced; Sect. 3 is devoted to a brief description of mediation

analysis and the Geldhof et al. (2018) method; Sect. 4 illustrates how to combine the

two techniques, to include a network in the mediation model, and provides an

overview of Bayesian inference; Sect. 5 is devoted to the data analysis and is

followed by some conclusions.

2 Latent space model

Network data consist of a set of n units and a relation tie aij, measured on each

ordered pair of units i; j ¼ 1; . . .; n. The latent space approach assumes the existence

of a latent space where each unit in the network has a hidden position and relative

distances predict the formation of a tie among units. The main contributions to this

theory can be found in Hoff et al. (2002); Hoff (2003); Handcock et al. (2007) and

Krivitsky et al. (2009).

Formally, a network with n nodes can be represented by an n� nmatrix A, where
each entry aij denotes a relationship between the units i and j. We focus on Boolean

relationships and, as a consequence, on adjacency matrices, but other kinds of

relationships can be modelled as well. The probability that a link between nodes i
and j exists, denoted by pij, is assumed independent of all other ties in the network
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conditionally on the latent positions z, and possibly on other covariates, and is

modeled via a logistic regression

logitðpijjzi; zj; vij; aÞ ¼ a0 þ a
|

1vij � kzi � zjk; ð1Þ

where zi ¼ ðzi1; . . .; ziDÞ| and zj ¼ ðzj1; . . .; zjDÞ| are the latent positions of units i

and j, vij is a set of covariates characterising the dyad, and k � k is the Euclidean

distance.

In other words, the more similar and closer are two units, the higher is the

probability of a tie between them. The likelihood of this model is relatively simple,

so likelihood-based methods of estimation are feasible. Unfortunately, Euclidean

distances are preserved under isometric transformations, i.e. rotations, reflections

and translations. This characteristic implies that, for any matrix of latent positions Z
associated with a certain likelihood, there exist infinite other matrices having the

same likelihood as Z. In other words, the latent positions held by the actors of a

network are not unique. To overcome the issue of identifiability, we change the

object of inference. Denoting by ½Z� the class of positions equivalent to Z under

isometric transformations, each equivalence class, called configuration, is charac-

terised by a unique set of distances. Thus, configurations give us unique positions

according to an appropriate summary statistic. This approach was adopted by Hoff

et al. (2002), who propose a ‘ Procrustean’ statistic for uniquely representing each

configuration and provide a Bayesian algorithm to obtain it. We explore the

inferential problem in Sect. 4.1.

The main advantage of the latent space approach is that most networks can be

represented in a space of dimension D � n; moreover, the coordinates are

orthogonal. Having established the setting, similarly to Liu et al. (2021), the idea is

to use the components of the D-dimensional vector representing the position of each

unit in the network as mediators in the relationship between an exposure and a

response to estimate the indirect effect.

3 Mediation analysis

In the most straightforward setting, a mediation model includes three variables, as

shown in Fig. 1. Let X be an explanatory variable, which, from now on, we will call

exposure. If the mediator M and the outcome Y are assumed to be Normally

Fig. 1 Mediation model with
three variables
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distributed and to have linear relationships, the regression equations can be specified

by:

E½Y jx� ¼ s0 þ s1x ð2Þ

E½Mjx� ¼ b0 þ b1x ð3Þ

E½Yjx;m� ¼ c0 þ c1xþ c2m: ð4Þ

Equation (2) is the marginal model for the outcome; therefore, s1 represents the
total effect of X on Y. Equation (3) shows the mediator model, while in the last

equation, the outcome model conditional on both the mediator and the exposure is

specified. In the general associational framework, c1 represents the direct effect of

the exposure on the outcome. The indirect effect can be computed via the product

method by multiplying b1 and c2, that is, the coefficients corresponding to the

arrows lying on the path connecting X to Y through the mediator M (Baron and

Kenny 1986; MacKinnon 2008). More generally, consider a graphical model G
expressing the relationships among a set of variables, and a related set of equations

which formalise such relationships. The product method simply consists of

multiplying the coefficients corresponding to arrows along the path of interest in G.
The product method relies on the assumption of linear relationships among

variables, and has its roots in the path analytic framework conceptualised by Wright

(1934) and further developed by Duncan (1966); Alwin and Hauser (1975) and

Bollen (1987).

When the assumption of linearity does not hold, either for the mediator or the

response, the product method is not appropriate to estimate the indirect effect.

Researchers have mainly focused on binary or count outcome variables, for which

indirect effects are obtained by appropriately standardising the coefficients or by

asymptotic approximations (MacKinnon 2008; Mascha et al. 2013; Cheng et al.

2018; Gaynor et al. 2019; Vanderweele 2015). Very little has been done to extend

mediation analysis to Generalised Linear Models (Schluchter 2008; Wagner et al.

2018).

In this work we use an approach dating back to the ’80s (Stolzenberg 1980) and

revived by Hayes and Preacher (2010) and Geldhof et al. (2018). Stolzenberg

(1980) noticed that indirect effect can be seen as the rate at which a change in the

exposure produces a change in the response indirectly through the mediator. In a

more formal way, this can be expressed as the derivative of Y with respect to X
taking into account the dependence from M, that is, writing the response as a

composite function, since Y depends on M, which in turns depends on X. Using the

chain rule, the indirect effect can then be written as a product of derivatives, the one

with respect to the exposure in the mediator model and the one with respect to the

mediator in the outcome model. For example, differentiating Eqs. (3) and (4) with

respect to X and M, respectively, yields b1 and c2, whose product is exactly the

indirect effect in the classical Normal linear case.

Formulas for the indirect effect when at least one between the mediator and the

outcome model is nonlinear are more complex and depend on the values of X and/or
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M (see Table 1). Hayes and Preacher (2010) remark that the value of M cannot be

chosen at random, but relies on the value of X. This is the reason why Geldhof et al.

(2018) suggest to call these effects conditional, in contrast to Hayes and Preacher

(2010), who proposed the term instantaneous. Geldhof et al. (2018) also point out

that interpreting these effects as the increment in Y due to a unitary increment in X,
mediated by M, is incorrect and that they should rather be commented in terms of

increments of standard deviation, i.e. taking their magnitude into account.

In the presence of multiple mediators, the computation of indirect effects

becomes trickier. One can distinguish mediator-specific indirect effects, that is,

indirect effects conveyed by each mediator, and total indirect effect. Except for the

unlikely case of perfectly uncorrelated mediators, when the total indirect effect can

be obtained by simply summing up the mediator-specific indirect effects, the

magnitude of the correlation between mediators may affect the estimate of the total

indirect effect (Preacher and Hayes 2008).

In the current setting, since we consider as mediators the latent coordinates

corresponding to each subject in the network, the assumption of uncorrelated

mediators sounds plausible, as will be discussed in Sect. 5. In this case, the

extension of Hayes and Preacher (2010) and Geldhof et al. (2018) approach is

straightforward. The response variable can be seen as a composite vector function

yðm1ðxÞ;m2ðxÞ; . . .; mDðxÞÞ. Scalar derivatives become vector derivatives and the

chain rule leads to

ryðmÞ �m0ðxÞ ¼ oy

om

� �
|
dm

dx
;

i.e. the dot product between the gradient ryðmÞ ¼ oy=om, the vector of derivatives

of Y with respect to the mediators, and m0ðxÞ ¼ dm=dx, the vector of derivatives of
the mediators with respect to X.

When both the mediator and the outcome models are linear, this yields the sum of

mediator-specific indirect effects, i.e.
PD

k¼1 b1k c2k . In this simple case the total

indirect effect does not differ across subjects. On the contrary, if at least one

between the mediators and the outcome model is not linear, the total indirect effect

is still a sum of products, but it varies according to the values of the exposure, so

that each subject has his/her own total indirect effect.

Table 1 First partial derivatives for three link functions referring to paths from X to M and M to Y

Link function Mediator model First partial Outcome model First partial

derivative wrt X derivative wrt M

Identity E½M� ¼ b0 þ b1X b1 E½Y � ¼ c0 þ c1X þ c2M c2
Logit E½M� ¼ eb0þb1X

1þeb0þb1X
b1e

b0þb1X

ð1þeb0þb1XÞ2
E½Y � ¼ ec0þc1Xþc2M

1þec0þc1Xþc2M
c2e

c0þc1Xþc2M

ð1þec0þc1Xþc2M Þ2

Log E½M� ¼ eb0þb1X b1e
b0þb1X E½Y � ¼ ec0þc1Xþc2M c2e

c0þc1Xþc2M
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4 Combining latent space and mediation models: model
specification and estimation

To date, there have been very few attempts to include networks in mediation

models. To the best of the authors’ knowledge, there are only two works proposing

approaches to address the issue: Liu et al. (2021) propose the use of latent space

models to reduce the dimensionality of the network, while Sweet (2019) method is

based on a stochastic blockmodel. While the latter approach can be defined

network-oriented, since it entails a number of networks to be summarised through a

relevant parameter, the former, on which our work partly relies, is actor-oriented,

since a unique network is summarised by the latent positions of its nodes.

We extend Liu et al. (2021) proposal by using a multiple-mediator approach

which allows the outcome distribution to belong to the exponential family, and to

depend non linearly on its predictors. Mediational effects are obtained through the

Geldhof et al. (2018) approach based on derivatives and extended to multiple

mediators, as described in the previous section.

4.1 Bayesian models and inference

Making inference on the indirect effect is not straightforward even in the linear case,

since, even assuming that the two regression coefficients estimators are Normally

distributed, generally their product, i.e. the indirect effect in linear models, has an

unknown, possibly highly skewed distribution. This complicates the estimation of

confidence intervals for the mediated effect (MacKinnon et al. 2004).

Bayesian MCMC methods provide a flexible way to deal with the above

mentioned inferential problem, since they allow researchers to obtain the

distribution of the effect and a highest density credibility interval (HDI). In the

context of mediation analysis, HDIs are easier to obtain than their frequentist

counterpart and less computationally demanding than other non-parametric methods

used to compute confidence intervals, such as bootstrap. Therefore, in this paper,

inference is carried out within a Bayesian framework via an MCMC approach (Hoff

2009; Spade 2020).

To make inference on the indirect effect, we proceed with a two-step approach.

First, we select the dimension D of the latent space and estimate the latent positions

held by each subject in the network. Second, we estimate the parameters of the

mediation model and the mediational effects.

In the first step we fit the latent space model shown in Eq. (1) using the method

proposed in Hoff et al. (2002) and Handcock et al. (2007). Their procedure makes

inference on the configuration corresponding to the network using a Procrustean

transformation

Z� ¼ argminTZ tr½ðZ0 � TZÞ|ðZ0 � TZÞ�;

where T ranges over the set of rotations, translations and reflections and Z0 is a set of
fixed starting positions, generally the maximum-likelihood estimates of the latent

positions centered at the origin. Z� is ‘ the element of the configuration [Z] closest to

123

Networks as mediating variables: a Bayesian... 1021



Z0 in terms of the sum of squared positional difference’ (Hoff et al. 2002) and can

be obtained through a Metropolis-Hastings algorithm. The prior distributions for the

model parameters and the latent positions are

a0 �Nðla0 ; sa0Þ; a1 �MVNðla1 ;Ta1Þ; Zi �MVNðlz;TzÞ; ð5Þ

where the l’s represent expectations, with lz ¼ ðlz1;lz2; . . .; lzDÞ, and sa0 ; Ta1 ; Tz

are precision matrices (sa0 is a 1� 1 matrix, i.e. a scalar). In particular, Tz is

assumed to be diagonal, with elements szk; k ¼ 1; . . .;D. The posterior distribution

of Z� can be summarised either with the posterior mean or median. A detailed

description of the estimation procedure can be found in Hoff et al. (2002) and

Handcock et al. (2007).

A crucial part of the inferential process is the choice of the latent space

dimension. This can be done in different ways, and one of the most common entails

the estimation of a number of models, using different values of D, and the choice of

the dimension corresponding to the model showing the best fit, on the basis of a

measure like the Bayesian Information Criterion or the F1-score. The latter is used

to evaluate the accuracy of a test, taking into account the precision and the recall. In

a diagnostic test with a binary response, say positive or negative, the precision

indicates the proportion of elements correctly classified as positive among all those

classified as positive, i.e. the ratio of true positive over the sum of true and false

positive, while the recall indicates the proportion of positive correctly classified

over all actual positive, i.e. the ratio of true positive over the sum of true positive

and false negative

Precision ¼ TP

TPþ FP
; Recall ¼ TP

TPþ FN
:

The F1-score is the harmonic mean of precision and recall

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

¼ TP

TPþ 1
2
ðFPþ FNÞ

;

and ranges between 0, when the test performs poorly, and 1 when the test is

extremely accurate.

In the context of networks, one can compare the actual network with that

predicted by the latent space model, and examine if the presence of a tie between

two nodes is correctly detected by the predicted network. Then, the true positive are

the links present in the observed network which are correctly predicted by the

model, while the false negative are those links present in the observed network but

not detected by the predicted network. Definitions of false positive and true negative

can be obtained analogously. The higher the F1-score, the better the prediction

made by the latent space model.

The second step of the estimation procedure involves the mediation model. Let X
and Y denote the exposure and the outcome of interest, respectively. Recall that, for

every subject i ¼ 1; . . .; n, each coordinate Zik of his/her position in the latent space

is regarded as a mediator of the X-Y relationship. The Bayesian mediation model is
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made up of two parts: a generalisation of models (3)–(4) and the prior distributions

of the models’ parameters. The former can be specified as

g1ðE½Zikj xi�Þ ¼g1ðlzikÞ ¼ b0k þ b1kxi ð6Þ

g2ðE½Yij xi; zi�Þ ¼g2ðlyiÞ ¼ c0 þ c1xi þ c
|

2zi; ð7Þ

for i ¼ 1; . . .; n, and k ¼ 1; . . .;D, with Zik �Nðlzik ; szkÞ, Yi belonging to the natural

exponential class (NEC) and having expectation lyi, and g1 and g2 being two link

functions.

The second part, i.e. the prior distributions are assumed to be

b0k �Nðlb0 ; sb0Þ; b1 �MVNðlb1 ;Tb1Þ; szk �Gammaðv0=2; v0r20=2Þ
c0 �Nðlc0 ; sc0Þ; c1 �Nðlc1 ; sc1Þ; c2 �MVNðlc2 ;Tc2Þ:

ð8Þ

Except for the random variable Y, which can belong to the natural exponential

family, and the parameters szk, all the remaining variables and parameters have a

(univariate or multivariate) Normal distribution. Notice that the second parameter in

the specification of the Normal distribution is not the variance, but its inverse, that

is, the precision. It is also worth noting that the mediators are not correlated. This

assumption is quite reasonable considering the nature of the variable, since they are

coordinates in a Euclidean space.

Figure 2 shows the steps of the proposed approach. If D ¼ 1 we have a single

mediator model, as in Fig. 1. If D[ 1 we have a multiple-mediator model, as shown

in Fig. 2c for the simple case D ¼ 2.

The indirect effect can be estimated as the scalar product of two vector

derivatives (Sect. 3). If the mediators and outcome models are as in Eqs. (6)–(7),

denoting by gzk and gy the linear predictors of the mediator and the outcome,

respectively, the total mediated effect can then be estimated as

oly
oz

� �|
olz
ox

¼
XD
k¼1

oh2ðgyÞ
ozk

oh1ðgzkÞ
ox

; ð9Þ

where hr ¼ g�1
r ; r ¼ 1; 2: In the MCMC Bayesian framework, we can easily get a

chain of total indirect effects for each subject, from which to estimate the posterior

mean or median and the HDI.

5 Data analysis

The data used in the analysis are a subsample of the 160 adolescents enrolled in the

Teenage Friends and Lifestyle Study, a cohort study carried out in a secondary

school of Glasgow between 1995 and 1997 intending to investigate how smoking

behaviours and substance use change over time, and the extent to which social

interactions influence them.
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5.1 Dataset description

Except for participants’ sex and age, which were recorded at baseline, other

variables were collected at three different time occasions. Information on substance

use (tobacco, alcohol, cannabis), leisure time activities, music taste, romantic

Fig. 2 Steps of the proposed method: starting from a network (a), a latent space model maps it into a
space of smaller dimension, a plane in (b). The latent coordinates are then used as mediators (c)
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relationships and several others are available. Moreover, social matrices represent-

ing friendship relationships among participants are included in the dataset. The

subsample of subjects selected for the analysis consists of the 129 students present

at all three measurement times. We conducted a cross-sectional analysis for each

time point. Our interest lies on the way two exposures, Sex, participant’s gender, and
Money, the amount of pocket money each participant had per month, affect

substance use through the relationship network. Sex is a binary variable, 0 denotes

male and 1 female, Money is a continuous variable ranging from 0 to 40 pounds at

the first time, from 0 to 50 pounds at the second time and from 0 to 70 pounds at the

third. As it will be explained in the next section, we used the variable as it is, when it

plays the role of exposure in the mediation model, and a categorical version

obtained through the quartiles of Money at time 3, when it needs to be included in

the latent space model as covariate. The categorisation choice is clearly arbitrary,

but generates meaningful categories with acceptable ranges. Figure 3 represents the

network at time 3, where nodes are coloured according to Sex (a) and categories of

Money (b).

The social networks representing relationships among students are defined by

non-symmetric matrices, since in the data collection phase students were asked to

name up to six friends. The lists thus obtained are partially overlapping, but in some

cases the relationship of friendship is not reciprocal. Each cell aij can take three

values: 0 if subjects i� j are not friends, 1 if subject i considers j as a friend and 2 if

i considers j as a best friend. We transformed these matrices into adjacency matrices

by merging the last two categories and coding them with 1, to simply indicate

friendship.

The three response variables, Smoke, Cannabis and Alcohol, are measured at

each time point and are categorical. Smoke has three categories: 0 indicates non-

smoker, 1 occasional and 2 regular smoker (i.e. more than once a week). Cannabis
has four levels: 1-never used, 2-tried once, 3 occasional and 4 regular user. Finally,

Fig. 3 Graphical representation of the social network at time 3 with nodes coloured according to Sex and
categories of Money: on the left panel (a), = male and = female, on the right panel (b) = 1 (0–7£),

= 2 (7–12£), = 3 (12–20£), = 4 (20–70£)
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Alcohol is a five-category variable coded as follows: 1 non user, 2 once or twice a

year, 3 once a month, 4 once a week and 5 more than once a week. This variable

presents some missing values: we excluded subjects lacking two or three values and,

for subjects presenting only a missing, we imputed it on the basis of the other two

collected. This led to the exclusion of 12 students. We converted all variables into

binary ones by appropriately merging categories: 2 and 3 for Smoke, to distinguish

between smokers (occasional and regular) and non smokers, 1–2 versus 3–4 for

Cannabis and 1–2 versus 3–4–5 for Alcohol, respectively, to denote no or sporadic

consumption versus regular consumption. In fact, nothing would have prevented us

from using categorical responses. However, this would have entailed fitting

multinomial models and deriving expressions for the indirect effect involving more

complex derivatives. For the sake of simplicity, and to make our application easier

to understand, we preferred to convert response variables into binary and to estimate

logistic models.

5.2 Model implementation

All analyses were carried out in R, using the latentnet and rjags packages.

We implemented the Bayesian model described in Sect. 4.1 in the software JAGS.

As previously discussed, our analysis consisted of a two-step procedure: first, for

each network, we obtained the coordinates of each subject in a latent space of

appropriate dimension; second, we used these positions as mediators in the

mediation model described by (6)–(7). The model parameters and the effects of

interest were estimated through MCMC.

In the first step, we fitted two versions of model in Eq. 1: one without covariates

and one including covariates. As regards the latter, the covariates have to be dyadic:

if Sex takes the role of covariate in the latent space model, it assumes value one if

two subjects have the same gender and zero otherwise. Money becomes a dyadic

variable assuming value one if two subjects fall in the same category of pocket

money received by parents, zero otherwise. This is the reason why we categorised

Money as detailed in the previous section. Clearly, results may change according to

categorisation; then, to overcome the arbitrariness of the choice, one can use a

continuous dyadic variable, for example the difference between two subjects’

pocket money. We carried out analyses also with this continuous dyadic variable as

covariate in the latent model, but, since results were not different from those

obtained with the categorical version of Money, we discuss only the latter.

As already mentioned in Sect. 2, inference is not carried out on positions, which

are not identifiable, but on configurations. The latentnet package uses an

MCMC algorithm to estimate the posterior distribution of the configuration which

maximizes the model likelihood, as described in Hoff et al. (2002). We did not

specify the hyperparameters characterising the prior distributions of the latent space

model parameters in Eq. (5). The latentnet package selects the priors through a

heuristic rule which performs well on the great majority of networks. See Sect. 2.4

of Krivitsky and Handcock (2008) for further details.

To assess model fit and, as a consequence, the most appropriate latent space

dimension to represent the networks, we fitted the latent models discussed above,
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with and without covariates, for D ranging from 1 to 10. We specified 100,000

iterations, adaptation = 50,000 and thinning = 50. Graphical inspection of the chains

revealed convergence and absence of autocorrelation. The chains of the latent

dimensions were summarised through their posterior means, which uniquely

characterise the distribution of the configuration. We compared the adjacency

matrices corresponding to the actual networks to the matrices obtained from the

relative distances between the estimated latent positions in terms of F1-score, as

described in Sect. 4.1.

The optimal dimension of the latent space varies for each network and model.

The short period covered by the data made us think that networks should be

characterised by a structural invariance over time, so, given the model, they can be

represented by the same number of dimensions, selected through the F1-score, as

discussed in Sect. 4.1. For the latent model without covariates and the latent model

with Sex as covariate we selected seven dimensions. For the latent model with

Money as covariate, both four and seven dimensions could have been chosen, but we

selected seven to be consistent with the dimensions of the other models.

Before fitting mediation models, we checked for correlation between mediators.

We inspected the chains used to estimate the latent positions and derived the

posterior distribution of their correlation matrices. For each extra-diagonal element

we derived the correspondent HDI and checked if it contained 0. For each model, all
DðD�1Þ

2
¼ 7�6

2
¼ 21 correlations resulted non-significant.

Then, in the second step, we fitted the mediation model. Specifically, for each

variable selected as exposure in the mediation model, the mediators derive either

from the latent space model without covariates or the latent model including the non

selected exposure as a covariate. Thus, if Money is selected as exposure in the

mediation model, the mediators, i.e. the latent positions, are from the model where

Sex takes the role of covariate. Vice versa, if Sex is the exposure, mediators are from

the latent space model including Money as a covariate.

We fitted linear models for the mediators (i.e. the coordinates) and logistic

models for the binary outcomes

Zik �Nðlzik ; szkÞ; lzik ¼ E½Zik j xi� ¼ b0k þ b1kxi; k ¼ 1; . . .;D

Yi �BernðlyiÞ; lyi ¼ PðYi ¼ 1 j xi; ziÞ; logitðlyiÞ ¼ c0 þ c1xi þ c
|

2zi:

With reference to Eq. (8), we specified the following non-informative priors

b0k �Nð0; 0:01Þ; b1 �MVNð0;Tb1Þ; szk �Gammað0:01; 0:01Þ;
c0 �Nð0; 0:01Þ; c1 �Nð0; 0:01Þ; c2 �MVNð0;Tc2Þ;

where Tb1 ¼ Tc2 ¼ diagð0:01Þ are 7� 7 diagonal matrices with diagonal elements

equal to 0.01.

Using these priors, we obtained posteriors of the direct effect c1 and the total

indirect effect. The formula for the latter can be derived combining Eq. (9) with

results in Table 1 as
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Total Indirect Effect ¼
XD
k¼1

b1k
c2k expðc0 þ c1xþ c|2lzÞ

ð1þ expðc0 þ c1xþ c|2lzÞÞ
2
;

where h1 is the identity and h2 is the antilogit, i.e. h2ðgyÞ ¼
expðgyÞ

1þexpðgyÞ. The selected

MCMC algorithm was Gibbs sampling: we used a unique chain of length 100,000,

adaptation 50,000 and 50 thinning. Finally, we computed 95% HDI for both the

effects. The trace plot and the autocorrelation plot of the indirect effect at the first

time occasion for both exposures and outcome Smoke are represented in Fig. 4. It

can be noticed that the chains converged and they do not show any sign of auto-

correlation. The graphs for the other outcomes and the other time occasions show

very similar patterns and are not reported.

5.3 Results

Before commenting the results, it is worth remarking that reasoning in terms of unit

increase or decrease of latent positions, as traditionally done in regression, is

pointless. Latent positions do not have substantive meaning, they are just the result

of a dimensionality reduction technique, used to summarise the network and include

it in the mediation analysis. Therefore, although the exposure can positively or

negatively affect latent positions, this is not interpretable. What we can say is just

that the exposure influences the structure of the network, or, in other words, the

relationships linking actors. Latent positions help us to incorporate the network into

regression models, making it tractable as a set of different variables which play the

Fig. 4 Trace plot and acf plot of the indirect effect at the first time measurement for exposure Sex (panel
a), and Money (panel b). Both graphs refer to models including Smoke as outcome
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role of mediators. Thus, if a total indirect effect turns out to be significant, the latent

positions convey the effect of the exposure on the outcome, and this means that the

friendship ties between subjects mediate the effect of X on Y.
In the following, we will denote by LMðCovariateÞ the latent space model

including Covariate as predictor, and by LMð�Þ the latent space model without any

additional covariate.

Let us start from models having Sex as exposure, whose results are shown in

Tables 2, 3, 4. Since it is a binary variable, the total mediated effect can assume only

two values according to subjects’ gender. For Smoke (Table 2), the direct effect is

significant only at time 1, like the indirect effect, but the latter only for females and

for mediators estimated through LMð�Þ. The direct effect is positive, then the

probability of smoking tobacco regularly is higher for 13-year-old girls than for

boys. In contrast, the total indirect effect for girls is negative, then the effect of

gender on the chance of smoking reduces through friendship relationships.

Gender seems to have no effects on the probability of smoking cannabis neither

direct nor indirect (Table 3). Thus, the attitude towards the use of cannabis does not

vary across boys and girls and is not influenced by friendship ties. It is interesting,

though, to notice that, for both LMð�Þ and LMðMoneyÞ, the direct effect is positive
at time 1 and tends to decrease over time, becoming negative. In addition, total

indirect effects are always a bit larger for males, and they show a slight increase

over time.

As regards Alcohol (see Table 4), the direct effect results significant only at time

1 for LMð�Þ and it is positive, thus 15-year-old girls seem more prone to drink than

boys. Indirect effects are also significant, but again, only at time 1 for LMð�Þ, and
they are negative. Then, gender negatively affects the probability of drinking

through the relationships among students. The difference in mediational effects

between models including latent positions estimated in LMð�Þ as mediators and

models including positions estimated through LMðSexÞ shows that including a

covariate in the latent space model (1) may affect results substantively.

Table 2 Posterior mean of the direct effect and the total indirect effects (Tot. ie) of Sex on Smoke, for
each measurement occasion and for mediators deriving from latent models with and without covariates

Time 1 Time 2 Time 3

No cov Cov No cov Cov No cov Cov

Dir. eff 3.48 (1.053) 3.30 (1.179) 0.65 (0.941) 1.08 (0.731) 0.68 (0.700) 0.26 (0.650)

(1.50, 5.52) (0.95, 5.53) (-0.96, 2.63) (-0.43, 2.42) (-0.65, 2.06) (-0.93, 1.56)

Tot. ie M -0.05 (0.039) -0.02 (0.026) 0.05 (0.062) 0.03 (0.050) 0.05 (0.056) 0.10 (0.061)

(-0.14, 0.00) (-0.08, 0.01) (-0.06, 0.18) (-0.07, 0.13) (-0.48, 0.17) (-0.01, 0.23)

Tot. ie F -0.20 (0.099) -0.11 (0.107) 0.14 (0.159) 0.07 (0.122) 0.12 (0.131) 0.21 (0.129)

(-0.43, -0.04) (-0.35, 0.07) (-0.18, 0.45) (-0.18, 0.30) (-0.09, 0.41) (-0.04, 0.47)

Numbers in parentheses next to the posterior means are standard errors adjusted for autocorrelation of

Bayesian chains. Below each effect the correspondent credibility interval is shown

123

Networks as mediating variables: a Bayesian... 1029



Moving to mediation models including Money as exposure, direct effects differ

between models with mediators from LMð�Þ or LMðSexÞ. Specifically, in models

where the mediators were obtained using LMðSexÞ, Money does not affect directly
any of the outcomes, at any time occasions. In contrast, in models where the latent

positions were estimated through LMð�Þ, Money has a significant positive direct

effect on the probability of smoking cannabis and drinking alcohol at time 1. In

other words, wealthier pupils are more likely to make use of substances when they

are 13, while at other subsequent time occasions Money seems not to play a role in

the students’ attitude towards substance use. For Cannabis the direct effect results

significant and positive also at time 2.

Indirect effects are significant only at time 3 for Smoke and Cannabis in models

where the mediators derive from LMð�Þ, while they are significant only at time 2

for Cannabis and Alcohol when mediators derive from LMðSexÞ: Notice how, also

Table 3 Posterior mean of the direct effect and the total indirect effects (Tot. ie) of Sex on Cannabis, for
each measurement occasion and for mediators deriving from latent models with and without covariates

Time 1 Time 2 Time 3

No cov Cov No cov Cov No cov Cov

Dir. eff 0.84 (0.880) 2.11 (1.12) -0.14 (1.107) 1.17 (0.857) -0.62 (0.669) -0.79 (0.636)

(-0.92, 2.52) (-0.03, 4.15) (-2.34, 1.94) (-0.48, 2.83) (-1.96, 0.60) (-2.26, 0.26)

Tot. ie M -0.03 (0.046) -0.05 (0.044) 0.01 (0.068) -0.10 (0.077) 0.07 (0.103) 0.14 (0.102)

(-0.14, 0.05) (-0.15, 0.01) (-0.14, 0.14) (-0.25, 0.56) (-0.10, 0.30) (-0.04, 0.36)

Tot. ie F -0.04 (0.057) -0.08 (0.062) -0.01 (0.070) -0.11 (0.077) 0.06 (0.103) 0.14 (0.107)

(-0.16, 0.07) (-0.22, 0.01) (-0.14, 0.15) (-0.27, 0.03) (-0.11, 0.28) (-0.05, 0.35)

Numbers in parentheses next to the posterior means are standard errors adjusted for autocorrelation of

Bayesian chains. Below each effect the correspondent credibility interval is shown

Table 4 Posterior mean of the direct effect and the total indirect effects (Tot. ie) of Sex on Alcohol, for
each measurement occasion and for mediators deriving from latent models with and without covariates

Time 1 Time 2 Time 3

No cov Cov No cov Cov No cov Cov

Dir. eff 2.03 (0.669) 1.04 (0.668) 1.47 (0.809) 0.10 (0.682) 0.46 (0.718) 1.46 (0.863)

(0.71, 3.30) (-0.26, 2.29) (-0.22, 3.05) (-1.25, 1.36) (-0.83, 1.99) (-0.14, 3.14)

Tot. ie M -0.21 (0.116) -0.02 (0.121) -0.18 (0.163) 0.12 (0.132) 0.13 (0.109) 0.01 (0.110)

(-0.44, -0.01) (-0.24, 0.24) (-0.49, 0.16) (-0.13, 0.36) (-0.04, 0.39) (-0.21, 0.23)

Tot. ie F -0.21 (0.118) -0.03 (0.123) -0.14 (0.141) -0.10 (0.111) 0.05 (0.043) 0.00 (0.046)

(-0.45, -0.01) (-0.19, 0.28) (-0.41, 0.15) (-0.13, 0.30) (-0.03, 0.15) (-0.11, 0.08)

Numbers in parentheses next to the posterior means are standard errors adjusted for autocorrelation of

Bayesian chains. Below each effect the correspondent credibility interval is shown
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in this case, mediational effects differ between models, according to whether the

mediators are from LMð�Þ or LMðSexÞ.
SinceMoney is continuous, total indirect effects do not assume only a finite set of

values, but are continuous functions of the exposure. Figure 5 shows total indirect

effects on each response and for each measurement time.

For all outcome variables, indirect effects at time 2 assume the highest values,

followed by indirect effects at time 1 and finally effects at time 3, which tend to be

small and to vary little. Indirect effects on Smoke and Cannabis are not monotonic,

showing a peak and then a decrease. For Smoke, the peak seems to remain

stable over time, at around 35£. At time 1 the total indirect effect shows greater

variability and becomes flatter at successive time occasions. This may indicate that

friendship relationships have a major role in making adolescents start smoking when

they are younger, while they become less important on the decision to continue

smoking as youngsters get older. As regards Cannabis, the total indirect effect is

higher at time 2. Again, the peak is approximately the same at all occasions, and at

time 3 the indirect effect does not vary much among different values of Money.
The indirect effects on Alcohol are decreasing at all time occasions and, at the

first and the last measurement occasion, they approach 0. Thus, the more pocket

money a student gets the smaller is the odds he/she drinks very much due to the

mediation of friendships.

6 Conclusions

In this work, we have addressed the issue of estimating the indirect effect in a

mediational setting where the mediator is a network. We have used a latent space

approach to reduce the dimensionality of the network, mapping each actor into his/

her latent coordinates, which were then used as mediators in mediation models of

interest. In order to estimate the indirect effect when at least one between the

mediator and the outcome model is non-linear, we resorted to the concept of

conditional indirect effect based on derivatives, and we extended it to the case of

multiple uncorrelated mediators.

A Bayesian MCMC provides inferential results on the indirect effect. In

particular, we computed HDIs to test for its significance, a task generally very

difficult in a non-Bayesian context, due to the fact that the distribution of the

indirect effect is hardly ever known or obtainable in closed form.

Finally, we analysed a dataset regarding substance use of a group of adolescents,

in order to understand how friendship relationships can mediate the effect of two

explanatory variables on it. Although friendship relationships do not generally seem

to have a mediating role, since indirect effects result non significant in most of the

analyses, it was possible to notice some interesting patterns. Gender has a significant

positive direct effect on smoking attitudes and alcohol consumption at time 1. Thus,

girls have a larger odds of smoking tobacco and regularly drinking alcohol than

b Fig. 5 Total indirect effects on Smoke (panel a), Cannabis (panel b) and Alcohol (panel c) conditional on

values of Money. Green lines refer to time 1, blue ones to time 2 and red ones to time 3
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males. The total indirect effects are significant and negative for Smoke and Alcohol,
but only in models where the latent positions were estimated through LMð�Þ.
Money has a positive direct effect on the odds of smoking tobacco and drinking

alcohol. Indirect effects reach a peak in models for Smoke and Cannabis, while are
always decreasing in models for Alcohol.

Although the method proposed has the unquestionable advantage of reducing the

dimensionality of the network, allowing us to include it in regression models, the

method has also some drawbacks which are worth mentioning. First, as pointed out

in Sect. 5.3, the latent dimensions have not substantive meaning per se, and this

makes the interpretation of the results not straightforward. Second, the two-step

estimation procedure introduces uncertainty in the estimates, since the latent

positions are themselves estimated. We treated the latent positions as deterministic,

but the use of methods to address their uncertainty could be an interesting direction

for future research.

There are several directions this work can be developed on. It is necessary to

carry out more research on how to extend latent space models for accommo-

dating different types of dyadic relationships. Extending mediation models to

GLMs is still a hot research topic: the definition of indirect effects through

derivatives may be a promising way to tackle the issue of estimation. Moreover,

dealing with multiple mediators taking into account correlations among them is

still an open problem in the literature. We are confident that the method we

adopted in the easier case of uncorrelated mediators can be extended to

incorporate correlations.

It is worth noting that we could have included additional covariates in our

mediation models, but this does not add conceptual difficulties to the method

described and can be easily addressed by implementing more complex formulas, as

described in Hayes and Preacher (2010).

Although we used longitudinal data, analyses were cross-sectional and we

limited our analyses to the comparison of the results among different time

occasions. More efforts need to be devoted to capturing the dynamics of networks

change and incorporating such information in latent space models.

Finally, we did not draw any causal conclusion from our analyses. The concepts

of direct and indirect effects are widely employed in the structural equation

modeling framework and have been used in associational terms since the late ’80s

(Baron and Kenny 1986). In our analysis, the indirect effect simply expresses how

the effect of a change in the exposure on the outcome propagates through the

mediators. This differs from the counterfactual reasoning traditionally employed to

address causality (Rubin 1974, 1978), where the causal mediational effects are

defined in terms of nested counterfactuals, which entail interventions on both the

exposure and the mediator (Pearl 2001; Vanderweele 2015). The identifiability of

these effects, i.e. the possibility to express them in terms of observed variables,

relies on strong assumptions which a researcher may be willing to make or not, and

which are still subject of debate among scholars, see Robins and Richardson (2011).

How these assumptions could be integrated within a latent space mediational

modeling framework leaves room for future work.
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