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A B S T R A C T   

In the context of increasing global population and climate change, modern agriculture must enhance production 
efficiency. Vegetables production is crucial for human nutrition and has a significant environmental impact. To 
address this challenge, the agricultural sector needs to modernize and utilize advanced technologies such as 
drones to increase productivity, improve quality, and reduce resource consumption. These devices, known as 
Unmanned Aerial Vehicles (UAV), with their agility and versatility play a crucial role in monitoring and spraying 
operations. They significantly contribute to enhancing the efficacy of precision farming. 

The aim of this review is to examine the critical role of drones as innovative tools to enhance management and 
yield of vegetable crops cultivation. This review was carried out using the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis (PRISMA) framework and involved the analysis of a wide range of research 
published from 2018 to 2023. According to the phases of Identification, Screening, and Eligibility, 132 papers 
were selected and analysed. These papers were categorized based on the types of drone applications in vegetable 
crop production, providing an overview of how these tools fit into the field of Precision Farming. Technological 
developments of these tools and data processing methods were then explored, examining the contributions of 
Machine and Deep Learning and Artificial Intelligence. Final considerations were presented regarding practical 
implementation and future technical and scientific challenges to fully harness the potential of drones in precision 
agriculture and vegetable crop production. The review pointed out the significance of drone applications in 
vegetable crops and the immense potential of these tools in enhancing cultivation efficiency. Drone utilization 
enables the reduction of input quantities such as herbicides, fertilizers, pesticides, and water but also the pre-
vention of damages through early diagnosis of various stress types. These input savings can yield environmental 
benefits, positioning these technologies as potential solutions for the environmental sustainability of vegetable 
crops.   

Introduction 

In the past decades, precision agriculture has emerged as a signifi-
cant solution to address the increasingly pressing challenges associated 
with agricultural production, including the production of vegetable 
crops. With climate change posing threats to agricultural resources and a 
steadily growing global population, the need to efficiently and sustain-
ably enhance food production becomes essential. According to the 
report "Future of Food and Agriculture: Alternative Pathways to 2050″ 

by the United Nations Food and Agriculture Organization (FAO), the 
global population is projected to reach nearly 10 billions by 2050, 
leading to a corresponding increase in demand for food crops [1]. At the 
same time, the surfaces and water resources available for agriculture are 
becoming increasingly scarce [1,2]. In this scenario, society places 
immense pressure on agriculture, driving towards increased crop yields 

without compromising quality, while simultaneously reducing opera-
tional costs and global pollution. 

Within the agricultural context, vegetables play a primary role; 
indeed, they are considered protective foods, providing essential nutri-
ents to the human diet due to their richness in vitamins, fibres, minerals, 
and nutraceuticals [3]. Furthermore, regular consumption of fruits and 
vegetables contributes to the risk reduction of numerous diseases, 
including cardiovascular diseases and cancer [4]. 

Overall efficient and sustainable cultivation techniques become 
necessary. Precision agriculture plays a paramount role among the 
techniques that are transforming agricultural production, and can be 
regarded as one of the most promising solutions [5]. 

In this context, there is a growing adoption of advanced and intel-
ligent techniques and technologies, such as artificial intelligence and 
unmanned aerial vehicles (UAVs) [6]. These vehicles enhance the 

* Corresponding author. 
E-mail address: mariangela.vallone@unipa.it (M. Vallone).  

Contents lists available at ScienceDirect 

Smart Agricultural Technology 
journal homepage: www.journals.elsevier.com/smart-agricultural-technology 

https://doi.org/10.1016/j.atech.2024.100396 
Received 18 September 2023; Received in revised form 5 December 2023; Accepted 2 January 2024   

mailto:mariangela.vallone@unipa.it
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2024.100396
https://doi.org/10.1016/j.atech.2024.100396
https://doi.org/10.1016/j.atech.2024.100396
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smart Agricultural Technology 7 (2024) 100396

2

cultivation processes, as they can perform monitoring and spraying 
missions, thus optimizing the efficiency of pesticide, fertilizer, and water 
usage. They promptly identify stress induced by pests, diseases, nutri-
tional and water deficiencies, while also facilitating the spraying pro-
cedure [7]. The applications of UAVs in agriculture are different and 
include nearly all agricultural productions. For example, applications in 
viticulture, olive cultivation, orchards, herbaceous crops, as well as 
vegetable cultivation, are well-established [8–13]. 

The main objective of this review is to analyse how drones can be 
employed in precision agriculture concerning vegetable crops. This 
study aims to provide a critical and comprehensive synthesis on the 
topic through a systematic literature review of the last six years, focusing 
on the key objectives that can be achieved using drones in this field. 

Drones in agriculture 

Drones are currently one of the most representative technologies in 
the evolution of precision agriculture in the scientific and productive 
world. However, their history began in other fields of application. The 
drone, in fact, originated as a tool to be employed in the military sector, 
aiming to safeguard the integrity of human personnel in reconnaissance 
and surveillance missions. Over time, their use has extended well 
beyond the military context, finding applications in various sectors, 
including entertainment, transportation, security, photography, and 
environmental exploration [14]. 

The most common designation is "Unmanned Aerial Vehicles" (UAV). 
They can also be defined by other acronyms, many of which are of 
Anglo-Saxon origin: in addition to "Remotely Piloted Aircraft System" 
(RPAS), they may be referred to as "Unmanned Aerial System" (UAS), 
"Aerial Robot" or simply "Drone" [15]. 

These terms refer to a complex system consisting of the aerial plat-
form, one or more components and/or sensors making up the payload, 
and a ground station in communication with the flight controller of the 
platform. Within the flight controller, components dedicated to the 
orientation and movement of UAVs are present, including gyroscopes, 
magnetic compass, GNSS module, pressure sensor, and triaxial acceler-
ometer [16]. 

UAVs are generally categorized based on various attributes, 
including aircraft types, wing types, takeoff/landing direction, payloads, 
flying altitude, etc. [17]. 

According to the classification by Watt et al. [18], they can be 
distinguished as MAV (Micro (or Miniature) or NAV (Nano Air Vehicles), 
VTOL (Vertical Take-Off & Landing), LASE (Low Altitude, 
Short-Endurance), LALE (Low Altitude, Long Endurance), MALE (Me-
dium Altitude, Long Endurance), HALE (High Altitude, Long 
Endurance). 

The most used platforms in precision agriculture fall into the LASE 
class and are fixed-wing systems or multirotors, such as helicopters, 
quadcopters, hexacopters, octocopters, etc. VTOL multirotor platforms, 
widely employed for crop monitoring, generally weigh less than 5 kg 
excluding the payload. They are equipped with interchangeable lithium 
batteries, and are easily transportable, facilitating transfers between 
different fields. 

UAV platforms can be controlled by the operator through the ground 
station, remaining in the field of vision, or they can fly in automatic 
mode, following a trajectory defined by the user through waypoints 
during the flight plan design phase. 

Payloads can include sensors and cameras for data collection or even 
specialized equipment for tasks such as crop spraying [Section 4.7]. 
Although the sensors that drones can be equipped with are numerous, 
the most commonly used on UAV platforms for agricultural purposes 
are: 

-Visible cameras, RGB (Red, Green and Blue): these are the simplest 
cameras capable of producing grayscale or color images for character-
izing the visible properties of plants and their growth [19,20]. 

-Multispectral cameras: capable of producing images in different 

bands of the spectrum. These cameras typically cover the visible (VIS) 
and Near InfraRed (NIR) portions of the spectrum and can be used to 
calculate most vegetation indices used in agriculture. Many of these 
indices have been used by different authors in the papers included in this 
review, and they are summarized in Table 1 [8,21]. 

-Hyperspectral cameras: this type of sensor provides images in a high 
number of bands with very high spectral resolution, detecting a vast 
amount of information. The application of these cameras allows for in- 
depth analysis of crops, providing information on the presence of 
various pathogens [42,43]. 

-Thermal cameras: they provide images with information about the 
temperature of each pixel. These sensors enable thermal alterations 

Table 1 
Vegetation Indices included in this review.  

Acronym Index name Equation Reference 
NDVI Normalized 

Difference 
Vegetation Index 

ρ 800 − ρ 680
ρ 800 + ρ 680 [22] 

TVDI Temperature 
Vegetation 
Dryness Index 

(Ts − Ts min)
(a + b(ρ 550 − ρ 680

ρ 550 + ρ 680
)

− Ts min 
[23] 

RVI Simple Ratio 
Index 

ρ 800
ρ 680 [24] 

GNDVI Green 
Normalized 
Difference 
Vegetation Index 

ρ 800 − ρ 550
ρ 800 + ρ 550 [25] 

OSAVI Optimized Soil 
Adjusted 
Vegetation Index 

(1 +

0.16) ∗ ρ 800 − ρ 680
(ρ 800 + ρ 680 + 0.16)

[26] 

SAVI Soil Adjusted 
Vegetation Index 

ρ 800 − ρ 680
ρ 800 + ρ 680 + L ∗ (1 + L) [27] 

NGRDI Normalized 
Green Red 
Difference Index 

ρ 550 − ρ 680
ρ 550 + ρ 680 [28] 

MSR Modified Simple 
Ratio 

((ρ 800/ρ 680) − 1)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

((ρ 800
ρ680

)

+ 1
)

√ [29] 

MCARI Modified 
Chlorophyll 
Adsorption Ratio 
Index 

((ρ 730− ρ 680)− 0.2 ∗ (ρ 730 −

ρ 550)) ∗ (ρ 730 /ρ 680) [30] 

Cigreen Chlorophyll 
Index green 

(ρ 800
ρ 550

)

− 1 [31] 
Cirededge Chlorophyll 

Index red edge 
(ρ 800

ρ 730
)

− 1 [31] 
CCCI Canopy 

Chlorophyll 
Content Index 

((ρ 800− ρ 730)/(ρ 800 +

ρ 730))/((ρ 800 −

ρ 550)/(ρ 800 + ρ 550))
[32] 

GLI Green Leaf Index 2 ρ 550 − ρ 680 − ρ 450
2 ρ 550 + ρ 680 + ρ 450 [33] 

NDRE Normalized 
Difference Red 
Edge 

(ρ 800− ρ 730)/(ρ 800 + ρ 730) [34] 

TBI (530, 
734, 514) 

Three-band 
Spectral Index 

ρ 530 − ρ 734
ρ 734 + ρ 514 [35] 

WDVI Weighted 
Difference 
Vegetation Index 

ρ 800− (a ∗ ρ 680) [36] 

PRI Photochemical 
Reflectance 
Index 

ρ 531 − ρ 570
ρ 531 + ρ 570 [37] 

RDVI Renormalized 
Difference 
Vegetation Index 

(ρ 800 −

ρ 680)/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ρ 800 + ρ 680)√ [38] 

MTVI 1 Modified 
Triangular 
Vegetation 
Index1 

1.2 [1.2 (ρ760 − ρ580)−
2.5(ρ650 − ρ580)] [39] 

CWSI Crop Water 
Stress Index 

(Tc − Ta) − (Tc − Ta)LL
(Tc − Ta)UL − (Tc − Ta)LL [40] 

ExG Excess Greenness 
Index 

((2 ∗ ρ 550) − ρ 680 − ρ 450
ρ 680 + ρ 550 + ρ 450

)

[41]  
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identification on the leaf surface induced by water stress conditions, 
making them particularly useful for water management [44,45]. 

-Laser Imaging Detection and Ranging (LiDAR): these are active 
sensors that leverage the physical operating principle of Radio Detection 
and Ranging (RADAR). In particular, these sensors emit a light pulse 
(laser, in the case of LiDAR) or microwaves (RADAR) and measure the 
return of the pulse reflected by the target using a detector, calculating 
the time [46,47]. These sensors provide physical measurements of the 
geometry and volumes of canopies [48]. 

Materials and methods 

A systematic literature search method was employed to compose this 
review, following the guidelines set forth by PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) (htt 
ps://doi.org/10.1136/bmj.n71, Consulted on May 3rd, 2023) [49]. 
The research method encompassed identification, screening and eligi-
bility procedures. This systematic analysis of the literature was chosen 
due to its methodical, replicable, and comprehensive approach. This 
method aims to mitigate bias risks through precise and exhaustive 
literature searches, thereby offering a transparent and scientifically 
rigorous process. Moreover, it provides a detailed account of the pro-
cedures followed by the authors. 

Identification 

The research was conducted in May 2023. The Scopus database was 
used to perform the systematic review. Titles, abstracts and keywords 
were used as the search fields within the Scopus electronic database. The 
query used in the search encompassed 112 fields (as detailed in the 
document ‘Query ricerca bibliografica Review.docx’). The chosen key-
words were selected based on preliminary research and their demon-
strated usefulness in finding relevant articles. 

Furthermore, the results obtained from Scopus were filtered with the 
following criteria: (1) The paper was published between 2018 and 2023, 
(2) The paper was not a review or conference review, (3) The paper was 
not a book or book chapter, (4) The paper was not a letter, erratum, data 
paper, note, (5) The paper was not a conference paper. In total, 864 
papers were identified, and the search results were saved in the Scopus 
database for subsequent analyses. The process followed is shown in 
Fig. 1. 

Screening 

The authors reviewed the titles and abstracts of all the 864 articles 
found. The inclusion criteria and progression to the next stage were: (1) 
The paper included UAV applications, (2) The paper included applica-
tions on vegetable crops. Out of the previously selected 864 papers, only 
182 met the criteria. These papers were exported to the personal Zotero 
library. 

Eligibility 

The authors examined all the 182 papers by reading the entire text of 
each paper. Papers with the following characteristics were excluded: (1) 
The full text was not available, (2) The paper did not actually involve the 
use of drones in vegetables cultivations, (3) The paper did not pertain to 
precision agriculture applications. In this phase, 50 papers did not meet 
the criteria, while 132 articles were used as the foundation for con-
ducting this review. 

Data analysis 

The 132 papers that successfully passed the Identification, Screening, 
and Eligibility stages were exported to Excel. Data analysis was con-
ducted using this software to consolidate the results from various studies 

on the topic of this review. The following data were extracted from each 
study: Title, Author, Year, analysed Species, Family, Study purpose, 
Sensor type(s), Sensor spectral range, Number of sensor bands, Post- 
processing techniques, Vegetation indices, and results obtained. The 
data extracted during this phase were analysed and evaluated. The data 
analysis revealed heterogeneity in the objectives obtained by using 

Fig. 1. Flowchart illustrating the consecutive stages and results of the identi-
fication, screening, and eligibility procedures. 
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drones, and they were summarized into seven goals as described in 
section 34. 

Through data analysis, significant trends in this field of study have 
been identified. Fig. 2 graphically represents the distribution of the 
papers based on the crop families studied. In particular, 52 % of the 
papers focused on UAV applications within the Solanaceae family, 
underscoring the central role of crops like potatoes, tomatoes, peppers, 
and eggplants in both scientific research and agricultural production. 
The Brassicaceae family ranks second at 13 %, encompassing crops like 
cabbage, cauliflower, and radish. Subsequently, there are Cucurbitaceae 
(9 %), Amaryllidaceae (8 %), Amaranthaceae (6 %), Rosaceae (5 %), 
Asteraceae (5 %), and Apiaceae (2 %). 

In this phase, an analysis of the bibliographic sources was conducted, 
with a particular focus on evaluating the journals and conferences 
included. For each journal or conference within the review, the evalu-
ation parameters on the Scopus platform were examined to assess the 
relevance of the utilized sources. This platform calculates scientific 
journals relevance using three key parameters:  

• CiteScore: this index measures the average citations received per 
document published within the considered series.  

• Source Normalized Impact per Paper (SNIP): this parameter assesses 
the citations received relative to the expected citations for the series’ 

subject field, thereby normalizing the impact of citations within the 
context of the relevant discipline. 

• Scimago Journal Rank (SJR): this index measures the weighted ci-
tations received by the series, taking into account both the subject 
field and the prestige of the citing series. The citation weighting is 
contingent on the subject field and the prestige (SJR) of the citing 
series. 

The aforementioned indices, referred to 2022, were extracted for 
each journal included in the review and are summarized in Table 2. 

Results 

The selected papers under review have been categorized into seven 
distinct groups. Each of these categories represents a specific task that 
drones can undertake within the realm of precision agriculture applied 
to vegetable crops. Each task is addressed as an individual section within 
this review. These sections are arranged in a logical sequence. Initially, 
the papers pertaining to UAV applications for crop monitoring 
throughout their growth cycles are discussed. In particular, the first 
section deals with crop identification and segmentation within images 
captured by drones, with the same principles applied to weed detection 
in the "Crop and Weed Detection" (section 4.1). Subsequently, papers 
primarily focused on photogrammetry are described in the "Morpho-
logical and Geometrical Feature Extraction" (section 4.2). Then, papers 
related to "Crop Health and Stress Monitoring" (section 4.3) are 

addressed, followed by “Disease and Pest Scouting” (section 4.4), "Water 
Management" (section 4.5), and finally leading to papers concerning 
yield estimation in the section titled "Yield, Biomass, and Ripening 
Estimation" (section 4.6). Additionally, papers that explore the Fig. 2. Distribution of the papers based on the families of the species under 

study, along with their percentages. 

Table 2 
Relevance indices of the sources considered in the review.  

Source title Number of 
papers 

CiteScore SJR SNIP 

Acta Horticulturae 2 0.5 0.149 0.167 
Agricultural Water Management 5 10.7 1.524 2.018 
Agriculture 4 3.6 0.561 1.162 
Agronomy 9 5.2 0.663 1.215 
Agronomy Journal 2 4.3 0.586 0.889 
American Journal of Potato 

Research 
1 4.6 0.39 0.938 

Applied Sciences 2 4.5 0.492 0.974 
Autonomous Air and Ground 

Sensing Systems for Agricultural 
Optimization and Phenotyping 

4 0.7 0.166 0.235 

Biosystems Engineering 1 10.1 1.061 1.931 
Canadian Journal of Remote 

Sensing 
1 3.9 0.619 0.651 

Computers and Electronics in 
Agriculture 

7 13.6 1.587 2.473 

Drones 2 6.1 0.845 1.884 
Engineering in Agriculture, 

Environment and Food 
1 4.9 0.325 0.568 

European Journal of Remote 
Sensing 

1 7 0.66 1.131 

Field Crops Research 1 9.6 1.396 2.001 
Frontiers in Plant Science 10 7.1 1.231 1.580 
Horticulturae 2 2.4 0.487 0.969 
International Journal of Advanced 

Computer Science and 
Applications (IJACSA) 

1 2.1 0.258 0.512 

International Journal of Applied 
Earth Observation and 
Geoinformation 

4 10.2 1.628 1.833 

International Journal of Remote 
Sensing 

3 7 0.732 1.030 

IOP Conference Series: Earth and 
Environmental Science 

1 0.8 0.197 0.255 

ISPRS Journal of Photogrammetry 
and Remote Sensing 

1 19.2 3.308 3.280 

Journal of Applied Remote Sensing 2 3.4 0.388 0.564 
Journal of Biosciences 1 4.8 0.586 0.599 
Journal of Experimental Botany 1 12 1.823 1.619 
Journal of Sensors 1 2.6 0.366 0.774 
Journal of Unmanned Vehicle 

Systems 
1 N/A N/A N/A 

Multidimensional Systems and 
Signal Processing 

1 5.2 0.516 1.045 

PFG – Journal of Photogrammetry, 
Remote Sensing and 
Geoinformation Science 

1 6.4 0.801 1.172 

Plant Disease 1 4.5 0.677 1.058 
Plant Methods 2 10.6 1.121 1.904 
Plant Phenomics 1 12 1.341 1.563 
PLOS ONE 1 6 0.885 1.253 
Precision Agriculture 9 11.1 1.209 2.183 
Remote Sensing 25 7.9 1.136 1.532 
Remote Sensing for Agriculture, 

Ecosystems, and Hydrology XXI 
1 0.7 0.166 0.235 

Sensors 3 6.8 0.764 1.317 
Smart Agricultural Technology 9 2.6 N/A 0.666 
Soft Computing 1 7.7 0.819 1.349 
Spanish Journal of Agricultural 

Research 
1 1.9 0.249 0.55 

Spatial Information Research 1 4 0.448 0.851 
Sustainability 1 5.8 0.664 1.198 
Sustainable Computing: 

Informatics and Systems 
1 8 0.869 1.515 

The International Archives of the 
Photogrammetry, Remote 
Sensing and Spatial Information 
Sciences 

2 1.8 0.274 0.427  
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applications of UAVs as tools for aerial spraying are discussed in a 
separate section titled "Aerial Spraying" (section 4.7). 

Fig. 3 illustrates the goals achievable by drones in precision agri-
culture applied to vegetable crops, along with the respective number of 
dedicated papers. Specifically, the most extensively studied category 
was “Crop Health and Stress Monitoring”, followed by “Crop and Weed 
Detection” and “Morphological and Geometrical Feature Extraction”. 
“Aerial Spraying” was indeed the category with the fewest number of 
dedicated papers, despite a growing scientific interest in this topic. 

Fig. 4 shows the distribution of the examined papers by year. A clear 
upward trend is evident from 2018 to 2022, with 36 papers published in 
2022 and 26 papers published by mid-2023, as compared to 7 and 14 
papers published in 2018 and 2019, respectively. 

Crop and weed detection 

Table 3 shows an overview of the different algorithms used by the 
examined authors with reference to Crop and Weed Detection. For each 
reference, the best algorithm among the ones that were tested is re-
ported, together with its accuracy. 

Crop detection 
When utilizing images acquired through UAV to extract information 

about plant morphology or health, they must undergo a processing 
procedure. One of the initial crucial steps in this process is Crop 
Detection [50]. Crop detection refers to crop identification, classifica-
tion, segmentation, and/or mapping [51]. This process allows for 
isolating the crop of interest, referred to as Region Of Interest (ROI), 
within the images, while excluding everything that is not ROI, known as 
the background [52]. This background could simply be the soil, but it 
can also be highly heterogeneous. For instance, Kim et al. [53] extracted 
the canopy of onions and garlic from a complex background consisting 
of plastic mulch, soil, and shadows under varying lighting conditions. 
Huang et al. [54] recognized the canopy of zucchinis intercropped with 
sunflowers. Regarding the methodologies employed to extract the crop 
from high-resolution images captured by drones, two primary categories 
can be distinguished: object-based methods, such as Object-Based Image 

Analysis (OBIA) or Geographic Object-Based Image Analysis (GEOBIA), 
and pixel-based methods, which primarily utilize Machine Learning and 
Deep Learning algorithms (Fig. 5) [55]. 

Modica et al. [56] compared and evaluated different object-based 
methods and machine learning algorithms for segmenting and classi-
fying onion crops, achieving the best results with Support Vector Ma-
chine (SVM) and Random Forest (RF) algorithms. Valente et al. [58] 
proposed an automatic machine vision method to identify and count 
spinach plants. This method, through the combination of Otsu’s method 
and transfer learning Convolutional Neural Network (CNN), achieved an 
accuracy of 95 %. Machefer et al. [59] on the other hand, used a Mask 
R-CNN for plant counting and sizing in potato and lettuce, achieving a 
multiple object tracking accuracy (MOTA) of 0.78 for potato plants and 
0.91 for lettuces. This evaluation metric has the advantage to synthesize 
other error sources such as false positives, missed plants and identity 
switches, allowing for the assessment of the performance of object 
detection algorithms [74]. 

Through these methodologies, it is possible to monitor the devel-
opment of crops from the early growth stages, estimating the seedling 

Fig. 3. Distribution of the papers based on their research goals, with the number of articles within each section.  

Fig. 4. Paper distribution per year in the period 2018–2023.  
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percentage through seedling identification. For instance, D. Zhang et al. 
[57] developed a detection framework based on a prototypical network 
for chili seedling crop detection, achieving a location accuracy of 96.46 
%. Barreto et al. [60] extended a fully automatic method for counting 
maize seedlings to strawberries, with prediction errors lower than 4 %. 
For the estimation of potato crop emergence, Li et al. [61] developed a 
semi-automatic image analysis software, obtaining results comparable 
to manual field assessment (r2 = 0.96). In addition to evaluating crop 
emergence and seedling identification, it is also possible to monitor 
plant density variation throughout the season, as demonstrated by 
Mhango et al. [62] in a study conducted on potatoes. 

Once the crop is identified, it becomes feasible to proceed with 
various other tasks, both of photogrammetric and spectral nature, which 
are individually addressed in the subsequent sections. 

Weed detection 
The effective control of weeds is of paramount importance in agri-

culture, which is why the use of herbicides is widespread. However, to 
reduce herbicide usage, a method called "site-specific weed manage-
ment" (SSWM) is increasingly gaining traction [75]. This approach 
capitalizes on the fact that weeds are not uniformly distributed within a 
field but tend to form clusters, providing a significant opportunity for 
herbicide savings [76]. The use of high-resolution images acquired 
through drones enables efficient identification and differentiation of 
weeds from the main crop. This aspect has garnered attention from 
various authors who have conducted different studies, employing 
different methodologies and applying them to various types of vegeta-
bles crops. For instance, Ong et al. [63] in cabbage cultivation, Khan 
et al. [64] in strawberry cultivation, and Parico and Ahamed [65] in 
onion cultivation. These systems have also been implemented in pro-
tected environments; Pallottino et al. [66], for example, estimated the 
exact weed amount on baby-sized red lettuce under a polyethylene 
multi-tunnel greenhouse using a light drone. 

Another interesting application was observed in a study conducted 
by Gutiérrez-Lazcano et al. [67]. These authors successfully identified 
and segmented Cuscuta spp. plants, a worldwide-distributed weed 
known to pose problems for various types of crops. 

The methodologies employed for weed detection rely on classifica-
tion algorithms that discriminate between weeds, the main crop, and the 
background. These algorithms can be categorized into three main 
groups: supervised, semi-supervised, and unsupervised, based on how 
the labelling process for generating the training dataset occurs. Rozen-
berg et al. [68] used two supervised classification algorithms, Maximum 
Likelihood (ML), and Support Vector Machine (SVM), for weed identi-
fication in onion fields. A significant challenge of supervised methods is 
the need for a sufficiently large dataset to train the model, which is a 
time-consuming and tedious task. To address this issue, Reedha et al. 
[69] proposed a Visual Transformers (ViT) approach to reduce the size 
of the labelled dataset, demonstrating the potential of this method in 
weed classification in beet, parsley, and spinach fields. Khan et al. [70], 
on the other hand, introduced a new semi-supervised method, an algo-
rithm that generates an additional training dataset for model training. 
This method achieved an accuracy of 90 % for classifying weeds in pea 
and strawberry fields with 80 % of the training data left unlabelled. 

Regarding non-supervised methods, Bah et al. [71] proposed a fully 
automatic learning method (unsupervised) for weed detection (Fig. 6); 
this method yielded results comparable to supervised methods in tests 
conducted in spinach fields, with only 1.5 % differences in accuracy. In 
training a deep learning model, the number of epochs required to train 
accurate and robust algorithms must be considered. In a study evalu-
ating the effect of the number of epochs in Faster Region-Based 

Table 3 
Overview of the different algorithms used by the authors for Crop and Weed 
Detection.  

Specific 
Task 

Crop Method/ best 
algorithm 

Accuracy References 

Detection of 
ROI: 
extracting 
crop from 
image 

Carrot; 
Cabbage; 
Spinach; 
Potato 

Attention Based 
Recurrent 
Convolutional 
Neural Network 
(ARCNN) 

92.80 % 
(OA) 

[50] 

Cabbage DeepLab V3+ 0.9 
(MIoU) 

[51] 

Tomato Local maxima 
Extraction and 
Baesyan 
Segmentation 

0.98 (OA) [52] 

Onion e 
Garlic 

CIE L*a*b* color 
space and mean shift 
(MS) 

84.6 % 
(ASP) 

[53] 

Zucchinis OCRNet mIoU 
94.4 % 

[54] 

Cabbage Mask R-CNN 86.63 % 
(mAP) 

[55] 

Onion Random Forest (RF) 91.20 
(PA) 

[56] 

Chili prototypical 
network 

96.46% 
(LA) 

[57] 

Plant 
counting, 
density 
estimation 

Spinach Excess Green Index 
and Otsu 
thresholding 
methods + AlexNet 

98.6% 
(OA) 

[58] 

Potato Mask R-CNN 0.781 
(MOTA) 

[59] 

Lettuce Mask R-CNN 0.918 
(MOTA) 

[59] 

Strawberry Fully convolutional 
network (FCN) 

0.67 
(PPMC) 

[60] 

Potato Excess Green Index 
and Otsu 
thresholding 
methods 

0.96 (R2) [61] 

Potato Faster Region-based 
Convolutional 
Neural Network 
(FRCNN) framework 

0.80 (R2) [62] 

Weed 
detection 

Cabbage Convolutional 
Neural Network 
(CNN) 

92.41% 
(OA) 

[63] 

Strawberry Improved faster R- 
CNN 

95.3 % 
(AA) 

[64] 

Onion You Only Look Once 
(YOLOv3) 

93.81 % 
(AP) 

[65] 

Lettuce Regression between 
total cover values 
(25 calibration 
images) and total 
weight measured 

HC [66] 

Pepper U-Net 71.20% 
(MIoU) 

[67] 

Onion Maximum 
Likelihood (ML) and 
Support Vector 
Machine (SVM) 
algorithms 

< 85% 
(OA) 

[68] 

Spinach visual transformers 
(ViT) 

99.63% 
(OA) 

[69] 

Strawberry Semi-Supervised 
Generative 
Adversarial Network 
(SGAN) 

90% (AA) [70] 

Spinach CNNs, Residual 
Network (ResNet) 

94.34% 
(AUCs) 

[71] 

Spinach, 
pepper 

Faster RCNN 98.3% 
(CA) 

[72] 

Spinach, 
pepper 

You Only Look Once 
(YOLO) v5s, 

0.712 
(AP) 

[73] 

Overall accuracy (OA); Mean intersection over union (MIoU); Average Seg-
mentation Performance (ASP); Object Detection Accuracy (mAP); Segmentation 

Accuracy (PA); Location Accuracy (LA); Multiple Object Tracking Accuracy 
(MOTA); Hight Correlation (HC); Pearson Product Moment Correlation Coeffi-
cient (PPMC); Correlation Coefficient (R2); Average Accuracy (AA); Average 
Precision (AP); Area Under Curve (AUCs); Classification Accuracy (CA). 
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Convolutional Neural Network on weed classification accuracy, Ajayi 
and Ashi [72] observed that an increasing number of epochs signifi-
cantly improved weed classification accuracy in various crops, including 
pepper and spinach. Additionally, Ajayi et al. [73] assessed the impact of 
the number of training epochs on YOLO (You Only Look Once), identi-
fying 600 as the optimal epochs for achieving the best performance. 

Following the preceding steps, it is possible to generate prescription 
maps for herbicide distribution, which can be used for the imple-
mentation of SSWM through the use of aerial spraying or machinery 
equipped with Variable Rate Technology (VRT) [77]. 

Morphological and geometrical features extraction 

Phenotyping is the process of evaluating both the plant physical and 

morphological characteristics and their phenological stage. Drones can 
capture high-resolution images of crops and analyse them to extract 
information about size, shape, architecture, and even phenological stage 
(Table 4). 

Zhang et al. [87] mapped the dimensions of cabbage, estimating 
length and width, using a multispectral camera-equipped drone at an 
altitude of 10 m with a spatial resolution of 5 cm. Din et al. [101] 
recognized the growth stage of onions combining deep learning tech-
niques with multispectral data. Meanwhile, Kim et al. [95] utilized 
UAV-RGB based imagery with a spatial resolution of 0.64 cm at an 
altitude of 20 m for estimating biophysical properties of cabbage and 
radish. 

Through image analysis techniques, photogrammetry, machine and 
deep learning algorithms, specific crop parameters can be calculated. 

Fig. 5. Crop extraction processes framework [55].  

Fig. 6. UAV image classification with models by unsupervised data in a spinach field. (a) samples obtained after using a sliding window, without crop line and 
background information. Blue, red, and white dots mean that the plants are identified as crop, weed, and an uncertain decision, respectively. (b) in red the weeds 
detected after crop line and background information has been applied [71]. 
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Among these parameters, estimating plant height has been a sought- 
after goal for several authors. Jamil et al. [96] estimated the height of 
cabbage and pumpkin plants using UAV-based RGB imagery, achieving 
excellent correlations with field-measured data, with r2 values of 0.86 
and 0.94, respectively for cabbage and pumpkin. Moeckel et al. [83] 
obtained r2 values ranging from 0.87 to 0.97 on eggplant, tomato, and 
cabbage. Encisoet al. [82] achieved r2 values of 0.98, 0.97, and 0.99 in 
three different tomato varieties, confirming the reliability and accuracy 
of these tools for plant height estimation. Malachy et al. [78] compared 
four different methods for extracting single height crop values from Crop 
Height Model (CHM) and subsequently estimating the crop coefficient 
(Kc) in both potato and tomato crops. Among these four methods (Mean, 
Sample, Median, and Peak), the Mean and Sample ones emerged as the 
best crop height predictors (R2=0.84 and 0.80, respectively). 

Also Leaf Area Index (LAI) has been estimated in different studies. 
Roosjen et al. [80] assessed LAI in potato fields, and Zhu et al. [81] in 
four different crops, including potatoes and melons. The latter achieved 
excellent correlation with field-measured data, with an r2 of 0.85 and a 
root mean square error (RMSE) of 0.41 m2/m2. Certain crops, such as 
cauliflowers, allow for precise and rapid aerial geometric 

characterization due to their upward-oriented and exposed plant 
structure and head shape. This factor facilitates the rapid and accurate 
monitoring of large areas, providing detailed information about plant 
phenology, as confirmed by studies conducted by several authors [85, 
86,97]. 

One of the direct applications that can be derived from having bio-
metric parameters such as plant area, height, and volume resides in the 
capability to readily estimate crop biomass. This parameter has been 
estimated, for example, in strawberry cultivation by Zheng et al. [92] 
and in onion cultivation by Ballesteros et al. [93]. Some tubers, like 
potatoes, growing underground, prevent direct characterization of 
productive organs. As a result, estimating plant geometry and 
above-ground biomass is of great interest for the agronomic insights it 
can provide [89–91]. 

Indeed, by combining metrics like Canopy Coverage and Plant 
Height, it is possible to estimate the appropriate spraying volume [94]. 

Rapid phenotyping can also be an excellent tool for breeders: De 
Jesus Colwell et al. [79] developed a method to demonstrate how the use 
of point cloud data obtained from low-cost UAV images can be employed 
to create 3D surface models of plant canopies on potatos. From these 
models all the morphological and geometric characteristics can be 
extrapolated, paving the way for a large-scale expansion of future 
genotype-phenotype association studies (Fig.7). An efficient application 
of drone-based phenotyping has been observed in tomatoes, where it 
was utilized to assess the effectiveness of certain biostimulants [84]. In 
lettuce, image phenotyping was employed to evaluate inbred lines with 
varying carotenoid content [88]. Through the identification of plant 
morphological characteristics, it is also possible to identify specific 
phenological stages. In potatoes, it was possible to determine the onset 
of tuberization, a crucial phenological stage for adapting irrigation 
management, by calculating plant height detected by drone [98]. 
Identifying specific phenological stages like flowering can be particu-
larly important for cucurbits, where the flower represents one of the 
final products. For this purpose, Mithra and Nagamalleswari [99] 
developed a transfer learning algorithm using the CuCuFlower dataset, 
capable of identifying the genus and gender of 9 cucurbit species, 
including cucumber, muskmelon, squash, pumpkin, and watermelon. 
Detecting flowering can also be significant for crops where the flowering 
process is pivotal for genetic improvement actions, as in the case of 
lettuce [100]. 

Crop health and stress monitoring 

In vegetables cultivations, one of the fields where drone usage has 
become more established and widespread is the accurate and geospatial 
assessment of plant health and stress levels (Table 5). 

This practice has proven to be one of the most common and rooted 
applications in vegetable cultivation [120] and today it can be carried 
out with various methodologies and using different sensors. For 
instance, in potato cultivation, Théau et al. [102] employed a thermal 
infrared sensor for stress scouting and calculated the Temperature 
Vegetation Dryness Index (TVDI), resulting in accurate scouting maps. 
Meivel and Maheswari [103] used a multispectral camera and calculated 
various vegetation indices, including Normalized Difference Vegetation 
Index (NDVI). Meanwhile, Butte et al. [104] proposed a deep learning 
algorithm named Retina-Unet-Ag, capable of detecting healthy and 
diseased plants, with an average Dice Score Coefficient (DSC) of 0.74. 

The scientific community has increasingly recognized the solid 
connections between measurable parameters through these platforms 
and the degree of plant health. Many recent studies, in fact, use UAVs as 
tools for evaluating and quantifying plant responses to specific treat-
ments. For instance, crop’s response to different irrigation treatments 
was evaluated by Garcia-Garcia et al. [115] in tomato cultivation; they 
used NDVI to estimate the dynamics of Canopy Cover (CC) with varying 
water supply, while Fullana-Pericàs et al. [116] tested NDVI, Simple 
Ratio Index (SR), and Green Normalized Difference Vegetation Index 

Table 4 
Morphological and geometrical crop parameter extracted from remote sensing 
images for specific task and crop.  

Specific Task Crop Crop Parameter Reference 
Phenotyping Potato Canopy Height and 

Crop Coefficient 
[78] 

Canopy ground cover, 
height and volume 

[79] 

Lead Area Index [80] 
Lead Area Index [81] 

Tomato Canopy Height and 
Crop Coefficient 

[78] 

Canopy Cover and 
Height 

[82] 

Canopy Height [83] 
Lead Area Index [84] 

Melon Lead Area Index [81] 
Cauliflower Head diameter, Height 

and Curvature 
[85] 

Head Volume [86] 
Cabbage Canopy Length and 

Width 
[87] 

Canopy Height [83] 
Eggplant Canopy Height [83] 
Lettuce N.S. [88] 

Canopy Biomass 
Estimation 

Potato Canopy height and 
textures 

[89] 

Potato Canopy height and 
Fractional vegetation 
cover 

[90] 

Potato Number of leaves [91] 
Strawberry Canopy Area, height 

and volume 
[92] 

Onion Green canopy cover, 
height and volume 

[93] 

Spraying volume 
Determination 

Potato Canopy coverage and 
height 

[94] 

Growth Status 
Monitoring 

Cabbage Canopy Height and 
Vegetation Fractions 

[95] 

Cabbage Canopy height [96] 
Radish Canopy Height and 

Vegetation Fractions 
[95] 

Pumpkin Canopy height [96] 
Broccoli Canopy Cover, 

spectral features 
[97] 

Phenological 
stage 
recognition 

Potato Canopy height [98] 
Cucumber, 
muskmelon, squash, 
pumpkin and 
watermelon 

Approach based on 
Deep Learning 
Classification 
Algorithm 

[99] 

Lettuce [100] 
Onion [101]  
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(GNDVI) in combination with conventional leaf-level physiological and 
agronomic measurements in an experiment involving 91 different ge-
notypes. In both studies, the indices showed excellent correlations with 
field-measured comparison data. Kasper Johansen et al. [117], analysed 
biomass variation under different saline stress conditions in tomato 
cultivation, too (Fig. 8). Marconi et al. [118] investigated the capability 
of a UAV-RGB based crop monitoring system to determine the best 
management practices for three different tomato varieties by comparing 
different planting dates, plant density, use of plastic mulch, and fertil-
ization rate, demonstrating these systems’ ability to assess plant re-
sponses to treatments and select the best management practices. 

Similar types of applications have been found in studies conducted 
on other crops: Mwinuka et al. [121] used GNDVI, NDVI, and Optimized 
Soil Adjusted Vegetation Index (OSAVI) to assess the interactive effect of 

nitrogen and water in an eggplant field. Sharaf-Eldin et al. [129] eval-
uated responses to water stress and potassium deficiency in squash using 
three-band Spectral Indices and a Machine Learning model. In potato, 
Coelho et al. [105] employed NDVI as an indicator of crop development 
under varying calcium inputs. In cabbage cultivation, the effect of 
nanonutrient applications was determined by analysing their relation-
ship with various vegetation indices, including NDVI, GNDVI, Normal-
ized Green Red Difference Index (NGRDI), and chlorophyll content, with 
good results [122]. A UAV with a multispectral sensor was used to 
monitor the crop cycle in onion cultivation by Messina et al. [11] aiming 
to identify the optimal nitrogen input to maximize productivity,. Spe-
cifically, the Soil-Adjusted Vegetation Index (SAVI) was employed for 
crop vigor monitoring, which also showed significant correlations with 
yield. 

Fig. 7. Acquisition of quantitative data on potato plant canopy structure using a Structure from Motion algorithm from UAV acquired images in [79].  
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Studies with different approaches have been identified on the topic 
of crop monitoring. Messina et al. and Ryu et al. [125,126] compared 
NDVI maps derived from UAV and satellite platforms for monitoring 
onion and garlic crops. In both studies, the high resolution offered by 
drones provided advantages over satellite platforms, allowing for the 
removal of the soil effect on crop NDVI, which is not possible using 
images from satellite platforms. On the other hand, Farooque et al. [106] 
proposed a method to translate images from an RGB sensor for calcu-
lating NDVI map. Lee et al. [123] developed a calibration method for 
NDVI calculated from drone, using a handheld hyperspectral sensor. 
Specifically, the reflectance data measured in the field through a 
portable spectroradiometer were correlated with data measured from 
the drone, creating a calibration equation method for UAV spatial in-
formation. The calibration allowed the authors to create a precise 
normalized distribution vegetation index (p-NDVI) map. 

Chlorophyll content 
Chlorophyll is the essential pigment for photosynthesis and is 

responsible for plant’s ability to capture solar energy. A high level of 
chlorophyll indicates efficient photosynthesis and a good state of leaf 
health and overall plant well-being, while low presence of this pigment 
may indicate stress or a problem. There are several methods to measure 
leaf chlorophyll levels; however, many of these are destructive and/or 
require human presence in the field. The Soil Plant Analysis Develop-
ment (SPAD) method belongs to the latter category, which is widely 
used but demands the presence of a technician in the field and provides 
point measurements without georeferencing. 

Drones equipped with multispectral and/or hyperspectral sensors, 
with their high resolution, provide precise and geospatialized mea-
surements of chlorophyll content, enabling the creation of chlorophyll 
content maps for crops. Li et al. [107] worked on a chlorophyll esti-
mation method using hyperspectral data, providing two machine 
learning models. Specifically, they found that the Partial Least Squares 
(PLS) model achieved the best estimates of potato chlorophyll content in 
the bud stage and tuber-growth stage, while the Stepwise Regression 
(SR) model achieved the best estimates in the tuber formation stage and 
starch accumulation stage (Fig. 9). Yang et al. [108], using multispectral 
data and indices such as SAVI, Modified Simple Ratio (MSR), Simple 
Ratio Vegetation Index (RVI), and NDVI, combined with Machine 
Learning and a Stacking Ensemble Algorithm, managed to provide 
highly accurate chlorophyll content estimates. Yin et al. [109] used 
UAV-based multispectral vegetation indices as input in models such as 
Random Forest (RF), Support Vector Regression (SVR), Partial Least 
Squares Regression (PLSR), and Ridge Regression (RR) to predict chlo-
rophyll content in potato crops. Comparing the results with 
field-measured data using the SPAD chlorophyll meter, the authors 
achieved the best performance with RF, reaching an R2 of 0.76 and a 
RMSE of 1.97. 

Other researchers have conducted studies with the aim of identifying 
the most effective indices for this purpose. For instance, Bhandari et al. 
[127] found the best performance with the Modified Chlorophyll 
Adsorption Ratio Index (MCARI) in a study conducted on lettuce. In the 
case of potato cultivation, Yin et al. [109] identified Chlorophyll Index 
green (CIgreen) and Chlorophyll Index red edge (CIred edge) as the best 
predictors of chlorophyll content. In tomatoes, Angel and McCabe [119] 
developed a model that utilizes machine learning algorithms for the 

Table 5 
Overview of the papers included in this section, divided by specific task, species, 
and family.  

Family Specie Specific Task Reference 
Solanacee Potato Crop health and stress 

monitoring 
[102,103,104,105, 
106] 

Chlorophyll content [107,108,109] 
Nitrogen status [110,111,112,113, 

114] 
Tomato Crop health and stress 

monitoring 
[115,116,117,118] 

Chlorophyll content [119] 
Pepper Crop health and stress 

monitoring 
[120] 

Eggplant Crop health and stress 
monitoring 

[121] 

Brassicaceae Cabbage Crop health and stress 
monitoring 

[122,123] 

Nitrogen status [124] 
Amaryllidacee Onion Crop health and stress 

monitoring 
[11,125,126] 

Asteracee Lettuce Chlorophyll content [127] 
Apiacee Carrot Nitrogen status [128] 
Amaryllidacee Garlic Crop health and stress 

monitoring 
[126] 

Cucurbitacee Squash Crop health and stress 
monitoring 

[129]  

Fig. 8. Salinity stress detection in tomato field. (A) Cumulative number of plants either missing or being in a poor/dead condition throughout the growing season; 
and (B) mapped plants in either good or poor/dead condition [117]. 
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retrieval of spatially and multi-temporal Leaf-Chlorophyll Dynamics. 

Nitrogen status 
Nitrogen is one of the most crucial elements within a crop system. A 

low concentration of this element in leaf tissues leads to hindered 
growth and stress. Optimal nitrogen management enhances yield and 
product quality while concurrently mitigating environmental risks 
associated with nitrogen leaching [128]. Swift and accurate estimation 
of nitrogen concentration in tissues is imperative for informed 
decision-making in fertilization management. UAVs, owing to their 
adaptable usage and high resolution, are potential tools to fulfil the role 
of a Decision Support System (DSS) in nitrogen management. In the 
context of potato cultivation, Peng et al. [110] explored diverse plat-
forms equipped with multispectral sensors for nitrogen management. 
They found UAVs to be valuable instruments in assessing indicators such 
as Plant Nitrogen Uptake (PNU), Plant Nitrogen Concentration (PNC), 
and Nitrogen Nutrition Index (NNI), ranking among the most precise 
and accurate platforms employed (Fig. 9). 

On the other hand, Fan et al. [111] employed visible light vegetation 
indices in combination with morphological parameters derived from an 
inexpensive UAV digital camera to estimate potato nitrogen content, 
achieving R2 values up to 0.8. Contrary results were obtained by Hunt 
et al. [112], who assessed the potential of NDVI and GNDVI as predictors 
of potato nitrogen status, yielding nonsignificant outcomes. In the case 
of cabbage cultivation, Besand and Katroschan [124] identified strong 
correlations between indices such as Canopy Chlorophyll Content Index 
(CCCI), Green Leaf Index (GLI), Normalized Difference Red Edge 
(NDRE), and NDVI and Nitrogen Status. 

On the other hand, Zhou et al. [113] focused on the evaluation and 
comparison of hyperspectral and multispectral images for potato nitro-
gen status estimation. These authors observed superior performance 
with hyperspectral imaging, achieving stronger correlations as the width 
of the utilized bands decreased. They also obtained that, within the 
spectrum, bands situated in the visible region exhibited higher sensi-
tivity to changes in plant nitrogen content compared to those in the 
infrared region. The efficacy and precision of hyperspectral imaging 
were also affirmed by Fan et al. [114]. They compared hyperspectral 
single-band reflectance with two- and three-band spectral indices for 
estimating potato nitrogen content, attaining optimal performance with 
the three-band spectral index (TBI530, 734, 514). 

Disease and pest scouting 

Disease and pest management is a highly significant topic in agri-
cultural crops. Particularly in vegetable crops, effective management of 
pests and diseases can lead to substantial reduction in the use of pesti-
cides, offering substantial benefits for the environment and human 
health. However, an efficient, timely, and cost-effective scouting process 
is needed. Traditional scouting methods are labour-intensive and 

expensive, and do not always allow for timely intervention. This is why 
contemporary olericulture often tends to overuse phytosanitary prod-
ucts, sometimes resorting to preventive treatments without actual 
necessity. 

Remote Sensing stands out as one of the most advanced technologies 
to gather such information. Moreover, the utilization of drones equipped 
with high-resolution cameras represents one of the most efficient tech-
niques for scouting. Drones enable high precision and promptness at 
relatively low costs, offering the capacity to assess disease or infestation 
progression both in space and time. Table 6 outlines all the identified 
applications, categorized according to the crop. 

The potato cultivation has been the subject of six studies, specif-
ically: Duarte-Carvajalino et al. [131]. evaluated the severity of late 
blight (Phytophthora Infestans) in 14 different potato genotypes using 
multispectral images captured by drones and machine learning methods 
such as support vector regression, multilayer perceptron, random forest, 
and deep learning CNN, achieving best accuracy with deep learning 
CNN, random forest and multilayer perceptron. This method involved 
the manual extraction of each subset used to train the model, which is 
time-consuming and can be subject to bias. On the other hand, Rodrí-
guez et al. [130] proposed a method that involved image segmentation 
through a thresholding technique, followed by the creation of training 
polygons, and then compared various machine learning algorithms 
(Fig. 10). The best results in classifying diseased plants were obtained 
using Linear Support Vector Classifier and Random Forest algorithms, 
both in terms of accuracy metrics and run time. Siebring et al. [133] 
employed a different approach in the detection of symptoms caused by 
Erwinia bacteria and PVYNTN virus in potatoes. They used 
high-resolution RGB images captured by drones for detecting morpho-
logical traits of plants. Subsequently, these traits were used as input in 
the Random Forest model, achieving a maximum F1 score of 0.75 and an 
average Matthews Correlation Coefficient (MCC) score of 0.47. 

Jindo et al. [135] applied drones equipped with multispectral and 
thermal sensors to detect and estimate the effect of varying densities of 
Globodera Pallida and G. Rostochiensis (Cyst Nematodes) on four potato 
cultivars. They calculated NDVI, NDRE, weighted difference vegetation 
index (WDVI), and Red-Edge chlorophyll index and observed re-
gressions with nematode population density, finding good correlations 
except for one cultivar (avarna). Similar correlations were observed with 
thermal data. 

Fig. 9. Nitrogen requirement maps for mid-season potato growth in field ex-
periments predicted from UAV data in [110]. 

Table 6 
Diseases and pests analysed by the authors, divided by species.  

Specie Disease and Pest Reference 
Potato Late blight (Phytophthora Infestans) [130, 

131] 
Early Die Complex (Verticillium Wilt) [132] 
PVY Virus [133] 
Soft Rot (Erwinia carotovora) [133] 
Early Blight (Alternaria Solani) [134] 
Cyst Nematodes (Globodera Pallida, G. Rostochiensis) [135] 

Tomato Target Spot (Corynespora Cassiicola) [136, 
137] 

Bacterial Spot (Xanthomonas Perforans) [136, 
137] 

Late Blight (Phytophthora Infestans) [138] 
Yellow Leaf Curl Virus (Bemisia Tabaci) [137, 

139] 
Lettuce Root Knot Nematodes (Meloidogyne spp.) [140] 

Soft Rot (P. Carotovorum) [141] 
Watermelon Gummy Stem Blight (Didymella Bryoniae) [142] 

Downy Mildew (Pseudoperonospora Cubensis) [143] 
Onion Anthracnose (Colletotrichum gloeosporioides and 

Gibberella moniliformis) 
Stemphylium Leaf Blight (Stemphylium vesicarium) 

[144, 
145] 

Radish Fusarium Wilt (Fusarium Oxysporum) [146] 
Squash Powdery Mildew (Podosphaera Xanthii) [147, 

148] 
Cabbage Flea Beetle (Psylliodes Chrysocephala) [149]  
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Another important disease in potato cultivation is Verticillium wilt, 
which was the focus of the study by Lizarazo et al. [132]. These authors 
evaluated a machine learning algorithm that utilizes an ensemble of 
gradient boosting machines (GBMs) to differentiate between six levels of 
Verticillium wilt disease severity, achieving satisfactory results with F1 

scores of 82 % for the training dataset and 84 % for the testing dataset. 
Lastly, Alternaria solani infections were detected by Van De Vijver 

et al. [134]. They used a deep learning U-Net model to predict the 
density of lesions caused by this pathogen. Particularly, they employed 
ultra-high-resolution RGB images (0.3 mm/px) to detect the lesions and 

Fig. 10. Classification results for two dataset (A e B) in a study on potato field. (a) overview of the study area with regions of interest depicted in blue; (b) zoom to 
regions of interest for dataset A showing ground reference and the classification results; (c) zoom to regions of interest for dataset B showing ground reference and 
classification results [130]. 
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applied a deep learning algorithm to predict their density. 
Regarding tomato cultivation, different authors have identified 

several pathogens. Abdulridha et al. [136] detected bacterial spot and 
target spot both in the laboratory and in the field using hyperspectral 
imaging mounted on a drone,. By comparing various vegetation indices, 
they achieved the best results with the Photochemical Reflectance Index 
(PRI), NDVI850, and chlorophyll index green (Chlgreen). Additionally, the 
multilayer perceptron neural network (MLP) classification method 
achieved a 99 % accuracy for both Bacterial Spot (BS) and Target Spot 
(TS). 

Abdulridha et al. [137], in another study utilizing the same tools, 
also detected Tomato Yellow Leaf Curl Virus (TYLCV) in addition to BS 
and TS. In this study, the authors employed stepwise discriminant 
analysis (STDA) and the radial basis function to classify infected and 
healthy plants. This yielded classification rates of 98 % for BS and 
99–100 % for TS and TYLCV diseases. The best-performing Vegetation 
Indices (VIs) were the renormalized difference vegetation index (RDVI) 
and the modified triangular vegetation index 1 (MTVI). 

TYLCV was also the focus of a study by Oh et al. [139]. The authors 
used multi-temporal phenotypic attributes (canopy height, canopy 
cover, canopy volume) and VIs (NDVI, SAVI, and excess green index) 
extracted from UAV multispectral image data as input in an artificial 
neural network model. Similarly, de Oliveira Dias et al. [138] employed 
ultra-high-resolution RGB images for predicting late blight severity. 
Random forest models were constructed, yielding determination co-
efficients of 0.93 (four days data) and 0.81 (one day data) in the test set. 

Lettuce was the subject of two studies. Cavalcanti et al. [140] esti-
mated the effect of root-knot nematode incidence on lettuce growth by 
calculating vegetation indices and Vegetation Cover (VC) from RGB 
images. Carmo et al. [141] used multispectral images to detect lesions of 
Soft Rot (Pectobacterium carotovorum), employing Support Vector Ma-
chines (SVM) and Naive Bayes (NB) machine learning models. 

In watermelon cultivation, Kalischuk et al. [142] proposed a 
drone-assisted scouting method with multispectral cameras for Gummy 
Stem Blight disease, achieving early disease detection in 20 % of cases. 
Abdulridha et al. [143] utilized hyperspectral images to identify and 
classify Downy Mildew Severity Stages, achieving 62.3 % accuracy for 
low disease severity increasing to 91 % for higher severity. 

In onion cultivation, Alberto et al. [144] created geopathological 
maps to detect anthracnose-twister disease-infected plants using multi-
spectral images and SVM classification, yielding 85 % accuracy. 
McDonald et al. [145] explored the possibility of scouting Stemphylium 
Leaf Blight in onions using multispectral cameras, observing differences 
among disease severity levels without finding correlations with various 
indices. 

In radish cultivation, Dang et al. [146] efficiently investigated 
Fusarium wilt. They segmented multispectral images captured by drones 
and employed a deep learning CNN algorithm for classifying diseased 
plants, achieving 96 % accuracy. 

In squash cultivation, powdery mildew was detected in two studies 
using hyperspectral sensors both in laboratory and field conditions. 
Abdulridha et al. [147] achieved an accuracy of 89 % for asymptomatic 
and 96 % for symptomatic phases using the Radial Basis Function (RBF). 
Ganesh Babu and Chellaswamy [148] obtained 96 % accuracy for the 
early stage and 94.2 % for the final stage of disease using the Locality 
Preserving Discriminative Broad Learning (LPDBL). 

Finally, Zhao and Shi [149] proposed a method for detecting Flea 
Beetle (Psylliodes Chrysocephala) in cabbage cultivation using UAV RGB 
images. This approach, rooted in deep learning, employs an image tiling 
module for initial aerial image preprocessing, followed by image 
restoration to remove blurriness. A novel disease detection method is 
then introduced, enhancing CenterNet with attention and DIoU loss, 
resulting in superior detection performance compared to existing 
methods. This method achieved an overall accuracy of 87.2 % AP50 
(Average Precision at 50) and 94.7 % R2 for pest disease detection, 
meeting real-world application needs. 

Water management 

Water resource management plays an essential role in ensuring the 
quantity and quality of agricultural production, as well as adapting it to 
climate change and making it more sustainable [162]. In fact, especially 
in Mediterranean environments, there is a decreasing trend in the 
amount of water resources and a deterioration in their quality. In 
Mediterranean regions, therefore, it is crucial to adopt techniques that 
optimize irrigation efficiency. 

In this context, the use of drones is particularly advantageous. 
Thanks to these tools, it is possible to adopt different strategies that can 
improve water use efficiency. For example, optical, multispectral, and 
thermal sensors mounted on drones can be used to detect the crop water 
status (Table 7). 

Multispectral and thermal sensors have been used by Coulombe et al. 
[151] to estimate crop water status in chili crops. Stutsel et al. [150] 
determined it using RGB and thermal sensors in tomato (Fig. 11), while 
Mwinuka et al. [154] used UAV-based multispectral sensors combined 
with handheld thermal sensors in eggplant. 

Among these types of sensors, thermal sensors allow the calculation 
of Crop Water Stress Index (CWSI), the most well-known and widely 
used index for estimating water stress. Ekinzog et al. [152] compared 
three CWSI models on potato cultivation (CWSIe – empirical, CWSIt – 

theoretical, CWSIh hybrid) for crop water stress monitoring. These 
indices were good predictors of soil volumetric water content (θ) (R2 =
0.57–0.63), obtaining the best results with CWSIh. 

Other studies have used multispectral sensors to determine crop 
water status. For example, in tomato, photochemical reflectance (PRI) 
and NDVI have allowed the estimation of stem water potential [153]. 
While Casamitjana et al. [161] found the best correlations between 
surface soil moisture and Normalized Difference Water Index (NDWI) on 
potato. 

Other approaches have involved the use of energy flux models that 
can be used to estimate irrigation water requirements by creating maps 
of crop evapotranspiration. Chandel et al. [156] adopted this approach 
on several crops, including potato, replacing UAV-based optical and 
thermal data with Landsat data in an existing model. The results showed 
that the UAV-based data were compatible with the model, also offering 
greater accuracy. Tunca et al. [155] used a two-source energy balance 
model (TSEB) in a bell pepper field. In this case as well, the UAV plat-
form demonstrated great potential in mapping evapotranspiration, 
especially in small plots, allowing measurements at the plant level. This 
approach also made it possible to overcome the limitations imposed 
using satellites, which offer a temporal resolution of about 15 days 
[160]. Peng et al. [157], proposed a new energy flux modelling frame-
work based on TSEB for high spatial resolution thermal and multispec-
tral UAV data. The results showed excellent performance of this model 
for retrieving evapotranspiration (ET) dynamics, confirming the reli-
ability and precision of these tools. 

Regarding the best flight modes for estimating evapotranspiration, 
Ebert et al. [158] compared different flight altitudes, 30, 60, and 90 m 

Table 7 
Overview of the different types of sensors mounted on UAVs used in water 
management.  

Specific Task Type of sensor Crop Reference 
Crop water status Thermal and RGB Tomato [150] 

Thermal and multispectral Chili [151] 
Potato [152] 

Multispectral Tomato [153] 
Eggplant [154] 

Evapotraspiration Map Thermal and RGB Pepper [155] 
Thermal and multispectral Potato [156,157] 
Multispectral Potato [158] 

Tomato [159,162] 
Soil mosture estimation Multispectral Potato [161]  
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above ground, obtaining that there are no advantages to flying at low 
altitudes, confirming the validity of surveys conducted even at 90 m. 

Finally, another strategy for UAV-based water management is the 
one adopted by Rozenstein et al. [159] in a study conducted on tomato. 
UAV-captured multispectral images were used to estimate evapotrans-
piration by calculating the FAO-56 crop coefficient (Kc). Results show 
that this method estimated evapotranspiration to derive the irrigation 
dose in near-perfect agreement with best-practice irrigation, both in 
terms of total amount and irrigation rate. 

Yield and biomass estimation 

In the case of vegetable crops, the early prediction of crop produc-
tivity and quality is an important factor that allows for the best possible 
planning of harvesting, storage, shipping, and sales operations. This 
estimate is currently carried out manually, which is time-consuming and 
often approximate and inaccurate. The use of drones for this purpose can 
be a good solution, as it is one of the most established and widespread 
applications in agricultural crops in the scientific community [165]. In 
fact, drones can be used to predict yield in terms of both fruit production 
and biomass of multiple vegetables species. Researchers have adopted 
various techniques and used different types of sensors to arrive at a 

precise and geospatialized estimation of the yield. As shown in Table 8, 
one of the determining factors in the choice of materials and methods 
the approach to be used for this purpose is the crop habitat. 

In studies conducted on crops where the productive organs were 
exposed and visible from aerial images, one of the strategies found was 
fruit detection. Using RGB sensors and object detection and counting 
techniques, several authors have identified and quantified the produc-
tion of strawberry [165], yellow melon (Fig.12) [166] and pumpkin 
[163,164]. 

Other strategies involved the use of machine learning algorithms 
based on UAV multispectral data. Oliveira et al. [175] used the support 
vector machine (SVM) and linear regression (LR) models on straw-
berries, with the latter obtaining better yield estimates. In particular, the 
LR model obtained 99.91 % accuracy for the average fruit weight, 99.55 
% for the number of fruits, and 99.94 % for the number of leaves. 
UAV-RGB data were instead used by Johansen et al. [172] to estimate 
tomato yield. For this purpose, the authors used shape features such as 
plant area, border length, width, and length as input to random forest 
models, obtaining R2 values against fresh shoot mass, yield mass, and 
fruit numbers as high as 0.67, 0.44, and 0.41, respectively. 

Furthermore, several authors have employed multi-source models. 
These models consider both geometric characteristics such as canopy 

Fig. 11. Maps of CWSIs values in a tomato experimental field, in salt-treated (S1 and S2) and control (C1 and C2) plots [150].  
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cover, canopy height, and canopy volume, as well as spectral charac-
teristics, through the calculation of vegetation indices. This approach 
has been adopted by several authors [177–179,181] in tomato cultiva-
tion and by Tunca and Köksal [176] in pepper cultivation. This method 
has proven to be an effective strategy in providing the authors with more 
accurate and reliable predictions. 

In crops where production is below the soil surface, productivity 
estimation is indirect, leading to various strategies. For example, in 
potato cultivation, Jasim et al. [174] found good correlations between 
yield and vegetation indices derived from multispectral images. Mhango 
et al. [169] used a deep convolutional neural network (CNN) for the 
identification and estimation of stem density, a parameter that strongly 
characterizes potato yield. 

Additionally, in leafy vegetables, the parameter that represents 
productivity is biomass. This has been successfully estimated in cabbage 
by Astor et al. [170] through information on crop height derived from 
point clouds based on UAV RGB data. Haumont et al. [173] used UAV 
multispectral imaging for the estimation of dry biomass in leek, 
obtaining correlations up to R2=0.90. Awika et al. [180] estimated 
spinach biomass through a predictive model that takes as input geo-
metric information (plant height, canopy coverage, and volume) and 
spectral characteristics (excess greenness index (ExG), chlorophyll 
red-edge (ChlRE), normalized difference vegetation index (NDVI) and 
normalized difference red-edge (NDRE)). Even in spinach cultivation, 
Ariza-Sentís et al. [171] adopted an approach for spinach seed yield 
estimation for seed production purposes, which consists in correlating 
the number of plants and two phenotyping variables (plant area and 
canopy cover percentage) with the number of harvested seeds and the 
thousand seed weight. The results showed a high linear correlation R2adj 
of 0.80. 

Beyond quantitative yield estimation, some authors have conducted 
studies on maturity level classification. This was performed on broccoli, 
where Psiroukis et al. [168] employed object-based image analysis 
(OBIA) techniques to classify different maturity levels based on geo-
metric characteristics of the head. For strawberries, Zhou et al. [167] 
identified and classified various maturity levels using YOLO v3, a Deep 
Learning algorithm (Fig. 13). The results showed that three strawberry 
maturity stages were classified with a mean average precision (mAP) of 
0.88, and 0.93 for fully mature fruit. 

Aerial spraying 

The use of drones on vegetable crops for spraying operations has 
been investigated in recent studies by several authors. Drones equipped 
with a spraying system capable of performing targeted aerial treatments, 
leading to significant input savings, are used. The main components of 
aerial spraying drones include Brushless Direct Current Motors (BLDC), 
Electronic Speed Control (ESC), flight controller, GNSS system, accel-
erometer, gyroscope camera, transmitter, and receiver. For spraying, the 
two primary components are the pump and its controlling system 
(Fig. 14) [182]. 

The use of drones for spraying is becoming increasingly widespread, 
being a highly valuable equipment for farmers and attracting attention 
in the scientific community as well. In the field of vegetable crops, three 
notable studies have explored the applications of pesticides, fertilizers, 
and defoliants using UAV-sprayers. In particular, Xiao et al. conducted a 
study in 2020 [183] aiming to compare droplet deposition and control 
efficiency between UAV and electric air-pressure knapsack (EAP) 
sprayers on a pepper field. Despite UAV gave lower droplet coverage, 
density, and uniformity in deposition, it achieved greater deposition at 
1.01 μg/cm2, which was 98 % higher compared to that obtained with the 
EAP sprayer. This allowed for effective control of aphids and Phytoph-
thora capsici. 

Another study was carried out by Jingxin et al. [184] on fertilizer 
applications in pumpkins aiming to evaluate the effect of working pa-
rameters on droplet deposition. Operating the drone at a flight height of 
2.5 m and a speed of 3 m/s resulted in maximal droplet deposition and a 
high level of attachment on the backside of the leaves. Lastly, in the case 
of defoliant spraying, Yapeng Liu et al. [185] assessed the effect of aerial 
adjuvants on droplet deposition on pepper plants. The most favourable 
outcomes were achieved employing the adjuvant "Puliwang" under-
scoring that specific adjuncts within such applications can substantially 
amplify droplet deposition and defoliation rate, thus augmenting 
treatment efficiency significantly. 

These first results indicate the potential of UAVs in safeguarding and 
managing vegetable crops. Drones offer an innovative and valuable tool 
for optimizing agricultural treatments. 

Discussion 

The use of drones on vegetable crops has emerged as a growing 
research area in recent years. This review focuses on analysing the 
different applications of drones and the opportunities these devices offer 
to farmers and researchers for optimizing vegetable crops management. 

Crop detection through drones represents the fundamental initial 

Table 8 
Summary of the different yield estimation approaches in various crops.  

Approach Predicted 
parameter 

Specie Reference 

Object Detection Fruit yield Pumpkin [163,164] 
Strawberry [165] 
Yellow melon [166] 

Maturity level 
of fruit 

Strawberry [167] 
Cauliflower [168] 

Stem density 
variation 

Potato [169] 

Predicted model based on 
shape features 

Fresh matter  [170] 
Eggplant, Tomato 
and Cabbage  

Seed Yield Spinach [171] 
Biomass and 
Yield 

Tomato [172] 

Predicted model based on 
Vegetation Indices 

Dry-Biomass Leek [173] 
Tubers Yield Potato [174] 
Fruit yield Strawberry [175] 

Multi-Source Prediction 
model 

Fruit yield Pepper [176] 
Tomato [177–179] 

Fresh and dry 
biomass 

Spinach [180] 

Biomass and 
Yield 

Tomato [181]  

Fig. 12. Yield estimation process. Stage (A) melon by spheroid shape using pre-knowledge of melon shape, (B) conversion from 3D to 2D, (C) linear regression for 
yield prediction, (D) report for each melon location and yield estimation for the field [166]. 
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step to conduct further analyses of agricultural plots. By employing 
various types of UAV-based sensors, it is possible to identify the target 
crop, referred to as the Region of Interest (ROI), and isolate it [55]. This 
approach provides a detailed view of the crop and excludes its sur-
roundings, facilitating rapid and efficient mapping of the different crops 
present in the field. The same types of sensors and methods used for crop 
detection, both pixel-based and object-based, also allow for the identi-
fication and mapping of weeds, where the ROI is the weeds. This process 
lays the foundation for site-specific weed management (SSWM) [73]. 

Moreover, crop detection enables further operations such as 
extracting morphological and geometrical plant characteristics from 
images captured by drones. Photogrammetry techniques enable the 
extraction of key parameters such as Leaf Area Index (LAI), plant height, 
volume, and biomass [97]. This information supports an efficient phe-
notyping process, benefiting not only farmers but also breeders [84]. 

Monitoring plant health and stress has been the most prevalent 
application observed in this review. Many authors have employed pa-
rameters calculated from high-resolution aerial images to assess treat-
ment efficacy [115], confirming that these tools are now firmly 
established and reliable for evaluating variations in plant vigor, overall 

well-being, and stress in space and time. Additionally, researchers have 
developed specific indices and methods to generate maps of nitrogen 
and chlorophyll content [114,119]. 

Another application domain of drones is the detection of diseases and 
pests through remote sensing. Although still evolving, the analysed pa-
pers demonstrate that drones equipped with hyperspectral, multispec-
tral, and in some cases, RGB sensors are efficient and reliable tools for 
scouting symptoms induced by pests and diseases [146]. Conversely, 
identifying diseases during asymptomatic stages and accurately classi-
fying various levels of symptom severity is a continually growing field 
[147]. 

Water management is crucial for proper crop management and holds 
significant environmental and economic relevance. Drones equipped 
with both thermal and RGB/multispectral sensors can make substantial 
contributions to water resource management. They can calculate water 
stress indices, estimate evapotranspiration, and determine crop co-
efficients (kc), enabling precise irrigation planning and optimal water 
resource utilization [152,153,159]. 

All types of crops, including vegetables, experience an annual cycle 
that reaches its culmination with the harvesting phase. Drones can be 

Fig. 13. Strawberry maturity detection and classification results using YOLOv3 from UAV images [167].  

Fig. 14. UAV based spraying system used in different crops [182].  
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useful decision support tool at this stage, as they can provide early, 
detailed, and geospatialized yield estimates through their utilization. 
This application has garnered considerable scientific interest in recent 
years and has found practical implementation in the agricultural sector, 
affording farmers the ability to plan harvesting, transportation, storage, 
and sales operations [163,179]. However, accurately estimating ripe-
ness levels and classifying various levels of maturity present in the field 
could be a future research opportunity. Two authors have examined this 
aspect, respectively in strawberries and broccoli, reaching excellent re-
sults and inspiring potential applications in other crops [167,168]. 

The previously mentioned applications have demonstrated how 
drones, equipped with cameras and sensors, can efficiently monitor 
crops from their initial emergence to harvest. Moreover, these vehicles 
offer the capability to conduct various operations. One of the most 
innovative uses in this regard is aerial spraying. Drones deployed for this 
purpose are appropriately sized and equipped with various types of 
spraying systems. These technologies have been tested on vegetable 
crops in three studies involving applications of pesticides, fungicides, 
defoliants, and fertilizers [183–185]. The results of these applications 
are the basis for further research. 

Conclusion 

The review points out the significance of drone applications in 
vegetable crops and the immense potential of these tools in enhancing 
cultivation efficiency. Drone applications in vegetable crops in the 
literature are increasing more and more, with the number of dedicated 
papers on this subject growing year by year. 

The scientific knowledge in this field, combined with the array of 
information that drones can provide, will be employed by agronomists, 
agrotechnicians, and specialized consultants in precision agriculture. 
These professionals will be capable of offering farmers increasingly 
informed and precise operational guidance, thereby contributing to the 
optimization of agricultural management practices and yielding eco-
nomic and environmental benefits. 

From an economic standpoint, drones can provide a dual advantage. 
Their utilization enables the reduction of input quantities such as her-
bicides, fertilizers, pesticides, and water but also the prevention of 
damages through early diagnosis of various stress types. Additionally, 
input savings can yield environmental benefits, positioning these tech-
nologies as potential solutions for the environmental sustainability of 
vegetable crops [64,104]. 

However, it is imperative to continue research and development to 
face technological challenges and make these tools increasingly acces-
sible and effective for the agricultural sector where tradition is strong, 
and innovations are gradually accepted and adopted. 
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