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Lie Symmetries of Differential Equations:
A Computational Approach to Optimal Systems of Lie Subalgebras

by Emanuele SGROI

Lie groups of symmetries of differential equations constitute a fundamental tool for
constructing group-invariant solutions. The number of subgroups is potentially in-
finite and so the number of invariant solutions; thus, it is crucial to obtain a clas-
sification of subgroups in order to have an optimal system of inequivalent solutions
from which all other solutions can be derived by action of the group itself. Since
Lie groups are intimately connected to Lie algebras, a classification of inequivalent
subgroups induces a classification of inequivalent Lie subalgebras, and vice versa.
A general method for classifying the Lie subalgebras of a finite–dimensional Lie
algebra uses inner automorphisms that are obtained by exponentiating the adjoint
groups. In this thesis, after shortly reviewing the basic notions about Lie algebras
and Lie groups of transformations of differential equations, we present an effective
algorithm able to automatically determine optimal systems of Lie subalgebras of a
generic finite–dimensional Lie algebra abstractly assigned by means of its structure
constants, or realized in terms of matrices or vector fields, or defined by a basis and
the set of non-zero Lie brackets. The algorithm is implemented in the computer alge-
bra system Wolfram Mathematica™. Various meaningful and non-trivial examples are
considered. In particular, we classify the optimal systems of Lie subalgebras of all
real Lie algebra of dimension 3, 4 and 5. Also, we analyze the optimal systems of Lie
subalgebras of Noether symmetries of some geodesic equations associated to special
metrics in a four–dimensional space, as well as the optimal systems of Lie symme-
tries admitted by some well known PDEs (linear heat equation, Burgers’ equation,
Korteweg-deVries equation).
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Introduction

The theory developed by Sophus Lie [1–3] had their starting point in his intuition
that the concept of symmetry provides a unified framework able to connect the var-
ious methods commonly used to solve special classes of ordinary differential equa-
tions with infinitesimal transformations, that are strictly related to one–parameter
groups of transformations. Lie’s original idea has been inspired by N. Abel and
É. Galois works on algebraic equations (see [4]), where some symmetry properties
of equations determine whether they are solvable or not by radicals. In the study of
differential equations, Lie added a geometric dimension, which has been developed
into a general integration procedure. Such methods were based on the invariance of
a differential equation with respect to a group of continuous transformations. Many
authors have expanded Lie’s theories further. In particular, Élie Cartan [5] carried
Lie’s theories into several mathematical fields. Nowadays, the symmetry method
developed by Lie represents a milestone in the investigation of algebraic structures
known as Lie groups. In turn, Lie groups are intimately connected to Lie algebras
[6–9]. In particular, Lie groups of symmetries of partial differential equations, be-
sides representing the main ingredient for constructing group-invariant solutions
[10–13], are also used for mapping differential equations into equivalent ones [14],
or constructing conservation laws [15], to quote few applications.

When using Lie symmetries for characterizing group-invariant solutions, we
need to consider particular Lie subgroups of continuous transformations admitted
by a differential equation. Due to the potential infinite number of subgroups, that
reflects on the number of group-invariant solutions, it is desirable to classify these
solutions in order to have an optimal system of inequivalent group-invariant solu-
tions from which all other solutions can be derived by action of the group itself [13,
Ch. IV, Sects. 7–9]. A classification of inequivalent invariant solutions can be done
by using some special automorphisms of the Lie group.

It is well known that for a group (G, ·) an automorphism of G is a bijective map
ϕ : G → G such that

ϕ(a · b) = ϕ(a) · ϕ(b) ∀ a, b ∈ G.

In the group of all automorphisms of G, there are the automorphisms

ϕa : G → G, ϕa(b) = a−1 · b · a,

a−1 denoting the inverse of a ∈ G. called inner automorphisms of G. The set of all
inner automorphisms of G is denoted by Int(G).

Since a−1 · b · a = b is equivalent to saying b · a = a · b, the existence and number
of inner automorphisms different from the identity is a sort of measure of the failure
of the commutative law in the group.

A subgroup H ⊆ G is similar to a subgroup H′ ⊆ G if there exists a ∈ G such that
H′ = aHa−1, i.e., the subgroups H and H′ are connected by inner automorphisms of
the group. This similarity is a relation of equivalence and the corresponding equiv-
alence classes are said conjugacy classes.
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Since non–essentially different invariant solutions are found from similar Lie
subgroups, the problem of the classification of H–invariant solutions (see [11, Ch. 3,
Sect. 3.3] and [13, Ch. IV, Sects. 7–9]) is reduced to the classification of subgroups
of a Lie group G, up to similarity. In the literature, the similar subgroups (subalge-
bras) Lie [10] are also known as conjugate subgroups (subalgebras) Lie [11]. This
problem, for connected Lie groups of symmetries, in turn, is reduced to the corre-
sponding problem of classification of Lie subalgebras, that can be approached more
easily from an algorithmic perspective. The implementation of algorithms for inves-
tigating Lie algebras is a well established and promising area (see, for instance, [6,
16–18]).

Moreover, the explicit construction of optimal systems of Lie subalgebras of the
Lie algebra of symmetries of partial differential equations, leading to optimal sys-
tems of subgroups, is of particular relevance in the applications (classification of
inequivalent group-invariant solutions); in fact, there is a rapidly increasing litera-
ture about the optimal systems of Lie subalgebras connected to the symmetries of
partial differential equations (see, for instance, [19–29]).

Determining the similar Lie subalgebras, and then associating to them similar
Lie subgroups, is more effective algorithmically because the group of inner auto-
morphisms of a Lie algebra L, Int(L), is always a group of linear transformations on
the main space, whereas the group Int(G) is necessarily not.

Therefore, by defining the similarity between Lie subalgebras, all subalgebras
of a fixed dimension of a Lie algebra L are partitioned into classes of similar sub-
algebras. The set of the representatives of each class is called an optimal system of
subalgebras and [11, Ch. 3, Sect. 3.3]) and ([13, Ch. IV, Sects. 7–9]. In the following, we
will be concerned with finite–dimensional Lie algebras of dimension r, Lr.

Thus, the optimal system of subalgebras of a Lie algebra Lr with inner automor-
phisms A = Int(Lr) is a set of subalgebras ΘA(Lr) such that:

1. there are no two elements of this set which can be transformed into each other
by inner automorphisms of the Lie algebra Lr;

2. any subalgebra of the Lie algebra Lr can be transformed into one of subalge-
bras of the set ΘA(Lr).

The union of the elements of the optimal system of given dimensionality d is called
optimal system of order d, and denoted by the symbol Θd

A; since the dimension of an
algebra is invariant under automorphisms, the solution of the classification problem
for a finite-dimensional Lie algebra Lr yields tables of optimal systems for every
d = 1, . . . , r− 1.

Although not strictly connected to the determination of optimal systems of Lie
subalgebras faced in the sequel, it is worth noticing that many physically relevant
differential equations may admit discrete symmetries (see, for instance [30] where
non-classical reductions of Boussinesq equation are also considered). Moreover, in
[31] a method for determining the most general equation admitting a given discrete
symmetry is given. A special mention is due to Hydon [32, 33] (see also the book [34,
Ch. 11]) who gave effective algorithms for computing discrete symmetries of both
ordinary and partial differential equations.

In this thesis, after introducing the basic notions about Lie algebras and Lie
groups of transformations admitted by differential equations, we face the problem of
classifying Lie subalgebras from a computational viewpoint, and present an effective
algorithm that can automatically determine the optimal systems of Lie subalgebras
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of a generic finite–dimensional Lie algebra [35]. Actually, we consider the set of fam-
ilies of Lie subalgebras that we define in Chapter 4, and introduce a more general
relation that is both reflexive and transitive but could not be symmetric.

Some authors [36, 37] claimed the implementation of computer algebra algo-
rithms for determining optimal systems of Lie subalgebras; nevertheless, these al-
gorithms are not systematic, and the results are obtained using the computer alge-
bra system interactively as a symbolic calculator. On the contrary, our algorithm,
implemented in a package, SymboLie [38], written in the computer algebra system
Wolfram Mathematica™ [39] is able to recover optimal systems of Lie subalgebras al-
most automatically. The name SymboLie (due to Lucia Margheriti, a PhD student at
the University of Messina who in 2008 started to work on this problem from a com-
putational viewpoint [40]) merges the word Symbol with Lie: the reason is that, in
Sophus Lie’s notation, the infinitesimal generator of a Lie group of transformations
was denoted as the symbol. Preliminary results about the SymboLie program, with
special emphasis on one–dimensional Lie subalgebras, are contained in [41].

The structure of the thesis is as follows. In Chapters 1 and 2, also devoted to fix
the notation, we briefly recall some basic notions about Lie algebras, the similarity
relation among Lie subalgebras, and Lie groups of transformations of differential
equations. In Chapter 3, we shortly describe the use of Lie symmetries for finding
group–invariant solutions, and face the problem of separating them into inequiva-
lent classes. Chapter 4 contains the definition of families of Lie subalgebras allowing
us to state the problem of the determination of optimal systems of Lie subalgebras
in a suitable way from a computational point of view. Moreover, we give a detailed
description of the methods and algorithms for deriving optimal systems of families
of Lie subalgebras, both one–dimensional and multi–dimensional. In Chapter 5, we
describe how to use the program, and present some non–trivial case studies, and
compare the results obtained with SymboLie with those available in the literature.
In Chapter 6 we present a hierarchy of coupled Burgers–like equations possessing
Lie algebras of symmetries that are isomorphic to the Lie algebra of symmetries of
classical Burgers’ equation. The hierarchy arises repeatedly looking for conditional
symmetries starting from classical Burgers’ equation. Finally, Chapter 7 gives some
not yet concluding remarks, outlines possible developments, and reports some pre-
liminar results currently under investigation.

The original results presented in this thesis are contained in some coauthored
papers. In particular, the paper [35] contains the theoretical formulation underlying
the p–families of Lie subalgebras and the relation (which in general is a preorder)
among them; in this paper, the algorithms used in the package SymboLie (see [38]
for the source code and a series of applications) are also described and tested. The
characterization of the optimal systems of all the real three– and four–dimensional
Lie algebra with Symbolie is contained in a paper submitted for publication [42], and
compared with the results obtained by Patera and Winternitz [26]. The results dis-
cussed in Chapter 6 are contained in a paper submitted for publication [43]. Finally,
in the conclusive Chapter, some original preliminar results currently under investi-
gation are presented, concerned with the optimal systems of the five–dimensional
real Lie algebra characterized in [44] and of the Noether symmetries of geodesic
equations associated to special metrics.
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Chapter 1

Short review about Lie algebras

In the study of differential equations, symmetries are crucial for simplifying prob-
lems and finding solutions. Among the most powerful tools for understanding sym-
metries are Lie groups and their associated Lie algebras. Before delving into the
theory of Lie symmetries admitted by differential equations, it is essential to first
establish a foundation about the basic concepts of Lie algebras [6–9, 18].

Lie algebras provide a linearized framework to study the local properties of Lie
groups. They allow us to explore the infinitesimal structure of continuous symme-
tries, which is fundamental when analyzing the behavior of differential equations
under these symmetries. The algebraic structure of Lie algebras, characterized by
the Lie bracket, reveals how symmetries interact, forming an essential part of the
theory of Lie group actions.

This chapter introduces the basic notions of Lie algebras, including definitions,
examples, and key properties. By understanding these concepts, we build the neces-
sary basics for the subsequent chapters, where we will explore how these algebraic
structures are used to solve differential equations through group of symmetries.

1.1 Definitions and examples

Definition 1. Let F be a field. A Lie algebra over F is an F–vector space L, equipped with
a bilinear map

[·, ·] : L×L → L
(x, y) 7→ [x, y],

such that, for all x, y, z ∈ L, the following axioms are satisfied:

(a1) [x, x] = 0,

(a2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

The map [·, ·] is called the Lie bracket.

Let L be a Lie algebra over F, and let x, y ∈ L. Then, by the bilinearity of the Lie
bracket, we have:

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].

Thus, it follows that the Lie bracket satisfies the property of antisymmetry:

[x, y] = −[y, x] for all x, y ∈ L. (1.1)
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On the other hand, from (1.1), we have [x, x] = −[x, x], that is, 2[x, x] = 0 for every
x ∈ L. Therefore, if F has characteristic different from 2, the axiom (a1) is equivalent
to (1.1).

Starting from these few axioms, we can easily prove the following simple prop-
erty.

Property 1. Let L be a Lie algebra over F, and let x, y ∈ L. We have:

1. [x, 0] = 0 = [0, x];

2. if [x, y] ̸= 0, then x and y are linearly independent over F.

Proof.

1. We can write 0 = 0 · z, for some z ∈ L and with 0 ∈ F. Then we have:

[x, 0] = [x, 0 · y] = 0 · [x, y] = 0.

A similar argument applies to [0, x].

2. Suppose that x and y are not linearly independent. Then there exists α ∈ F such
that y = αx. It follows that:

[x, y] = [x, αx] = α[x, x] = 0,

a contradiction.

Example 1. Let V be an F–vector space. If we define the Lie bracket

[·, ·] : V ×V → V
(x, y) 7→ 0

then V trivially becomes a Lie algebra over F.

Example 2. Let V be an F–vector space, and denote by End(V) the set of endomorphisms
of V. The space V, equipped with the following Lie bracket

[·, ·] : End V × End V → End V
(x, y) 7→ [x, y] = x ◦ y− y ◦ x

becomes a Lie algebra over F called the general linear algebra, denoted by gl(V).

Example 3. Denote by gl(n, F) the vector space of all n× n matrices over F. By introducing
the Lie bracket

[·, ·] : gl(n, F)× gl(n, F)→ gl(n, F)

(x, y) 7→ [x, y] = xy− yx

for all x, y ∈ gl(n, F), where xy is the usual row-column product of matrices, we obtain a
Lie algebra over F.

Example 4. Let sl(n, F) be the subspace of gl(n, F) consisting of all matrices with trace
zero. Since for all x, y ∈ sl(n, F), the matrix xy− yx is traceless, the commutator [x, y] =
xy− yx defines a Lie algebra structure on sl(n, F). This Lie algebra is known as the special
linear algebra.
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Example 5. Let b(n, F) be the subspace of upper-triangular matrices in gl(n, F); equipped
with the Lie bracket of gl(n, F), it becomes a Lie algebra.

1.2 Subalgebras and ideals

Subsequently, we define the concepts of subalgebra and ideal of a Lie algebra, and
also introduce operations between ideals and various important ideals in the analy-
sis of Lie algebras.

Definition 2. Let L be a Lie algebra over F. We say that K ⊆ L is a subalgebra of L if it is
a vector subspace such that

[x, y] ∈ K for every x, y ∈ K.

Therefore, K is a vector subspace of L that is closed under the Lie bracket. Note
that K, equipped with the Lie bracket of L restricted to K, is a Lie algebra.

Definition 3. Let L be a Lie algebra over F and let I ⊆ L. We say that I is an ideal of L if

[x, y] ∈ I for every x ∈ L, y ∈ I .

Ideals in Lie algebra theory play a role analogous to that of normal subgroups in
group theory and two-sided ideals in ring theory. Note that, due to the antisymme-
try property, there is no need to distinguish between left and right ideals as in the
case of non-commutative rings.

Remark 1. From the definition, it follows that an ideal is also a subalgebra, but the converse
is not necessarily true.
For example, b(2, R) is a subalgebra of gl(2, R) but not an ideal. Indeed, considering(

0 0
1 0

)
∈ gl(2, R),

(
0 1
0 0

)
∈ b(2, R),

we have: [(
0 0
1 0

)
,
(

0 1
0 0

)]
=

(
−1 0
0 1

)
/∈ b(2, R).

The Lie algebra L and {0L} are ideals of L, called trivial ideals. Any ideal dif-
ferent from L is called a proper ideal.
We can also introduce operations on ideals to construct new ideals from two ideals
I and J of a Lie algebra L.
First, we observe that I ∩ J is an ideal of L. Indeed, I ∩ J is a vector subspace of
L, and for x ∈ L and y ∈ I ∩ J , we have [x, y] ∈ I since I is an ideal, and similarly
[x, y] ∈ J . Hence, [x, y] ∈ I ∩ J .

The union of ideals, however, is not generally an ideal. However, the following
result holds:

Proposition 1. Let L be a Lie algebra, and let I and J be ideals of L. Then

I + J = {x + y : x ∈ I , y ∈ J }

is an ideal.

Proof. We know that I + J is a vector subspace of L. We need to show that it is an
ideal. Let x ∈ L and z ∈ I + J . Then there exist y1 ∈ I and y2 ∈ J such that
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z = y1 + y2. Thus:

[x, z] = [x, y1 + y2] = [x, y1] + [x, y2] ∈ I + J ,

therefore, the result follows.

The ideal I + J is called the sum of the two ideals I and J .

1.3 Center and derived algebra

We can define another operation between ideals: given two ideals I and J of a Lie
algebra L over the field F, we denote by [I ,J ] the set

[I ,J ] =

{
n

∑
i=1

αi[xi, yi] : αi ∈ F, xi ∈ I , yi ∈ J , n ∈N

}
,

which we call the product of the ideals I and J .

Proposition 2. Let L be a Lie algebra over F, and let I and J be ideals of L. Then [I ,J ]
is an ideal.

Proof. Clearly, [I ,J ] is a vector subspace of L, so we need to show that it is an ideal.
Let x ∈ L and z ∈ [I ,J ]. Then there exist α1, . . . , αn ∈ F, x1, . . . , xn ∈ I , and
y1, . . . , yn ∈ J such that

z =
n

∑
i=1

αi[xi, yi].

We need to show that [x, z] ∈ [I ,J ]:

[x, z] =

[
x,

n

∑
i=1

αi[xi, yi]

]
=

=
n

∑
i=1

αi[x, [xi, yi]] =

=
n

∑
i=1

αi (−[xi, [yi, x]]− [yi, [x, xi]]) =

=
n

∑
i=1

αi (−[xi, [yi, x]] + [[x, xi], yi]) ∈ [I ,J ],

since xi ∈ I , [yi, x] ∈ J , [x, xi] ∈ I , and yi ∈ J for each i = 1, . . . , n.

From this proposition, it follows that [L,L] is an ideal of L, so we can give the
following definition.

Definition 4. Let L be a Lie algebra. The ideal L′ = [L,L] is called the derived algebra
of L.

Given a Lie algebra L and a subset S ⊆ L, we can define the set of elements of L
that commute with all elements of S:

ZL(S) = {x ∈ L : [x, s] = 0 for every s ∈ S}.
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The set ZL(S) is called the centralizer of S in L. It is easy to verify that ZL(S) is a
subalgebra of L. Indeed, given x, y ∈ ZL(S) and s ∈ S, the Jacobi identity gives:

[[x, y], s] = −[[y, s], x]− [[s, x], y] = [0, x]− [0, y] = 0,

so [x, y] ∈ ZL(S).

Definition 5. LetL be a Lie algebra. The set of elements ofL that commute with all elements
of L,

Z(L) = {x ∈ L : [x, y] = 0 for every y ∈ L},

is called the center of L.

Note that the center of L is the centralizer of L in itself, i.e., Z(L) = ZL(L). The
following property holds.

Property 2. Let L be a Lie algebra over a field F. Then Z(L) is an ideal.

Proof. First, we show that Z(L) is a vector subspace of L: let α, β ∈ F, x, y ∈ Z(L),
and z ∈ L. Then:

[αx + βy, z] = α[x, z] + β[y, z] = 0,

so αx + βy ∈ Z(L), and thus Z(L) is a subspace of L. Now, we prove the second
property: let x ∈ L and y ∈ Z(L), and we verify that [x, y] ∈ Z(L). Let z ∈ L; using
the Jacobi identity, we have:

[[x, y], z] = −[[y, z], x]− [[z, x], y] = [0, x]− 0 = 0,

so the claim follows.

Definition 6. A Lie algebra L is called commutative (or abelian) if [x, y] = 0 for all x, y ∈
L.

Proposition 3. Let L be a Lie algebra. L is abelian if and only if Z(L) = L.

Proof. If L is an abelian Lie algebra, for any x ∈ L, we have [x, y] = 0 for every
y ∈ L, so x ∈ Z(L) and thus L = Z(L).
Conversely, if L = Z(L), then [x, y] = 0 for all x, y ∈ L, i.e., L is abelian.

Given a vector space V and a subspace W ⊆ V, we know that we can construct
the quotient vector space V/W.
We now want to define the quotient Lie algebra. Let L be a Lie algebra over F and let
I be an ideal of L. We know that I is a particular subspace of L, so we can consider
the quotient space L/L. On this space, we define the following operation:

[·, ·] : L/I × L/I → L/I
(x + I , y + I)→ [x + I , y + I ] = [x, y] + I

We will verify the following facts.

1. [·, ·] is well-defined:

Let x, y ∈ L, we know that [x + I , y + I ] = [x, y] + I . Let x′, y′ ∈ L such that
x + I = x′ + I and y + I = y′ + I . We need to show that

[x + I , y + I ] = [x′ + I , y′ + I ] ⇐⇒ [x, y]− [x′, y′] ∈ I .



10 Chapter 1. Short review about Lie algebras

Since x is equivalent to x′, there exists z1 ∈ I such that x = x′ + z1. Similarly,
there exists z2 ∈ I such that y = y′ + z2. Then

[x, y]− [x′, y′] = [x′ + z1, y′ + z2]− [x′, y′] = [x′, z2] + [z1, y′] + [z1, z2] ∈ I .

2. [·, ·] is bilinear:

We prove linearity in the first argument; linearity in the second argument can be
proven similarly. Let α, β ∈ F and let x, y, z ∈ L. We have:

[α(x + I) + β(y + I), z + I ] = [(αx + I) + (βy + I), z + I ] =
= [(αx + βy) + I , z + I ] =
= [αx + βy, z] + I =

= (α[x, z] + β[y, z]) + I =

= α([x, z] + I) + β([y, z] + I) =
= α[x + I , z + I ] + β[y + I , z + I ].

3. [·, ·] satisfies (a1) and (a2):

Let x ∈ L,
[x + I , x + I ] = [x, x] + I = 0 + I = I .

Thus (a1) is trivially satisfied.
Let x, y, z ∈ L, we verify (a2):

[x + I , [y + I , z + I ]] + [y + I , [z + I , x + I ]] + [z + I , [x + I , y + I ]] =
= [x + I , [y, z] + I ] + [y + I , [z, x] + I ] + [z + I , [x, y] + I ] =
= ([x, [y, z]] + I) + ([y, [z, x]] + I) + ([z, [x, y]] + I) =
= ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) + I =

= 0 + I = I .

Thus L/I with the Lie bracket defined as above is a Lie algebra over F and is called
the quotient Lie algebra.

1.4 Structure constants and homomorphisms

Let L be an r-dimensional Lie algebra over a field F with basis {x1, . . . , xr}. For each
pair xi, xj with i ̸= j, we can express the Lie bracket as a linear combination of the
basis elements of L, that is, there exist ck

ij ∈ F, with k = 1, . . . , r, such that:

[xi, xj] =
r

∑
k=1

ck
ijxk.

Then, the constants ck
ij completely determine the operation. Indeed, given x, y ∈ L,

we can express them as linear combinations of the basis:

x =
r

∑
i=1

αixi, y =
r

∑
j=1

β jxj,
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and we have:

[x, y] =

[
r

∑
i=1

αixi,
r

∑
j=1

β jxj

]
=

r

∑
i,j=1

αiβ j[xi, xj] =
r

∑
i,j,k=1

αiβ jck
ijxk.

The constants ck
ij are called structure constants, and the following result holds.

Proposition 4. Let L be a Lie algebra over a field F with basis {x1, . . . , xr}. Then the
structure constants satisfy the following relations:

1. ck
ii = 0,

2. ck
ij = −ck

ji,

3. ∑r
ℓ=1(c

m
il cℓjk + cm

jℓc
ℓ
ki + cm

kℓc
ℓ
ij) = 0,

for every 1 ≤ i, j, k, m ≤ r.

Proof.

1. Fix i ∈ {1, . . . , r}.
By the axiom (a1), we have [xi, xi] = 0. Thus:

[xi, xi] =
r

∑
k=1

ck
iixk = 0,

and since {x1, . . . , xr} is a basis ofL, it follows that ck
ii = 0 for every k = 1, . . . , r.

2. Fix i, j ∈ {1, . . . , r}.
By property (1.1), we have [xi, xj] = −[xj, xi]. Thus:

r

∑
k=1

ck
ijxk = −

r

∑
k=1

ck
jixk =⇒

r

∑
k=1

(ck
ij + ck

ji)xk = 0.

Since {x1, . . . , xr} is a basis, it follows that ck
ij = −ck

ji for every k = 1, . . . , r.

3. Fix i, j, k ∈ {1, . . . , n}.
By the axiom (a2), we have [xi, [xj, xk]] + [xj, [xk, xi]] + [xk, [xi, xj]] = 0. Thus:

0 =

[
xi,

r

∑
ℓ=1

cℓjkxℓ

]
+

[
xj,

r

∑
ℓ=1

cℓkixℓ

]
+

[
xk,

r

∑
ℓ=1

cℓijxℓ

]
=

=
r

∑
ℓ=1

(
cℓjℓ[xi, xℓ] + cℓki[xj, xℓ] + cℓij[xk, xℓ]

)
=

=
r

∑
ℓ=1

r

∑
m=1

(cℓjkcm
iℓxm + cℓkic

m
jℓxm + cℓijc

m
kℓxm) =

=
r

∑
m=1

(
r

∑
ℓ=1

cm
iℓcℓjk + cm

jℓc
ℓ
ki + cm

kℓc
ℓ
ij

)
xm.

Since {x1, . . . , xr} is a basis, it follows that

r

∑
ℓ=1

cm
iℓcℓjk + cm

jℓc
ℓ
ki + cm

kℓc
ℓ
ij = 0,
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for every m = 1, . . . , r.

Finally, we introduce the definition of homomorphism between Lie algebras.

Definition 7. Let L1 and L2 be Lie algebras over a field F. A linear map φ : L1 → L2 is
called a Lie algebra homomorphism if

φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ L1,

where [·, ·] denotes the Lie bracket of each respective algebra.

We say that φ is a monomorphism if it is injective, an epimorphism if it is surjective,
and an isomorphism if it is bijective. An isomorphism from a Lie algebra L to itself is
called an automorphism.

Finally, two Lie algebras L1 and L2 are said to be isomorphic if there exists an
isomorphism φ : L1 → L2.

1.5 Solvable, nilpotent and simple Lie algebras

The ideals constitute an important ingredient for classifying Lie algebras. Previously,
we introduced a special ideal of a Lie algebra L known as the derived algebra: L′ =
[L,L]. The following lemma holds.

Lemma 1. Let L be a Lie algebra and I ⊆ L an ideal. Then the quotient L/I is abelian if
and only if I contains the derived algebra L′.

Proof. The quotient L/I is abelian if and only if for every x, y ∈ L we have:

[x + I , y + I ] = [x, y] + I = I ,

i.e., for every x, y ∈ L, we have [x, y] ∈ I . This holds if and only if L′ ⊆ I , since I is
a vector subspace of L and L′ is generated by the set {[x, y] : x, y ∈ L}.

This lemma suggests that the derived algebra L′ is the smallest ideal of L such
that the quotient is abelian. By a similar reasoning, we can say that the derived
algebra of L′, denoted by L(2), is the smallest ideal of L′ such that the quotient
L′/L(2) is abelian. We can define the derived series of L as follows:

Definition 8. Let L be a Lie algebra. Consider the ideals:

L(0) = L, L(1) = L′ = [L,L], L(2) = [L(1),L(1)], . . . , L(k) = [L(k−1),L(k−1)].

The sequence L ⊇ L(1) ⊇ L(2) ⊇ · · · is called the derived series of L.

Definition 9. Let L be a Lie algebra. It is said to be solvable if there exists m ≥ 1 such
that L(m) = 0.

If L is solvable, then the derived series of L provides a “approximation” of L via
a finite sequence of ideals whose quotients are abelian. The converse also holds.

Lemma 2. Let L be a Lie algebra and let I0, I1, . . . , Im, with m ∈ N, be ideals of L such
that

L = I0 ⊇ I1 ⊇ · · · ⊇ Im−1 ⊇ Im = 0

and the quotients Ik−1/Ik are abelian for every 1 ≤ k ≤ m. Then L is solvable.
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Proof. We will show that L(m) = 0.
We know by assumption that the quotient L/I1 is abelian, so by Lemma 1, we have
L′ ⊆ I1. Suppose this inclusion holds for k− 1, i.e., L(k−1) ⊆ Ik−1, and prove it for k.
By assumption, the quotient Ik−1/Ik is abelian, so by Lemma 1, we have [Ik−1, Ik−1] ⊆
Ik. By the inductive hypothesis, we have L(k−1) ⊆ Ik−1, so that

L(k) = [L(k−1),L(k−1)] ⊆ [Ik−1, Ik−1] ⊆ Ik,

thus the claim follows.

We now introduce another fundamental class of Lie algebras, namely nilpotent
Lie algebras. To do this, we define another sequence of ideals.

Definition 10. Let L be a Lie algebra. Consider the ideals:

L0 = L, L1 = L′, L2 = [L,L′], . . . , Lk = [L,Lk−1].

The sequence L ⊇ L1 ⊇ L2 ⊇ · · · is called the central descending series.

Definition 11. Let L be a Lie algebra. It is said to be nilpotent if there exists m ≥ 1 such
that Lm = 0.

Remark 2. Every nilpotent Lie algebra is solvable. The converse is not generally true. For
example, the Lie algebra b(n, F) of upper-triangular n× n matrices is solvable, but it is not
nilpotent for n ≥ 2.

Definition 12. Let L be a Lie algebra. It is said to be simple if L is non-abelian and has
only trivial ideals.

Example 6. Let L be the three-dimensional Lie algebra with basis {x1, x2, x3} with Lie
brackets

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2.

It is easy to verify that this Lie algebra has no proper ideals.

Remark 3. In this Chapter, the basis of a generic Lie algebra has been denoted as {x1, . . . , xr},
and the structure constants as ck

ij. In the following, since we are mainly interested to finite
dimensional Lie algebras spanned by infinitesimal generators of symmetries of differential
equations, we will denote the basis as {Ξ1, . . . , Ξr} (this is the notation used in SymboLie
[38]), and the corresponding structure constants as Ck

ij.
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Chapter 2

Lie groups of differential equations

For solving ordinary or partial differential equations a general theory of Lie groups
is unnecessary if transformations are limited to scalings, translations, or rotations.
However, there may be other classes of transformations that leave some differential
equations invariant. The infinitesimal characterization of a Lie group of transforma-
tions is essential for discovering such transformations.

This chapter provides an overview of the fundamental concepts about Lie group
analysis of differential equations [9–11, 13, 34, 45–51].

2.1 Lie groups of transformations

Definition 13 (Group). A group G is a non–empty set of elements with a binary operation
γ : G× G → G satisfying the following axioms:

1. γ(a, γ(b, c)) = γ(γ(a, b), c), for any a, b, c ∈ G (associative property);

2. there exists a unique identity element e ∈ G such that γ(a, e) = γ(e, a) = a, for all
a ∈ G (identity element);

3. For any element a ∈ G there exists a unique inverse element a−1 such that γ(a, a−1) =
γ(a−1, a) = e (inverse element).

Definition 14 (Group of Transformations). Let D ⊆ RN and S ⊆ R be open subsets.
The set of transformations

Z : D× S→ D, z→ z⋆ = Z(z, a),

depending on the parameter a, forms a group of transformations on D if:

1. For each a ∈ S, Z is bijective;

2. (S, γ), with γ : S× S→ S being the composition law, is a group with identity e;

3. z⋆ = z when a = e, that is, Z(z, e) = z;

4. if z⋆ = Z(z, a) and z⋆⋆ = Z(z⋆, b), then z⋆⋆ = Z(z, γ(a, b)) for all a, b ∈ S.

Definition 15 (Lie Group of Transformations). A group of transformations defines a
one–parameter Lie group of transformations if it also satisfies the following axioms:

1. a is a continuous parameter, that is, S is connected;

2. Z is C∞ with respect to z in D, and an analytic function of a in S;

3. for each a, b ∈ S, γ(a, b) and a−1 are analytic functions.
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The definitions provided above can be naturally extended to general manifolds,
as discussed in [11]. However, to avoid unnecessary technicalities, we have cho-
sen to present these definitions in their current, more streamlined form (see [9, 10,
34, 46]). This approach ensures clarity while preserving the essential structure of
the intended mathematical framework. However, let us recall for completeness the
definition of a Lie group [11].

Definition 16 (Lie group). A Lie group is a group G which also carries the structure of an
smooth manifold in such a way that both the group operation

γ : G× G → G, γ(g, h) = g · h, g, h ∈ G,

and the inversion
i : G → G, i(g) = g−1, g ∈ G,

are smooth maps between manifolds.

2.1.1 Examples of one–parameter Lie group of transformations

Example 7 (Translation Group in the Plane R2). Let D = R2 and z0 ∈ R2 be a fixed
point in the plane. The set of transformations

z⋆ = z + az0, (2.1)

(a ∈ R and γ(a, b) = a + b) defines a one-parameter Lie group of transformations, called
the translation group.

Example 8 (Scaling Group). Let D = R2. The set of transformations

z⋆ = az, (2.2)

(a ∈ R+ and γ(a, b) = a · b) defines a one-parameter Lie group of transformations, called
the scaling group.

Example 9 (Rotation Group in the Plane). Let D = R2 and let

A =

(
cos a − sin a
sin a cos a

)
. (2.3)

The set of transformations
z⋆ = Az, (2.4)

(a ∈ R and γ(a, b) = a + b) defines the group of clockwise rotations by an angle a in the
plane.

Definition 17 (Homomorphism between Lie Groups). A homomorphism between Lie
groups is a differentiable function

ϕ : G → G′,

between two Lie groups G (with operation γ) and G′ (with operation γ′) such that

ϕ(γ(g, h)) = γ′(ϕ(g), ϕ(h)), ∀ g, h ∈ G.

If ϕ is bijective, then it is called an isomorphism between G and G′.
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Lemma 3. Let S be an open interval in R and let γ : S × S → S be an operation that
makes S a group. If γ(a, b) and a−1 are analytic, then there exists a group homomorphism
ϕ : S→ R, that is,

ϕ(γ(a, b)) = ϕ(a) + ϕ(b).

Proof. Consider the function

Γ(a) =
∂γ(p, q)

∂q

∣∣∣∣
(p,q)=(a−1,a)

,

and consider the following Cauchy problem

ϕ′(a) = Γ(a), ϕ(e) = 0, (2.5)

where e ∈ S is the identity element of the group (S, γ). Since γ is an analytic func-
tion, thus of class C1, the Cauchy problem (2.5) has a unique solution. Integrating
(2.5), we get:

ϕ(a) =
∫ a

e
Γ(x) dx .

By the assumptions, the function ϕ is analytic. It remains to prove that it represents
a group homomorphism, thus we must prove that

ϕ(γ(a, b)) = ϕ(a) + ϕ(b),

that is, ∫ γ(a,b)

e
Γ(x) dx =

∫ a

e
Γ(x) dx +

∫ b

e
Γ(x) dx . (2.6)

Differentiating both sides with respect to b, we obtain

Γ(γ(a, b))
∂γ(a, b)

∂b
= Γ(b), (2.7)

whose integration between e and b gives∫ γ(a,b)

e
Γ(x) dx =

∫ b

e
Γ(x) dx +φ(a).

In particular, choosing b = e, we get

φ(a) =
∫ a

e
Γ(x) dx .

This implies that (2.6) and (2.7) are equivalent, thus it is enough to verify (2.7) to
prove the theorem. By the associative property of the operation γ, we know that

γ(c, γ(a, b)) = γ(γ(c, a), b), ∀ a, b, c ∈ S.

Then, differentiating with respect to b, we obtain:

∂γ(c, γ(a, b))
∂γ(a, b)

∂γ(a, b)
∂b

=
∂γ(γ(c, a), b)

∂b
.

In particular, choosing c = (γ(a, b))−1 = γ(b−1, a−1), we have:
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Γ(γ(a, b))
∂γ(a, b)

∂b
=

∂γ(γ(γ(a, b)−1, a), b)
∂b

=

=
∂γ(γ(γ(b−1, a−1), a), b)

∂b
=

=
∂γ(γ(b−1, γ(a−1, a)), b)

∂b
=

=
∂γ(γ(b−1, e), b)

∂b
=

=
∂γ(b−1, b)

∂b
=

= Γ(b).

Remark 4. Thanks to the previous lemma, in the case of a one-parameter Lie group of trans-
formations, we can assume, without loss of generality, the group operation to be the usual
addition in R.

Example 10. Consider the scaling group

z⋆ = az, z ∈ R,

with a ∈ S =]0,+∞[, where the group operation, as we have already seen, is

γ(a, b) = a · b.

Then, we have:

Γ(a) =
∂γ(a, b)

∂b

∣∣∣∣
(a−1,a)

=
1
a

,

thus, the function ϕ is defined by the integral

ϕ(a) =
∫ a

1

1
x

dx = ln a,

which is indeed a group homomorphism since

ϕ(γ(a, b)) = ϕ(ab) = ln(ab) = ln a + ln b = ϕ(a) + ϕ(b).

2.2 Infinitesimal transformations

Consider a one-parameter Lie group of transformations

z⋆ = Z(z, a). (2.8)

Since Z is analytic with respect to a, we can expand it in a power series around a = 0:

z⋆ = z + a
∂Z(z, a)

∂a

∣∣∣∣
a=0

+
a2

2
∂2Z(z, a)

∂a2

∣∣∣∣
a=0

+ · · ·

= z + a
∂Z(z, a)

∂a

∣∣∣∣
a=0

+ O(a2).



2.2. Infinitesimal transformations 19

Setting

ζζζ(z) =
∂Z(z, a)

∂a

∣∣∣∣
a=0

,

the transformation
z⋆ = z + a ζζζ(z) + O(a2)

is called the infinitesimal transformation of the Lie group of transformations.
The first fundamental theorem of Lie shows that the infinitesimal transformation

contains all the essential information for characterizing a one-parameter Lie group
of transformations.

Theorem 1 (First Fundamental Theorem of Lie). The Lie group of transformations (2.8)
is equivalent to the solution of the initial value problem

dz⋆

da
= ζζζ(z⋆), z⋆(0) = z. (2.9)

Proof. Given ϵ ∈ R, we know that

Z(z, a + ϵ) = Z(z⋆, ϵ).

Expanding both sides in a power series around ϵ = 0, we get:

Z(z, a + ϵ) = Z(z, a) + ϵ
∂Z(z, a)

∂a
+ O(ϵ2) =

= z⋆ + ϵ
dz⋆

da
+ O(ϵ2),

Z(z⋆, ϵ) = Z(z⋆, 0) + ϵ
∂Z(z⋆, ϵ)

∂a

∣∣∣∣
ϵ=0

+ O(ϵ2) =

= z⋆ + ϵ ζζζ(z⋆) + O(ϵ2),

where z⋆ is given by (2.8).
Comparing the two expressions, it follows that z⋆ = Z(z, a) satisfies the initial

value problem
dz⋆

da
= ζζζ(z⋆), z⋆(0) = z.

On the other hand, since ζζζ(z⋆) is of class C1, the Cauchy theorem guarantees the
existence and uniqueness of the solution to the problem (2.9), and it can only be
(2.8).

Theorem 1 establishes a one-to-one correspondence between the Lie group of
transformations and ζζζ(z) and, for this reason, we can call it the infinitesimal generator
of the group.

Example 11. Consider in R2 the infinitesimal generator ζζζ = (z1, z2). Integrating the Lie
equations

dz⋆1
da

= z⋆1 , z⋆1(0) = z1,

dz⋆2
da

= z⋆2 , z⋆2(0) = z2,
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we obtain
z⋆1 = exp(a)z1, z⋆2 = exp(a)z2,

which corresponds to the scaling group in the plane.

2.3 Infinitesimal generator and invariance

The infinitesimal generator ζζζ(z) of the one-parameter Lie group of transformations
(2.8) allows us to introduce a first-order differential operator

Ξ = ζζζ(z) · ∇∇∇ = ζ1(z)
∂

∂z1
+ · · ·+ ζN(z)

∂

∂zN
, (2.10)

which is also called the infinitesimal generator of the Lie group.
For any differentiable function F(z) we have

Ξ(F) = ζζζ(z) · ∇∇∇F = ζ1(z)
∂F
∂z1

+ · · ·+ ζN(z)
∂F

∂zN
,

and, in particular,
Ξ(z) = ζζζ(z).

A one-parameter Lie group of transformations, which by Theorem 1 is equivalent
to its infinitesimal transformation, is also equivalent to the infinitesimal generator Ξ.

The following theorem shows that the use of the infinitesimal generator allows
us to obtain an algorithm to find the explicit solution of the initial value problem
(2.9).

Theorem 2. The one-parameter Lie group of transformations (2.8) is equivalent to

z⋆ = exp(aΞ)(z) = z + a Ξ(z) +
a2

2
Ξ2(z) + · · · =

∞

∑
k=0

ak

k!
Ξk(z), (2.11)

where the operator Ξ is defined by (2.10) and Ξk(z) = Ξ(Ξk−1(z)). In particular Ξ0(z) =
z.

Proof. Consider

Ξ = ζ1(z)
∂

∂z1
+ · · ·+ ζN(z)

∂

∂zN
,

and
Ξ⋆ = ζ1(z⋆)

∂

∂z⋆1
+ · · ·+ ζN(z⋆)

∂

∂z⋆N
,

where z⋆ = Z(z, a). Expanding the latter in a Taylor series around a = 0, we get:

z⋆ =
∞

∑
k=0

ak

k!
∂kZ(z, a)

∂ak

∣∣∣∣
a=0

=
∞

∑
k=0

ak

k!
dkz⋆

dak

∣∣∣∣
a=0

.

Since for any differentiable function F(z) we have

dF(z⋆)
da

=
N

∑
i=1

∂F(z⋆)
∂z⋆i

dz⋆i
da

=
N

∑
i=1

ζi(z⋆)
∂F(z⋆)

∂z⋆i
= Ξ⋆(F(z⋆)),
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it follows in particular that
dz⋆

da
= Ξ⋆(z⋆),

and
d2z⋆

da2 =
d
da

(dz⋆

da

)
= Ξ⋆(Ξ⋆(z⋆)) = Ξ⋆2(z⋆).

In general, we have:
dkz⋆

dak = Ξ⋆k(z⋆) (k ∈N). (2.12)

From (2.12) it follows
dkz⋆

dak

∣∣∣∣
a=0

= Ξk(z) (k ∈N),

from which (2.11) is obtained.

The (2.11) is called the Lie series.

Corollary 1. If F(z) is of class C∞, then:

F(z⋆) = F(exp(aΞ)(z)) = exp(aΞ)(F(z)).

Proof.

F(z⋆) = F(z) + a
dF(z⋆)

da

∣∣∣∣
a=0

+
a2

2!
d2F(z⋆)

da2

∣∣∣∣
a=0

+ · · · =

= F(z) + a Ξ(F(z)) +
a2

2!
Ξ2(F(z)) + · · · =

= exp(aΞ)(F(z)).

Now we can introduce the concept of invariance of a function with respect to a
Lie group of transformations and prove the related invariance criterion.

Definition 18 (Invariant Function). A function F(z) of class C∞ is said to be an invariant
function of the Lie group of transformations (2.8) if and only if for every transformation of
the group (2.8) the condition

F(z⋆) = F(z)

holds true.

The invariance of a function is characterized by the use of the infinitesimal gen-
erator, as shown by the following theorem.

Theorem 3. F(z) is invariant with respect to (2.8) if and only if

Ξ(F(z)) = 0.

Proof. From Corollary 1, we have:

F(z⋆) = F(exp(aΞ)(z)) = exp(aΞ)(F(z)) =
∞

∑
k=0

ak

k!
Ξk(F(z)) =

= F(z) + a Ξ(F(z)) +
a2

2!
Ξ2(F(z)) + · · ·

(2.13)
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If we assume that F(z⋆) = F(z), then (2.13) implies that Ξ(F(z)) = 0. Conversely,
if Ξ(F(z)) = 0, then Ξk(F(z)) = 0 for every k > 0, thus from (2.13) we have that
F(z⋆) = F(z).

It is also possible to define the invariance of a surface in RN with respect to a
one-parameter Lie group of transformations.

Definition 19 (Invariant Surface). A surface F(z) = 0 is said to be an invariant surface
with respect to the one-parameter Lie group of transformations (2.8) if F(z⋆) = 0 when
F(z) = 0.

As a consequence of Theorem 3, we can give the following criterion of invariance
for a surface.

Theorem 4. A surface F(z) = 0 is invariant with respect to the group (2.8) if and only if

Ξ(F(z)) = 0 when F(z) = 0,

that is,
Ξ(F(z)) = ΛΛΛ(z)F(z)

for some function ΛΛΛ(z).

2.4 Canonical coordinates

Given in RN the one-parameter Lie group of transformations (2.8), let us suppose to
make the change of variables defined by the one-to-one and (at least) C1 transforma-
tion:

y = Y(z), y = (y1, . . . , yN) .

If

Ξ =
N

∑
i=1

ζi(z)
∂

∂zi

is the infinitesimal generator in terms of the coordinates z, the corresponding gener-
ator in terms of y has a different representation

Ξ̃ =
N

∑
i=1

ζ̃i(y)
∂

∂yi
.

We should have the same group action, even if the infinitesimals have different
expressions, whence the following theorem is stated.

Theorem 5. Given

Ξ =
N

∑
i=1

ζi(z)
∂

∂zi

and a one-to-one and (at least) C1 transformation:

y = g(z), y = (y1, . . . , yN) ,

it is

Ξ̃ =
N

∑
i=1

ζ̃i(y)
∂

∂yi
,



2.4. Canonical coordinates 23

where
ζ̃i(y) = Ξ (yi) (i = 1, . . . , N).

Proof. Let us consider a smooth function F(z), and the invertible transformation y =
g(z) together with its inverse z = h(y); we have

F(z) = F(h(y)) = F̃(y).

Therefore, by using the chain rule,

Ξ(F(z)) =
N

∑
i=1

ζi
∂

∂zi
(F(h(y)) =

N

∑
i=1

ζi
∂

∂zi
(F̃(y)) =

=
N

∑
i=1

(
N

∑
j=1

ζi
∂F̃(y)

∂yj

∂yj

∂zi

)
=

N

∑
j=1

(
N

∑
i=1

ζi
∂yj

∂zi

)
∂F̃(y)

∂yj
=

=
N

∑
j=1

Ξ
(
yj
) ∂F̃(y)

∂yj
=

N

∑
j=1

ζ̃ j
∂F̃(y)

∂yj
= Ξ̃(F̃(y)),

where

ζ̃ j = Ξ
(
yj
)
=

N

∑
i=1

ζi(z)
∂yj

∂zi
(j = 1, . . . , N).

Definition 20 (Canonical coordinates). A change of coordinates (1.89) defines a set of
canonical coordinates for the one-parameter Lie group of transformations (1.39) if, in terms
of such coordinates, the group (1.39) becomes

y⋆i = yi, i = 1, . . . , N − 1,
y⋆N = yN + a,

i.e., a translation of only one component, say the N-th one.

Theorem 6. For any Lie group of transformations (2.8) there exists a set of canonical coor-
dinates y = (y1(z), . . . , yN(z)) such that (1.39) is equivalent to (1.97).

Proof. From Theorem 2, we have

y⋆i = yi if and only if Ξ (yi) = 0 (i = 1, . . . , N − 1),

and, from Theorem 5

y⋆N = yN + a if and only if Ξ (yN) = 1.

Thus, the first order linear partial differential equations

ζ1(z)
∂yi

∂z1
+ · · ·+ ζN(z)

∂yi

∂zN
= 0 (i = 1, . . . , N − 1),

ζ1(z)
∂yN

∂z1
+ · · ·+ ζN(z)

∂yN

∂zN
= 1,

(2.14)

characterize the N canonical variables. In fact, the equations (2.14)1 have N − 1
functionally independent solutions: these solutions are the N− 1 essential constants
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appearing in the general solution of the system of N first order ordinary differential
equations

dz
da

= ζ(z)

resulting from the characteristic equations of the system (2.14)1 (because of the au-
tonomous form of the system (2.14), the N-th constant is nonessential). The N-th
canonical variable is a particular solution of the nonhomogeneous first order linear
partial differential equation (2.14)2.

Remark 5. In terms of the canonical coordinates the infinitesimal operator of the Lie group
writes in the simplest form:

Ξ̃ =
∂

∂yN
.

Example 12. Let the Lie group in R2 be generated by

Ξ = z2
1

∂

∂z1
+ z1z2

∂

∂z2
.

The canonical variables (y1, y2) are such that

Ξ (y1) = z2
1

∂y1

∂z1
+ z1z2

∂y1

∂z2
= 0,

Ξ (y2) = z2
1

∂y2

∂z1
+ z1z2

∂y2

∂z2
= 1.

A possible choice is:

y1 =
z2

z1
, y2 = − 1

z1
,

whereupon the generator writes

Ξ̃ =
∂

∂y2
.

Example 13. Let us consider the group of rotations in the plane R2

x⋆ = x cos(a)− y sin(a),
y⋆ = x sin(a) + y cos(a),

whose infinitesimal generator is given by

Ξ = −y
∂

∂x
+ x

∂

∂y
.

As before, the canonical variables (ρ, θ) are such that

Ξ (ρ) = −y
∂ρ

∂x
+ x

∂ρ

∂y
= 0,

Ξ (θ) = −y
∂θ

∂x
+ x

∂θ

∂y
= 1.

By integrating these equations, we can get

ρ =
√

x2 + y2, θ = arctan
(y

x

)
.
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Thus, the canonical coordinates are exactly the polar coordinates. The infinitesimal generator
in terms of the new variables is written as

Ξ̃ =
∂

∂θ
,

and the rotation group is expressed as follows

ρ⋆ = ρ,
θ⋆ = θ + a.

2.5 Lie group of transformations of differential equations

Here we want to determine one-parameter Lie transformation groups that are admit-
ted by a given system of differential equations S involving n independent variables

x = (x1, x2, . . . , xn) ∈ Dn ⊆ Rn,

and m dependent variables

u = (u1, . . . , um) ∈ Dm ⊆ Rm,

where Dn and Dm are open domains in Rn and Rm, respectively.
For a clearer exposition, it is convenient to split the variable z in order to distin-

guish the transformations involving the independent variables x from those involv-
ing the dependent variables u. Thus, the one-parameter Lie transformation group

z⋆ = Z(z, a),

can be rewritten as
x⋆ = X(x, u, a),
u⋆ = U(x, u, a),

(2.15)

which acts on the space D = Dn ×Dm ⊆ Rn+m of the variables (x, u).
Let

u = ΘΘΘ(x) ≡ (Θ1(x), . . . , Θm(x))

be a solution of the system S .
A Lie transformation group of the form (2.15) admitted by S has two equivalent

properties:

1. a transformation of the group maps every solution of S into another solution
of S (in some cases the same solution);

2. a transformation of the group leaves the system S invariant, in the sense that
the system S reads the same way, both in terms of the variables (x, u), and in
terms of the transformed variables (x⋆, u⋆).

Since a system of differential equations involves, in addition to the variables x
and u, also derivatives up to a certain finite order, we need to determine the trans-
formations of such derivatives.

Let u(1) be the vector whose n ·m components are all the first-order partial deriva-
tives of u with respect to x,

u(1) ≡
(∂u1

∂x1
, . . . ,

∂u1

∂xn
, . . . ,

∂um

∂x1
, . . . ,

∂um

∂xn

)
,
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and, in general, let u(k) denote the vector whose components are the m · (n+k−1
k ) k-th

order partial derivatives of u with respect to x.
The infinitesimal transformations of the derivatives are obtained from the in-

finitesimal transformations corresponding to the group (2.15):

x⋆i = xi + a ξi(x, u) + O(a2), (i = 1, 2, . . . , n)

u⋆
α = uα + a ηα(x, u) + O(a2), (α = 1, 2, . . . , m).

(2.16)

Differentiating (2.16)1 with respect to x⋆j , we obtain

∂xi

∂x⋆j
= δij − a

( ∂ξi

∂xj
+

∂ξi

∂uα

∂uα

∂xj

)
+ O(a2)

which is used to determine the transformation relating to the first-order partial deriva-
tives:

∂u⋆
α

∂x⋆i
=

∂uα

∂xi
+ a

((∂ηα

∂xi
+

∂ηα

∂uβ

∂uβ

∂xi

)
−
( ∂ξ j

∂xj
+

∂ξ j

∂uβ

∂uβ

∂xj

)∂uα

∂xj

)
+ O(a2)

=
∂uα

∂xi
+ a η[α,i](x, u, u(1)) + O(a2).

Introducing the total derivative operator

D
Dxi

=
∂

∂xi
+

∂uα

∂xi

∂

∂uα
,

we can write

η[α,i] =
Dηα

Dxi
−

Dξ j

Dxi

∂uα

∂xj
.

The infinitesimal transformations define the action of the prolonged group on
the space (x, u, u(1)).

Similarly, we can obtain the transformations relating to the k-th order derivatives
for k ≥ 2.

The prolongations of the infinitesimal transformations correspond to the prolon-
gations of the respective infinitesimal generators. If the infinitesimal generator is
given by

Ξ = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
,

where i = 1, . . . , n, α = 1, . . . , m, the first prolongation of the generator is given by

Ξ(1) = Ξ + η[α,i]
∂

∂uα,i
,

where uα,i =
∂uα
∂xi

. In general, the k-th prolongation of the infinitesimal generator is
defined by

Ξ(k) = Ξ(k−1) + η[α,i1...ik ]
∂

∂uα,i1 ...ik

,

where uα,i1...ik =
∂kuα

∂xi1 ...∂xik
, and η[α,i1 ...ik ] is defined recursively by the relation

η[α,i1...ik ] =
Dη[α,i1...ik−1]

Dxik

−
Dξ j

Dxik

uα,i1...ik−1 j.
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A system of differential equations S of order r > 0 can be written in the form

∆∆∆(x, u, . . . , u(r)) = 000, (2.17)

where ∆∆∆ ≡ (∆1, . . . , ∆q).
We can introduce the so-called jet space Jr(Rn+m, n), whose coordinates, for sim-

plicity denoted by z, are the independent variables x, the dependent variables u, and
their derivatives up to order r; the dimension of the jet space Jr(Rn+m, n) is

N = n + m
(

n + r
r

)
.

Each ∆j, (j = 1, . . . , q) is a function from an open subset of Jr(Rn+m, n) to R. Letting

q′ = rank
∥∥∥∂∆j

∂zl

∥∥∥, j = 1, . . . , q, l = 1, . . . N,

the system S can be viewed geometrically as an (N − q′)–dimensional manifold in
the N–dimensional jet space.

From this perspective, we can study the invariance of a system of differential
equations with respect to a one-parameter Lie transformation group.

We say that the one-parameter Lie transformation group (2.15) is admitted by
(2.17) if and only if its r-th prolongation leaves invariant the manifold in jet space
(x, u, . . . , u(r)) defined by (2.17).

The theorem (4) allows us to prove the following important result which pro-
vides an algorithmic method for calculating the group admitted by a given system
of differential equations.

Theorem 7. Let
Ξ = ξi(x, u)

∂

∂xi
+ ηα(x, u)

∂

∂uα

be the infinitesimal generator corresponding to the group (2.15) and let Ξ(r) be the r-th
prolongation of the infinitesimal generator. The group (2.15) is admitted by (2.17) if and
only if

Ξ(r)(∆∆∆(x, u, u(1), . . . , u(r))
)
= 000, (2.18)

when ∆∆∆(x, u, u(1), . . . , u(r)) = 000.

From (2.18), we obtain an overdetermined system of linear homogeneous differ-
ential equations, called determining equations, whose solutions are the infinitesimal
generators ξi and ηα; these generators depend, besides on x and u, also on arbitrary
constants (and in some cases on arbitrary functions). For this reason, we effectively
have a multi-parameter Lie group.

We show an example of calculating a Lie group admitted by a differential equa-
tion.

Example 14. Let us consider the following nonlinear differential equation

u,tt − k(u)u,xx = 0, (2.19)

with k(u) > 0 and k′(u) ̸= 0.
The infinitesimal generator corresponding to the group admitted by equation is

Ξ = ξt(t, x, u)
∂

∂t
+ ξx(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
.
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Since we have a second–order equation, we need to consider the following prolongation

Ξ(2) =ξt
∂

∂t
+ ξx

∂

∂x
+ η

∂

∂u
+ η[,t]

∂

∂u,t
+ η[,x]

∂

∂u,x

+ η[,tt]
∂

∂u,tt
+ η[,tx]

∂

∂u,tx
+ η[,xx]

∂

∂u,xx
,

where
η[,z] =

Dη

Dz
− Dξt

Dz
∂u
∂t
− Dξx

Dz
∂u
∂x

, z ∈ {t, x},

and

η[,zz] =
Dη[,z]

Dz
− Dξt

Dz
∂2u
∂t2 −

Dξx

Dz
∂2u
∂x2 , z ∈ {t, x}.

We note that equation (2.19) does not involve the derivative utx, so we may not compute the
corresponding η[,tx]. After simple algebra, we obtain

η[,z] =
∂η

∂z
+ u,z

∂η

∂u
− u,t

(
∂ξt

∂z
+ u,z

∂ξt

∂u

)
− u,x

(
∂ξx

∂z
+ u,z

∂ξx

∂u

)
, z ∈ {t, x},

and,

η[,zz] =
∂2η

∂z2 + 2
∂η

∂z∂u
u,z +

∂η

∂u
u,zz +

∂2η

∂u2 (u,z)
2 − 2

∂ξz

∂z
u,zz − 3

∂ξz

∂u
u,zu,zz −

∂2ξz

∂z2 u,z

− 2
∂ξz

∂z∂u
(u,z)

2 − ∂2ξz

∂u2 (u,z)
3 − 2

∂ξz′

∂z
u,z′z − 2

∂ξz′

∂u
u,zu,z′z −

∂2ξz′

∂z2 u,z′

− 2
∂2ξz′

∂z∂u
u,zu,z′ −

∂ξz′

∂u
u,z′u,zz −

∂2ξz′

∂u2 u,z′(u,z)
2,

where z, z′ ∈ {t, x} and z ̸= z′.
By explicating condition (2.18), namely,

Ξ(2)(u,tt − k(u)u,xx)∣∣u,tt−k(u)u,xx=0
=(

η[,tt] − u,xxk′(u)η − k(u)η[,xx]

)∣∣u,tt−k(u)u,xx=0
= 0,

we get

−k(u)
∂2ξx

∂u2 (u,x)
3 − k(u)

∂2ξt

∂u2 u,t(u,x)
2 + k(u)

(
∂2η

∂t∂u
− 2ξx

xu

)
(u,x)

2 +
∂2ξx

∂u2 u,x(u,t)
2

+ 2
(

∂2ξx

∂t∂u
− k(u)

∂2ξt

∂x∂u

)
u,tu,x − 2k(u)

∂ξx

∂u
u,xu,xx − 2k(u)

∂ξt

∂u
u,xu,xt

+

(
2k(u)

∂2η

∂x∂u
+

∂2ξx

∂t2 − k(u)
∂2ξx

∂x2

)
u,x +

∂2ξt

∂u2 (u,t)
3 +

(
−∂2η

∂u
+ 2

∂2ξt

∂t∂u

)
(u,t)

2

+ 2k(u)
∂ξt

∂u
u,tu,xx −

(
2

∂2η

∂t∂u
− ∂2ξt

∂t2 + k(u)
∂2ξt

∂x2

)
u,t

+

(
k′(u)η − 2k(u)

∂ξx

∂x
+ 2k

∂ξt

∂t

)
u,xx + 2uxt

(
ξx

t − kξt
x
)

− ∂2η

∂t2 + k(u)
∂2η

∂x2 = 0.

It is a polynomial in the derivatives u,x, u,t, u,tx, u,tt and u,xx whose coefficients, involving
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the infinitesimals and their partial derivatives, must vanish. Hence, the following set of
determining equations is found:

∂2η

∂u2 = 0,

∂ξx

∂u
= 0,

∂ξt

∂u
= 0,

2k(u)
∂2η

∂x∂u
+

∂2ξx

∂t2 − k(u)
∂2ξx

∂x2 = 0,

2
∂2η

∂t∂u
− ∂2ξt

∂t2 + k(u)
∂2ξt

∂x2 = 0,

k′(u)η − 2k(u)
(

∂ξx

∂x
− ∂ξt

∂t

)
= 0,

k(u)
∂2η

∂x2 −
∂2η

∂t2 = 0,

∂ξx

∂t
− k(u)

∂ξt

∂x
= 0.

By integrating the last equation with respect to u, the relations

∂ξt

∂x
= 0,

∂ξx

∂t
= 0.

are obtained. Since k′(u) ̸= 0, the expression for η can be obtained from the 6th equation:

η = 2
k(u)
k′(u)

(
∂ξx

∂x
− ∂ξt

∂t

)
.

Applying the first equation, one has

d2

du2

((
k(u)
k′(u)

))(
∂ξx

∂x
− ∂ξt

∂t

)
= 0. (2.20)

The latter equation is called a classifying relation and indicates that the symmetry group
admitted by equation (2.19) depends on the function k(u).
We analyze two cases. First, suppose we want to determine the admitted Lie group for all
functions k = k(u). Thus, from the equation (2.20) and some determining equations, can be
obtained

∂ξx

∂x
− ∂ξt

∂t
= 0, η = 0,

∂2ξx

∂x2 = 0,
∂2ξt

∂t2 = 0.

These can be easily integrated, and we obtain the solution:

ξt = c1t + c2,
ξx = c1x + c3,
η = 0,

where c1, c2 and c3 are arbitrary constants. Therefore, they may be seen as linear combi-
nations of fundamental solutions, giving 3 different symmetries (obtained by setting one
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constant egual to 1 and the remaining ones to 0), whose generators are

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
, Ξ3 = t

∂

∂t
+ x

∂

∂x
.

In the second case, we can search for additional symmetries by considering specific forms of
the function k(u). Indeed, the relation (2.20) holds if the following condition is satisfied:

d2

du2

(
k(u)
k′(u)

)
= 0,

which implies that

k′(u) =
k(u)

αu + β
,

where α, β ∈ R are arbitrary constants.
If α = 0, the general solution to the above differential equation is k(u) = γ exp (qu), where
γ ∈ R is a constant and q = 1

β . In this case, solving the determining equations yields two
additional infinitesimal generators:

Ξ4 = t
∂

∂t
− 2β

∂

∂u
, Ξ5 = x

∂

∂x
+ 2β

∂

∂u
.

If α ̸= 0, the solution takes the form k(u) = γ(αu + β)q, where q = 1
α and γ is an arbitrary

constant. By analyzing the determining equations, three distinct cases emerge: q = ±4 and
q as an arbitrary constant.
In the general case with arbitrary q, the additional infinitesimal generators are:

Ξ6 = t
∂

∂t
− 2(αu + β)

∂

∂u
, Ξ7 = x

∂

∂x
+ 2(αu + β)

∂

∂u
.

Furthermore, when q = ±4, an extra infinitesimal generator is introduced. For q = −4, we
obtain:

Ξ8 = t2 ∂

∂t
+ (u− 4β)t

∂

∂u
,

while for q = 4, the corresponding generator is:

Ξ9 = x2 ∂

∂x
+ (u + 4β)x

∂

∂u
.

Remark 6. Most of the lengthy though straightforward calculations needed to find the Lie
symmetries of differential equations can be managed almost automatically by means of spe-
cific computer algebra packages [45, 51–65]. The computations done for the examples in this
thesis have been carried out by means of the Reduce [66] package ReLie [67].

2.6 Lie algebra of generators

A Lie group of transformations with r–parameters defined on D ⊆ RN is character-
ized by its generators

Ξµ =
N

∑
i=1

ξµi(z)
∂

∂zi
, µ = 1, . . . , r.



2.6. Lie algebra of generators 31

We define the commutator (or Lie bracket) of two generators Ξµ and Ξν as the first-
order operator

[Ξµ, Ξν] = ΞµΞν − ΞνΞµ =

=

(
N

∑
i=1

ξµi(z)
∂

∂zi

)(
N

∑
j=1

ξνj(z)
∂

∂zj

)
=

−
(

N

∑
i=1

ξνi(z)
∂

∂zi

)(
N

∑
j=1

ξµj(z)
∂

∂zj

)
=

=
N

∑
i=1

ξ̂i(z)
∂

∂zj
,

where

ξ̂i(z) =
N

∑
j=1

(
ξµj(z)

∂ξνi(z)
∂zj

− ξνj(z)
∂ξµi(z)

∂zj

)
.

As a consequence of this definition, the commutator is antisymmetric,

[Ξµ, Ξν] = −[Ξν, Ξµ],

bilinear,
[Ξλ, αΞµ + βΞν] = α[Ξλ, Ξµ] + β[Ξλ, Ξν],

and satisfies the Jacobi identity

[Ξλ, [Ξµ, Ξν]] + [Ξµ, [Ξν, Ξλ]] + [Ξν, [Ξλ, Ξµ]] = 0.

Furthermore, the following result holds.

Theorem 8 (Second Fundamental Theorem of Lie). The commutator of two arbitrary
infinitesimal generators of a Lie group with r–parameters is still an infinitesimal generator
of the Lie group with r–parameters and we have:

[Ξµ, Ξν] =
r

∑
λ=1

Cλ
µνΞλ,

where the coefficients Cλ
µν are called structure constants.

From this result, it follows that the generators of a Lie group with r–parameters
generate an r–dimensional Lie algebra. Now we want to prove that the set of sym-
metries admitted by a system of differential equations is a Lie algebra.

Lemma 4. The commutator of two generators is form invariant under any invertible change
of variables.

Proof. Let y = g(z) be a change of variables. We have

Ξµ =
n

∑
i=1

ξµi
∂

∂zi
, Ξ̃µ =

n

∑
j=1

(
n

∑
i=1

ξµi
∂yj

∂zj

)
∂

∂yj
,

Ξν =
n

∑
i=1

ξνi
∂

∂zi
, Ξ̃ν =

n

∑
j=1

(
n

∑
i=1

ξνi
∂yj

∂zj

)
∂

∂yj
.
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Using the Einstein summation convention for repeated indices, we have:

[
Ξ̃µ, Ξ̃ν

]
=

(
ξ̃µj

∂ξ̃νk

∂yj
− ξ̃νj

∂ξ̃µk

∂yj

)
∂

∂yk
=

=

(
ξµi

∂yj

∂zi

∂

∂yj

(
ξνl

∂yk

∂zl

)
− ξνi

∂yj

∂zi

∂

∂yj

(
ξµl

∂yk

∂zl

))
∂

∂yk
=

=

(
ξµi

∂yj

∂zi

∂ξνl

∂zm

∂zm

∂yj

∂yk

∂zl
− ξνi

∂yj

∂zi

∂ξµl

∂zm

∂zm

∂yj

∂yk

∂zl

)
∂

∂yk
=

=

((
ξµi

∂ξνl

∂zm
− ξνi

∂ξµl

∂zm

)
∂zm

∂yj

∂yj

∂zi

∂yk

∂zl

)
∂

∂yk
=

=

((
ξµi

∂ξνl

∂zm
− ξνi

∂ξµl

∂zm

)
δmi

∂yk

∂zl

)
∂

∂yk
=

=

((
ξµi

∂ξνl

∂zi
− ξνi

∂ξµl

∂zi

)
∂yk

∂zl

)
∂

∂yk
= ˜[Ξµ, Ξν].

Theorem 9. If a regular manifold F(z) = 0 is invariant under the generators Ξµ and Ξν,
then it is also invariant under their commutator [Ξµ, Ξν].

Proof. Since the manifold F(z) = 0 is invariant under the Lie group generated by Ξµ

and Ξν, we have
Ξµ(F(z)) = Λµ(z)F(z),
Ξν(F(z)) = Λν(z)F(z),

where Λµ(z) and Λν(z) are specific Lagrange multipliers. Then,

[Ξµ, Ξν](F(z)) = ΞµΞν(F(z))− ΞνΞµ(F(z)) =
= Ξµ(Λν(z)F(z))− Ξν(Λµ(z)F(z)) =
= Ξµ(Λν(z))F(z) + Λν(z)Ξµ(F(z))
− Ξν(Λµ(z))F(z)−Λµ(z)Ξν(F(z)) =
= (Ξµ(Λν(z))− Ξν(Λµ(z)))F(z) =
= Λ(z)F(z),

so proving that the manifold F(z) is also invariant with respect to the commutator.

Theorem 10. The prolongation of a generator commutes with the commutator, that is,

[Ξ(k)
1 , Ξ(k)

2 ] = [Ξ1, Ξ2]
(k), k ≥ 1.

Proof. To prove this theorem, since the definition of the prolongation of a generator
is a recursive operation, it is sufficient to restrict the proof to the first-order prolon-
gation.

Consider two generators Ξ1 and Ξ2 involving the variables x and u. Since the
commutator is invariant with respect to invertible transformations of variables, we
can introduce the canonical variables of the generator Ξ1, so the generators can be
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written as follows:

Ξ1 =
∂

∂x1
, Ξ2 =

n

∑
i=1

ξi
∂

∂xi
+

m

∑
α=1

ηα
∂

∂uα
.

Then, we have

[Ξ1, Ξ2] =
n

∑
i=1

∂ξi

∂x1

∂

∂xi
+

m

∑
α=1

∂ηα

∂x1

∂

∂uα
,

while the first-order prolonged operator becomes

Ξ(1)
1 = Ξ1,

Ξ(1)
2 = Ξ2 +

m

∑
α=1

n

∑
k=1

η[α,k]
∂

∂uα,k
,

where

η[α,k] =
Dηα

Dxk
−

Dξ j

Dxk
uα,j.

Therefore,

[Ξ(1)
1 , Ξ(1)

2 ] = [Ξ1, Ξ2] +

[
Ξ1,

m

∑
α=1

n

∑
k=1

η[α,k]
∂

∂uα,k

]
=

=
n

∑
i=1

∂ξi

∂x1

∂

∂xi
+

m

∑
α=1

∂ηα

∂x1

∂

∂uα
+

m

∑
α=1

n

∑
k=1

∂η[α,k]

∂x1

∂

∂uα,k
.

On the other hand, the prolongation of the commutator [Ξ1, Ξ2] is

[Ξ1, Ξ2]
(1) = [Ξ1, Ξ2] +

m

∑
α=1

n

∑
k=1

η̂[α,k]
∂

∂uα,k
,

where

η̂[α,k] =
D

Dxk

(
∂ηα

∂x1

)
− D

Dxk

(
∂ξ j

∂x1

)
uα,j =

=
∂

∂x1

(
Dηα

Dxk
−

Dξ j

Dxk
uα,j

)
=

=
∂η[α,k]

∂x1
.

Thus
[Ξ1, Ξ2]

(1) =
[
Ξ(1)

1 , Ξ(1)
2

]
.

Because of the previous results, we can state the following theorem.

Theorem 11. If a system of differential equations S admits the generators Ξµ and Ξν, then
it also admits the generator [Ξµ, Ξν].

Remark 7. The set of generators admitted by a system S of differential equations is a vector
space, as is the space of solutions of (2.18), being solutions of a system of linear and homoge-
neous differential equations. The previous theorem also implies that this vector space is also
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a Lie algebra, called the principal Lie algebra, and knowledge of its subalgebras allows us
to construct and classify particular solutions of the system, called invariant solutions.

We have seen that the generators of a Lie group with r parameters generate an
r–dimensional Lie algebra. In fact, the vice versa also holds true.

Theorem 12. Let Lr be an r-dimensional vector space spanned by the operators

Ξα = ζαi
∂

∂zi
, α = 1, . . . , r.

The composition Ta = Tar · · · Ta1 , with a = (a1, . . . , ar), of r one-parameter groups of trans-
formations Taα generated individually by each of the base operators Ξα via the Lie equations

dz⋆i
daα

= ζαi, z⋆i
∣∣

aα=0 = zi, i = 1, . . . , n, (2.21)

is an r-parameter (local) group Gr if and only if Lr is a Lie algebra. By applying the same
construction to any s-dimensional subalgebra of Lr, one generates an s-parameter subgroup
of the group Gr.

Here are two illustrative examples of this result:

Example 15. Consider a three-dimensional Lie algebra generated by

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 = y

∂

∂x

The solution to the Lie equations (2.21) corresponding to these operators yields the following
three one-parameter groups with parameters a1, a2, a3:

Ta1 : x⋆ = x + a1, y⋆ = y
Ta2 : x⋆ = x, y⋆ = y + a2
Ta3 : x⋆ = x + a3y, y⋆ = y

Their composition is given by
Ta = Ta3 Ta2 Ta1

where a = (a1, a2, a3), resulting in the transformation:

x⋆ = x + a3y + a1 + a2a3

y⋆ = y + a2
(2.22)

The successive application of Ta and Tb, where b = (b1, b2, b3), results in the transformation
TbTa:

x⋆⋆ = x + (a3 + b3)y + a2(a3 + b3) + b2b3 + a1 + b1

y⋆⋆ = y + a2 + b2

The equation TbTa = Tc implies the following equations:

x⋆⋆ = x + c3y + c1 + c2c3

y⋆ = y + c2

From this, we derive:
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c1 = a1 + b1 − b2a3

c2 = a2 + b2

c3 = a3 + b3

Thus, the transformation (2.22) establishes, in accordance with Theorem 12, a three-parameter
group with the composition law described by the following equations:

ϕ1(a, b) = a1 + b1 − b2a3

ϕ2(a, b) = a2 + b2

ϕ3(a, b) = a3 + b3

Example 16. Let L2 be the two-dimensional vector space spanned by

Ξ1 =
∂

∂x
, Ξ2 = x

∂

∂y
(2.23)

The operators X1 and X2 generate the following two one-parameter groups:

Ta1 : x⋆ = x + a1, y⋆ = y
Ta2 : x⋆ = x, y⋆ = y + a2x

Their composition is given by

Ta = Ta2 Ta1

where a = (a1, a2), yielding the transformation:

x⋆ = x + a1

y⋆ = y + xa2 + a1a2
(2.24)

The successive application of Ta and Tb, where b = (b1, b2), results in the transformations
TbTa:

x⋆⋆ = x + a1 + b1

y⋆⋆ = y + (x + a1) (a2 + b2) + b1b2
(2.25)

The equation TbTa = Tc implies:

x⋆⋆ = x + c1

y⋆⋆ = y + xc2 + c1c2
(2.26)

Equations (2.25) and (2.26) yield:

c1 = a1 + b1

c2 = a2 + b2

c1c2 = a1 (a2 + b2) + b1b2

(2.27)

Substituting c1 and c2 from the first two equations of (2.27) into the third equation results
in b1a2 = 0. Since this equation cannot hold for arbitrary a and b, the two-parameter family
of transformations (2.24) does not satisfy property (4) of the group of transformations. This
conclusion aligns with Theorem 12, as the vector space L2 generated by the operators (2.23)
does not form a Lie algebra.
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Chapter 3

Group invariant solutions and the
classification problem

Using the methods from the previous chapter, we can systematically find the Lie
point symmetries of a given differential equation. Let us focus on partial differential
equations. In some cases, exact methods involve converting the given PDE into one
or more ODEs. For example, the general solution of a first-order quasilinear PDE can
be obtained by integrating its characteristic equations. Since it is often not possible
to find a general solution for many PDEs, we must instead turn to various ansatze. We
may seek solutions such as similarity solutions, traveling waves, separable solutions,
and others. Many of these approaches involve identifying solutions that remain
invariant under a specific group of symmetries.

This chapter explains how to use these symmetries to obtain exact solutions. In
particular, the one-parameter Lie group of transformations admitted by a given sys-
tem of differential equations can be used to find exact solutions in two ways:

• find particular solutions, called invariant solutions;

• derive new solutions, once a specific solution is known.

3.1 Group invariant solutions

The function u = ΘΘΘ(x) is called an invariant solution of the differential equations
∆ = 0 if and only if:

1. u = ΘΘΘ(x) is an invariant surface of (2.15);

2. u = ΘΘΘ(x) is a solution of the system (2.17).

From Theorem 4 it follows that a solution is invariant if and only if:

Ξ(u−ΘΘΘ(x)) = 0 for u = ΘΘΘ(x), (3.1)

∆∆∆(x, u, u(1), . . . , u(k)) = 000. (3.2)

The equation (3.1), called the invariant surface condition, has the form

ξ1(x, u)
∂u
∂x1

+ · · ·+ ξn(x, u)
∂u
∂xn

= ηηη(x, u), (3.3)

and is solved by introducing the corresponding characteristic equations:

dx1

ξ1(x, u)
= · · · = dxn

ξn(x, u)
=

du1

η1(x, u)
= · · · = dum

ηm(x, u)
.
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This allows us to express the solution u = ΘΘΘ(x) as

u = ΦΦΦ(I1(x, u), . . . , In−1(x, u)); (3.4)

substituting (3.4) into the system (2.17), we obtain a reduced system of differential
equations with n− 1 independent variables.

If n = 2, that is, the equation has two independent variables, the reduced equa-
tion has only one independent variable, and so it is an ordinary differential equation.

Example 17. We consider the viscous Burgers’ equation

ut + uux − uxx = 0

and let
Ξ = τ(t, x, u)

∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
be a generic infinitesimal generator. Finding an invariant solution means adding a con-
straint, i.e., the invariant surface condition:

ut + uux − uxx = 0,

τ
∂u
∂t

+ ξ
∂u
∂x

= η.

Burgers’ equation admits a 5–parameter Lie group of transformations with infinitesimal
generators

Ξ1 =
∂

∂t
, (Time translation)

Ξ2 =
∂

∂x
, (Space translation)

Ξ3 = 2t
∂

∂t
+ x

∂

∂x
− u

∂

∂u
, (Scaling)

Ξ4 = t
∂

∂x
+

∂

∂u
, (Galilean transformation)

Ξ5 = t2 ∂

∂t
+ xt

∂

∂x
+ (x− tu)

∂

∂u
(Projective transformation)

spanning a 5–dimensional Lie algebra.
For each one-parameter subgroup of the symmetry group, there is an associated class of

solutions that remains invariant under group transformations. These solutions are obtained
by solving a reduced ordinary differential equation, the form of which generally depends on
the specific subgroup being analyzed.

(a) Time–Invariant Solutions. For symmetry generator Ξ1, the invariant surface condi-
tion becomes

ut = 0,

so the representation of the invariant solution is u = U(x). Substituting this ex-
pression into the Burgers’ equation we find the following reduced ordinary differential
equation

UU′ −U′′ = 0.

The first integration provides
U2

2
−U′ = c1,
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with c1 ∈ R. Then, three cases can be considered: c1 = 0, c1 > 0, and c1 < 0. For
c1 = 0, we get

U(x) = − 2
x + b

, b ∈ R.

For c1 > 0, choosing c1 = 2a2 with a ∈ R, the solution becomes

U(x) = −2a tanh (a(x + b)) ,

and finally, for c1 = −2a2, we have

U(x) = 2a tan (a(x + b)) .

Thus, depending on the initial conditions, we obtain one of the following three station-
ary invariant solutions:

u(t, x) = − 2
x + b

,

u(t, x) = −2a tanh (a(x + b)) ,
u(t, x) = 2a tan (a(x + b)) ,

with a, b ∈ R.

(b) Space–Invariant Solutions. The invariant solutions with respect to Ξ2 are only those
that are constant, i.e., u = k, with k ∈ R.

(c) Scale–Invariant Solutions. For symmetry generator Ξ3, the invariant surface condi-
tion is

2tut + xux + u = 0,

which is solved by integrating the characteristic equations

dt
2t

=
dx
x

=
du
−u

.

On the half space {(t, x, u) : t > 0}, the global invariants are given by the functions

ω =
x2

t
, U =

√
tu.

Because ω is independent of U, every invariant solution is of the form

U = U(ω),

so that
u =

1√
t
U(ω). (3.5)

Computing the derivatives, we have

ut = −
1

2t5/2

(
tU + 2x2U′

)
, ux =

2x
t3/2 U′,

uxx =
2

t5/2

(
tU′ + 2x2U′′

)
,
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and, substituting these expressions into the Burgers’ equation, we find the reduced
equation under the scaling group:

8ωU′′ − 4
√

ωUU′ + 2(ω + 2)U′ + U = 0. (3.6)

Therefore (3.5) is a solution of the Burgers’ equation if U(ω) satisfies equation (3.6).

(d) Galilean–Invariant Solutions. In this case, the invariant surface condition is

ux =
1
t

,

from which we obtain
u =

x
t
+ U(t).

Inserting the latter in the Burgers’ equation, one has the reduced equation

U′ +
U
t
= 0,

whose general solution is

U =
U0

t
,

with U0 ∈ R. So the invariant solution is

u =
1
t
(x + U0) .

(e) Projective group–Invariant Solutions. As in the previous cases, integrating the
invariant surface condition by the method of characteristics, we obtain the global in-
variants of the one–parameter projective group generated by Ξ5:

ω =
x
t

, U = tu− x,

and hence
u =

x
t
+

U
t

.

Finally, we obtain the reduced equation

UU′ −U′′ = 0.

Again, as in case (a), we obtain three invariant solutions with respect to projective
group:

u(t, x) =
x2 + btx− 2t

bt2 + tx
,

u(t, x) =
1
t

(
x− 2a tanh

(
a

x + bt
t

))
,

u(t, x) =
1
t

(
x + 2a tan

(
a

x + bt
t

))
,

with a, b ∈ R.
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We found five classes of group invariant solutions; however, they are not the only
ones, as we can consider invariant solutions by using various linear combinations of
the admitted symmetries. For example, because the Burgers’ equation is invariant
with respect to time and space translations, we can consider a combination of them

Ξ1 + cΞ2 =
∂

∂t
+ c

∂

∂x
.

Finding invariant solutions under this symmetry gives traveling wave solutions. In-
deed, in this case, by solving the condition (3.3) we find that this invariant solution
takes the form

u = U(x− ct),

and the reduced equation results

UU′ − cU′ −U′′ = 0.

By setting V = U − c, we obtain

VV ′ −V ′′ = 0,

that is a reduced equation having the form of the reduced equation obtained in the
case of time translation.

3.2 New solutions from a known solution

A Lie transformation group admitted by a system of differential equations has the
aforementioned property of mapping every solution into another solution. This sug-
gests a method for generating new solutions from a priori known solutions; this is
interesting when non-trivial solutions can be obtained from trivial ones.

We can summarize this procedure in the following theorem.

Theorem 13. Let ∆ = 0 be a system of differential equations admitting the Lie group of
transformations

x⋆ = X(x, u; a),
u⋆ = U(x, u; a),

and let u = Θ(x) be a solution of ∆ = 0 that is not invariant with respect to the Lie group.
Then,

u = U(X(x, u; a), Θ(X(x, u; a));−a)

implicitly defines a one–parameter family of solutions of the given system.

Example 18. The linear heat equation

∂u
∂t
− ∂2u

∂x2 = 0 (3.7)

admits the group with the generator

Ξ = xt
∂

∂x
+ t2 ∂

∂t
−
(

x2

4
+

t
2

)
u

∂

∂u
. (3.8)
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The related finite transformation is:

x⋆ =
x

1− αt
, t⋆ =

t
1− αt

,

u⋆ = u
√

1− αt exp
(
− αx2

4(1− αt)

)
.

One can obtain the inverse by exchanging (x, t, u) and (x⋆, t⋆, u⋆) and replacing a by
−a :

x =
x⋆

1 + αt⋆
, t =

t⋆

1 + αt⋆
,

u = u⋆
√

1 + αt⋆ exp
(

α(x⋆)2

4 (1 + αt⋆)

)
.

By applying this transformation to the trivial solution u = A (A constant), the nontriv-
ial solution

u =
A√

1 + αt
exp

(
− αx2

4(1 + αt)

)
is immediately generated.

3.3 Classification of invariant solutions

Typically, for each subgroup of the symmetry group admitted by a system of dif-
ferential equations, there is a corresponding family of group invariant solutions.
Because of the potentially infinite number of such subgroups, listing all possible in-
variant solutions is unpractical. Therefore, an effective and systematic classification
method is required to derive an optimal system of group invariant solutions, from
which every other solution can be obtained.

3.3.1 Classification of Lie subgroups

For simplicity, we focus on the problem of equivalence of solutions that are invariant
under a one–parameter Lie group of transformations.

Let G be a multiparameter Lie group of transformations admitted by a system of
differential equations ∆ = 0. Moreover, let u = Θ(x) be a invariant solution with
respect to a one–parameter subgroup of transformations Tα ∈ G. In other words, if
we set

F(x, u) = u−Θ(x),

it means to require that

F(Tα(x, u)) = F(x⋆, u⋆) = 0, when F(x, u) = 0,

i.e.,
F(x⋆, u⋆) = Λ(x, u; α)F(x, u).

Let G ∈ G be another fixed transformation of the Lie group G and denote F̃(x⋆, u⋆) ≡
GF(x, u). We want to prove that F̃ is invariant with respect to the conjugate sub-
group T̃α = GTαG−1 of the full symmetry group G. In fact, one has

T̃α F̃ = GTαG−1F̃ = GTαF = G(ΛF) = (GΛ)(GF) = Λ̃F̃.
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Since s–parameter subgroups (s > 1) are completely determined by their one–
parameter subgroups, this remark can be generalized in the following

Proposition 5. Let G be the symmetry group of a system of differential equations ∆ = 0 and
let H ⊂ G be an s–parameter subgroup. If u = Θ(x) is an H–invariant solution to ∆ = 0
and G ∈ G is any other group element, then the transformed u = GΘ(x) is a H̃–invariant
solution, where H̃ = GHG−1 is the conjugate subgroup toH under G, and

GHG−1 = {GHG−1 : H ∈ H}.

Example 19. In Example 18, we have seen that the linear heat equation admits the one-
parameter Lie group Tα defined by the transformations

x⋆ =
x

1− αt
, t⋆ =

t
1− αt,

u⋆ = u
√

1− αt exp
(
− αx2

4(1− αt)

)
,

whose infinitesimal generator is given by (3.8). It can be verified that

u =
1√

t

(
c1

x
t
+ c2

)
exp

(
− x2

4t

)
is a Tα–invariant solution of the equation (3.7). Indeed, denoting by

S(t, x, u) ≡ u− 1√
t

(
c1

x
t
+ c2

)
exp

(
− x2

4t

)
= 0

its corresponding manifold, one has

S̃ = TαS = S .

Now, let G be another element of the full symmetry group defined by

x⋆ =
x

1− t
, t⋆ =

1
1− t

,

u⋆ = u
√

1− t exp
(
− x2

4(1− t)

)
,

and let G−1 denote the inverse transformation, defined as:

x⋆ =
x
t

, t⋆ =
t− 1

t
,

u⋆ = u
√

t exp
(

x2

4t

)
.

By computing the conjugate subgroup gives us:

T̃α = GTαG−1(t, x, u)

= (GTα)G−1((t, x, u))

= G−1((GTα)(t, x, u))

= G−1(GTα((t, x, u)))

= G−1(Tα(G(t, x, u)))
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= G−1(Tα(G((t, x, u))))

= (G−1 ◦ Tα ◦ G)(t, x, u)
= (t + α, x, u),

whose infinitesimal generator is

Ξ̃ =
∂

∂t
In fact, applying G to S , we obtain

S̃ = GS = exp
(

x2

4(t− 1)

)√
1− t (u− c1x− c2) ,

namely,
u = c1x + c2

is a time-independent solution of the heat equation, say it is invariant under time translation,
as expected.

Since nonessentially different invariant solutions are found from conjugate sub-
groups, the problem of the classification of H–invariant solutions is reduced to the
classification of subgroups of the group G, up to conjugation. Thus, we say that
a subgroup H ⊆ G is equivalent to a subgroup H̃ ⊆ G if there exists G ∈ G such
that H̃ = GHG−1. It is a relation of equivalence and the corresponding equivalence
classes are said conjugacy classes.

It can be proved that this problem, in turn, is reduced to the corresponding prob-
lem of classification of Lie subalgebras, that can be approached more easily from an
algorithmic point of view.

Remark 8. In Chapter 5, we will show that the infinitesimal generator of the transformation
Tα from above example (known as the projective group) and the infinitesimal generator of the
time translation, when considered as elements of the Lie algebra associated with the group of
Lie transformations admitted by the heat equation, are in fact equivalent under the group of
inner automorphisms of the Lie algebra.

3.3.2 Equivalent Lie subgroups and corresponding Lie subalgebras

Again, for a simple approach, we begin by considering Lie subgroups of one-parameter
Lie transformations.

Let us Tα ∈ G be a one–parameter Lie subgroup of transformations generated by
its infinitesimal generator Ξ, and let G ∈ G another one–parameter subgroup. We
denote by Ξ̃ = GTαG−1 the infinitesimal generator equivalent to T̃α.

For any smooth function F, one has

Ξ̃F(z⋆) = GΞF(z) = GΞG−1F(z⋆).

Therefore,
Ξ̃2F(z⋆) = GΞG−1GΞG−1F(z⋆) = GΞ2G−1F(z⋆),

and so on. Since the transformations are analytic function with respect to the param-
eter, we can assume the convergence and consider the Lie series

T̃αF(z⋆) = exp (αΞ̃)F(z⋆) = G exp (αΞ)G−1F(z⋆) = GTαG−1F(z⋆).
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Due to the arbitrariness of F we have that

Ξ̃ = GΞG−1 (3.9)

is the infinitesimal generator of T̃α.
Hence, two one–parameter Lie subgroups are equivalent if and only if the rela-

tion (3.9) between the respective infinitesimal generators holds true.

Remark 9. We note that Tα and T̃α, as the parameter changes, generate one–parameter
subgroups of G. On the other side, Ξ and Ξ̃ are two elements of the corresponding Lie
algebra, and they generate two corresponding one–dimensional subalgebras. Moreover, if Tα

and T̃α are equivalent via G, then the corresponding Lie subalgebras generated by Ξ and
Ξ̃ are related by the same Lie group transformation G. That is, the above subalgebras are
equivalent.

Let us now see how to construct, using only the infinitesimal generator and with-
out using finite transformations of the Lie group, the maps that establish equivalence
between Lie subalgebras.

The remainder of the current chapter deals only with equivalence under Lie
symmetries that are generated by a finite–dimensional Lie algebra L with a basis
{Ξ1, . . . , Ξr}.

For each generator Ξi in the basis, we can consider

X̃ = exp (αΞi)X exp (−αΞi), (3.10)

for any generator X.
Differentiating the expression (3.10), we obtain

dX̃
dα

= Ξi exp (αΞi)X exp (−αΞi)− exp (αΞi)X exp (−αΞi)Ξi

= ΞiX̃− X̃Ξi

= [Ξi, X̃].

Thus, X̃ satisfies the following initial–value problem:

dX̃
dα

= [Ξi, X̃], X̃|α=0 = X. (3.11)

Again, calculating the second derivative, we obtain

d2X̃
dα2 = [Ξi,

dX̃
dα

] = [Ξi, [Ξi, X̃]],

and so on. So, because Taylor’s theorem (in a neighborhood of α = 0), one has

X̃ = X + α[Ξi, X] +
α

2!
[Ξi, [Ξi, X]] + · · · .

Considering the adjoint map adΞi : L → L defined by

adX(Y) = [X, Y], for each X, Y ∈ L,
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we have

X̃ = X + α adΞi(X) +
α

2!
adΞi(adΞi(X)) + · · · =

+∞

∑
k=0

α adk
Ξi
(X)

k!
, (3.12)

that is, the exponential of adjoint map adΞi . The convergence follows since (3.11) is
a system of linear ordinary differential equations with constant coefficients.

We can construct the matrix of the linear map adX : L → L, relative to the basis
{Xi1, . . . , Ξr} of L. Let X = ∑r

i=1 f iΞi, then

adX(Ξj) =
r

∑
i=1

f i[Ξi, Ξj] =
r

∑
k=1

(
r

∑
i=1

f ick
ij

)
.

It follows that the matrix associated to adX is ( f ick
ij)

k
j , where the Einstein convention

on sums over repeated indices has been used.
Then, in the finite-dimensional case, we can construct the invertible transforma-

tions that map equivalent Lie subalgebras by computing the exponential of these
matrices. It can be shown that, given an element X ∈ L, exp (adX) is a Lie algebra
automorphism, known as an inner automorphism of L. The set of all inner automor-
phisms of L is denoted by Int(L).

Example 20. Consider the non-abelian two-dimensional Lie algebraLwith a basis {Ξ1, Ξ2}
such that

[Ξ1, Ξ2] = Ξ1

A generic element X ∈ L is of the form

X = f 1Ξ1 + f 2Ξ2.

In this case it is simple to compute the inner automorphisms related to the generators Ξ1
and Ξ2. In fact, it is sufficient to write the series (3.12); we begin with exp(t1 adΞ1):

exp(t1 adΞ1)(X) = X + t1 [Ξ1, X] +
t2
1

2!
[Ξ1, [Ξ1, X]] + · · ·

= f i
(

Ξi + t1 [Ξ1, Ξi] +
t2
1

2!
[Ξ1, [Ξ1, Ξi]] + · · ·

)
= f 1Ξ1 + f 2 (Ξ2 + t1Ξ1)

=
(

f 1 + t1 f 2
)

Ξ1 + f 2Ξ2

Furthermore, computing exp(t2 adΞ2) yields

exp(t2 adΞ2)(X) = f i
(

Ξi + t2 [Ξ2, Ξi] +
t2
2

2!
[Ξ2, [Ξ2, Ξi]] + · · ·

)
= exp (−t2) f 1Ξ1 + f 2Ξ2.

Example 21. Consider the three-dimensional Lie algebra sl2(R). We choose a basis {Ξ1, Ξ2, Ξ3}
such that

[Ξ1, Ξ2] = Ξ1, [Ξ1, Ξ3] = −2Ξ2, [Ξ2, Ξ3] = Ξ3.
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We can calculate the matrix representation of adjoint maps adΞi , with i = 1, 2, 3:

adΞ1 =

 0 1 0
0 0 2
0 0 0

 , adΞ2 =

 −1 0 0
0 0 0
0 0 1

 ,

and

adΞ3 =

 0 0 0
−2 0 0
0 −1 0

 .

The inner automorphisms Ai = exp (ti adΞi) are obtained by calculating the respective
exponential matrices:

A1 =

 1 t1 t2
1

0 1 2t1
0 0 1

 , A2 =

 exp (−t2) 0 0
0 1 0
0 0 exp (t2)

 ,

and

A3 =

 1 0 0
−2t3 1 0

t2
3 −t3 1

 .

We say that two subalgebras H1 and H2 of L are equivalent if there exists an inner
automorphism A such that H2 = A(H1).

Hence, the following proposition holds.

Proposition 6. Let G be the symmetry group of a system of differential equations ∆ = 0.
Let H and H̃ be s–parameter subgroups of G with corresponding Lie subalgebras H and H
of the Lie algebras L of G. Then, H and H̃ are equivalent if and only if H and H̃ are Lie
subalgebras equivalent.

Now, we can give the definition of optimal system of Lie subalgebras.

Definition 21. The optimal system of subalgebras of a Lie algebra L with inner automor-
phisms A = Int(L) is a set of subalgebras ΘA(L) such that:

1. there are no two elements of this set which can be transformed into each other by inner
automorphisms of the Lie algebra L;

2. any subalgebra of the Lie algebra L can be transformed into one of subalgebras of the
set ΘA(L).

The union of the elements of the optimal system of given dimensionality s is called opti-
mal system of order s and denoted by the symbol Θs

A; the solution of the classification
problem for a finite-dimensional Lie algebra L yields tables of optimal systems for every
s = 1, . . . , r− 1.

In summary, we have seen that the problem of finding an optimal system of
subgroups is equivalent to that of finding an optimal system of subalgebras, and so
we concentrate on the latter.

For one–dimensional subalgebras, this classification problem is essentially the
same as the problem of classifying the orbits of the inner automorphisms, since each
one-dimensional subalgebra is determined by a nonzero vector in L. Applying the
inner automorphisms exp (adΞi) (with i = 1, . . . , r) in turn, each element is reduced
to the simplest equivalent form.

We show an illustrative example.
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Example 22. Consider the Lie algebra L4 spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂t
, Ξ3 = t

∂

∂x
+

∂

∂u
, Ξ4 = 3t

∂

∂t
+ x

∂

∂x
− 2u

∂

∂u

generating the Lie point symmetries of Korteweg-deVries equation [11],

∂u
∂t

+ u
∂u
∂x

+
∂3u
∂x3 = 0.

In order to compute inner automorphisms, we first compute the moltiplication table and
consequently the adjoint maps. We have

[Ξ1, Ξ4] = Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ4] = 3Ξ2, [Ξ3, Ξ4] = −2Ξ3.

Thus, we can compute adΞi , i = 1, . . . , 4:

adΞ1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , adΞ2 =


0 0 1 0
0 0 0 3
0 0 0 0
0 0 0 0

 ,

adΞ3 =


0 −1 0 0
0 0 0 0
0 0 0 −2
0 0 0 0

 , adΞ4 =


−1 0 0 0
0 −3 0 0
0 0 2 0
0 0 0 0

 .

Now, using (3.12) leads to Ai = exp (ti adΞi):

A1 =


1 0 0 −t1
0 1 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 −t2 0
0 1 0 −3t2
0 0 1 0
0 0 0 1

 ,

A3 =


1 t3 0 0
0 1 0 0
0 0 1 2t3
0 0 0 1

 , A4 =


exp (t4) 0 0 0

0 exp (3t4) 0 0
0 0 exp (−2t4) 0
0 0 0 1

 .

Let
X = ( f 1, f 2, f 3, f 4),

be an element of L4. Our aim is to simplify the coefficients of X so as to obtain a simpler rep-
resentative (i.e., with the greatest number of null components). We divide the computation
into several cases.

Case 1: f 4 ̸= 0. For simplicity, we can assume f4 = 1; applying A3 to X, it follows

X′ = ( f 1 + f 2t3, f 2, f 3 + 2 f 4t3, 1),

and choosing t3 = − f 3/2, we get a first simplification

X′ = ( f 1 − f 2 f 3

2
, f 2, 0, 1).
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Then we let A2 act on X′, yielding

X′′ = ( f 1 − f 2 f 3

2
, f 2 − 3t2, 0, 1).

Choosing t2 = f 2/3, we obtain

X′′ = ( f 1 − f 2 f 3

2
, 0, 0, 1).

Finally, applying A1 to X′′ and choosing t1 = f 1 − f 2 f 3/2 it turns out that the first
component vanishes. Therefore, any one–dimensional subalgebras spanned by a element
with f 4 ̸= 0 is equivalent to the subalgebras spanned by Ξ4.

Case 2: f 4 = 0. We can distinguish between two subcases: f 3 ̸= 0 and f 3 = 0.
Subcase 2.1: f 3 ̸= 0. Again, we can assume f 3 = 1 and apply A2 on X. This results in

X′ = ( f 1 − t2, f 2, 1, 0),

and by choosing t2 = f 1, we obtain X′ = f 2Ξ2 + Ξ3. We can then apply the inner auto-
morphism A4 to X′ and, after scaling, obtain:

X′′ = (0, exp (5t4) f 2, 1, 0).

It occurs

X′′ = (0, sign( f 2), 1, 0), with t4 =
log
(

1
| f 2|

)
5

.

Thus, any subalgebra generated by an element with f 4 = 0 and f 3 ̸= 0 is equivalent to one
of the three subalgebras: Ξ3 ± Ξ2 or Ξ3, depending on the sign of f 2.

Subcase 2.2: f 3 = 0. If f 2 ̸= 0, we can apply A3 to X = f 1Ξ1 + Ξ2, which can then
be reduced to Ξ2 by choosing t3 = − f 1. Otherwise, if f 2 = 0, we have the one–dimensional
subalgebra generated by Ξ1.

In summary, we have found the optimal system of one-dimensional subalgebras, whose
representatives are:

Ξ1 =
∂

∂x
,

Ξ2 =
∂

∂t
,

Ξ3 = t
∂

∂x
+

∂

∂u
,

Ξ4 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
,

Ξ3 ± Ξ2 = t
∂

∂x
± ∂

∂t
+

∂

∂u
.

The computations required to produce an optimal system of subalgebras are rel-
atively simple in low-dimensional cases but become significantly more complex as
the dimension increases. As illustrated in the previous example, the difficulty of
managing the calculations and distinguishing between different cases becomes evi-
dent. With the increasing dimension of the Lie algebra and the subalgebras to be op-
timized, the problem grows in complexity. It follows from these considerations that
a computational approach becomes essential. Advanced techniques and algorithms
are needed to systematically analyze subalgebras, thus facilitating the analysis for
finding optimal systems of high-dimensional Lie subalgebras.
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In the next Chapter, we investigated the problem of finding optimal systems of
families of Lie subalgebras of finite dimensional Lie algebras almost automatically
by means of a program written in the computer algebra system (CAS) Wolfram Math-
ematica™ [39].
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Chapter 4

Symbolic computation of optimal
systems: the SymboLie package

In this Chapter, we describe in detail the package SymboLie [35] for automatically
computing optimal systems of families of Lie subalgebras. The package has been
written in the Wolfram Language and runs in the CAS Wofram Mathematica™[39].
The source code of the package, as well as some illustrative notebooks, are freely
available [38].

4.1 Theoretical setting

In this Section, we introduce some new definitions useful for the algorithmic com-
putation of optimal systems of Lie subalgebras, and clarify them by means of some
examples. Then, in the next Section, we will describe in detail the main algorithms
allowing us to automatically determine optimal systems of an r–dimensional real
Lie algebra Lr represented by a suitable realization, or in abstract way assigning a
formal basis and the set of non-zero Lie brackets (in both cases the program will
compute the structure constants), or giving explicitly the structure constants.

4.1.1 One–dimensional Lie subalgebras

A one-dimensional Lie subalgebra is completely defined by the coefficients of the
linear combination of the generators of the basis of Lr, say

X = f 1Ξ1 + f 2Ξ2 + · · ·+ f rΞr,

and actions of inner automorphisms can be transferred to the coordinates ( f 1, f 2, . . . , f r)
of an r–dimensional vector; the method largely used in the literature for obtaining
optimal systems of one-dimensional Lie subalgebras consists in using inner auto-
morphisms to obtain from the most general r–dimensional vector the maximum
possible number of zero coordinates, also using the invariants of the inner auto-
morphisms. More in detail, the method takes a tuple { f 1, f 2, . . . , f r}, and, through
judicious applications of inner automorphisms, simplifies as many of the coefficients
f α [11]. Though this approach is straightforward, it may imply technical difficulties
when implemented in a computer algebra system, since one needs to solve algebraic
equations and make suitable choices during the process to distinguish cases; more-
over, it is a relatively easy task only for low dimensional Lie algebras, and the nature
of the obtained results is not always clear. Typically, this is a top-down approach.

Our aim is to render the process of identifying similar subalgebras automatic; to
achieve this result, we adopt a general algorithm with a bottom–up philosophy, and
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reduce to a minimum the need of solving algebraic equations. To this end, let us
introduce some more definitions.

Definition 22. For any integer r > 1, let Sr be the set of all possible tuples with r compo-
nents (not all zero) chosen in {0, 1}, i.e.,

Sr = {0, 1}r \ {(0, 0, . . . , 0)}.

Definition 23. Let Lr be an r–dimensional Lie algebra generated by {Ξ1, Ξ2, . . . , Ξr}, and
let f ≡ { f 1, f 2, . . . , f r} be a tuple of r functions depending on some variables belonging to a
set P . Then, the family of one–dimensional subalgebras

X = f 1s1Ξ1 + f 2s2Ξ2 + · · ·+ f rsrΞr,

where s ≡ (s1, . . . , sr) ∈ Sr, is called a p–family of one–dimensional Lie subalgebras of Lr
if the rank of the Jacobian matrix of ( f 1s1, f 2s2, . . . , f rsr) with respect to the elements of P
is equal to p = ∑r

i=1 si. This is equivalent to say that the decomposition of X in terms of the
elements of the basis of the Lie algebra involves p functionally independent components.

Example 23. Let L4 be a four–dimensional Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4}, and
consider the family of one–dimensional subalgebras

X = f 1Ξ1 + f 2Ξ2,

with f 1 and f 2 arbitrary real numbers; in this case, it is P = { f 1, f 2}, and we have a
2–family of one-dimensional Lie subalgebras. Also the family

X′ = ( f 1 cos(t)− f 2 sin(t))Ξ1 + ( f 1 sin(t) + f 2 cos(t))Ξ2,

where P = { f 1, f 2, t}, is a 2–family of one–dimensional Lie subalgebras which has to be
considered indistinguishable from X. On the contrary, the family

Y = f 1Ξ1 + f 1( f 2)2Ξ2 + f 1 f 2Ξ3,

even if the vector ( f 1, f 1( f 2)2, f 1 f 2, 0) possesses three non-zero components, does not cor-
respond to a 3–family; in fact, we have P = { f 1, f 2}, and the rank of the Jacobian matrix of
its components with respect to the elements of P is 2.

Remark 10. The p–family of one–dimensional Lie subalgebras of Lr

X = f 1s1Ξ1 + f 2s2Ξ2 + · · ·+ f rsrΞr,

where s ≡ {s1, s2, . . . , sr} ∈ Sr, p = ∑r
i=1 si, in the following will be represented by the

tuple
( f 1s1, f 2s2, . . . , f rsr)

which in turn can be identified by the integer cX =
r

∑
k=1

sk2k−1. Moreover, where there is no

need to specify a value for p, we will write simply family instead of p–family.

Let us introduce a relation R between families of one–dimensional Lie subalge-
bras.

Definition 24. Let Lr be an r–dimensional Lie algebra generated by {Ξ1, . . . , Ξr} and let
X ≡ ( f 1s1, . . . , f rsr) and Y ≡ ( f̃ 1s̃1, . . . , f̃ r s̃r) two different families of Lie subalgebras.
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We write
XRY or (X, Y) ∈ R

if there exists an inner automorphism A ∈ Int(Lr) such that ZT = A · XT (T denotes the
transpose operator) is a family of one–dimensional Lie subalgebras such that cZ = cY.

If it is also
YRX or (Y, X) ∈ R,

then we say that the two families X and Y are equivalent.

According to Definition 24, the relation R is clearly reflexive and transitive, but,
in general, it is not necessarily a symmetric relation, as will be shown in Example 24.
In such a case,R is a so-called preorder, and, it is well known that a preorder induces
an equivalence relation, defined by forcing the symmetric property; nevertheless,
we do not assume the symmetric property to be a priori satisfied by the relationR.

Remark 11. For an r–dimensional Lie algebra, all 2r− 1 possible families of one–dimensional
subalgebras, according to relation R, can be represented by means of a suitable directed
multigraph G(Lr) (this because more than one automorphism can be such that the two
families belong to the relation R), where the vertices correspond to the various families of
one–dimensional Lie subalgebras, and the edges to the automorphisms connecting couples of
subalgebras belonging to R. Indeed, we represent this multigraph as a graph by means of
its adjacency matrix whose (i, j)-th entry is 1 if the i–th family is mapped by some automor-
phism to j–th family, and zero otherwise.

Example 24. Let L4 be a 4–dimensional Lie algebra,

L4 = ⟨Ξ1, Ξ2, Ξ3, Ξ4⟩,

with non-zero Lie brackets

[Ξ2, Ξ4] = Ξ1, [Ξ3, Ξ4] = Ξ2.

Since the inner automorphism exp(t1 adΞ1) is the identity morphism, in the following we
write the matrices associated to inner automorphisms Ai = exp(ti adΞi) (i = 2, 3, 4):

A2 =


1 0 0 −t2
0 1 0 0
0 0 1 0
0 0 0 1

 , A3 =


1 0 0 0
0 1 0 −t3
0 0 1 0
0 0 0 1

 , A4 =


1 t4

t2
4
2 0

0 1 t4 0
1 0 1 0
0 0 0 1

 .

Acting with the automorphism A4 on the 2–family (0, f 2, f 3, 0), we get

( f 2t4 +
f 3t2

4
2

, f 2 + f 3t4, f 3, 0).

which is a 3–family according to Definition 23; thus, we can say

(0, f 2, f 3, 0) R ( f 1, f 2, f 3, 0).

Vice versa, it is

( f 1, f 2, f 3, 0)
A47→ ( f 1 + f 2t4 +

f 3t2
4

2
, f 2 + f 3t4, f 3, 0),
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and the image cannot be reduced to (0, f 2, f 3, 0) for all choices of f 1, f 2 and f 3, whence

( f 1, f 2, f 3, 0)��R (0, f 2, f 3, 0).

Moreover, choosing t4 = − f 2

f 3 , the 2–family (0, f 2, f 3, 0) is mapped by A4 to(
− ( f 2)2

2 f 3 , 0, f 3, 0
)

, which is a 2-family. Hence, we can write

(0, f 2, f 3, 0)R ( f 1, 0, f 3, 0).

Finally, since

( f 1, 0, f 3, 0)
A47→
(

f 1 +
f 3t2

4
2

, f 3t4, f 3, 0
)

,

we have
( f 1, 0, f 3, 0)R ( f 1, f 2, f 3, 0),

but
( f 1, 0, f 3, 0)��R (0, f 2, f 3, 0).

Definition 25 (Ordering of p–families of one–dimensional Lie subalgebras). The fam-
ilies of one-dimensional Lie subalgebras are sorted according to the short-lexicographical or-
dering (slex). In more detail, let Lr be an r–dimensional Lie algebra and let

X = ( f 1s1, f 2s2, . . . , f rsr),

Y = ( f̃ 1s̃1, f̃ 2s̃2, . . . , f̃ r s̃r)

be two families. It is

X >slex Y if



r

∑
i=1

si >
r

∑
i=1

s̃i

or
r

∑
i=1

si =
r

∑
i=1

s̃i and cX > cY.

Remark 12. When we represent the graph corresponding to the set of p–families of one-
dimensional Lie subalgebras, the label we append to each vertex X is the position indX in the
list of ordered families.

4.1.2 Multi–dimensional Lie subalgebras

As in the case of one–dimensional Lie subalgebras, let us define a p–family of multi–
dimensional Lie subalgebras.

Definition 26. Let Lr be an r–dimensional Lie algebra spanned by {Ξ1, . . . , Ξr}, and let f α
k

(k = 1, . . . , d, α = 1, . . . , r) be d · r functions depending on some variables belonging to a
set P . A tuple of d elements (X1, . . . , Xd), where

Xk =
r

∑
α=1

f α
k sk,αΞα, k = 1, . . . , d,
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and sk ≡ (sk,1, . . . , sk,r) ∈ Sr for k = 1, . . . , d, is called a p–family of d–dimensional Lie
subalgebras of Lr if

(1) Xk (k = 1, . . . , d) is a pk–family of one–dimensional Lie subalgebras, and p =
d

∑
k=1

pk;

(2) the matrix ∥ f α
k sk,α∥ has rank d;

(3) the rank of the Jacobian matrix of { f α
k sk,α, k = 1, . . . , d, α = 1, . . . , r} with respect

to the elements of P is equal to p;

(4) the conditions

r

∑
α,β=1

f α
i si,α f β

j sj,βCγ
αβ =

s

∑
k=1

λk
ij f γ

k sk,γ, (i, j = 1, . . . , d, γ = 1, . . . , r)

are satisfied for suitable constants λk
ij whatever the functions f α

k are.

Remark 13. Definition 26 (in particular, item 4) implies a deep simplification of the condi-
tions for the check that the set {X1, . . . , Xd} is closed with respect to the Lie bracket; in fact,
we need to determine the unknowns λk

ij whatever the values of f α
k are, and this requires only

simple elementary linear algebra tools.

Remark 14. We are aware that Definition 26 in some cases may leave out some Lie subalge-
bras. For instance, consider the six–dimensional Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ6}
[25] with the following non–zero Lie brackets:

[Ξ1, Ξ5] = −Ξ2, [Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ5] = −Ξ4,
[Ξ3, Ξ6] = −Ξ1, [Ξ4, Ξ5] = Ξ3, [Ξ4, Ξ6] = −Ξ2.

The three–dimensional vector space spanned by

{ f 1
1 Ξ1 + f 4

1 Ξ4, f 2
2 Ξ2 + f 3

2 Ξ3, f 5
3 Ξ5}

is not a 5–family of three–dimensional Lie subalgebras because the closure with respect to the
commutator is not ensured unless f 1

1 f 3
2 + f 2

2 f 4
1 = 0, which reduces the number of arbitrary

parameters to 4. Consequently, it does not satisfy point (4) of Definition 26.
In our approach, such instances of Lie subalgebras are not considered, since this would

require some more steps that may be cumbersome to tackle automatically. We plan to face this
problem in a new version of our program. Nevertheless, we observe that in most cases (for
instance, almost all real three– and four–dimensional Lie algebras [26]) our approach works
correctly without losing anything.

Remark 15. Of course, because the basis of a d–dimensional Lie subalgebras of a Lie al-
gebra Lr is not unique, we choose to adopt as the basis of a p–family of d–dimensional Lie
subalgebras the one such that the matrix∥∥∥∥∥∥∥

f 1
1 s1,1 f 2

1 s1,2 · · · f r
1s1,r

...
...

...
...

f 1
d sd,1 f 2

d sd,2 · · · f r
dsd,r

∥∥∥∥∥∥∥
is in row reduced echelon form (RREF); once the basis for Lr has been assigned, this matrix
represents the Lie subalgebra.
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A relationR linking two different families of d–dimensional Lie subalgebras can
be defined as well.

Definition 27. Let Lr be an r–dimensional Lie algebra generated by {Ξ1, . . . , Ξr} and let
X ≡ (X1, . . . , Xd) and Y ≡ (Y1, . . . , Yd) be two different families of d–dimensional Lie
subalgebras. We write

XRY or (X, Y) ∈ R

if there exists an inner automorphism A ∈ Int(Lr) such that

ZT = (A · XT
1 , . . . , A · XT

d ),

possibly reduced to row echelon form, is a family of d–dimensional Lie subalgebras such that
cZ = cY.

If it is also
YRX

then we say that the two families are equivalent.

Example 25. Consider the finite-dimensional Lie algebra of symmetries for the equation
ut− uxx = 0 (linear heat equation), spanned by (we use the same basis as the one considered
in [19]):

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
, Ξ3 = x

∂

∂x
+ 2t

∂

∂t
, Ξ4 = u

∂

∂u
,

Ξ5 = 2t
∂

∂x
− xu

∂

∂u
, Ξ6 = 4tx

∂

∂x
+ 4t2 ∂

∂t
− (x2 + 2t)u

∂

∂u
.

Below, we list the matrices associated with the inner automorphisms Ai(t) = exp(t adΞi)
for i = 1, . . . , 6, omitting A4 as it is the identity matrix:

A1(t) =



1 0 2t 0 0 4t2

0 1 0 0 2t 0
0 0 1 0 0 4t
0 0 0 1 0 −2t
0 0 0 0 1 0
0 0 0 0 0 1

 , A2(t) =



1 0 0 0 0 0
0 1 t 0 0 0
0 0 1 0 0 0
0 0 0 1 −t −t2

0 0 0 0 1 2t
0 0 0 0 0 1

 ,

A3(t) =



exp(−2t) 0 0 0 0 0
0 exp(−t) 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 exp(t) 0
0 0 0 0 0 exp(2t)

 ,

A5(t) =



1 0 0 0 0 0
−2t 1 0 0 0 0

0 0 1 0 0 0
−t2 t 0 1 0 0

0 0 −t 0 1 0
0 0 0 0 0 1

 , A6(t) =



1 0 0 0 0 0
0 1 0 0 0 0
−4t 0 1 0 0 0
2t 0 0 1 0 0
0 −2t 0 0 1 0

4t2 0 −2t 0 0 1

 .
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Define a fixed inner automorphism A = A6(1/4) A1(1) A6(1/4) and consider the bidi-
mensional 2–family of Lie subalgebras X =

(
f 1
1 Ξ1, f 2

2 Ξ2
)
. Mapping X via A yields

Y =

(
− f 2

2
2

Ξ5,
f 1
1
4

Ξ6

)
,

which remains a 2–family. Similarly, for X̃ =
(

f 3
1 Ξ3, f 5

2 Ξ5
)
, mapping it via A gives

Ỹ =
(
2 f 5

2 Ξ2,− f 3
1 Ξ3 + f 3

1 Ξ4
)

,

which is not a 3–family of Lie subalgebras. For instance, it suffices to check that condition
(1) in Definition 26 does not hold for Ỹ2.

Note that ( f 2
1 Ξ2, f 3

2 Ξ3 + f 4
2 Ξ4) satisfies all the conditions of Definition 26, yielding it

a 3–family. Consequently, XRY and X̃��R Ỹ.

As in the case of one–dimensional families of Lie subalgebras, relation R is re-
flexive and transitive but in general not symmetric.

Definition 28 (Ordering of p–families of d–dimensional Lie subalgebras). The p–
families of d–dimensional Lie subalgebras are sorted according to the short-lexicographical
ordering. In more detail, let Lr be an r–dimensional Lie algebra and let X ≡ {X1, . . . , Xd}
and Y ≡ {Y1, . . . , Yd} be a p–family and q–family of different d–dimensional Lie subalge-
bras, respectively. It is

X >slex Y if


p > q
or
p = q and Xk >slex Yk, where k = min{i : cXi ̸= cYi}.

Remark 16. A family X ≡ (X1, . . . , Xd) where

Xk =
r

∑
α=1

f α
k sk,αΞα, k = 1, . . . , d,

of d–dimensional Lie subalgebras of an r–dimensional Lie algebra Lr can be represented as
well by the tuple cX ≡ (cX1 , . . . , cXd).

Moreover, when we represent the graph corresponding to the set of families of d–dimensional
Lie subalgebras, also in this case the label we append to each vertex is the position, indX, in
the list of ordered families.

Now we have all the elements for clarifying the details of the algorithm leading
to the determination of optimal systems of families of Lie subalgebras.

4.2 Algorithms for optimal systems of Lie subalgebras

Let Lr be an r–dimensional real Lie algebra assigned through its structure constants;
the latter are computed if the Lie algebra is realized in terms of vector fields or ma-
trices, or if the list of non–zero Lie brackets is provided. The program SymboLie,
written in the Wolfram Language™ [39], provides a set of functions devoted pri-
marily to the construction of optimal systems of families of Lie subalgebras. If the
Lie algebra is assigned by means of a suitable realization, or if the list of non–zero Lie
brackets is assigned, then the method StructureConstants[] provides the structure
constants that will be used in all the remaining functions.
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Example 26. Take the three–dimensional Lie algebra of real 2× 2 traceless matrices, gener-
ated by

Ξ1 =

[
1 0
0 −1

]
, Ξ2 =

[
0 1
0 0

]
, Ξ3 =

[
0 0
1 0

]
.

After loading the package SymboLie, the following steps lead to the computation of the struc-
ture constants:

• define the generators gens of the basis:

gens={{{1,0},{0,-1}},{{0,1},{0,0}},{{0,0},{1,0}}};

• compute the structure constants:

cs = StructureConstants[gens];

The structure constants could be used for instance to display the commutator table:

CommutatorTable[cs] //MatrixForm 0 2 Ξ2 −2 Ξ3
−2 Ξ2 0 Ξ1
2 Ξ3 −Ξ1 0

 .

The computation of the structure constants through the list of non–zero Lie brackets using a
set of unassigned symbols is done as follows:

basis = {x1, x2, x3};
bracket = {{{x1, x2}, 2*x2},

{{x1, x3}, -2*x3},
{{x2, x3}, x1}
};

cs = StructureConstants[bracket, basis];

We note that this Lie algebra is isomorphic to the one discussed abstractly in Example 21.

Example 27. Consider the Lie algebra spanned by the vector fields

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
, Ξ3 = t

∂

∂x
+

∂

∂u
, Ξ4 = 3t

∂

∂t
+ x

∂

∂x
− 2u

∂

∂u

generating the Lie point symmetries of Korteweg-deVries equation [11],

∂u
∂t

+ u
∂u
∂x

+
∂3u
∂x3 = 0.

The structure constants are computed as follows

vars = {t,x,u};
gens = {{1,0,0}, {0,1,0}, {0,t,1}, {3t,x,-2u}};
cs = StructureConstants[gens,vars];

The main function devoted to the determination of optimal systems of families
of Lie subalgebras is the method SubAlgebra[] (see Algorithm 1) receiving as inputs
the structure constants cs of the Lie algebra, a list pars made of two lists specifying
arbitrary parameters and their constraints, respectively (this parameter is {{},{}}
if no arbitrary parameter is involved in the structure constants), and the dimension
dim of the required subalgebras.
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Example 28. Let L4 be a real 4–dimensional Lie algebra with the non-zero Lie brackets
[Ξ1, Ξ3] = Ξ1, [Ξ2, Ξ3] = aΞ2, where 0 < |a| < 1 [26]. In this case, the argument pars of
SubAlgebra[] has to be {{a}, {−1 < a, a < 1, a ̸= 0}}.

If the argument pars is not {{},{}}, the SubAlgebra[] method evaluates the
structure constants on an instance of the parameters satisfying the assigned con-
straints.

Moreover, in the SymboLie package, there are several global variables, one of
which is PrintDebug. By default, it is set to 0. When the user sets it to 1, a debug file
is generated in the same directory as the Mathematica notebook file. The user can
set the global string variable logfile to choose the name (the dimension of subalge-
bras is appended) of the text file where the trace of the computation is recorded; if
logfile is not set by the user, then the trace of the computation is saved on the file
Debug-dim.log.

Algorithm 1: SubAlgebra(cs,pars,dim)
Returns the dim-dimensional optimal subalgebras of the Lie algebra Lr with
structure constants cs (involving parameters pars)

Input: structure constants cs, parameters pars, dimension dim
Output: adjacency matrix, candidates, structure constants cs
begin

if pars is not empty then
cs← evaluation of cs on an instance of pars;

end
if PrintDebug then

f ile.log← printout all the algorithm’s operations;
end
if 1 ≤ dim < r then

return FindAdjacency(cs,dim);
end

end

The function FindAdjacency[] is the method doing all the work. Inside this
function, first of all, the list C of possible candidates for families of d–dimensional
Lie subalgebras is computed: for d = 1 we have 2r − 1 candidates, whereas for d > 1
the cardinality of the set of candidates depends on the structure constants of the Lie
algebra. In other words, for 1 < d < r, we build all the families of d–dimensional
subspaces whose representative matrices are in RREF, and then select those verify-
ing condition (4) of Definition 26. This is done by the method FindCandidates[],
accepting as input the structure constants as well as the dimension of the subalge-
bras, and returning the list of candidates.

For d > 1, to check whether a d–dimensional family of vector subspaces (a can-
didate) is a p–family of d–dimensional Lie subalgebras of Lr (Definition 26), the
Algorithm 2 is used.
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Algorithm 2: CheckAlgebra(alg,cs,dim)
Whether alg generate a p–family of subalgebras of Lr.

Input: alg, structure constants cs, dimension dim
Output: isSub boolean value
begin

isSub← true;
foreach (s1, s2) in 2-element combinations of {1, . . . , dim} do

X ← set[s1];
Y ← set[s2];

eqnI ← adim+1

r

∑
α,β,γ=1

csγ
αβXαYβ;

eqnC ← eqnI −
dim

∑
i=1

biset[i];

matI ← JacobianMatrix(eqnI, {adim+1});
matC ← JacobianMatrix(eqnC, {adim+1, bi});
if Rank(matI) ̸= Rank(matC) then

isSub← f alse;
break foreach;

end
end
return isSub;

end

According to Definition 26, this algorithm requires to solve only linear equations.
As a second step, the inner automorphisms

exp (tα adΞα) , α = 1, . . . , r,

where {Ξ1, . . . , Ξr} denote the generators of a basis of Lr, are computed.
Let A0 be the inner automorphism made of the composition of the inner auto-

morphisms represented by matrices in diagonal form; A0 is the r× r identity matrix
Ir if all inner automorphisms are not diagonal matrices. Moreover, letA = {Ak, k =
1, . . . r′ ≤ r} be the set of inner automorphisms not in diagonal form; if r′ = 0, we
set A = {Ir}.

Then, using the algorithm FindCompositions[], the set made of the composi-
tions of the permutations of all the inner automorphisms belonging to the nonempty
subsets of A is computed. For the computation of this set, it is possible to use a flag
variable, FastRun, within the package. By default this optional parameter is zero,
and automorphisms are computed as previously described. If the user sets FastRun
to 1, instead of considering permutations, we consider the compositions of all the in-
ner automorphisms belonging to the nonempty proper subsets of A joined with the
set of the compositions of the permutations of all inner automorphisms. Moreover,
if FastRun is set to 2, then we only consider the compositions of the inner automor-
phisms belonging to the nonempty subsets of A. The higher is FastRun the faster
is the execution; anyway, we should be aware that there are cases where setting
FastRun to 1 or 2 does not guarantee the completeness of the results.

Now, the process of identifying the pairs of candidates belonging to the relation
R can start: the result is achieved by performing a double scan of the candidates.

Before analyzing the families, the adjacency matrix is set equal to the identity
matrix of dimension equal to the number of candidates (this because every family is
trivially equivalent to itself). In the first scan, we act on every p–family X (starting
from the simplest ones, i.e., those with smallest values of p) with each of the auto-
morphisms previously characterized: let A be one of these automorphisms acting
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on X. We need to check if the result is a family Y of subalgebras according to the
definition. This process is quite fast and, when the check is successful, allows us to
link a p–family with a q–family with p < q. Consequently the adjacency matrix is
updated setting its (indX, indY)–th entry to 1. If this occurs, the program checks if,
acting on the family Y with the automorphism A−1, there are suitable values of the
parameters involved in the automorphism such that a family that can be represented
by X can be obtained.

This first scan is in general not able to recognize all possible pairs of families be-
longing to the relation R. Thus, the program performs a second scan on couples of
families of subalgebras for which the corresponding entries in the adjacency matrix
are zero. The used automorphisms are those belonging to the set of the composi-
tions of the permutations of all inner automorphisms, and it is exploited the possi-
bility that suitable values of the parameters involved in the automorphisms allow
for recognizing other couples of Lie subalgebras belonging to the relationR.

We observe that there are cases where the first scan is sufficient to find all possible
relations between the subalgebras. Furthermore, during the process, the algorithm
repeatedly uses the transitivity property to update the adjacency matrix. The pseu-
docode of this method is shown in the Algorithm 3.

Algorithm 3: FindAdjacency(cs,dim)
Computation of the adjacency matrix of the multigraph G(Lr).

Input: structure constants cs of Lr
Output: adj adjacency matrix of the multigraph
begin

f amilies← FindCandidates(cs,dim);
auto ← InnerAutomorphisms(cs);
A ← FindAutomorphisms(auto);
adj← identity matrix of order #( f amilies);
foreach X in f amilies do // first scan

foreach A in A do
Y ← A · X;
if CheckPFamily(Y) then

adj[indX, indY]← 1;
Y ← f amilies(indY);
Z ← A−1 ·Y;
Z0 ← an evaluation of Z such that cZ0 = cX;
if CheckRelation(Z, X) and CheckPFamily(Z0) then

adj[indY, indX]← 1;
end

end
end

end
foreach pair (X, Y) of f amilies do // second scan

foreach A in A do
if adj[indX, indY] = 0 then

X ← A · X;
X0 ← an evaluation of X such that cX0 = cY;
if CheckRelation(X, Y) and CheckPFamily(X0) then

adj[indX, indY]← 1;
end

end
end

end
return adj;

end
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The output returned by SubAlgebra[] is the input for other methods that display
the results:

• PrintGraph[], displaying the graph corresponding to the relationR; each con-
nected component of this graph may be represented by the simplest family
whose indegree is equal to the number of nodes in the component;

• PrintOptimal[], listing the families of Lie subalgebras of the optimal system;
when possible, the optimal system which is returned is simplified by a suitable
rescaling;

• PrintClasses[], listing the families in each connected component of the graph.

Several methods are employed to characterize the representatives of the opti-
mal system of Lie subalgebras. The main method is FindClasses[] (Algorithm 5),
where the Adj2Classes[] method (Algorithm 4) is initially invoked. It takes two
arguments as input: the candidates (i.e., the p–families) and the adjacency matrix.
First, a list is created made of lists, each containing one of the candidates. Then, the
adjacency matrix is scanned and the candidates corresponding to the entries of the
i–th row of the adjacency matrix not vanishing are joined to the i–th list. Finally, the
Compact[] method is called, which is responsible for merging classes with common
elements.

This process yields classes whose elements represent families of Lie subalgebras
belonging to the relationR; representing the adjacency matrix as a graph, each class
corresponds to one of its connected component. The final step consists in determin-
ing for each connected component its representative, i.e., if there exists at least one
node whose indegree is equal to n, where n is the number of nodes in the connected
component. The smallest representative with respect to the slex ordering gives the
family able to represent the connected component. In some cases it could be neces-
sary to have more than one representative family for some connected component.

Algorithm 4: Adj2Classes(pfam,adj)
Returns the connected components of the p-families in pfam according to
the adjacency matrix adj

Input: list of p–families pfam, adjacency matrix adj
Output: list of connected components
begin

connected← list of singletons of pfam;
foreach (k1, k2) in 2-element combinations of {1, . . . , #pfam} do

if adj[k1, k2] ̸= 0 then
connected[k1]← connected[k1] ∪ {pfam[k2]};

end
end
return Compact(connected);

end
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Algorithm 5: FindClasses(pfam,adj)
Returns the classes of the p-families in pfam according to the adjacency ma-
trix adj

Input: list of p–families pfam, adjacency matrix adj
Output: list of representatives reps, list of classes classes
begin

connected← Adj2Classes(pfam,adj);
foreach component comp in connected do

tmp← {};
foreach p-family X in comp do

Y ← the first family in comp with maximum indegree;
indX ← index of X in pfam;
indY ← index of Y in pfam;
if adj[indX, indY] = 1 then

tmp← tmp ∪ {Y};
end

end
classes← classes ∪ {tmp};
reps← reps ∪ {{ family in tmp with maximum indegree}};

end
return {reps, classes};

end

After the optimal system of families of Lie subalgebras has been obtained, the method
PrintOptimal[] displays the result; this process is mediated by the RescaleAlgebra[]
method (Algorithm 6) that rescales and writes the representatives of the optimal sys-
tems properly; as a result, the coefficients entering the expression of the optimal sys-
tem are labeled with latin letters if they can assume arbitrary non-vanishing values,
with greek letters if they can assume the values ±1 only.

Algorithm 6: RescaleAlgebra(X,cs,dim)
Computation of the appropriate constants for a representative

Input: p-family X, structure constants cs, dimension dim
Output: appropriate representative
begin

r ← dimension of the Lie algebra;
auto ← InnnerAutomorphisms(cs);
A← InvariantAutomorphisms(X, auto);
Y ← RREF(A · X);
S ← scaling parameters involved in Y;
foreach entry Yij ̸∈ {0, 1} of Y do

P← parameters in S involved in the (i, j)-th entry of Y;
if P ̸= ∅ then

Xij ← a suitable greek letter;
S ← S \ {P[1]};

else
Xij ← a suitable latin letter;

end
end

return
{

∑r
j=1 XijΞj : i = 1, . . . , dim

}
;

end

In particular, this method uses the InvariantAutomorphisms[] method (Algo-
rithm 7) which returns a list of inner automorphisms that leave the p–family invari-
ant.
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Algorithm 7: InvariantAutomorphisms(X,auto)
Find A in auto leaving invariant the p–family X, up to RREF

Input: p–family X, list of automorphisms auto
Output: list of automorphisms invauto
begin

foreach A in auto do
Y ← A · X;
if cY = cX or cRREF(Y) = cX then

invauto← invauto ∪ {A};
end

end
return invauto;

end
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Chapter 5

Case Studies with SymboLie

In this Chapter, we present some relevant examples of Lie algebras corresponding
to point symmetries of differential equations, and show how the use of SymboLie
package, developed in the CAS Wolfram Mathematica™ [39], allows us to determine
optimal systems of Lie subalgebras. Relevant examples, used as a test in the de-
velopment of the program SymboLie are the real three– and four–dimensional Lie
algebras. In fact, Patera and Winternitz [26] classified and listed all these algebras
and exhibited all the optimal systems. Using the SymboLie package we recovered
almost completely the results reported in [26]; the minor discrepancies between the
results in [26] and those obtained in few minutes with SymboLie [42] (see also [38]
for the complete notebooks reporting the results) are clarified. We also determined
the optimal systems of the forty five–dimensional real algebras characterized in [44].
Using SymboLie, the optimal systems of all real three– and four–dimensional Lie
algebras are derived in few minutes [42]. We also analyze, and compare the results
obtained by using our package with those available in the literature about optimal
systems of Lie symmetries of some partial differential equations relevant in the ap-
plications.

5.1 An example showing the use of SymboLie

To use SymboLie, open a Mathematica notebook and load the package by issuing

<< "SymboLie.wl"

So doing, we can specify the Lie algebra we want to analyze and start the computa-
tion.

First, we present a non–critical example in order to clarify the notation used in
SymboLie.

Example 29. Let L4 be the 4D Lie algebra A2 ⊕ 2A1 (see [26, Table II]) spanned by
{Ξ1, Ξ2, Ξ3, Ξ4} with only one non–zero commutator, say

[Ξ1, Ξ2] = Ξ2.

Let us write the matrices A1 and A2 associated to the non–trivial inner automor-
phisms exp(t1 adΞ1) and exp(t2 adΞ2):

A1 =


1 0 0 0
0 exp(t1) 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 0 0
−t2 1 0 0

0 0 1 0
0 0 0 1

 .
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Patera and Winternitz in [26] have obtained the following 1D optimal system:

Θ1
A ≡ {{Ξ2}, {cos ϕΞ3 + sin ϕΞ4}, {Ξ1 + x(cos ϕΞ3 + sin ϕΞ4)},

{Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4)}},
(5.1)

with 0 ≤ ϕ < π, x ∈ R and ϵ = ±1. We want to read the notation used in (5.1)
to compare our results. Firstly, we analyze {cos ϕΞ3 + sin ϕΞ4}. If sin ϕ = 0 then
we obtain the subalgebra {Ξ3}; if cos ϕ = 0 then we obtain {Ξ4}; otherwise, we
can write {Ξ3 + tan ϕΞ4} with tan ϕ ∈ R. Similarly, regarding {Ξ1 + x(cos ϕΞ3 +
sin ϕΞ4)}, x cos ϕ and x sin ϕ assume every real values. Hence, if x = 0 we get
{Ξ1}, else {Ξ1 + xΞ3}, {Ξ1 + xΞ4} and {Ξ1 + xΞ3 + yΞ4} with x, y ∈ R∗ = R \{0}.
Finally, from {Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4)}we obtain {Ξ2 + ϵΞ3}, {Ξ2 + ϵΞ4} and the
last {Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4)} when ϕ ∈]0, π/2[∪]π/2, π[.

Then, the 1D optimal system of Patera and Winternitz written in extended form
is as follows:

Θ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ3 + xΞ4}, {Ξ1 + xΞ3}, {Ξ1 + xΞ4},

{Ξ1 + xΞ3 + yΞ4}, {Ξ2 + ϵΞ3}, {Ξ2 + ϵΞ4}, {Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4)}},

with ϕ ∈]0, π[\{π/2}, x, y ∈ R∗ and ϵ = ±1.
The program SymboLie returns the following result:

Ψ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3}, {Ξ1 + a1Ξ4},
{Ξ1 + a1Ξ3 + a2Ξ4}, {Ξ2 + α1Ξ3}, {Ξ2 + α1Ξ4}, {Ξ2 + α1Ξ3 + a1Ξ4}},

with a1, a2 ∈ R∗ and α1 = ±1.
The cardinalities of the 1D optimal system reported in [26] and the one computed

by SymboLie coincide [42]. The two sets are equal except for their last element. Any-
way, they are equivalent. Indeed, let us consider

K1 = {Ξ2 + α1(cos ϕΞ3 + sin ϕΞ4)}, with α1 = ±1 and ϕ ∈]0, π[\{π/2}.

Applying the inner automorphism A1 to the generator of K1, we obtain

A1 · (0, 1, α1 cos ϕ, α1 sin ϕ)T = (0, exp(−t1), α1 cos ϕ, α1 sin ϕΞ4)
T.

Let us K2 the subalgebra generated by it, with t1 = log(1/ cos ϕ). Thus, one has

K2 = {Ξ2 + α1Ξ3 + α1 tan ϕΞ4},

and assuming a1 = α1 tan ϕ ∈ R∗, we prove the equivalence.
A similar argument applies in the case of the 2D–optimal system of Patera and

Winternitz, which in extended form results:

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1 + xΞ3, Ξ2}, {Ξ1 + xΞ4, Ξ2}, {Ξ1 + x cos ϕΞ3 + x sin ϕΞ4, Ξ2},

{Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, sin ϕΞ3 − cos ϕΞ4}, {Ξ1 + xΞ3, Ξ4}, {Ξ1 + xΞ4, Ξ3},
{Ξ2 + ϵΞ3, Ξ4}, {Ξ2 + ϵΞ4, Ξ3}, {Ξ3, Ξ4}, {Ξ2, Ξ3}, {Ξ2, Ξ4},
{Ξ2, sin ϕΞ3 − cos ϕΞ4}, {Ξ1 + x cos ϕΞ3 + x sin ϕΞ4, sin ϕΞ3 − cos ϕΞ4},
{Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4), sin ϕΞ3 − cos ϕΞ4}},

with ϕ ∈]0, π[\{π/2}, x ∈ R∗ and ϵ = ±1.
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Using SymboLie, we obtain the following result:

Ψ2
A ≡ {{Ξ1, Ξ2}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ3 + a2Ξ4, Ξ2},

{Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ3},
{Ξ2 + α1Ξ3, Ξ4}, {Ξ2 + α1Ξ4, Ξ3}, {Ξ3, Ξ4}, {Ξ2, Ξ3}, {Ξ2, Ξ4},
{Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}},

with a1, a2 ∈ R∗ and α1 = ±1.
Also in this case the cardinalities of both 2D–optimal systems coincide and the

representatives of Θ2
A and Ψ2

A are all the same except the last two.
Concerning {Ξ1 + x cos ϕΞ3 + x sin ϕΞ4, sin ϕΞ3− cos ϕΞ4}, we observe that after

a row reduction it can be written as

{Ξ1 + x csc ϕΞ4, Ξ3 − cot ϕΞ4},

and since x and ϕ are arbitrary, we can set a1 = x csc ϕ and a2 = − cot ϕ, obtaining

{Ξ1 + a1Ξ4, Ξ3 + a2Ξ4}.

Similarly, for {Ξ2 + ϵ(cos ϕΞ3 + sin ϕΞ4), sin ϕΞ3 − cos ϕΞ4} after a row reduction
we obtain

{Ξ2 + ϵ csc ϕΞ4, Ξ3 − cot ϕΞ4}.

Moreover, applying A1 with t1 = log(sin ϕ), we get

{Ξ2 + ϵΞ4, Ξ3 − cot ϕΞ4},

and assuming α1 = ϵ and a1 = − cot ϕ we obtain {Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}.
Finally, the 3D–optimal systems of Patera and Winternitz and SymboLie are

Θ3
A ≡ {{Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ2}, {Ξ1, Ξ4, Ξ2},

{Ξ1, sin ϕΞ3 − cos ϕΞ4, Ξ2}, {Ξ1 + xΞ3, Ξ4, Ξ2}, {Ξ1 + xΞ4, Ξ3, Ξ2},
{Ξ1 + x cos ϕΞ3 + x sin ϕΞ4, sin ϕΞ3 − cos ϕΞ4, Ξ2}},

with ϕ ∈]0, π[\{π/2} and x ∈ R∗, and

Ψ3
A ≡ {{Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3},
{Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

with a1, a2 ∈ R∗, respectively.
The representatives of the both 3D–optimal systems coincide. In particular, after

the row reduction the last representative of Θ3 becomes

{Ξ2, Ξ1 + x csc ϕΞ4, Ξ3 − cot ϕΞ4},

and, assuming a1 = x csc ϕ and a2 = − cot ϕ, we obtain {Ξ2, Ξ1 + a1Ξ4, Ξ3 + a2Ξ4}
and so the 3D–optimal systems are the same.
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5.2 Optimal systems of subalgebras of all real 3D Lie alge-
bras

Optimal systems of Lie subalgebras of all real 3D Lie algebras have been listed in [26,
Table I]. All such optimal systems coincide with those ones computed by SymboLie
except the algebra A3,8 (that is su(1, 1)). Here, we analyze such a case.

Algebra (A3,8). Let L3 be the 3D Lie algebra spanned by {Ξ1, Ξ2, Ξ3} with the non–
zero commutators:

[Ξ1, Ξ2] = Ξ1, [Ξ2, Ξ3] = Ξ3, [Ξ3, Ξ1] = 2Ξ2.

In the following, we write the matrices associated to the inner automorphisms exp(t adΞ1),
exp(t adΞ2) and exp(t adΞ3):

A1 =

1 −t1 −t2
1

0 1 2t1
0 0 1

 , A2 =

exp(t2) 0 0
0 1 0
0 0 exp(−t2)

 , A3 =

 1 0 0
−2t3 1 0
−t2

3 t3 1

 .

Let us denote with A the group generated by {A1, A2, A3}.
Patera and Winternitz [26] have obtained the following optimal systems:

Θ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ1 + Ξ3}}, Θ2

A ≡ {{Ξ1, Ξ2}}.

Using SymboLie, we obtain the following results:

Ψ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ1 + α1Ξ3}}, Ψ2

A ≡ {{Ξ1, Ξ2}}.

Regarding the 2D–optimal system, we can immediately see that the family of subal-
gebras {Ξ1, Ξ2} is the only representative in both results. Hence, Θ2

A = Ψ2
A.

On the other hand, with regard to Θ1
A and Ψ1

A, the only difference being the
third representative. The subalgebra {Ξ1 + Ξ3} cannot be treated computationally
by SymboLie, so we must refer to the corresponding 2–family X = {Ξ1 + a1Ξ3}. Fur-
thermore, since the coefficient a1 in the 2-family X can be rescaled, it is represented
by the Greek letter α, as described in Algorithm 6. SymboLie is not capable of do-
ing further specific analysis on the p-families. The one–dimensional optimal system
computed by SymboLie is represented graphically in Figure 5.1.

In Table 5.1, the optimal systems of all eleven three–dimensional Lie algebras, as
found by SymboLie, are reported.

5.3 Optimal systems of subalgebras of all real 4D Lie alge-
bras

Optimal systems of Lie subalgebras of real 4D Lie algebras have been listed in [26,
Table II]. Similarly to the three–dimensional case, we analyze those algebras where
there are some differences between the optimal systems computed by SymboLie and
the ones by Patera and Winternitz.

Algebra (2A2). Let L4 be the 4D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4} with the
non–zero commutators:

[Ξ1, Ξ2] = Ξ2, [Ξ3, Ξ4] = Ξ4.
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TABLE 5.1: Optimal systems of real Lie algebras of dimension 3 (the al-
gebras are listed in the same order used in [26]). SymboLie completes the
computation in less than one minute. a1, a2, a3, a4 ∈ R are non vanishing,

and α1 = ±1.

Non-zero Lie brackets 1D Optimal System 2D Optimal System

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ1 + a1Ξ2}, {Ξ1 + a1Ξ3},
{Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ2 + a2Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ2, Ξ3},
{Ξ1, a1Ξ2 + a2Ξ3},
{a1Ξ1 + a2Ξ2, Ξ3},
{a1Ξ1 + a2Ξ3, Ξ2},
{a1Ξ1 + a2Ξ3, a3Ξ2 + a4Ξ3}

[Ξ1, Ξ2] = Ξ2
{Ξ1}, {Ξ2}, {Ξ3},
{Ξ1 + a1Ξ3}, {Ξ2 + α1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ2, Ξ3}, {Ξ1 + a1Ξ3, Ξ2}

[Ξ1, Ξ2] = Ξ2, [Ξ2, Ξ3] = Ξ1 {Ξ1}, {Ξ2}, {Ξ3}, {Ξ2 + a1Ξ3}
{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ2 + a1Ξ3}

[Ξ1, Ξ3] = Ξ1,
[Ξ2, Ξ3] = Ξ1 + Ξ2

{Ξ1}, {Ξ2}, {Ξ3} {Ξ1, Ξ2}, {Ξ1, Ξ3}

[Ξ1, Ξ3] = Ξ1, [Ξ2, Ξ3] = Ξ2
{Ξ1}, {Ξ2}, {Ξ3},
{Ξ1 + a1Ξ2}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ2, Ξ3}, {Ξ1 + a1Ξ2, Ξ3}

[Ξ1, Ξ3] = Ξ1, [Ξ2, Ξ3] = −Ξ2
{Ξ1}, {Ξ2}, {Ξ3},
{Ξ1 + α1Ξ2}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ2, Ξ3}

[Ξ1, Ξ3] = Ξ1, [Ξ2, Ξ3] = aΞ2
(0 < |a| < 1)

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ1 + α1Ξ2}

{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ2, Ξ3}

[Ξ1, Ξ3] = −Ξ2, [Ξ2, Ξ3] = Ξ1 {Ξ1}, {Ξ3} {Ξ1, Ξ2}

[Ξ1, Ξ3] = aΞ1 − Ξ2,
[Ξ2, Ξ3] = Ξ1 + aΞ2, (a > 0) {Ξ1}, {Ξ3} {Ξ1, Ξ2}

[Ξ1, Ξ2] = Ξ1, [Ξ2, Ξ3] = Ξ3,
[Ξ3, Ξ1] = 2Ξ2

{Ξ1}, {Ξ2}, {Ξ1 + α1Ξ3} {Ξ1, Ξ2}

[Ξ1, Ξ2] = Ξ3, [Ξ3, Ξ1] = Ξ2,
[Ξ2, Ξ3] = Ξ1

{Ξ1}
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FIGURE 5.1: 1 → {Ξ1}, 2 → {Ξ2}, 3 → {Ξ3}, 4 → {Ξ1 + a1Ξ2}, 5 →
{Ξ1 + a1Ξ3}, 6→ {Ξ2 + a1Ξ3}, 7→ {Ξ1 + a1Ξ2 + a2Ξ3}

The 1D optimal system computed by SymboLie coincide with Patera and Winter-
nitz system. It can be represented graphically in Figure 5.2.

FIGURE 5.2: 1 → {Ξ1}, 2 → {Ξ2},3 → {Ξ3},4 → {Ξ4},5 → {Ξ1 +
a1Ξ2},6 → {Ξ1 + a1Ξ3},7 → {Ξ2 + a1Ξ3},8 → {Ξ1 + a1Ξ4},9 → {Ξ2 +
a1Ξ4},10 → {Ξ3 + a1Ξ4},11 → {Ξ1 + a1Ξ2 + a2Ξ3},12 → {Ξ1 + a1Ξ2 +
a2Ξ4},13 → {Ξ1 + a1Ξ3 + a2Ξ4},14 → {Ξ2 + a1Ξ3 + a2Ξ4},15 → {Ξ1 +

a1Ξ2 + a2Ξ3 + a3Ξ4}

Instead, concerning the 2D optimal systems we have

Θ2
A = Ψ2

A ∪ {{Ξ1 + Ξ3, Ξ2 + ϵΞ4}}, with ϵ = ±1.

We observe that the representative in the results by Patera and Winternitz that is
absent in the results provided by SymboLie identify two particular subalgebras. In
such a case, in SymboLie, we have to refer to the 4–family related to such subalgebras
to make computation. Anyway, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4} is not a 4–family, because it
is not closed with respect to the Lie bracket for arbitrary a1 and a2. Therefore, it
cannot be analyzed during the calculation of the optimal system.

The 3D optimal system computed by SymboLie is as follows:

Θ3
A ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4}},

with a1 ∈ R∗. The discrepancy with respect to the optimal system reported in [26]
consists in the 4–family {Ξ1 + a1Ξ3, Ξ2, Ξ4}. In [26], the optimal system contains the
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special subalgebras A3,3, A3,4 and Aa
3,5 (under particular conditions) that represent

the aforementioned 4–family.

Algebra (A3,6 ⊕A1). Let L4 be the 4D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4} with
the non–zero commutators:

[Ξ1, Ξ3] = −Ξ2, [Ξ2, Ξ3] = Ξ1.

Let us write the matrices associated to inner automorphisms exp(t1 adΞ1), exp(t2 adΞ2)
and exp(t3 adΞ3):

A1 =


1 0 0 0
0 1 t1 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 −t2 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A3 =


cos t3 sin t3 0 0
− sin t3 cos t3 0 0

0 0 1 0
0 0 0 1

 .

The optimal systems of order 1 and 3 in [26] coincide with those computed by
SymboLie. The graph of the one-dimensional optimal system is provided in [38].

FIGURE 5.3: 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ4}, 3 → {Ξ2, Ξ4}, 4 → {Ξ3, Ξ4},
5→ {Ξ1, Ξ2 + a1Ξ4}, 6→ {Ξ1 + a1Ξ2, Ξ4}, 7→ {Ξ1 + a1Ξ3, Ξ4}, 8→ {Ξ2 +
a1Ξ3, Ξ4}, 9 → {Ξ1 + a1Ξ4, Ξ2}, 10 → {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, 11 → {Ξ1 +

a1Ξ4, a2Ξ2 + a3Ξ4}

From the graph in Figure 5.3, it can be seen that two–dimensional optimal sys-
tems have different representatives of the same connected component. Indeed, the
2D optimal system obtained by Patera and Winternitz and SymboLie are

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1 + xΞ4, Ξ2}, {Ξ3, Ξ4}},

and

Ψ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ3, Ξ4}},

respectively.
Let us show that the family of subalgebras {Ξ1, Ξ2 + a1Ξ4} is equivalent to the

family of subalgebras {Ξ1 + xΞ4, Ξ2} via the inner automorphism A3. In fact, apply-
ing it we have

A3 · (1, 0, 0, 0)T = (cos t3,− sin t3, 0, 0)T and A3 · (0, 1, 0, a1)
T = (sin t3, cos t3, 0, a1)

T.

Choosing t3 = π/2, we immediately obtain the representative of Θ2
A, and thus the

optimal systems coincide.
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Algebra (Aa
3,7 ⊕A1). Let L4 be the 4D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4} with

the non–zero commutators:

[Ξ1, Ξ3] = aΞ1 − Ξ2, [Ξ2, Ξ3] = Ξ1 + aΞ2,

with a > 0.
In the following, we write the matrices associated to the inner automorphisms

exp(t1 adΞ1), exp(t2 adΞ2) and exp(t3 adΞ3):

A1 =


1 0 −at1 0
0 1 t1 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 −t2 0
0 1 −t2 0
0 0 1 0
0 0 0 1

 ,

A3 =


exp(at3) cos t3 exp(at3) sin t3 0 0
− exp(at3) sin t3 exp(at3) cos t3 0 0

0 0 1 0
0 0 0 1

 .

The optimal systems with dimensions 1 and 3 coincide. As in the previous case,
regarding the two–dimensional optimal system, SymboLie returns another represen-
tative than the one found by Patera and Winternitz. The 2D–optimal system found
by Patera and Winternitz is

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1 + xΞ4, Ξ2}, {Ξ3, Ξ4}},

and that computed by SymboLie is

Ψ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ3, Ξ4}}.

The graph of the 2D–optimal system computed by SymboLie is shown in the follow-
ing figure:

FIGURE 5.4: 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ4}, 3 → {Ξ2, Ξ4}, 4 → {Ξ3, Ξ4},
5→ {Ξ1, Ξ2 + a1Ξ4}, 6→ {Ξ1 + a1Ξ2, Ξ4}, 7→ {Ξ1 + a1Ξ3, Ξ4}, 8→ {Ξ2 +
a1Ξ3, Ξ4}, 9 → {Ξ1 + a1Ξ4, Ξ2}, 10 → {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, 11 → {Ξ1 +

a1Ξ4, Ξ2 + a2Ξ4}

Applying the inner automorphism A3 to {Ξ1, Ξ2 + a1Ξ4}, we obtain

{exp(at3)(cos t3Ξ1 − sin t3Ξ2), exp(at3)(sin t3Ξ1 + cos t3Ξ2 + a1Ξ4)},
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and choosing the parameter t = π/2 we have

{− exp(aπ/2)Ξ2, exp(aπ/2)Ξ1 + a1Ξ4}.

Finally, rescaling by the factor − exp(aπ/2) we obtain the family of subalgebras
{Ξ1 + xΞ4, Ξ2}.

Algebra (Aa,b
4,5 ). Let L4 be the 4D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4} with the

non–zero commutators:

[Ξ1, Ξ4] = Ξ1, [Ξ2, Ξ4] = aΞ2, [Ξ3, Ξ4] = bΞ3,

with −1 ≤ a < b < 1, ab ̸= 0. In the following we write the matrices associated to
inner automorphisms exp(t1 adΞ1), exp(t2 adΞ2), exp(t3 adΞ3) and exp(t4 adΞ4):

A1 =


1 0 0 −t1
0 1 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 0 0
0 1 0 −at2
0 0 1 0
0 0 0 1

 ,

A3 =


1 0 0 0
0 1 0 0
0 0 1 −bt3
0 0 0 1

 , A4 =


exp(t4) 0 0 0

0 exp(at4) 0 0
0 0 exp(bt4) 0
0 0 0 1

 .

The 1D optimal system computed by SymboLie is

Ψ1
A = Θ1

A ∪ {Ξ1 + α1Ξ2},

with α1 = ±1 and its graph is shown in Figure 5.5.

FIGURE 5.5

In [26, Table II] there are all representatives with the exception of {Ξ1 + α1Ξ2}.
We can observe that such family of subalgebras is invariant with respect to the action
of the inner automorphisms, so {Ξ1 + α1Ξ2} has to belong to the optimal system.

Algebra (Aa,b
4,6 ). Let L4 be the 4D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4} with the

non–zero commutators:

[Ξ1, Ξ4] = aΞ1, [Ξ2, Ξ4] = bΞ2 − Ξ3, [Ξ3, Ξ4] = Ξ2 + bΞ3,
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with a ̸= 0 and b ≥ 0. The matrices associated to inner automorphisms exp(t1 adΞ1),
exp(t2 adΞ2), exp(t3 adΞ3) and exp(t4 adΞ4) are the following:

A1 =


1 0 0 −at1
0 1 0 0
0 0 1 0
0 0 0 1

 , A2 =


1 0 0 0
0 1 0 −bt2
0 0 1 t
0 0 0 1

 ,

A3 =


1 0 0 0
0 1 0 −t3
0 0 1 −bt3
0 0 0 1

 , A4 =


exp(at4) 0 0 0

0 exp(bt4) cos t4 exp(bt4) sin t4 0
0 − exp(bt4) sin t4 exp(bt4) cos t4 0
0 0 0 1

 .

Patera and Winternitz [26] have obtained the following 1D optimal system:

Θ1
A ≡ {{Ξ1}, {Ξ3}, {Ξ1 + xΞ3}, {Ξ4}},

with x > 0. Using SymboLie, we obtain the following one dimensional optimal
system of subalgebras:

Ψ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ1 + a1Ξ2}, {Ξ4}},

with a1 ∈ R∗. The corresponding graph is displayed in Figure 5.6.

FIGURE 5.6

Let us show that there is an inner automorphism that maps {Ξ2} into {Ξ3}, and
then {Ξ1 + a1Ξ2} into {Ξ1 + xΞ3}:

A4 · (0, 1, 0, 0) = (0, exp(bt) cos t,− exp(bt) sin t, 0) = (0, 0,− exp(bπ/2), 0) with t =
π

2
,

from which follows that the subalgebra {Ξ2} is equivalent to {Ξ3}.
Similarly, we have

A4 · (1, x, 0, 0)T = (exp(aπ/2), 0,− exp(bπ/2)x, 0)T, with t =
π

2
,

and, since {exp(aπ/2)Ξ1 − exp(bπ/2)xΞ3} = {Ξ1 + a1Ξ3}, with a1 = − exp(π(b−
a)/2)x arbitrary in R∗, we obtain the assertion.

Moreover, the 2D optimal system Θ2
A and the 2D optimal system Ψ2

A are

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ2, Ξ3}, {Ξ1, Ξ4}, {Ξ1 + xΞ3, Ξ2}},



5.4. Optimal system of symmetries of KdV equation 75

with x > 0, and

Ψ2
A ≡ {{Ξ1, Ξ2}, {Ξ2, Ξ3}, {Ξ1, Ξ4}, {Ξ1 + a1Ξ2, Ξ3}},

with a1 ∈ R∗. The two optimal systems coincide, once we note from the graph below
that the 3–families {Ξ1 + xΞ3, Ξ2} and {Ξ1 + a1Ξ2, Ξ3} belong to the same class.

FIGURE 5.7: 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ3}, 3 → {Ξ1, Ξ4}, 4 → {Ξ2, Ξ3},
5 → {Ξ1, a1Ξ2 + a2Ξ3}, 6 → {Ξ1, Ξ2 + a1Ξ4}, 7 → {Ξ1, Ξ3 + a1Ξ4}, 8 →
{Ξ1 + a1Ξ2, Ξ3}, 9 → {Ξ1 + a1Ξ3, Ξ2}, 10 → {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4}, 11 →

{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3}

In particular, the two families under consideration are labeled with 8 and 9, and
we can see from the graph that are equivalent. Indeed, using the inner automor-
phism A4 and setting t = π/2, as we have already seen, we obtain the equivalence.

In Table 5.2, the optimal systems of all four–dimensional real Lie algebras, as
found by SymboLie, are reported.

5.4 Optimal system of symmetries of KdV equation

Let us consider the four–dimensional Lie algebra of point symmetries (see Exam-
ple 27). We observe that this Lie algebra corresponds in the classification contained
in [26] to the algebra Ab

4,9 with b = −2/3.
The required code in Mathematica is the following one:

vars = {x, t, u};
gens = {{1, 0, 0}, {0, 1, 0}, {t, 0, 1}, {x, 3 t, -2 u}};
pars = {{},{}};
cs = StructureConstants[gens,vars];
alg1 = SubAlgebra[cs,pars,1];
alg2 = SubAlgebra[cs,pars,2];
alg3 = SubAlgebra[cs,pars,3];

Using PrintOptimal[] method it is possible to see the optimal systems of fami-
lies of Lie subalgebras. Therefore, PrintOptimal[alg1] displays the 5 optimal fam-
ilies of 1D Lie subalgebras:

{{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ2 + α1Ξ3}}.
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TABLE 5.2: Optimal systems of real Lie algebras of dimension 4 (the al-
gebras are listed in the same order used in [26]). SymboLie completes the
computation in about 25 minutes. a1, a2, a3, a4 ∈ R are non vanishing, and

α1 = ±1.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

All the 15 1D families
of Lie subalgebras.

All the 35 2D families
of Lie subalgebras.

All the 15 3D families
of Lie subalgebras.

[Ξ1, Ξ2] = Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ3},
{Ξ2 + α1Ξ3},
{Ξ1 + a1Ξ4},
{Ξ2 + α1Ξ4},
{Ξ3 + a1Ξ4},

{Ξ1 + a1Ξ3 + a2Ξ4},
{Ξ2 + α1Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4},
{Ξ2 + α1Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2},
{Ξ1 + a1Ξ4, Ξ3},
{Ξ2 + α1Ξ4, Ξ3},
{Ξ1 + a1Ξ4, Ξ3 +

a2Ξ4},
{Ξ2 + α1Ξ4, Ξ3 +

a1Ξ4},
{Ξ1 + a1Ξ3 +

a2Ξ4, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3},
{Ξ1 + a1Ξ4, Ξ2, Ξ3 +

a2Ξ4},

[Ξ1, Ξ2] = Ξ2,
[Ξ3, Ξ4] = Ξ4,

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ3},
{Ξ2 + α1Ξ3},
{Ξ1 + α1Ξ4},
{Ξ2 + α1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4},
{Ξ2 + α1Ξ3, Ξ4},
{Ξ1 + α1Ξ4, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1 + a1Ξ3, Ξ2, Ξ4}

[Ξ2, Ξ3] = Ξ1

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ4},
{Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4},

{Ξ2 + a1Ξ3 + a2Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3},
{Ξ1, Ξ2 + a1Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2},
{Ξ1 + a1Ξ4, Ξ3},
{Ξ1, Ξ2 + a1Ξ3 +

a2Ξ4},
{Ξ1 + a1Ξ4, Ξ2 +

a2Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4},
{Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ4, Ξ3},
{Ξ1, Ξ2 + a1Ξ4, Ξ3 +

a2Ξ4}
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Table 5.2: continued.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

[Ξ2, Ξ3] = Ξ1 + Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ4},
{Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ4, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ1, Ξ3] = Ξ1,
[Ξ2, Ξ3] = Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ2},
{Ξ1 + α1Ξ4},
{Ξ2 + α1Ξ4},
{Ξ3 + a1Ξ4},

{Ξ1 + a1Ξ2 + α1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + a1Ξ2, Ξ4},
{Ξ1 + α1Ξ4, Ξ2},
{Ξ1 + a1Ξ2, Ξ3 +

a2Ξ4}, {Ξ1 +
α1Ξ4, Ξ2 + a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ2, Ξ3, Ξ4}

[Ξ1, Ξ3] =
Ξ1,[Ξ2, Ξ3] = −Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + α1Ξ4},
{Ξ2 + α1Ξ4},
{Ξ3 + a1Ξ4},

{Ξ1 + α1Ξ2 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + α1Ξ2, Ξ4},
{Ξ1 + α1Ξ4, Ξ2},
{Ξ1 + α1Ξ4, Ξ2 +

a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ1, Ξ3] = Ξ1,
[Ξ2, Ξ3] = aΞ2, with

0 < |a| < 1

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + α1Ξ4},
{Ξ2 + α1Ξ4},
{Ξ3 + a1Ξ4},

{Ξ1 + α1Ξ2 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + α1Ξ2, Ξ4},
{Ξ1 + α1Ξ4, Ξ2},
{Ξ1 + α1Ξ4, Ξ2 +

a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ1, Ξ3] = −Ξ2,
[Ξ2, Ξ3] = Ξ1

{Ξ1}, {Ξ3}, {Ξ4},
{Ξ1 + a1Ξ4},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ4},
{Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}
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Table 5.2: continued.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

[Ξ1, Ξ3] = aΞ1 − Ξ2,
[Ξ2, Ξ3] = Ξ1 + aΞ2,

with a > 0

{Ξ1}, {Ξ3}, {Ξ4},
{Ξ1 + a1Ξ4},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ4},
{Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ1, Ξ3] = −2Ξ2,
[Ξ1, Ξ2] = Ξ1,
[Ξ2, Ξ3] = Ξ3,

{Ξ1}, {Ξ2}, {Ξ4},
{Ξ1 + α1Ξ3},
{Ξ1 + α1Ξ4},
{Ξ2 + a1Ξ4},

{Ξ1 + α1Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ4},
{Ξ2, Ξ4},

{Ξ1, Ξ2 + a1Ξ4},
{Ξ1 + α1Ξ3, Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4}

[Ξ1, Ξ2] = Ξ3,
[Ξ2, Ξ3] = Ξ1,
[Ξ1, Ξ3] = −Ξ2

{Ξ1}, {Ξ4},
{Ξ1 + a1Ξ4}

{Ξ1, Ξ4} {Ξ1, Ξ2, Ξ3}

[Ξ2, Ξ4] = Ξ1,
[Ξ3, Ξ4] = Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ3},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ1, Ξ4] = aΞ1,
[Ξ2, Ξ4] = Ξ2,

[Ξ3, Ξ4] = Ξ2 + Ξ3,
with a ̸= 0, 1

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},

{Ξ2, Ξ4},
{Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + α1Ξ3, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ2, Ξ3, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = Ξ2,

[Ξ3, Ξ4] = Ξ2 + Ξ3

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ2},
{Ξ1 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},

{Ξ2, Ξ4},
{Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + a1Ξ2, Ξ4},
{Ξ1 + a1Ξ3, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1 + a1Ξ3, Ξ2, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ3, Ξ4] = Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + a1Ξ3},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},

{Ξ2, Ξ4},
{Ξ1, Ξ3 + a1Ξ4},
{Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + α1Ξ3, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}
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Table 5.2: continued.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = Ξ1 + Ξ2,
[Ξ3, Ξ4] = Ξ2 + Ξ3

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ1 + a1Ξ3, Ξ2}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = aΞ2,

[Ξ3, Ξ4] = bΞ3, with
−1 ≤ a < b < 1,

ab ̸= 0

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + α1Ξ3},
{Ξ2 + α1Ξ3},

{Ξ1 + α1Ξ2 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3},
{Ξ1 + α1Ξ2, Ξ3},
{Ξ1 + α1Ξ3, Ξ2},
{Ξ1 + α1Ξ3, Ξ2 +

α2Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = aΞ2,

[Ξ3, Ξ4] = aΞ3, with
−1 ≤ a < 1, a ̸= 0

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + α1Ξ3},
{Ξ2 + a1Ξ3},

{Ξ1 + α1Ξ2 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3},
{Ξ1 + α1Ξ2, Ξ3},
{Ξ1 + α1Ξ3, Ξ2},
{Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + α1Ξ3, Ξ2 +

a1Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ3, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = aΞ2,

[Ξ3, Ξ4] = Ξ3, with
−1 ≤ a < 1, a ̸= 0

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + α1Ξ2},
{Ξ1 + a1Ξ3},
{Ξ2 + α1Ξ3},

{Ξ1 + α1Ξ2 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3},
{Ξ1 + α1Ξ2, Ξ3},
{Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 +

α1Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1 + a1Ξ3, Ξ2, Ξ4}

[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = Ξ2,

[Ξ3, Ξ4] = Ξ3, with
−1 ≤ a < 1, a ̸= 0

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ1 + a1Ξ2},
{Ξ1 + a1Ξ3},
{Ξ2 + a1Ξ3},

{Ξ1 + a1Ξ2 + a2Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ3},
{Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + a1Ξ2, Ξ4},
{Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4},
{Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 +

a2Ξ3}, {Ξ1 + a1Ξ2 +
a2Ξ3, Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ2, Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 +

a2Ξ3, Ξ4}
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Table 5.2: continued.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

[Ξ1, Ξ4] = aΞ1,
[Ξ2, Ξ4] = bΞ2 − Ξ3,
[Ξ3, Ξ4] = Ξ2 + bΞ3,

with a ̸= 0, b ≥ 0

{Ξ1}, {Ξ2}, {Ξ4},
{Ξ1 + a1Ξ2}

{Ξ1, Ξ2}, {Ξ1, Ξ4},
{Ξ2, Ξ3},

{Ξ1 + a1Ξ2, Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ2, Ξ3, Ξ4}

[Ξ1, Ξ4] = 2Ξ1,
[Ξ2, Ξ4] = Ξ2,

[Ξ3, Ξ4] = Ξ2 + Ξ3,
[Ξ2, Ξ3] = Ξ1

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4}

[Ξ2, Ξ3] = Ξ1,
[Ξ2, Ξ4] = Ξ2,
[Ξ3, Ξ4] = −Ξ3,

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ2 + α1Ξ3},
{Ξ1 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3},
{Ξ1 + a1Ξ4, Ξ2},
{Ξ1 + a1Ξ4, Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4}

[Ξ2, Ξ3] = Ξ1,
[Ξ1, Ξ4] = (1 + b)Ξ1,

[Ξ2, Ξ4] = Ξ2,
[Ξ3, Ξ4] = bΞ3, with

0 < |b| < 1

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ2 + α1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4}

[Ξ2, Ξ3] = Ξ1,
[Ξ1, Ξ4] = 2Ξ1,
[Ξ2, Ξ4] = Ξ2,
[Ξ3, Ξ4] = Ξ3

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ2 + a1Ξ3}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3},
{Ξ2 + a1Ξ3, Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ3, Ξ4}

[Ξ2, Ξ3] = Ξ1,
[Ξ1, Ξ4] = Ξ1,
[Ξ2, Ξ4] = Ξ2,
[Ξ2, Ξ4] = Ξ2

{Ξ1}, {Ξ2}, {Ξ3},
{Ξ4}, {Ξ2 + α1Ξ3},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ1, Ξ4}, {Ξ2, Ξ4},

{Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3},
{Ξ1, Ξ3 + a1Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},
{Ξ1, Ξ3, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

[Ξ2, Ξ3] = Ξ1,
[Ξ2, Ξ4] = −Ξ3,
[Ξ3, Ξ4] = Ξ2

{Ξ1}, {Ξ2}, {Ξ4},
{Ξ1 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ4} {Ξ1, Ξ2, Ξ3}
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Table 5.2: continued.

Non-zero Lie brackets 1D Optimal System 2D Optimal System 3D Optimal System

[Ξ2, Ξ3] = Ξ1,
[Ξ1, Ξ4] = 2aΞ1,

[Ξ2, Ξ4] = aΞ2 − Ξ3,
[Ξ3, Ξ4] = Ξ2 + aΞ3,

with a > 0

{Ξ1}, {Ξ2}, {Ξ4} {Ξ1, Ξ2}, {Ξ1, Ξ4} {Ξ1, Ξ2, Ξ3}

[Ξ1, Ξ3] = Ξ1,
[Ξ2, Ξ3] = Ξ2,
[Ξ1, Ξ4] = −Ξ2,
[Ξ2, Ξ4] = Ξ1

{Ξ1}, {Ξ3}, {Ξ4},
{Ξ3 + a1Ξ4}

{Ξ1, Ξ2}, {Ξ1, Ξ3},
{Ξ3, Ξ4}

{Ξ1, Ξ2, Ξ3},
{Ξ1, Ξ2, Ξ4},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}

FIGURE 5.8: Algebra of Lie symmetries of KdV equation: graph of families
of 1D subalgebras, where 1 → {Ξ1}, 2 → {Ξ2}, 3 → {Ξ3}, 4 → {Ξ4}, 7 →

{Ξ2 + α1Ξ3}.
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FIGURE 5.9: Lie algebra of symmetries of KdV equation: graph
of families of 2D subalgebras (left), where 1 → {Ξ1, Ξ2}, 2 →
{Ξ1, Ξ3}, 3 → {Ξ1, Ξ4}, 4 → {Ξ2, Ξ4}, 5 → {Ξ3, Ξ4}, 6 → {Ξ1, Ξ2 +
α1Ξ3}, and graph of families of 3D subalgebras (right), where {1 →

{Ξ1, Ξ2, Ξ3}, 2→ {Ξ1, Ξ2, Ξ4}, 3→ {Ξ1, Ξ3, Ξ4}.

Remark 17. The one-dimensional optimal system of subalgebras computed with pencil and
paper in Example 22 matches the one computed by SymboLie and is the same as the one in
[11].

Similarly, the calls PrintOptimal[alg2] and PrintOptimal[alg3] show the 6 op-
timal families of 2D Lie subalgebras, say

{{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ1, Ξ2 + α1Ξ3}},

and the 3 optimal families of 3D Lie subalgebras, namely

{{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}},

respectively.
Finally, the method PrintGraph[] (with argument alg1, alg2 or alg3), displays

the graph representing the relationR between the p–families (see Figures 5.8 and 5.9,
where the gray nodes denote the representatives of each class of equivalent families).
The legend showing the correspondence between the labels with the representatives
families is also displayed. In addition, by setting the second optional argument of
the PrintGraph[] method equal to 1, it is possible to display the labels of all the
families of Lie subalgebras analyzed by SymboLie.

5.5 Optimal system of symmetries of Burgers’ equation

The five–dimensional Lie algebra of symmetries of viscous Burgers’ equation,

ut + uux − uxx = 0,
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is spanned by

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
, Ξ3 = t

∂

∂x
+

∂

∂u
,

Ξ4 = 2t
∂

∂t
+ x

∂

∂x
− u

∂

∂u
, Ξ5 = t2 ∂

∂t
+ tx

∂

∂x
+ (x− tu)

∂

∂u
.

(5.2)

SymboLie determines a set of 5 optimal 1D families of Lie subalgebras, 5 families in
the 2D case, 5 families in the 3D case, and only 1 family in the 4D case:

Θ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ1 + α1Ξ3}, {Ξ1 + α1Ξ5}},

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ1 + α1Ξ3, Ξ2}},

Θ3
A ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4}, {Ξ1 + α1Ξ5, Ξ2, Ξ3}},

Θ4
A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}}.

with α1 = ±1. The corresponding graphs are displayed in Figures 5.10 and 5.11.
From the graph on the left of Figure 5.10, we can see that Ξ1 and Ξ5 belong

to the same connected component; namely, the time translation Lie group and the
projective Lie group are equivalent. Indeed, let us consider the inner automorphisms
A1 = exp (t1 adΞ1) and A5 = exp (t5 adΞ5), and let

A = A1A5 =


t2
1t2

5 − 2t1t5 + 1 0 0 2t2
1t5 − 2t1 t2

1
0 1− t1t5 −t1 0 0
0 t5 1 0 0

t5 − t1t2
5 0 0 1− 2t1t5 −t1

t2
5 0 0 2t5 1

 .

Applying A to Ξ1, we get

A Ξ1 = (1− 2t1t5 + t2
1t2

5)Ξ1 + (t5 − t1t2
5)Ξ4 + t2

5Ξ5,

whence, choosing t1 = t5 = 1, it is obtained Ξ5.
Then, the solutions of Burgers’ equation found in Example 17 left invariant with

respect to the infinitesimal generators Ξ1 and Ξ5 are, in fact, equivalent. Let us verify
this.

The integration of the Lie equations for the infinitesimal generators Ξ1 and Ξ5
provides the corresponding one-parameter Lie subgroups of transformations of the
full Lie group admitted by Burgers’ equation:

Tα
1 :


t⋆ = t + α

x⋆ = x
u⋆ = u

, Tβ
5 :


t⋆ =

t
1− βt

x⋆ =
x

1− βt
u⋆ = u + β(x− tu)

.
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FIGURE 5.10: Algebra of symmetries of viscous Burgers’ equation:
graph of families of 1D Lie subalgebras (left), where 1 → {Ξ1}, 2 →
{Ξ2}, 4 → {Ξ4}, 7 → {Ξ1 + α1Ξ3}, 12 → {Ξ1 + α1Ξ5}, and of 2D
Lie subalgebras (right), where 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ4}, 3 →

{Ξ2, Ξ3}, 4→ {Ξ2, Ξ4}, 11→ {Ξ1 + α1Ξ3, Ξ2}.

By choosing the values of the parameters α = 1 and β = 1, we can consider G =
T1

1 T1
5 , i.e.,

G :


t⋆ =

1
1− t

x⋆ =
1

1− t
u⋆ = u(1− t) + x

.

For instance, let us consider the first invariant solution from Example 17 with respect
to the projective group

u(t, x) =
x2 + btx− 2t

bt2 + tx
,

and its corresponding manifold

S ≡ u− x2 + btx− 2t
bt2 + tx

= 0.

After some straightforward algebraic manipulation, we obtain:

S̃ = GS ≡ t− 1
x + b

(2 + u(x + b)) = 0,

Thus, the invariant solution with respect to the time translation group

u(t, x) = − 2
x + b

is obtained.
In the same way, applying similar calculations to the other two solutions, yields

their corresponding invariant forms with respect to the time translation group.
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FIGURE 5.11: Algebra of symmetries of viscous Burgers’ equation:
graph of families of 3D Lie subalgebras (left), where 1→ {Ξ1, Ξ2, Ξ3},
2 → {Ξ1, Ξ2, Ξ4}, 3 → {Ξ1, Ξ4, Ξ5}, 4 → {Ξ2, Ξ3, Ξ4}, 11 →
{Ξ1 + α1Ξ5, Ξ2, Ξ3}, and of 4D Lie subalgebras (right), where 1 →

{Ξ1, Ξ2, Ξ3, Ξ4}, 2→ {Ξ2, Ξ3, Ξ4, Ξ5}.
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FIGURE 5.12: Graph of the families of 1D Lie subalgebras of the alge-
bra described in Section 5.6, where 1 → {Ξ1}, 3 → {Ξ3}, 5 → {Ξ5},
6→ {Ξ6}, 9→ {Ξ2 + a1Ξ3}, 19→ {Ξ3 + a1Ξ6}, 21→ {Ξ5 + a1Ξ6}.

5.6 Optimal system of symmetries of a six–dimensional Lie
algebra

Let L6 be a Lie algebra of the plane Galilei group spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 = t

∂

∂x
, Ξ4 = t

∂

∂y
, Ξ5 = y

∂

∂x
− x

∂

∂y
, Ξ6 =

∂

∂t
.

The complete optimal system of Lie subalgebras has been studied in [25]. Using
SymboLie, we obtain the following optimal system of families of Lie subalgebras:

Θ1
A ≡ {{Ξ1}, {Ξ3}, {Ξ5}, {Ξ6}, {Ξ2 + a1Ξ3}, {Ξ3 + a1Ξ6}, {Ξ5 + a1Ξ6}},

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ6}, {Ξ3, Ξ4}, {Ξ5, Ξ6},

{Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ6}, {Ξ1, Ξ4 + a1Ξ6},
{Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ3 + a1Ξ4 + a2Ξ6},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}},
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Θ3
A ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ2, Ξ6}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ6},

{Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ6}, {Ξ1, Ξ2, Ξ5 + a1Ξ6},
{Ξ1, Ξ3, Ξ4 + a1Ξ6}, {Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3, Ξ6},
{Ξ1, Ξ2 + a1Ξ3, Ξ4 + a2Ξ6}},

Θ4
A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ6}, {Ξ1, Ξ2, Ξ5, Ξ6},

{Ξ1, Ξ2, Ξ3 + α1Ξ6, Ξ4 + a1Ξ6}},
Θ5

A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5 + a1Ξ6}},

with a1, a2 ̸= 0. This result is in agreement with the one given by Ovsiannikov [25],
except for the choice of some representatives of the equivalence classes.

The graphs of the optimal systems computed by SymboLie are shown in Fig-
ures 5.12–5.14.

As far as the graph of 5D families of optimal Lie subalgebras are concerned, we
observe that it is the trivial graph made of three isolated vertices.

5.7 Optimal system of symmetries of linear heat equation

Consider the finite–dimensional Lie algebra of symmetries of ut − uxx = 0, gener-
ated by the vector fields, as discussed in Example 25:

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
, Ξ3 = x

∂

∂x
+ 2t

∂

∂t
, Ξ4 = u

∂

∂u
,

Ξ5 = 2t
∂

∂x
− xu

∂

∂u
, Ξ6 = 4tx

∂

∂x
+ 4t2 ∂

∂t
− (x2 + 2t)u

∂

∂u
.

SymboLie recovers a system of 9 optimal 1D families of Lie subalgebras, 13 families
in the 2D case, 8 families in the 3D case, 5 families in the 4D case and only 1 5D
family:

Θ1
A ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ1 + α1Ξ4}, {Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ5},

{Ξ1 + α1Ξ6}, {Ξ1 + α1Ξ3 + a1Ξ6}},
Θ2

A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ3, Ξ6}, {Ξ1 + α1Ξ4, Ξ2}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + α1Ξ5, Ξ4}, {Ξ1 + α1Ξ6, Ξ4}},

Θ3
A ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ4, Ξ5},

{Ξ3, Ξ5, Ξ6}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ5, Ξ2, Ξ4}},
Θ4

A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ6},
{Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1 + α1Ξ6, Ξ2, Ξ4, Ξ5}},

Θ5
A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4, Ξ5}}.

with a1 ̸= 0 and α1 = ±1. The corresponding non–trivial graphs are displayed in
Figures 5.15 and 5.16.

Remark 18. As anticipated in Remark 8, the graph in Figures 5.15 shows that the subalge-
bra labeled 1 is in the same connected component as the one labeled 6, corresponding to the
infinitesimal generators of the time translation and the projective group, respectively. This
explains the existence, in Example 19, of a group transformation that maps the invariant
solution with respect to the projective group into a time-independent solution.
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FIGURE 5.13: Algebra described in Section 5.6: graph of families of
2D Lie subalgebras (top), where 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ3}, 3 →
{Ξ1, Ξ4}, 4→ {Ξ1, Ξ6}, 10→ {Ξ1, Ξ2 + a1Ξ3}, 12→ {Ξ1, Ξ3 + a1Ξ4},
14 → {Ξ1, Ξ3 + a1Ξ6}, 15 → {Ξ1, Ξ4 + a1Ξ6}, 23 → {Ξ1 + a1Ξ3, Ξ4},
24 → {Ξ2 + a1Ξ3, Ξ4}, 34 → {Ξ1, Ξ3 + a1Ξ4 + a2Ξ6}, 42 → {Ξ1 +
a1Ξ4, Ξ2 + a2Ξ3}, and of 3D Lie subalgebras (bottom), where 1 →
{Ξ1, Ξ2}, 2→ {Ξ1, Ξ3}, 3→ {Ξ1, Ξ4}, 4→ {Ξ1, Ξ6}, 10→ {Ξ1, Ξ2 +
a1Ξ3}, 12 → {Ξ1, Ξ3 + a1Ξ4}, 14 → {Ξ1, Ξ3 + a1Ξ6}, 15 → {Ξ1, Ξ4 +
a1Ξ6}, 23 → {Ξ1 + a1Ξ3, Ξ4}, 24 → {Ξ2 + a1Ξ3, Ξ4}, 34 → {Ξ1, Ξ3 +

a1Ξ4 + a2Ξ6}, 42→ {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}.
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FIGURE 5.14: Graph of families of 4D Lie subalgebras of the al-
gebra described in Section 5.6, where 1 → {Ξ1, Ξ2, Ξ3, Ξ4}, 2 →
{Ξ1, Ξ2, Ξ3, Ξ6}, 4 → {Ξ1, Ξ2, Ξ5, Ξ6}, 11 → {Ξ1, Ξ2, Ξ3 + α1Ξ6, Ξ4 +

a1Ξ6}.

The SymboLie package also allows the classes of different connected components to be
displayed using the PrintClasses[] method. This method returns a list containing two
elements: the first is the set of the optimal system, and the second represents the classes of
the connected components of the graph generated from the adjacency matrix. For the heat
equation, we obtain the following classes:

{{{Ξ1}, {Ξ6}}, {{Ξ2}, {Ξ2 + α1Ξ4}, {Ξ5}, {Ξ2 + α1Ξ5}, {Ξ4 + α1Ξ5},
{Ξ2 + α1Ξ4 + α2Ξ5}}, {{Ξ3}, {Ξ1 + α1Ξ3}, {Ξ2 + α1Ξ3}, {Ξ1 + α1Ξ2 + α2Ξ3},
{Ξ3 + α1Ξ5}, {Ξ3 + α1Ξ6}, {Ξ3 + α1Ξ5 + α2Ξ6}}, {{Ξ4}}, {{Ξ1 + α1Ξ2},
{Ξ1 + α1Ξ4}, {Ξ1 + α1Ξ2 + α2Ξ4}, {Ξ4 + α1Ξ6}, {Ξ5 + α1Ξ6},
{Ξ4 + α1Ξ5 + α2Ξ6}}, {{Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ3 + α2Ξ4}, {Ξ2 + α1Ξ3 + α2Ξ4},
{Ξ1 + α1Ξ2 + α2Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ3 + a1Ξ5}, {Ξ2 + α1Ξ3 + a1Ξ5},
{Ξ1 + α1Ξ2 + α2Ξ3 + a1Ξ5}, {Ξ3 + α1Ξ5 + a1Ξ4}, {Ξ1 + α1Ξ3 + a1Ξ4 + a2Ξ5},
{Ξ2 + α1Ξ3 + α2Ξ4 + α3Ξ5}, {Ξ1 + α1Ξ2 + α2Ξ3 + α3Ξ4 + α4Ξ5},
{Ξ2 + α1Ξ3 + a1Ξ6}, {Ξ3 + α1Ξ6 + a1Ξ4}, {Ξ2 + α1Ξ3 + a1Ξ4 + a2Ξ6},
{Ξ2 + α1Ξ3 + α2Ξ5 + a1Ξ6}, {Ξ3 + α1Ξ5 + α2Ξ6 + a1Ξ4},
{Ξ2 + α1Ξ3 + α2Ξ4 + α3Ξ5 + α4Ξ6}}, {{Ξ1 + α1Ξ5}, {Ξ1 + α1Ξ2 + a1Ξ5},
{Ξ1 + α1Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ2 + α2Ξ4 + a1Ξ5}, {Ξ2 + α1Ξ6}, {Ξ2 + α1Ξ4 + a1Ξ6},
{Ξ2 + α1Ξ5 + a1Ξ6}, {Ξ2 + α1Ξ4 + α2Ξ5 + a1Ξ6}}, {{Ξ1 + α1Ξ6}},
{{Ξ1 + α1Ξ2 + a1Ξ6}, {Ξ1 + α1Ξ3 + a1Ξ6}, {Ξ1 + α1Ξ2 + a1Ξ3 + a2Ξ6},
{Ξ1 + α1Ξ4 + a1Ξ6}, {Ξ1 + α1Ξ2 + α2Ξ4 + a1Ξ6},
{Ξ1 + α1Ξ3 + α2Ξ4 + α3Ξ6}, {Ξ1 + α1Ξ2 + α2Ξ3 + a1Ξ4 + a2Ξ6},
{Ξ1 + α1Ξ5 + a1Ξ6}, {Ξ1 + α1Ξ2 + a1Ξ5 + a2Ξ6}, {Ξ1 + α1Ξ3 + a1Ξ5 + a2Ξ6},
{Ξ1 + α1Ξ2 + a1Ξ3 + a2Ξ5 + a3Ξ6}, {Ξ1 + α1Ξ4 + α2Ξ5 + a1Ξ6},
{Ξ1 + α1Ξ2 + α2Ξ4 + a1Ξ5 + a2Ξ6}, {Ξ1 + α1Ξ3 + α2Ξ4 + a1Ξ5 + a2Ξ6},
{Ξ1 + α1Ξ2 + α2Ξ3 + α3Ξ4 + α4Ξ5 + α5Ξ6}}}.

In fact, it can be observed that the operators Ξ1 and Ξ6 are in the same class of equivalence.
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Comparing the results recovered by SymboLie with the ones found in the litera-
ture, some comments are in order:

• in [11, 19, 36, 37] is exhibited a system of optimal 1D subalgebras with the same
cardinality, but with different representatives;

• in the graphs representing the relation R for families of 1D and 2D subalge-
bras, there are unidirectional edges: this occurs because some families cannot
be entirely mapped to others. For example, the 1D 2–family X = ( f1, f2, 0, 0, 0, 0)

(label 7 in the graph) is mapped via A = exp(t adΞ5) into ( f1, 0, 0, f 2
2

4 f1
, 0, 0),

which satisfies Definition 23, so that we identify it with the 2–family Y =
( f1, 0, 0, f4, 0, 0) (label 10). Vice versa, acting on Y with the inner automor-
phisms A gives ( f1, 2 f1t, 0, f4 − f1t2, 0, 0), that cannot be reduced to the family
X for all choices of f1 and f4;

• compared to the 2D–dimensional optimal system found in [19], SymboLie also
returns the 2-families {Ξ3, Ξ5} and {Ξ3, Ξ6}. It can be seen that they can be
mapped into a subfamily of {Ξ2, Ξ3 + a1Ξ4} and {Ξ1, Ξ3 + a1Ξ4}, respectively,
so that it does not satisfy Definition 26;

• the 3D optimal system discussed in [19] includes the Lie subalgebra {Ξ1, Ξ3 −
1
2 Ξ4, Ξ6}. Since SymboLie deals with p–familes of subalgebras, it does not in-
clude {Ξ1, Ξ3 + a1Ξ4, Ξ6}, with a1 ̸= 0, among the candidates, since for a1
arbitrary the closure with respect to the Lie bracket is not guaranteed. Further-
more, the family {Ξ3, Ξ5, Ξ6} does not appear in the optimal system of [19].
In fact, it is mapped into a subfamily of {Ξ1, Ξ2, Ξ3 + a1Ξ4}, and so SymboLie
does not consider them belonging to the relation;

• the optimal systems of 4D and 5D subalgebras computed by SymboLie coincide
with those recovered in [19].

5.8 Optimal systems of symmetries of (2 + 1)-dimensional
ZK-BBM equation

LetL5 be the Lie algebra of continuous symmetries of (2+ 1)-dimensional Zakharov-
Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation

ut + ux − a(u2)x − (buxt + kuyt)x = 0

spanned by the vector fields:

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂t
,

Ξ4 =

(
−x +

2b
k

y
)

∂

∂x
+ y

∂

∂y
+

(
1
2a
− u

)
∂

∂u
,

Ξ5 = t
∂

∂t
+

(
1
2a
− u

)
∂

∂u
,

where a, b and k are real constants.
Recently, Tanwar [29] computed the optimal one-dimensional Lie subalgebras

of the Lie algebra of symmetries of (2 + 1)-dimensional ZK-BBM equation with the
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FIGURE 5.15: Algebra of symmetries of Heat equation: graph of
families of 1D Lie subalgebras (top), where 1 → {Ξ1}, 2 → {Ξ2},
3 → {Ξ3}, 4 → {Ξ4}, 10 → {Ξ1 + α1Ξ4}, 12 → {Ξ3 + a1Ξ4},
13→ {Ξ1 + α1Ξ5}, 17→ {Ξ1 + α1Ξ6}, 33→ {Ξ1 + α1Ξ3 + a1Ξ6}, and
of 2D Lie subalgebras (bottom), where 1 → {Ξ1, Ξ2}, 2 → {Ξ1, Ξ3},
3 → {Ξ1, Ξ4}, 4 → {Ξ2, Ξ3}, 5 → {Ξ2, Ξ4}, 6 → {Ξ3, Ξ4}, 7 →
{Ξ3, Ξ5}, 8→ {Ξ3, Ξ6}, 21→ {Ξ1 + α1Ξ4, Ξ2}, 14→ {Ξ1, Ξ3 + a1Ξ4},
15→ {Ξ2, Ξ3 + a1Ξ4}, 24→ {Ξ1 + α1Ξ5, Ξ4}, 29→ {Ξ1 + α1Ξ6, Ξ4}
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FIGURE 5.16: Algebra of symmetries of Heat equation: graph of
families of 3D Lie subalgebras (left), where 1 → {Ξ1, Ξ2, Ξ3},
2 → {Ξ1, Ξ2, Ξ4}, 3 → {Ξ1, Ξ3, Ξ4}, 4 → {Ξ2, Ξ3, Ξ4}, 5 →
{Ξ2, Ξ4, Ξ5}, 8 → {Ξ3, Ξ5, Ξ6}, 10 → {Ξ1, Ξ2, Ξ3 + a1Ξ4}, 16 →
{Ξ1 + α1Ξ5, Ξ2, Ξ4}, and of 4D Lie subalgebras (right), where 1 →
{Ξ1, Ξ2, Ξ3, Ξ4}, 2 → {Ξ1, Ξ2, Ξ4, Ξ5}, 3 → {Ξ1, Ξ3, Ξ4, Ξ6}, 4 →

{Ξ2, Ξ3, Ξ4, Ξ5}, 11→ {Ξ1 + α1Ξ6, Ξ2, Ξ4, Ξ5}.

aim of determining group-invariant solutions. The use of SymboLie gives the classi-
fication of one-dimensional Lie subalgebras in few seconds, and the results, though
slightly different in the choice of some representatives of the equivalence classes
from those reported in [29], coincide. Moreover, our program is able to compute the
complete system of optimal Lie subalgebras in about two minutes. The results are
listed below:

Θ1
A ≡ {{Ξ1}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3},

{Ξ1 + α1Ξ2 + α2Ξ3}, {Ξ3 + α1Ξ4}, {Ξ1 + α1Ξ5},
{Ξ1 + α1Ξ2 + a1Ξ5}, {Ξ4 + a1Ξ5}},

Θ2
A ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ1 + α1Ξ2, Ξ3},

{Ξ1 + α1Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3},
{Ξ1, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + α1Ξ5}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ3, Ξ4 + a1Ξ5},
{Ξ1 + α1Ξ3, Ξ2 + α2Ξ3}, {Ξ1 + α1Ξ5, Ξ2 + a1Ξ5}, {Ξ1 + α1Ξ5, Ξ3},
{Ξ1 + α1Ξ2 + a1Ξ5, Ξ3}},

Θ3
A ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},

{Ξ1, Ξ4, Ξ5}, {Ξ1 + α1Ξ2, Ξ3, Ξ5}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + α1Ξ4},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + α1Ξ5, Ξ3},
{Ξ1 + α1Ξ5, Ξ2 + a1Ξ5, Ξ3}},

Θ4
A ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},

{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}},

where a1 ̸= 0, and α1, α2 ∈ {−1, 1}.
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Chapter 6

Hierarchy of coupled Burgers–like
equations

In this Chapter, we consider a hierarchy of systems of coupled Burgers–like equa-
tions possessing a Lie algebra of point symmetries isomorphic to the Lie algebra of
symmetries admitted by classical Burgers’ equation. The hierarchy has its starting
point in the investigation of nonclassical symmetries [68] of Burgers’ equation [69].

6.1 Hierarchy of coupled Burgers–like equations

We have seen that the Lie algebra of classical symmetries of Burgers’ equation, gen-
erated by the operators (5.2), is a five–dimensional. The corresponding commutator
table is displayed in Table 6.1.

Ξ1 Ξ2 Ξ3 Ξ4 Ξ5

Ξ1 0 0 Ξ2 2Ξ1 Ξ4
Ξ2 0 0 0 Ξ2 Ξ3
Ξ3 −Ξ2 0 0 −Ξ3 0
Ξ4 −2Ξ1 −Ξ2 Ξ3 0 2Ξ5
Ξ5 −Ξ4 −Ξ3 0 −2Ξ5 0

TABLE 6.1: Commutator table of the Lie algebra of symmetries of
viscous Burgers’ equation.

Now, let us introduce the following hierarchy of systems of coupled Burgers–like
equations. These systems are indexed by two integers: m ∈ N and k = ⌈m/2⌉. For
m = 1, we obtain the classical Burgers’ equation

∆1 ≡ u(1)
1,t + u(1)

1 u(1)
1,x − u(1)

1,xx = 0.

For m = 2, whereupon k = 1, we obtain a system of two coupled Burgers–like
equations:

∆2 ≡

u(1)
1,t + u(1)

1 u(1)
1,x − u(1)

1,xx + u(1)
2,x = 0,

u(1)
2,t + u(1)

2 u(1)
1,x − u(1)

2,xx = 0.

For m = 3, whereupon k = 2, we obtain a system of three coupled Burgers–like
equations:

∆3 ≡


u(2)

1,t + u(2)
1 u(2)

1,x − u(2)
1,xx + u(2)

2,x = 0,

u(2)
2,t + u(2)

2 u(2)
1,x − u(2)

2,xx + u(2)
3,x = 0,

u(2)
3,t + u(2)

3 u(2)
1,x − u(2)

3,xx = 0.
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And so on. In general, we have a system as follows:

∆m ≡

u(k)
α,t + u(k)

α u(k)
1,x − u(k)

α,xx + u(k)
α+1,x = 0,

u(k)
m,t + u(k)

m u(k)
1,x − u(k)

m,xx = 0,
(6.1)

where α = 1, . . . , m− 1.
We can observe that the classical Lie point symmetries of a generic element of this

infinite hierarchy span a five-dimensional Lie algebra, and the following proposition
holds true.

Proposition 7. Let m be a positive integer, and let k = ⌈m/2⌉. The system of Burgers-
like equations (6.1) for m = 1 (classical Burgers’ equation) admits the Lie point symmetries
generated by:

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
,

Ξ3 = 2t
∂

∂t
+ x

∂

∂x
− u(1)

1
∂

∂u(1)
1

,

Ξ4 = t
∂

∂x
+

∂

∂u(1)
1

,

Ξ5 = t2 ∂

∂t
+ tx

∂

∂x
+ (x− tu(1)

1 )
∂

∂u(1)
1

;

for m = 2 the Lie point symmetries generated by:

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
,

Ξ3 = 2t
∂

∂t
+ x

∂

∂x
− u(1)

1
∂

∂u(1)
1

− 2u(1)
2

∂

∂u(1)
2

,

Ξ4 = t
∂

∂x
+ 2

∂

∂u(1)
1

− u(1)
1

∂

∂u(1)
2

,

Ξ5 = t2 ∂

∂t
+ tx

∂

∂x
+ (2x− tu(1)

1 )
∂

∂u(1)
1

− (xu(1)
1 + 2tu(1)

2 + 2)
∂

∂u(1)
2

;

for m ≥ 3 the Lie point symmetries generated by:

Ξ1 =
∂

∂t
, Ξ2 =

∂

∂x
,

Ξ3 = 2t
∂

∂t
+ x

∂

∂x
−

m

∑
α=1

αu(k)
α

∂

∂u(k)
α

,

Ξ4 = t
∂

∂x
+ m

∂

∂u(k)
1

+
m

∑
α=2

(α−m− 1)u(k)
α−1

∂

∂u(k)
α

,

Ξ5 = t2 ∂

∂t
+ tx

∂

∂x
+
(

mx− tu(k)
1

) ∂

∂u(k)
1

−
(
(m− 1)(xu(k)

1 + m) + 2tu(k)
2

) ∂

∂u(k)
2

−
m

∑
α=3

(
αtu(k)

α + (m− α + 1)
(

xu(k)
α−1 − (m− α + 2)u(k)

α−2

)) ∂

∂u(k)
α

.
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Whatever the number m of coupled equations is, we have always a five-dimensional Lie al-
gebra (time and space translation, scaling, Galilean and projective transformation, respec-
tively); these Lie algebras, although realized in terms of vector fields on manifolds with dif-
ferent dimensionality, share the same structure constants and so they are all isomorphic.

Actually, this hierarchy originates from the analysis of the conditional symme-
tries of the Burgers’ equation and the recursive investigation of their conditional
symmetries as they are successively applied to the resulting systems.

6.2 Brief review on conditional symmetries

Let us consider an rth order differential equation, say

∆ (xi, uα, uα,i, . . . , uα,i1,...,ir) = 0, (6.2)

where xi (i = 1, . . . , n) are the independent variables, uα (α = 1, . . . , m) the depen-

dent variables, and uα,i1,...,ik =
∂kuα

∂xi1 . . . ∂xik

(k = 1, . . . , r).

As pointed out in Chapter 2, Lie point symmetry of (6.2) is characterized by the
infinitesimal operator

Ξ =
n

∑
i=1

ξi(xj, uβ)
∂

∂xi
+

m

∑
α=1

ηα(xj, uβ)
∂

∂uα
(6.3)

such that
Ξ(r) (∆)

∣∣∣
∆=0

= 0, (6.4)

where Ξ(r) is the rth prolongation of (6.3) [11, 13, 48]. Condition (6.4) leads to a sys-
tem of linear partial differential equations (determining equations) whose integration
provides the infinitesimals ξi and ηα. Invariant solutions corresponding to a given Lie
point symmetry are found by solving the invariant surface conditions

Qα ≡
n

∑
i=1

ξi(xj, uβ)uα,i − ηα(xj, uβ) = 0, α = 1, . . . , m, (6.5)

and inserting their solutions in (6.2).
In 1969, Bluman and Cole [68] introduced a generalization of classical Lie sym-

metries, and applied their method (called nonclassical) to the linear heat equation.
The basic idea was that of imposing the invariance to a system made by the differ-
ential equation at hand, the invariance surface condition together with the differ-
ential consequences of the latter. This method requires to solve a set of nonlinear
determining equations whose general integration is usually difficult. Nonclassical
symmetries are now part of conditional symmetries, i.e., symmetries of differential
equations where some additional differential conditions are imposed to restrict the
set of solutions. This method revealed useful in many applied problems modeled by
differential equations (for instance, reaction-diffusion equations [70–72]) possessing
very few Lie point symmetries; consequently, more rich reductions leading to wide
classes of exact solutions are possible.

The nonclassical symmetries introduced by Bluman and Cole are now referred
to as Q-conditional symmetries [72]. In such a case, Q-conditional symmetries are
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expressed by vector fields Ξ such that

Ξ(r)(∆)
∣∣∣
M

= 0, (6.6)

whereM is the manifold of the jet space defined by

∆ = 0, Qα = 0,
D

Dxj1

D
Dxj2

· · · D
Dxjk

Qα = 0, (6.7)

with 1 ≤ j1, j2, . . . , jk ≤ n, 1 ≤ k ≤ r − 1, and α = 1, . . . , m, along with the Lie
derivative

D
Dxk

=
∂

∂xk
+ uα,k

∂

∂uα
+ uα,ik

∂

∂uα,i
+ uα,ijk

∂

∂uα,ij
+ · · · , (6.8)

where the Einstein convention on sums over repeated indices has been used.
Trivially, a (classical) Lie symmetry is a Q-conditional symmetry. However, dif-

ferently from Lie symmetries, all possible conditional symmetries of a differential
equation form a set which is neither a Lie algebra nor a linear space in the gen-
eral case. Furthermore, if the vector field of a Q-conditional symmetry is multiplied
by an arbitrary nonvanishing smooth function of dependent and independent vari-
ables, we have still a Q-conditional symmetry.

In the following, we will be concerned with second order partial differential
equations ruling the evolution of m unknown functions depending on t and x, and
consider Q-conditional symmetries corresponding to the vector field

Ξ =
∂

∂t
+ ξ(t, x, uβ)

∂

∂x
+

m

∑
α=1

ηα(t, x, uβ)
∂

∂uα
. (6.9)

Below it will be shown that, starting with the classical Burgers’ equation or with
a special pair of coupled Burgers-like equations, and looking for Q-conditional sym-
metries, an infinite hierarchy of systems of Burgers-like equations is recovered.

6.3 Conditional symmetries of Burgers-like equations

In this Section, we start considering the classical Burgers’ equation [73]. In [69], it
was proved that the Q-conditional symmetries of Burgers’ equation are expressed
in terms of three functions that are solutions of a system of coupled Burgers-like
equations. In what follows, we prove that the latter system of coupled Burgers-like
equations admits Q-conditional symmetries expressed in terms of five functions sat-
isfying a new system of coupled Burgers-like equations. This process can be repeat-
edly used, and a hierarchy of systems involving an odd number of unknowns arises.
Moreover, we prove also that, starting with a pair of coupled Burgers-like equations,
another hierarchy of systems involving an even number of coupled Burgers-like
equations is generated.

6.3.1 Hierarchy originating from Burgers’ equation

Let us consider the Burgers’ equation

∆1 ≡ u(1)
,t + u(1)u(1)

,x − u(1)
,xx = 0 (6.10)
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for the unknown u(1)(t, x), and take the vector field

Ξ =
∂

∂t
+ ξ(t, x, u(1))

∂

∂x
+ η(t, x, u(1))

∂

∂u(1)
. (6.11)

In order to compute the Q-conditional symmetries of (6.10) associated to (6.11), let
us define the manifoldM1 as

∆1 = 0,

Q1 ≡ Ξ
(

u(1) − u(1)(t, x)
)
= 0,

DQ1

Dt
=

DQ1

Dx
= 0,

(6.12)

whence the conditional symmetries are found by requiring

Ξ(2)(∆1)
∣∣∣
M1

= 0.

The latter provides the following polynomial of third degree in the derivative u(1)
,x

∂2ξ

∂u(1)2

(
u(1)

,x

)3
+

(
2

∂2ξ

∂x∂u(1)
− ∂2η

∂u(1)2
+ 2

∂ξ

∂u(1)
u(1) − 2ξ

∂ξ

∂u(1)

)(
u(1)

,x

)2

+

(
∂2ξ

∂x2 − 2
∂2η

∂x∂u(1)
− ∂ξ

∂t
+

∂ξ

∂x
u(1) − 2ξ

∂ξ

∂x
+ 2

∂ξ

∂u(1)
η + η

)
u(1)

,x

− ∂2η

∂x2 + 2
∂ξ

∂x
η +

∂η

∂t
+

∂η

∂x
u(1) = 0.

Annihilating the coefficients of this polynomial, after simple algebra, we get

ξ = κu(1) +
1
2

u(2)
1 ,

η =
κ(1− κ)

3

(
u(1)

)3
− κ

2
u(2)

1

(
u(1)

)2
+

1
4

u(1)u(2)
2 +

1
4

u(2)
3 ,

(6.13)

where κ is a constant such that κ(κ− 1)(2κ + 1) = 0, whereas u(2)
1 (t, x), u(2)

2 (t, x) and
u(2)

3 (t, x) are functions depending on the indicated arguments.
Three cases must be distinguished, say κ = 0, κ = 1 and κ = −1/2, the latter

being the most interesting one. In fact, if κ = 0 then it is simple to prove that the
functions u(2)

1 , u(2)
2 and u(2)

3 involved in (6.13) exhibit the following form:

u(2)
1 (t, x) =

(αt + β)x + γt + δ

αt2 + 2βt + γ
,

u(2)
2 (t) = − αt + β

αt2 + 2βt + γ
,

u(2)
3 (t, x) =

αx + γ

αt2 + 2βt + γ
,

α, β, γ and δ being arbitrary constants. In this case, it is not difficult to recognize
that the symmetry reductions are those provided by classical symmetries of Burgers’
equation. Moreover, if κ = 1, then it is easily obtained u(2)

1 = u(2)
2 = u(2)

3 = 0, and
also in this case it the corresponding symmetry reductions provide results that can
be recovered within the context of classical symmetries.
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On the contrary, when κ = −1/2, the functions u(2)
1 (t, x), u(2)

2 (t, x) and u(2)
3 (t, x)

satisfy the system

∆3 ≡


u(2)

1,t + u(2)
1 u(2)

1,x − u(2)
1,xx + u(2)

2,x = 0,

u(2)
2,t + u(2)

2 u(2)
1,x − u(2)

2,xx + u(2)
3,x = 0,

u(2)
3,t + u(2)

3 u(2)
1,x − u(2)

3,xx = 0.

(6.14)

As already remarked, this result has been obtained in [69].
Then, it can be interesting to explore the Q-conditional symmetries admitted by

the system (6.14). As a result, the following Proposition is proved.

Proposition 8. The vector field

Ξ =
∂

∂t
+ ξ(t, x, u(2)

β )
∂

∂x
+

3

∑
α=1

ηα(t, x, u(2)
β )

∂

∂u(2)
α

, (6.15)

gives a Q-conditional symmetry of the system (6.14) provided that

ξ =
1
2

(
−u(2)

1 + u(3)
1

)
,

η1 =
1
4

(
−
(

u(2)
1

)3
− 2u(2)

1 u(2)
2 + u(3)

1

(
u(2)

1

)2
+ u(3)

2 u(2)
1 + u(3)

1 u(2)
2 − u(2)

3 + u(3)
3

)
,

η2 =
1
4

(
−
(

u(2)
1

)2
u(2)

2 − u(2)
1 u(2)

3 −
(

u(2)
2

)2
+ u(3)

1 u(2)
1 u(2)

2 + u(3)
2 u(2)

2 + u(3)
1 u(2)

3 + u(3)
4

)
,

η3 =
1
4

(
−
(

u(2)
1

)2
u(2)

3 − u(2)
2 u(2)

3 + u(3)
1 u(2)

1 u(2)
3 + u(3)

2 u(2)
3 + u(3)

5

)
,

(6.16)
where the functions u(3)

α (t, x) (α = 1, . . . , 5) satisfy the constraints

∆5 ≡



u(3)
1,t + u(3)

1 u(3)
1,x − u(3)

1,xx + u(3)
2,x = 0,

u(3)
2,t + u(3)

2 u(3)
1,x − u(3)

2,xx + u(3)
3,x = 0,

u(3)
3,t + u(3)

3 u(3)
1,x − u(3)

3,xx + u(3)
4,x = 0,

u(3)
4,t + u(3)

4 u(3)
1,x − u(3)

4,xx + u(3)
5,x = 0,

u(3)
5,t + u(3)

5 u(3)
1,x − u(3)

5,xx = 0.

(6.17)

Proof. The proof immediately follows by requiring

Ξ(2)(∆3)
∣∣∣
M3

= 0, (6.18)

whereM3 is the manifold of the jet space defined by the system (6.14) together with
the invariant surface conditions and their differential consequences, say

∆3 = 0,

Qα ≡ Ξ
(

u(2)
α − u(2)

α (t, x)
)
= 0, α = 1, 2, 3,

DQα

Dt
=

DQα

Dx
= 0.

(6.19)
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The lengthy computations can be done by using the program ReLie [67] written in
the Computer Algebra System Reduce [66]. As a result, we obtain three polynomials
of third degree in the derivatives u(2)

α,x. We immediately obtain

ξ = κu(2)
1 +

1
2

u(3)
1 , (6.20)

u(3)
1 (t, x) being a function of the indicated arguments, and κ is a constant that has to

satisfy the condition
κ(2κ + 1) = 0. (6.21)

The most interesting case again corresponds to the choice κ = −1/2. After straight-
forward though tedious computations, all the determining equations can be solved,
and the vector field (6.15) assumes the form (6.16), along with the functions u(3)

α (t, x)
(α = 1, . . . , 5) that satisfy the system of differential equations (6.17).

Remark 19. We note that the system (6.17) has the same structure as the system (6.14),
even if it involves two more unknowns.

Nothing prevents us to repeat the procedure looking for Q-conditional symme-
tries of system (6.17). The result we obtain is stated with the following Proposition.

Proposition 9. There exist Q-conditional symmetries of (6.17) in correspondence to the
vector field

Ξ =
∂

∂t
+ ξ(t, x, u(3)

β )
∂

∂x
+

5

∑
α=1

ηα(t, x, u(3)
β )

∂

∂u(3)
α

, (6.22)

where

ξ =
1
2

(
−u(3)

1 + u(4)
1

)
,

η1 =
1
4

(
−
(

u(3)
1

)3
− 2u(3)

1 u(3)
2 + u(4)

1

(
u(3)

1

)2
+ u(4)

2 u(3)
1 + u(4)

1 u(3)
2 − u(3)

3 + u(4)
3

)
,

η2 =
1
4

(
−
(

u(3)
1

)2
u(3)

2 − u(3)
1 u(3)

3 −
(

u(3)
2

)2
+ u(4)

1 u(3)
1 u(3)

2 + u(4)
2 u(3)

2 + u(4)
1 u(3)

3 − u(3)
4 + u(4)

4

)
,

η3 =
1
4

(
−
(

u(3)
1

)2
u(3)

3 − u(3)
1 u(3)

4 − u(3)
2 u(3)

3 + u(4)
1 u(3)

1 u(3)
3 + u(4)

2 u(3)
3 + u(4)

1 u(3)
4 − u(3)

5 + u(4)
5

)
,

η4 =
1
4

(
−
(

u(3)
1

)2
u(3)

4 − u(3)
1 u(3)

5 − u(3)
2 u(3)

4 + u(4)
1 u(3)

1 u(3)
4 + u(4)

2 u(3)
4 + u(4)

1 u(3)
5 + u(4)

6

)
,

η5 =
1
4

(
−
(

u(3)
1

)2
u(3)

5 − u(3)
2 u(3)

5 + u(4)
1 u(3)

1 u(3)
5 + u(4)

2 u(3)
5 + u(4)

7

)
,

(6.23)
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and the functions u(4)
α (t, x) (α = 1, . . . , 7) satisfy the system

∆7 ≡



u(4)
1,t + u(4)

1 u(4)
1,x − u(4)

1,xx + u(4)
2,x = 0,

u(4)
2,t + u(4)

2 u(4)
1,x − u(4)

2,xx + u(4)
3,x = 0,

u(4)
3,t + u(4)

3 u(4)
1,x − u(4)

3,xx + u(4)
4,x = 0,

u(4)
4,t + u(4)

4 u(4)
1,x − u(4)

4,xx + u(4)
5,x = 0,

u(4)
5,t + u(4)

5 u(4)
1,x − u(4)

5,xx + u(4)
6,x = 0,

u(4)
6,t + u(4)

6 u(4)
1,x − u(4)

6,xx + u(4)
7,x = 0,

u(4)
7,t + u(4)

7 u(4)
1,x − u(4)

7,xx = 0.

(6.24)

Proof. The proof requires only straightforward though lengthy computations. Also
in this case the Reduce program ReLie has been used.

The results heretofore obtained can be summarized as follows:

• there are Q-conditional symmetries of the Burgers’ equation expressed in terms
of three functions representing arbitrary solutions of the system ∆3 made of
three coupled Burgers-like equations;

• there are Q-conditional symmetries of ∆3 expressed in terms of five functions
representing arbitrary solutions of the system ∆5 made of five coupled Burgers-
like equations;

• there are Q-conditional symmetries of ∆5 expressed in terms of seven func-
tions representing arbitrary solutions of the system ∆7 made of seven coupled
Burgers-like equations.

It seems natural to conjecture that repeatedly searching for Q-conditional sym-
metries, and starting from the classical Burgers’ equation, a hierarchy of systems
made of an odd number of Burgers-like equations may arise.

In the next Subsection, we shall consider the case of a coupled system made of an
even number of Burgers-like equations. In particular, the starting point will be the
system of two Burgers-like equations whose structure is deduced from (6.14) where
we set u(2)

3 ≡ 0.

6.3.2 Hierarchy originating from a pair of coupled Burgers-like equations

Let us consider the following system made of two coupled Burgers-like equations

∆2 ≡

u(1)
1,t + u(1)

1 u(1)
1,x − u(1)

1,xx + u(1)
2,x = 0,

u(1)
2,t + u(1)

2 u(1)
1,x − u(1)

2,xx = 0.
(6.25)

By looking for Q-conditional symmetries of (6.25) in correspondence to the vec-
tor field

Ξ =
∂

∂t
+ ξ(t, x, u(1)

β )
∂

∂x
+ η1(t, x, u(1)

β )
∂

∂u(1)
1

+ η2(t, x, u(1)
β )

∂

∂u(1)
2

, (6.26)

and requiring that

Ξ(2)(∆2)
∣∣∣
M2

= 0, (6.27)
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whereM2 is the manifold of the jet space defined by the system (6.25) together with
the invariant surface conditions and their differential consequences, say

∆2 = 0,

Qα ≡ Ξ
(

u(1)
α − u(1)

α (t, x)
)
= 0, α = 1, 2,

DQα

Dt
=

DQα

Dx
= 0,

(6.28)

we obtain the following invariance conditions:
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the latter are polynomials of third degree in the derivatives u(1)
1,x and u(1)

2,x , whose
coefficients must be vanishing. After simple algebra, we get

ξ = κu(1)
1 +

1
2

u(2)
1 , (6.29)
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where u(2)
1 (t, x) is a function of the indicated arguments, and κ is a constant that has

to satisfy the constraint κ(2κ + 1) = 0. Again, looking for the Q-conditional sym-
metries of system (6.25), we choose κ = −1/2. Thence, integrating the determining
equations, we obtain the Q-conditional symmetries characterized by the vector field
(6.26), with
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1
2

(
−u(1)
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1

)
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1
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2 u(1)
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)
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1 u(1)
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2 u(1)

2 + u(2)
4

)
,

(6.30)

and the functions u(2)
α (t, x) (α = 1, . . . , 4) satisfying the constraints

∆4 ≡



u(2)
1,t + u(2)

1 u(2)
1,x − u(2)

1,xx + u(2)
2,x = 0,

u(2)
2,t + u(2)

2 u(2)
1,x − u(2)

2,xx + u(2)
3,x = 0,

u(2)
3,t + u(2)

3 u(2)
1,x − u(2)

3,xx + u(2)
4,x = 0,

u(2)
4,t + u(2)

4 u(2)
1,x − u(2)

4,xx = 0.

(6.31)

Repeating the same algorithm for the latter system of four coupled Burgers-like
equations, the admitted Q-conditional symmetries are expressed in terms of six ar-
bitrary functions depending on t and x. We write this result in the following Propo-
sition.

Proposition 10. The system (6.31) admits the vector field Ξ of the Q-conditional symme-
tries, say

Ξ =
∂

∂t
+ ξ(t, x, u(2)

β )
∂

∂x
+

4

∑
α=1

ηα(t, x, u(2)
β )

∂

∂u(2)
α

, (6.32)
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(6.33)
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and the functions u(3)
α (t, x) (α = 1, . . . , 6) satisfy the system

∆6 ≡



u(3)
1,t + u(3)

1 u(3)
1,x − u(3)

1,xx + u(3)
2,x = 0,

u(3)
2,t + u(3)

2 u(3)
1,x − u(3)

2,xx + u(3)
3,x = 0,

u(3)
3,t + u(3)

3 u(3)
1,x − u(3)

3,xx + u(3)
4,x = 0,

u(3)
4,t + u(3)

4 u(3)
1,x − u(3)

4,xx + u(3)
5,x = 0,

u(3)
5,t + u(3)

5 u(3)
1,x − u(3)

5,xx + u(3)
6,x = 0,

u(3)
6,t + u(3)

6 u(3)
1,x − u(3)

6,xx = 0.

(6.34)

Proof. Straightforward, by direct computation.

We can repeat the same procedure for the system (6.34) made of six coupled
Burgers-like equations, and the results are exhibited in the following Proposition.

Proposition 11. The system (6.34) admits the vector field Ξ of the Q-conditional symme-
tries, say

Ξ =
∂

∂t
+ ξ(t, x, u(3)
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∂x
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, (6.35)

where

ξ =
1
2

(
−u(3)

1 + u(4)
1

)
,

η1 =
1
4

(
−
(

u(3)
1

)3
− 2u(3)

1 u(3)
2 + u(4)

1

(
u(3)

1

)2
+ u(4)

2 u(3)
1 + u(4)

1 u(3)
2 − u(3)

3 + u(4)
3

)
,

η2 =
1
4

(
−
(

u(3)
1

)2
u(3)

2 − u(3)
1 u(3)

3 −
(

u(3)
2

)2
+ u(4)

1 u(3)
1 u(3)

2 + u(4)
2 u(3)

2 + u(4)
1 u(3)

3 − u(3)
4 + u(4)

4

)
,

η3 =
1
4

(
−
(

u(3)
1

)2
u(3)

3 − u(3)
1 u(3)

4 − u(3)
2 u(3)

3 + u(4)
1 u(3)

1 u(3)
3 + u(4)

2 u(3)
3 + u(4)

1 u(3)
4 − u(3)

5 + u(4)
5

)
,

η4 =
1
4

(
−
(

u(3)
1

)2
u(3)

4 − u(3)
1 u(3)

5 − u(3)
2 u(3)

4 + u(4)
1 u(3)

1 u(3)
4 + u(4)

2 u(3)
4 + u(4)

1 u(3)
5 − u(3)

6 + u(4)
6

)
,

η5 =
1
4

(
−
(

u(3)
1

)2
u(3)

5 − u(3)
1 u(3)

6 − u(3)
2 u(3)

5 + u(4)
1 u(3)

1 u(3)
5 + u(4)

2 u(3)
5 + u(4)

1 u(3)
6 + u(4)

7

)
,

η6 =
1
4

(
−
(

u(3)
1

)2
u(3)

6 − u(3)
2 u(3)

6 + u(4)
1 u(3)

1 u(3)
6 + u(4)

2 u(3)
6 + u(4)

8

)
,

(6.36)



104 Chapter 6. Hierarchy of coupled Burgers–like equations

and the functions u(4)
α (t, x) (α = 1, . . . , 8) satisfy the system

∆8 ≡



u(4)
1,t + u(4)

1 u(4)
1,x − u(4)

1,xx + u(4)
2,x = 0,

u(4)
2,t + u(4)

2 u(4)
1,x − u(4)

2,xx + u(4)
3,x = 0,

u(4)
3,t + u(4)

3 u(4)
1,x − u(4)

3,xx + u(4)
4,x = 0,

u(4)
4,t + u(4)

4 u(4)
1,x − u(4)

4,xx + u(4)
5,x = 0,

u(4)
5,t + u(4)

5 u(4)
1,x − u(4)

5,xx + u(4)
6,x = 0,

u(4)
6,t + u(4)

6 u(4)
1,x − u(4)

6,xx + u(4)
7,x = 0,

u(4)
7,t + u(4)

7 u(4)
1,x − u(4)

7,xx + u(4)
8,x = 0,

u(4)
8,t + u(4)

8 u(4)
1,x − u(4)

8,xx = 0.

(6.37)

Proof. Straightforward, by direct computation.

The results heretofore obtained can be summarized as follows:

• there are Q-conditional symmetries of the system ∆2 made by two coupled
Burgers-like equations expressed in terms of four functions representing arbi-
trary solutions of the system ∆4 made of four coupled Burgers-like equations;

• there are Q-conditional symmetries of ∆4 expressed in terms of six functions
representing arbitrary solutions of the system ∆6 made of six coupled Burgers-
like equations;

• there are Q-conditional symmetries of ∆6 expressed in terms of eight func-
tions representing arbitrary solutions of the system ∆8 made of eight coupled
Burgers-like equations.

These results suggest to conjecture that repeatedly searching for Q-conditional
symmetries, and starting from a pair of coupled Burgers-like equations, a hierarchy
of systems made of an even number of coupled Burgers-like equations arises.

Indeed, the latter conjecture and the one made in the previous Subsection, can be
unified and proved to be true, as will be shown in the following Section.

6.4 The general hierarchy of Burgers-like equations

In this Section, we show that the existence of both hierarchies of Burgers-like equa-
tions, arising by searching at each step non trivial Q-conditional symmetries, can be
proved in general. In fact, we have an infinite hierarchy of systems made of an odd
number of coupled Burgers-like equations or made of an even number of coupled
Burgers-like equations depending on the starting point.

Theorem 14. Let m be a positive integer, and let k = ⌈m/2⌉. The system of Burgers-like
equations (6.1) admits the Q-conditional symmetries associated to the vector field

Ξ =
∂

∂t
+ ξ(t, x, u(k)

β )
∂

∂x
+

m

∑
α=1

ηα(t, x, u(k)
β )

∂

∂u(k)
α

, (6.38)
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where
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1
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1
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1
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1 u(k)
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2 u(k)
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1 u(k)
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2 u(k)
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1 u(k)
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1
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1
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1 u(k)

m − u(k)
2 u(k)
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1 u(k)

1 u(k)
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1
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−
(

u(k)
1
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u(k)

m − (1− δ1m)u
(k)
2 u(k)

m + u(k+1)
1 u(k)

1 u(k)
m

+ u(k+1)
2 u(k)

m + u(k+1)
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)
,

(6.39)

δ1m being the Kronecker symbol, with α = 1, . . . , m− 2, provided that the functions u(k+1)
α (t, x)

satisfy the system

∆m+2 ≡

u(k+1)
α,t + u(k+1)

α u(k+1)
1,x − u(k+1)

α,xx + u(k+1)
α+1,x = 0,

u(k+1)
m+2,t + u(k+1)

m+2 u(k+1)
1,x − u(k+1)

m+2,xx = 0,
(6.40)

with α = 1, . . . , m + 1.

Proof. It must be verified that the vector field (6.38), along with (6.39), is admitted
by the system (6.1) along with the constraints (6.40). In fact, requiring

Ξ(2) (∆m)
∣∣∣
Mm

= 0, (6.41)

where the manifoldMm of the jet space is defined by
∆m = 0,

Qα ≡ Ξ
(

u(k)
α − u(k)

α (t, x)
)
= 0, α = 1, . . . , m,

DQα

Dt
=

DQα

Dx
= 0,

(6.42)
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we get the following polynomial system of m equations in the variables u(k)
α and u(k)

α,x:(
u(k+1)

1,t + u(k+1)
1 u(k+1)

1,x − u(k+1)
1,xx + u(k+1)

2,x

)
u(k)

1 u(k)
α

+
(

u(k+1)
2,t + u(k+1)

2 u(k+1)
1,x − u(k+1)

2,xx + u(k+1)
3,x

)
u(k)

α

+
(

u(k+1)
1,t + u(k+1)

1 u(k+1)
1,x − u(k+1)

1,xx + u(k+1)
2,x

)
u(k)

α+1

− 2
(

u(k+1)
1,t + u(k+1)

1 u(k+1)
1,x − u(k+1)

1,xx + u(k+1)
2,x

)
u(k)

α,x

+ u(k+1)
α+2,t + u(k+1)

α+2 u(k+1)
1,x − u(k+1)

α+2,xx + u(k+1)
α+3,x = 0,(

u(k+1)
1,t + u(k+1)

1 u(k+1)
1,x − u(k+1)

1,xx + u(k+1)
2,x

)
u(k)

1 u(k)
m

+
(

u(k+1)
2,t + u(k+1)

2 u(k+1)
1,x − u(k+1)

2,xx + u(k+1)
3,x

)
u(k)

m

− 2
(

u(k+1)
1,t + u(k+1)

1 u(k+1)
1,x − u(k+1)

1,xx + u(k+1)
2,x

)
u(k)

m,x

+ u(k+1)
m+2,t + u(k+1)

m+2 u(k+1)
1,x − u(k+1)

m+2,xx = 0,

(6.43)

where α = 1, . . . , m− 1.
Due to the arbitrariness of u(k)

α and u(k)
α,x, the system (6.43) is satisfied if and only

if 

u(k+1)
1,t + u(k+1)

1 u(k+1)
1,x − u(k+1)

1,xx + u(k+1)
2,x = 0,

u(k+1)
2,t + u(k+1)

2 u(k+1)
1,x − u(k+1)

2,xx + u(k+1)
3,x = 0,

u(k+1)
α+2,t + u(k+1)

α+2 u(k+1)
1,x − u(k+1)

α+2,xx + u(k+1)
α+3,x = 0, α = 1, . . . , m− 1,

u(k+1)
m+2,t + u(k+1)

m+2 u(k+1)
1,x − u(k+1)

m+2,xx = 0,

(6.44)

i.e., the system ∆m+2 = 0 has to be satisfied.

Remark 20. Note that if m is odd (even, respectively), a hierarchy of systems with an odd
(even, respectively) number of equations is generated.

Each element of the infinite hierarchy of systems of Burgers-like equations can
be written in the form of a matrix Burgers’ equation [74, 75] that can be linearized
by means of the matrix Hopf-Cole transformation [76].

In fact, defining the m×m matrix Ω as

Ω =


0 1 · · · 0 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
u(k)

m u(k)
m−1 · · · u(k)

2 u(k)
1

 , (6.45)

the system (6.1) writes in the form of a matrix Burgers’ equation, say

Ω,t + Ω,xΩ−Ω,xx = 0. (6.46)

The matrix Hopf-Cole transformation [74, 76],

Ω = −2Φ,xΦ−1, (6.47)
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maps (6.46) to a matrix heat equation,

Φ,t −Φ,xx = 0; (6.48)

moreover, from (6.47), it results Φ,x = − 1
2 ΩΦ, whereupon, computing the entries of

ΩΦ, the solution of the system (6.1) is achieved from the linear algebraic system

u(k)
m v1 +

m−1

∑
j=1

(−2)ju(k)
m−j

∂jv1

∂xj = (−2)m ∂mv1

∂xm ,

u(k)
m v2 +

m−1

∑
j=1

(−2)ju(k)
m−j

∂jv2

∂xj = (−2)m ∂mv2

∂xm ,

· · · ,

u(k)
m vm +

m−1

∑
j=1

(−2)ju(k)
m−j

∂jvm

∂xj = (−2)m ∂mvm

∂xm ,

where vα(t, x) (α = 1, . . . , m) are m solutions of linear heat equations, i.e.,

vα,t − vα,xx = 0, α = 1, . . . , m.
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Chapter 7

Conclusions . . . not yet conclusive!

In this Chapter, we will discuss some open issues related to the SymboLie package;
in fact, current investigation is devoted to add new functions, as well as to speed up
the computation. Moreover, we present some preliminar results concerned with the
optimal systems of all real five–dimensional Lie algebras characterized in [44] and
of the Noether symmetries of geodesic equations. The complete analysis of these
results, besides its own intrinsic interest, may also provide useful hints to detect
possible bugs of the program. Actually, this Chapter is not really conclusive!

7.1 Open issues on the SymboLie Package

In this thesis, we focused on the problem of finding optimal systems of families of
Lie subalgebras of finite dimensional Lie algebras almost automatically by means of
a program written in the CAS Wolfram Mathematica™ [39]. To achieve the result, we
introduced the definition of a p–family of Lie subalgebras: this allows us to prove
the closure of a vector subspace with respect to the Lie bracket without the need of
solving quadratic equations.

We have seen that, in some cases, this approach leaves out certain families of
subalgebras (for instance, see Remark 14).

Throughout this doctoral dissertation we have seen two other such examples: the
3D optimal system discussed in [19] includes the Lie subalgebra {Ξ1, Ξ3 − 1

2 Ξ4, Ξ6},
and its corresponding SymboLie object {Ξ1, Ξ3 + a1Ξ4, Ξ6} is not a 4–family because
the condition 4 of the definition of p–family is not satisfied. Another similar case
occurs with the two-dimensional Lie subalgebras in the 2A2 algebra from the Patera
and Winternitz classification.

Furthermore, in Section 5.7 regarding the optimal system of symmetries of the
heat equation, we have seen that SymboLie return the 2–families {Ξ3, Ξ5} and {Ξ3, Ξ6}
in addition to the two-dimensional optimal system found in [19]. It can be observed
that they can be mapped into subfamilies of {Ξ2, Ξ3 + a1Ξ4} and {Ξ1, Ξ3 + a1Ξ4},
respectively, so they do not satisfy point (3) of Definition 26.

Although this may happen, in most of the cases, the strategy adopted in Sym-
boLie is effective and provides complete results. However, we plan to develop some
new functions allowing for including in the analysis Lie subalgebras not included in
our definition of p–family. This suggests the possibility of generalizing the definition
of p–family to that of (p, q)–family, where instead of point (3), we consider

(3)′ the rank of the Jacobian matrix of { f α
k sk,α, k = 1, . . . , d, α = 1, . . . , r} with

respect to the elements of P is equal to q, with q ≤ p.

For instance, there is an automorphism that maps the family {Ξ3, Ξ6} to the fam-
ily {−2tΞ1 − Ξ3 + Ξ4, 4t2Ξ1}, whose row echelon form is {Ξ1, Ξ3 − Ξ4}.
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Currently, we can observe these relations using the debug feature of SymboLie by
setting

PrintDebug=1;

This line of code causes a debug file to be created, in which all the computations
performed by the algorithm are recorded. In the case examined above, the debug file
reveals an error code of 4. This indicates that the link between families {Ξ3, Ξ6} and
{Ξ1, Ξ3 + a1Ξ4} exists, but the transformed family does not respect the maximum
rank of the Jacobian matrix, namely, it is not a p–family.

In later developments of the algorithm, these types of ties can be highlighted
automatically.

Furthermore, introducing a relation between families of subalgebras induced by
the inner automorphisms (this relation is in general a preorder), we partition the fam-
ilies of Lie subalgebras and represent them by a graph: the simplest representatives
of the connected components of this graph give the list of optimal systems of fami-
lies of Lie subalgebras. The main algorithms of the package have been detailed, and
some case studies presented.

We plan to extend the program by introducing additional features. In particular,
it would be desirable to allow the program to suitably use special properties of the
Lie algebra to be analyzed (for instance, especially for high dimensional Lie algebras,
its decomposition as direct sum of an ideal and a subalgebra), as well as to imple-
ment some routines for constructing the submodels [77] once the optimal system of
Lie subalgebras of a Lie algebra of symmetries of a differential equation is obtained.
Last but not least, work is in progress to speed up the algorithms.

7.2 Optimal systems of subalgebras of all real 5D Lie alge-
bras

Since the classification of real Lie algebras of dimensions 5 [44] and 6 [18] is complete,
it is possible to compute their optimal systems of subalgebras, as we have done for
the three- and four-dimensional algebras [26, 42]. In this section, the optimal systems
of families of subalgebras for 5-dimensional algebras are computed using SymboLie.
However, since such a classification does not exist in the literature, the reliability of
these results must be verified. This aspect will be addressed in a future work, and
could also help us to identify and correct possible bugs in the algorithm. Below are
the results obtained with the SymboLie package.

We denote the Lie algebras using the notation from [44], maintaining the same
order: the first six Lie algebras are nilpotent, while the remaining ones are solvable.
Unlike the cases of 3D and 4D Lie algebras, here we do not consider 5-dimensional
Lie algebras that can be decomposed as direct sums of lower-dimensional Lie alge-
bras.

Algebra (A5,1). Let A5,1 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ3, Ξ5] = Ξ1, [Ξ4, Ξ5] = Ξ2.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ2}, {Ξ2 + a1Ξ3}, {Ξ1 + a1Ξ4},
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{Ξ3 + a1Ξ4}, {Ξ3 + a1Ξ5}, {Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ3 + a2Ξ4},
{Ξ3 + a1Ξ4 + a2Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5},
{Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ5},
{Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ5}, {Ξ2, Ξ4 + a1Ξ5},
{Ξ1 + a1Ξ2, Ξ3}, {Ξ1 + a1Ξ2, Ξ4}, {Ξ1 + a1Ξ2, Ξ5}, {Ξ1 + a1Ξ3, Ξ4},
{Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3},
{Ξ1, Ξ3 + a1Ξ4 + a2Ξ5}, {Ξ2, Ξ3 + a1Ξ4 + a2Ξ5}, {Ξ1 + a1Ξ2, Ξ3 + a2Ξ4},
{Ξ1 + a1Ξ2, Ξ3 + a2Ξ5}, {Ξ1 + a1Ξ2, Ξ4 + a2Ξ5}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + α1Ξ3, Ξ2 + a1Ξ3 + a2Ξ4},
{Ξ1 + a1Ξ2, Ξ3 + a2Ξ4 + a3Ξ5}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},
{Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ5},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3, Ξ5}, {Ξ2, Ξ3 + a1Ξ5, Ξ4}, {Ξ1 + a1Ξ2, Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4 + a2Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4 + a2Ξ5}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ5}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4 + a2Ξ5}}.

Algebra (A5,2). Let A5,2 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ5] = Ξ2, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ1 + a1Ξ4}, {Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4}, {Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ2 + a2Ξ4}, },

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4},
{Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ2, Ξ4}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2},
{Ξ1 + a1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ2, Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2, Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.



112 Chapter 7. Conclusions . . . not yet conclusive!

Algebra (A5,3). Let A5,3 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ3, Ξ4] = Ξ2, [Ξ3, Ξ5] = Ξ1, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ2}, {Ξ1 + a1Ξ4}, {Ξ2 + a1Ξ5},
{Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ4 + a2Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5},
{Ξ1, Ξ2 + a1Ξ5}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ2, Ξ4 + a1Ξ5},
{Ξ1 + a1Ξ2, Ξ3}, {Ξ1 + a1Ξ2, Ξ4}, {Ξ1 + a1Ξ2, Ξ5}, {Ξ1 + a1Ξ2, Ξ4 + a2Ξ5},
{Ξ1 + a1Ξ2, Ξ3 + a2Ξ4 + a3Ξ5}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ4},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,4). Let A5,4 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ4] = Ξ1, [Ξ3, Ξ5] = Ξ1.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ3}, {Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4},
{Ξ2 + a1Ξ5}, {Ξ3 + a1Ξ5}, {Ξ4 + a1Ξ5}, {Ξ2 + a1Ξ3 + a2Ξ4},
{Ξ2 + a1Ξ3 + a2Ξ5}, {Ξ2 + a1Ξ4 + a2Ξ5}, {Ξ3 + a1Ξ4 + a2Ξ5},
{Ξ2 + a1Ξ3 + a2Ξ4 + a3Ξ5}, },

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ3, Ξ4},
{Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ4},
{Ξ1, Ξ2 + a1Ξ5}, {Ξ1, Ξ3 + a1Ξ5}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ5},
{Ξ1 + α1Ξ3, Ξ2 + a1Ξ4}, {Ξ2 + a1Ξ4, Ξ5}, {Ξ1 + α1Ξ4, Ξ3 + a1Ξ5},
{Ξ1, Ξ2 + a1Ξ3 + a2Ξ4}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ4 + a2Ξ5},
{Ξ1, Ξ3 + a1Ξ4 + a2Ξ5}, {Ξ2 + a1Ξ4, Ξ3 + a2Ξ5},
{Ξ1, Ξ2 + a1Ξ3 + a2Ξ4 + a3Ξ5}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},
{Ξ1, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ5},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ3, Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ4, Ξ5},
{Ξ1, Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3}, {Ξ1, Ξ2 + a1Ξ5, Ξ4},
{Ξ1, Ξ3 + a1Ξ5, Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ4 + a2Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ5, Ξ3 + a2Ξ4}, {Ξ1, Ξ2 + a1Ξ5, Ξ3 + a2Ξ5},
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{Ξ1, Ξ2 + a1Ξ5, Ξ4 + a2Ξ5}, {Ξ1, Ξ3 + a1Ξ5, Ξ4 + a2Ξ5},
{Ξ1, Ξ2 + a1Ξ3 + a2Ξ5, Ξ4}, {Ξ1, Ξ2 + a1Ξ4 + a2Ξ5, Ξ3},
{Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4 + a3Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3 + a2Ξ4 + a3Ξ5},
{Ξ1, Ξ2 + a1Ξ3 + a2Ξ5, Ξ4 + a3Ξ5}, {Ξ1, Ξ2 + a1Ξ4 + a2Ξ5, Ξ3 + a3Ξ4},
{Ξ1, Ξ2 + a1Ξ4 + a2Ξ5, Ξ3 + a3Ξ5},
{Ξ1, Ξ2 + a1Ξ4 + a2Ξ5, Ξ3 + a3Ξ4 + a4Ξ5}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4},
{Ξ1, Ξ2 + a1Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3, Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4},
{Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3 + a2Ξ5, Ξ4},
{Ξ1, Ξ2 + a1Ξ5, Ξ3 + a2Ξ5, Ξ4 + a3Ξ5}, }.

Algebra (A5,5). Let A5,5 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ4] = Ξ1, [Ξ3, Ξ5] = Ξ2.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4}, {Ξ3 + a1Ξ5},
{Ξ4 + a1Ξ5}, {Ξ3 + a1Ξ4 + a2Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ5}, {Ξ1, Ξ4 + a1Ξ5},
{Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ5}, {Ξ1, Ξ3 + a1Ξ4 + a2Ξ5}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ5}, {Ξ1, Ξ2, Ξ4 + a1Ξ5},
{Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ4, Ξ5}, {Ξ1, Ξ3 + a1Ξ5, Ξ4},
{Ξ1, Ξ2, Ξ3 + a1Ξ4 + a2Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ5}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4},
{Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4 + a2Ξ5}}.

Algebra (A5,6). Let A5,6 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ4] = Ξ1, [Ξ3, Ξ5] = Ξ2, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ4}, {Ξ4 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4},

{Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ4}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4},
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{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (Aabc
5,7 ). Let Aabc

5,7 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = aΞ2, [Ξ3, Ξ5] = bΞ3, [Ξ4, Ξ5] = cΞ4,

with abc ̸= 0, −1 ≤ c ≤ b ≤ a ≤ 1. The complete optimal system of families of Lie
subalgebras computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3}, {Ξ2 + a1Ξ3},
{Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ2 + a1Ξ3},
{Ξ1 + α1Ξ2 + a1Ξ4}, {Ξ1 + α1Ξ3 + a1Ξ4}, {Ξ2 + a1Ξ3 + a2Ξ4},
{Ξ1 + α1Ξ2 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5},
{Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ2 + a1Ξ4},
{Ξ1, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ2, Ξ3}, {Ξ1 + α1Ξ2, Ξ4},
{Ξ1 + α1Ξ3, Ξ2}, {Ξ1 + α1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ5},
{Ξ1 + α1Ξ4, Ξ2}, {Ξ1 + α1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ5},
{Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4}, {Ξ1 + α1Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + α1Ξ3, Ξ2 + a1Ξ3}, {Ξ1 + α1Ξ3, Ξ2 + a1Ξ4}, {Ξ1 + α1Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + α1Ξ4, Ξ2 + a1Ξ3}, {Ξ1 + α1Ξ4, Ξ2 + a1Ξ4}, {Ξ1 + α1Ξ4, Ξ3 + a1Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + α1Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + α1Ξ3 + a1Ξ4, Ξ2},
{Ξ2 + a1Ξ3 + a2Ξ4, Ξ5}, {Ξ1 + α1Ξ3, Ξ2 + a1Ξ3 + a2Ξ4},
{Ξ1 + α1Ξ4, Ξ2 + a1Ξ3 + a2Ξ4}, {Ξ1 + α1Ξ2 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ1 + α1Ξ3 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + α1Ξ3 + a1Ξ4, Ξ2 + a2Ξ4},
{Ξ1 + α1Ξ3 + a1Ξ4, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},
{Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ5}, {Ξ2, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3, Ξ5},
{Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ4, Ξ5}, {Ξ1, Ξ3 + a1Ξ4, Ξ5},
{Ξ2, Ξ3 + a1Ξ4, Ξ5}, {Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ1 + α1Ξ3, Ξ2, Ξ4},
{Ξ2 + a1Ξ3, Ξ4, Ξ5}, {Ξ1 + α1Ξ4, Ξ2, Ξ3}, {Ξ2 + a1Ξ4, Ξ3, Ξ5},
{Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4, Ξ5},
{Ξ1 + α1Ξ3, Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + α1Ξ4, Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + α1Ξ4, Ξ2 + a1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3 + a2Ξ4, Ξ5},
{Ξ1 + α1Ξ4, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ4, Ξ3, Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4, Ξ5}}.
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Algebra (Ac
5,8). Let Ac

5,8 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ5] = Ξ3, [Ξ4, Ξ5] = cΞ4,

with 0 < |c| ≤ 1. The complete optimal system of families of Lie subalgebras com-
puted by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ1 + α1Ξ4},
{Ξ2 + a1Ξ4}, {Ξ3 + α1Ξ4}, {Ξ2 + a1Ξ5}, {Ξ1 + α1Ξ3 + a1Ξ4},
{Ξ2 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + a1Ξ5},
{Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + α1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + α1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ2 + a1Ξ5, Ξ3},
{Ξ2 + a1Ξ5, Ξ4}, {Ξ1, Ξ2 + α1Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + α1Ξ4, Ξ3 + a1Ξ4}, {Ξ2 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ1 + a1Ξ3 + a2Ξ4, Ξ2}, {Ξ1 + a1Ξ3 + a2Ξ4, Ξ2 + a3Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},
{Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + α1Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ5, Ξ3}, {Ξ1, Ξ2 + a1Ξ5, Ξ4},
{Ξ1 + a1Ξ3, Ξ2, Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ2 + a1Ξ5, Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4}}.

Algebra (Abc
5,9). Let Abc

5,9 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = Ξ1 + Ξ2, [Ξ3, Ξ5] = bΞ3, [Ξ4, Ξ5] = cΞ4,

with 0 ̸= c ≤ b. The complete optimal system of families of Lie subalgebras com-
puted by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ1 + α1Ξ4},
{Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4}, {Ξ1 + α1Ξ3 + a1Ξ4}, {Ξ2 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + α1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2},
{Ξ1 + α1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ3 + a1Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + α1Ξ4, Ξ3 + a1Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ3 + a2Ξ4, Ξ2},
{Ξ1 + a1Ξ3 + a2Ξ4, Ξ2 + a3Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},
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{Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2 + α1Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4, Ξ3}, {Ξ1, Ξ3 + a1Ξ4, Ξ5}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1, Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4, Ξ5}}.

Algebra (A5,10). Let A5,10 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ5] = Ξ2, [Ξ4, Ξ5] = Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4}, {Ξ3 + a1Ξ5}, {Ξ1 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ4, Ξ5},
{Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ1, Ξ3 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ4},
{Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3},
{Ξ2 + a1Ξ4, Ξ3}, {Ξ3 + a1Ξ5, Ξ4}, {Ξ1 + a1Ξ3 + a2Ξ4, Ξ2},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5},
{Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2, Ξ3 + a1Ξ5},
{Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ3 + a1Ξ5, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ5, Ξ4}}.

Algebra (Ac
5,11). Let A5,11 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with

the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = Ξ1 + Ξ2, [Ξ3, Ξ5] = Ξ2 + Ξ3, [Ξ4, Ξ5] = cΞ4,

with c ̸= 0. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ4, Ξ5},
{Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3}, {Ξ2 + a1Ξ4, Ξ3},
{Ξ1 + a1Ξ3 + a2Ξ4, Ξ2}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},
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Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4},
{Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}}.

Algebra (A5,12). Let A5,12 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = Ξ1 + Ξ2, [Ξ3, Ξ5] = Ξ2 + Ξ3, [Ξ4, Ξ5] = Ξ3 + Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ1 + a1Ξ4}, {Ξ2 + a1Ξ4},
{Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ2, Ξ4},
{Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3},
{Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4},
{Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}, },

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ2, Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}}.

Algebra (Aapq
5,13). Let Aapq

5,13 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = aΞ2, [Ξ3, Ξ5] = pΞ3 − qΞ4, [Ξ4, Ξ5] = pΞ4 + qΞ3,

with aq ̸= 0, |a| ≤ 1. The complete optimal system of families of Lie subalgebras
computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ2 + a2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ2, Ξ3}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ5}}.
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Algebra (Ap
5,14). Let Ap

5,14 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ5] = Ξ1, [Ξ3, Ξ5] = pΞ3 − Ξ4, [Ξ4, Ξ5] = Ξ3 + pΞ4,

with p ∈ R. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ1 + α1Ξ2}, {Ξ3}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ2 + a1Ξ4},
{Ξ2 + a1Ξ5}, {Ξ1 + a1Ξ2 + a2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3},
{Ξ1, Ξ2 + a1Ξ5}, {Ξ1 + a1Ξ2, Ξ3}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ4},
{Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3},
{Ξ2 + a1Ξ5, Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4}}.

Algebra (Aa
5,15). Let Aa

5,15 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = Ξ1 + Ξ2, [Ξ3, Ξ5] = aΞ3, [Ξ4, Ξ5] = aΞ4 + Ξ3,

with |a| ≤ 1. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ1 + a1Ξ4},
{Ξ2 + a1Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ2},
{Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + α1Ξ4, Ξ3},
{Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ4},
{Ξ1 + a1Ξ4, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ4},
{Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3}, {Ξ1 + a1Ξ3, Ξ2, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (Apq
5,16). Let Apq

5,16 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ5] = Ξ1 + Ξ2, [Ξ3, Ξ5] = pΞ3 − qΞ4, [Ξ4, Ξ5] = pΞ4 + qΞ3,
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p ∈ R, q ̸= 0. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ2 + a1Ξ4},
{Ξ1 + a1Ξ2 + a2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3},
{Ξ1 + a1Ξ2, Ξ3}, {Ξ1 + a1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2}, {Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ2, Ξ4}, {Ξ1 + a1Ξ4, Ξ2, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (Aspq
5,17). Let Aspq

5,17 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = pΞ1 − Ξ2, [Ξ2, Ξ5] = Ξ1 + pΞ2, [Ξ3, Ξ5] = qΞ3 − sΞ4,
[Ξ4, Ξ5] = sΞ3 + qΞ4,

with p, q ∈ R, s ̸= 0. The complete optimal system of families of Lie subalgebras
computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ3}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ1 + a1Ξ4}, {Ξ2 + a1Ξ4},
{Ξ1 + a1Ξ2 + a2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ2 + a1Ξ4},
{Ξ1, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3},
{Ξ1 + α1Ξ3 + a1Ξ4, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}}.

Algebra (Ap
5,18). Let Ap

5,18 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = pΞ1 − Ξ2, [Ξ2, Ξ5] = Ξ1 + pΞ2, [Ξ3, Ξ5] = Ξ1 − Ξ4 + pΞ3,
[Ξ4, Ξ5] = Ξ2 + Ξ3 + pΞ4,

with p ≥ 0. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ3}, {Ξ1 + a1Ξ4},
{Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ2 + a2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ2 + a1Ξ3 + a2Ξ4}, {Ξ1 + a1Ξ3, Ξ2 + a2Ξ4},
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{Ξ1, Ξ+a1Ξ32}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ2, Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ2, Ξ3},
{Ξ1 + a1Ξ2, Ξ4}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ3},
{Ξ2 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ2 + a2Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3},
{Ξ1 + a1Ξ4, Ξ3 + a2Ξ4}, {Ξ2 + a1Ξ4, Ξ3 + a2Ξ4},
{Ξ1 + a1Ξ2 + a2Ξ4, Ξ3}, {Ξ1 + α1Ξ3 + a1Ξ4, Ξ2 + a2Ξ3 + a3Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ4, Ξ2, Ξ3}, {Ξ1 + α1Ξ4, Ξ2 + a1Ξ4, Ξ3 + a2Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}}.

Algebra (Aab
5,19). Let Aab

5,19 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = aΞ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ3, Ξ5] = (a− 1)Ξ3,
[Ξ4, Ξ5] = bΞ4,

with a ∈ R,b ̸= 0. The complete optimal system of families of Lie subalgebras
computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + α1Ξ3}, {Ξ1 + a1Ξ4}, {Ξ2 + α1Ξ4},
{Ξ3 + α1Ξ4}, {Ξ2 + α1Ξ3 + a1Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + α1Ξ4},
{Ξ2 + α1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ4, Ξ5},
{Ξ1, Ξ2 + α1Ξ3 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ2 + α1Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},
{Ξ2, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + α1Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4, Ξ3}, {Ξ1 + a1Ξ4, Ξ2, Ξ5}, {Ξ1 + a1Ξ4, Ξ3, Ξ5},
{Ξ1, Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (Aa
5,20). Let Aa

5,20 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = aΞ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ3, Ξ5] = (a− 1)Ξ3,
[Ξ4, Ξ5] = aΞ4 + Ξ1,

with a ∈ R. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + α1Ξ3}, {Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4},
{Ξ2 + a1Ξ3 + a2Ξ4}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ3 + a1Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},
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{Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + α1Ξ3, Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3},
{Ξ1, Ξ2 + α1Ξ4, Ξ3 + a1Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (A5,21). Let A5,21 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 2Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ2 + Ξ3, [Ξ3, Ξ5] = Ξ3 + Ξ4,
[Ξ4, Ξ5] = Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ4}, {Ξ1 + α1Ξ4}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ4, Ξ5},

{Ξ1, Ξ2 + a1Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + a1Ξ4, Ξ3}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5},

{Ξ1, Ξ2 + a1Ξ4, Ξ3}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (A5,22). Let A5,22 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ3, [Ξ4, Ξ5] = Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4}, {Ξ3 + α1Ξ4},
{Ξ1 + a1Ξ5}, {Ξ2 + a1Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ1, Ξ2 + a1Ξ5}, {Ξ1 + a1Ξ5, Ξ3},
{Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + α1Ξ4, Ξ3}, {Ξ1 + a1Ξ5, Ξ4}, {Ξ2 + a1Ξ5, Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ5, Ξ3},
{Ξ1, Ξ2 + a1Ξ5, Ξ4}, {Ξ1 + a1Ξ5, Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4}}.

Algebra (Ab
5,23). Let Ab

5,23 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 2Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ2 + Ξ3, [Ξ3, Ξ5] = Ξ3,
[Ξ4, Ξ5] = bΞ4,

with b ̸= 0. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4}, {Ξ3 + α1Ξ4}},
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Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1 + α1Ξ4, Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (Aϵ
5,24). Let Aϵ

5,24 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 2Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ2 + Ξ3,
[Ξ3, Ξ5] = Ξ3, [Ξ4, Ξ5] = 2Ξ4 + ϵΞ1,

with ϵ = ±1. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ4}, {Ξ3 + a1Ξ4}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5},

{Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ2 + a1Ξ3, Ξ4}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},

{Ξ1, Ξ2, Ξ3 + a1Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (Abp
5,25). Let Abp

5,25 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 2pΞ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ3 + pΞ2, [Ξ3, Ξ5] = pΞ3 − Ξ2,
[Ξ4, Ξ5] = bΞ4,

with p ∈ R, b ̸= 0. The complete optimal system of families of Lie subalgebras
computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ4}, {Ξ2 + a1Ξ4}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ4},

{Ξ1 + a1Ξ4, Ξ2}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}}.

Algebra (Apϵ
5,26). Let Apϵ

5,26 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 2pΞ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = Ξ3 + pΞ2, [Ξ3, Ξ5] = pΞ3 − Ξ2,
[Ξ4, Ξ5] = 2pΞ4 + ϵΞ1

with p ∈ R, ϵ = ±1. The complete optimal system of families of Lie subalgebras
computed by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ4}},
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Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ1 + a1Ξ4, Ξ2}, {Ξ1, Ξ2 + a1Ξ4}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + a1Ξ4}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}}.

Algebra (A5,27). Let A5,27 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ3, Ξ5] = Ξ3 + Ξ4, [Ξ4, Ξ5] = Ξ1 + Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ3}, {Ξ2 + a1Ξ4}, {Ξ2 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4},

{Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ1, Ξ2 + a1Ξ5}, {Ξ2 + a1Ξ3, Ξ4}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5},

{Ξ1, Ξ2 + α1Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}, {Ξ1, Ξ2 + a1Ξ5, Ξ4}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},

{Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4}}.

Algebra (Aa
5,28). Let Aa

5,28 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = aΞ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ5] = (a− 1)Ξ2, [Ξ3, Ξ5] = Ξ3 + Ξ4,
[Ξ4, Ξ5] = Ξ4,

with a ∈ R. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + a1Ξ3}, {Ξ1 + α1Ξ4}, {Ξ2 + α1Ξ4}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ4, Ξ5},

{Ξ1, Ξ2 + a1Ξ3}, {Ξ1, Ξ2 + α1Ξ4}, {Ξ2 + α1Ξ3, Ξ4}, {Ξ1 + α1Ξ4, Ξ2},
{Ξ1 + a1Ξ4, Ξ3}, {Ξ1 + a1Ξ4, Ξ2 + a2Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ4, Ξ5},
{Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ4, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}}.

Algebra (A5,29). Let A5,29 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ4] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ2 + α1Ξ3}, {Ξ2 + a1Ξ4},
{Ξ4 + a1Ξ5}},
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Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + a1Ξ5},
{Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ2 + α1Ξ4, Ξ3},
{Ξ1 + a1Ξ3, Ξ2 + a2Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ5},
{Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ3, Ξ4},
{Ξ1, Ξ2 + α1Ξ4, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,30). Let A5,30 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = (a + 1)Ξ1, [Ξ2, Ξ4] = Ξ1, [Ξ2, Ξ5] = aΞ2, [Ξ3, Ξ4] = Ξ2,
[Ξ3, Ξ5] = (a− 1)Ξ3, [Ξ4, Ξ5] = Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ3 + α1Ξ4}, {Ξ1 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ3, Ξ5}, {Ξ4, Ξ5},

{Ξ1, Ξ3 + α1Ξ4}, {Ξ1 + α1Ξ3, Ξ2}, {Ξ1 + a1Ξ5, Ξ2}, {Ξ1 + a1Ξ5, Ξ3},
{Ξ1 + a1Ξ5, Ξ4}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ5},
{Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1 + a1Ξ5, Ξ2, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}}.

Algebra (A5,31). Let A5,31 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = 3Ξ1, [Ξ2, Ξ4] = Ξ1, [Ξ2, Ξ5] = 2Ξ2, [Ξ3, Ξ4] = Ξ2, [Ξ3, Ξ5] = Ξ3,
[Ξ4, Ξ5] = Ξ3 + Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ3, Ξ5},

{Ξ1 + α1Ξ3, Ξ2}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}}.

Algebra (Aa
5,32). Let Aa

5,32 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ4] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ3, Ξ4] = Ξ2,
[Ξ3, Ξ5] = aΞ1 + Ξ3,
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with a ∈ R. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ3 + a1Ξ4}, {Ξ4 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ5}, {Ξ4, Ξ5},

{Ξ1, Ξ3 + α1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},

{Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2, Ξ4 + a1Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5},

{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}

Algebra (Aab
5,33). Let Aab

5,33 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ3, Ξ4] = bΞ3, [Ξ3, Ξ5] = aΞ3,

with a2 + b2 ̸= 0. The complete optimal system of families of Lie subalgebras com-
puted by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3},
{Ξ2 + α1Ξ3}, {Ξ2 + α1Ξ4}, {Ξ1 + α1Ξ5}, {Ξ4 + a1Ξ5},
{Ξ1 + α1Ξ2 + α2Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5},
{Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + α1Ξ4},
{Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ2, Ξ3}, {Ξ3, Ξ4 + a1Ξ5},
{Ξ1 + α1Ξ3, Ξ2}, {Ξ2 + α1Ξ4, Ξ3}, {Ξ1 + α1Ξ5, Ξ2},
{Ξ1 + α1Ξ5, Ξ3}, {Ξ1 + α1Ξ3, Ξ2 + α2Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},
{Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ5}, {Ξ2, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1, Ξ2 + α1Ξ4, Ξ3},
{Ξ2, Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ5, Ξ2, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (Aa
5,34). Let Aa

5,34 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = aΞ1, [Ξ1, Ξ5] = Ξ1, [Ξ2, Ξ4] = Ξ2, [Ξ3, Ξ4] = Ξ3, [Ξ3, Ξ5] = Ξ2,

with a ∈ R. The complete optimal system of families of Lie subalgebras computed
by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3}, {Ξ3 + α1Ξ5},
{Ξ4 + a1Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4},
{Ξ4, Ξ5}, {Ξ1, Ξ3 + α1Ξ5}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ3 + α1Ξ5}, {Ξ2, Ξ4 + a1Ξ5},
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{Ξ1 + α1Ξ2, Ξ3}, {Ξ1 + α1Ξ3, Ξ2}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4},

{Ξ2, Ξ3, Ξ5}, {Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + α1Ξ5}, {Ξ1, Ξ2, Ξ4 + a1Ξ5},
{Ξ2, Ξ3, Ξ4 + a1Ξ5}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (Aab
5,35). Let Aab

5,35 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = bΞ1, [Ξ1, Ξ5] = aΞ1, [Ξ2, Ξ4] = Ξ2, [Ξ2, Ξ5] = −Ξ3, [Ξ3, Ξ4] = Ξ3,
[Ξ3, Ξ5] = Ξ2,

with a2 + b2 ̸= 0. The complete optimal system of families of Lie subalgebras com-
puted by SymboLie is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ4 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ4, Ξ5}, {Ξ1, Ξ4 + a1Ξ5},

{Ξ1 + α1Ξ2, Ξ3}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ5},

{Ξ2, Ξ3, Ξ4 + a1Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ5},

{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,36). Let A5,36 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ4] = Ξ2, [Ξ2, Ξ5] = −Ξ2, [Ξ3, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ2 + α1Ξ3}, {Ξ3 + α1Ξ4}, {Ξ1 + α1Ξ5},
{Ξ4 + a1Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ4, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ3 + α1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ4 + a1Ξ5},
{Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ5, Ξ2}, {Ξ1 + α1Ξ5, Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ4, Ξ5},
{Ξ2, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2, Ξ4 + a1Ξ5},
{Ξ1, Ξ3, Ξ4 + a1Ξ5}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.
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Algebra (A5,37). Let A5,37 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = 2Ξ1, [Ξ2, Ξ3] = Ξ1, [Ξ2, Ξ4] = Ξ2, [Ξ2, Ξ5] = −Ξ3,
[Ξ3, Ξ4] = Ξ3, [Ξ3, Ξ5] = Ξ2.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ5}, {Ξ4 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ4, Ξ5}, {Ξ1, Ξ4 + a1Ξ5}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ4, Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,38). Let A5,38 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = Ξ1, [Ξ2, Ξ5] = Ξ2, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ4}, {Ξ5}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3}, {Ξ2 + α1Ξ3},
{Ξ2 + a1Ξ4}, {Ξ1 + a1Ξ5}, {Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ2 + a1Ξ3}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ4}, {Ξ1, Ξ5}, {Ξ2, Ξ3}, {Ξ2, Ξ4}, {Ξ2, Ξ5}, {Ξ3, Ξ4},
{Ξ3, Ξ5}, {Ξ1, Ξ2 + α1Ξ3}, {Ξ1, Ξ2 + a1Ξ4}, {Ξ1, Ξ4 + a1Ξ5}, {Ξ2, Ξ4 + a1Ξ5},
{Ξ1 + α1Ξ2, Ξ3}, {Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ3, Ξ2}, {Ξ1 + a1Ξ3, Ξ5},
{Ξ2 + a1Ξ3, Ξ4}, {Ξ2 + α1Ξ4, Ξ3}, {Ξ1 + a1Ξ5, Ξ2}, {Ξ1 + α1Ξ5, Ξ3},
{Ξ1 + α1Ξ3, Ξ2 + α2Ξ3}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ4},
{Ξ2, Ξ3, Ξ5}, {Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ4 + a1Ξ5}, {Ξ1, Ξ3, Ξ4 + a1Ξ5},
{Ξ1, Ξ2 + a1Ξ3, Ξ4}, {Ξ1, Ξ2 + α1Ξ4, Ξ3},
{Ξ2, Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ3, Ξ2, Ξ5}, {Ξ1 + α1Ξ5, Ξ2, Ξ3}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,39). Let A5,39 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ4] = Ξ1, [Ξ1, Ξ5] = −Ξ2, [Ξ2, Ξ4] = Ξ2, [Ξ2, Ξ5] = Ξ1, [Ξ4, Ξ5] = Ξ3.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ3}, {Ξ3 + α1Ξ4}, {Ξ5}, {Ξ1 + α1Ξ3}, {Ξ4 + a1Ξ5}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ3 + a1Ξ4}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ1, Ξ2 + α1Ξ3},

{Ξ3, Ξ4 + a1Ξ5}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ3 + α1Ξ4}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5},
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{Ξ1, Ξ2, Ξ4 + a1Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ3, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4 + a1Ξ5}}.

Algebra (A5,40). Let A5,40 be the 5D Lie algebra spanned by {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5} with
the non–zero commutators:

[Ξ1, Ξ2] = 2Ξ1, [Ξ1, Ξ3] = −Ξ2, [Ξ1, Ξ4] = Ξ5, [Ξ2, Ξ3] = 2Ξ3,
[Ξ2, Ξ4] = Ξ4, [Ξ2, Ξ5] = −Ξ5, [Ξ3, Ξ5] = Ξ4.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ4}, {Ξ1 + α1Ξ3}, {Ξ1 + α1Ξ4}},
Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ5}, {Ξ2, Ξ4}, {Ξ4, Ξ5}, {Ξ1 + α1Ξ4, Ξ5}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ3}, {Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ4, Ξ5}, {Ξ2, Ξ4, Ξ5}, {Ξ1 + α1Ξ3, Ξ4, Ξ5}},
Θ4 ≡ {{Ξ1, Ξ2, Ξ4, Ξ5}}.

7.3 Optimal systems of Noether symmetries of geodesic equa-
tions

A very important example of nonlinear ordinary differential equations is the set of
geodesic equations in an n–dimensional manifold. Let

ds2 =
n

∑
i,k=1

gikdqidqk

be the metric in an n–dimensional manifold. The geodesic equations read [78]

q̈i + Γi
jk q̇jq̇k = 0 (i, j, k = 1, . . . , n),

where Γi
jk stands for the Christoffel symbol defined by

Γi
jk =

1
2

giℓ(gjℓ,k + gkℓ,j − gjk,ℓ),

with gik denoting the inverse of the metric tensor, such that gijgik = δk
j , and gij,k =

∂gij/∂qk.
This system is composed of second-order, homogeneous, and coupled ODEs.

Here, qi denotes the generalized coordinates, while q̇i represents their derivatives
with respect to the parameter s. These equations describe the paths taken by objects
under the influence of a gravitational field. Studying their symmetries provides
insights into the geometric and physical properties of the space-time in question.

The underlying concept of geodesics extends the notion of straight lines in Eu-
clidean space to Riemannian manifolds.

In [21], the authors focus on the Lie algebra associated with the Noether symme-
tries of the geodesic equations in some different metrics.

In particular, Jamil et al. [21] limit themselves to find the optimal systems of one-
dimensional subalgebras of Noether symmetries associated with systems of geodesic



7.3. Optimal systems of Noether symmetries of geodesic equations 129

equations. Using SymboLie, we determine the complete optimal systems from di-
mension one to r− 1 (where r is the dimension of the corresponding Lie algebra) for
the cases they considered.

Let us now give the definition of variational symmetries. Consider a vector field

Ξ = ξ(s, xj)
∂

∂s
+ ηi(s, xj)

∂

∂xi ,

where s, the arc length parameter, is the independent variable and xi = xi(s) (i =
1, . . . , n) are the dependent variables. The corresponding Lie group of transforma-
tions

s⋆ = s⋆(s, x), x⋆ = x⋆(s, x) (7.1)

leaving the action integral of the Lagrangian L(s, xi, ẋi) invariant, i.e.,∫
Ω⋆
L(s⋆, x⋆, ẋ⋆) ds⋆ =

∫
Ω
L(s, x, ẋ) ds

where Ω⋆ is the image of Ω under the point transformation. Then, we have

ds⋆ =
(

∂s⋆

∂s
+ ẋi ∂s⋆

∂xi

)
ds

= Ds(s⋆(s, x(s)))ds

= Ds(s + aξ(s, xi) + O(a2))ds

=

(
1 + a

(
∂ξ

∂s
+ ẋi ∂

∂xi

)
+ O(a2)

)
ds

=
(
1 + a(Dsξ) + O(a2)

)
ds,

where Ds =
∂

∂s
+ ẋi ∂

∂xi , and the dot denotes differentiation with respect to s.
Since (7.1) is a Lie group of point transformations, by using the exponential map

of the first–order infinitesimal generator, it is

L(s⋆, x⋆, ẋ⋆) = exp
(

aΞ(1)
)
L(s, x, ẋ).

Therefore, (7.1) is a Lie point symmetry of the action integral of the Lagrangian
L(s, x, ẋ) if and only if

0 ≡
∫

Ω

((
1 + a(Dsξ) + o(a2)

)
exp

(
aΞ(1)

)
− 1
)
L(s, x, ẋ)ds =

= a
∫

Ω
L(s, x, ẋ)

(
Dsξ(s, x) + Ξ(1)L(s, x, ẋ)

)
ds + O(a2),

and this implies that the O(a) terms have to vanish, i.e.,

L(s, x, ẋ) (Dsξ(s, x)) + Ξ(1)L(s, x, ẋ) = 0.

A Lie symmetry of the action integral of the Lagrangian is called a variational sym-
metry or Noether symmetry.

Whereas, Ξ is a divergence symmetry of the Lagrangian L(s, x, ẋ) if there exists a
gauge function, A(s, xi), such that

L(s, x, ẋ) (Dsξ(s, x)) + Ξ(1)L(s, x, ẋ) = Ds A.
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In out framework, the Lagrangian has the form

L(s, x, ẋ) = gij(xk)ẋi ẋj.

By deriving the Euler–Lagrange equations

d
ds

(
∂L
∂ẋh

)
− ∂L

∂xh = 0,

with respect to the given metric tensor, we obtain the corresponding geodesic equa-
tions.

7.3.1 System admitting five Noether symmetries

Consider the geodetic Lagrangian of the metric

ds2 = e2ν(x)dt2 − dx2 − e2µ(x) (dy2 + dz2)
with µ(x) = x

a and ν(x) an arbitrary function. The Lie group of Noether symmetries
has a Lie algebra L5 which is generated by

Ξ1 =
∂

∂t
, Ξ2 = z

∂

∂y
− y

∂

∂z
, Ξ3 =

∂

∂z
, Ξ4 =

∂

∂y
, Ξ5 =

∂

∂s
.

In the aforementioned paper, their notation corresponds to ours as follows: Xi−1 is
equivalent to Ξi for i = 1, . . . , 4, and Y0 is equivalent to Ξ5. The system of geodesic
equations is given as

ẗ + 2ν′(x)ṫẋ = 0, ÿ +
2
a

ẋẏ = 0,

ẍ + ν′(x)e2ν(x) ṫ2 − 1
a

e
2x
a
(
ẏ2 + ż2) = 0, z̈ +

2
a

ẋż = 0.

Using SymboLie, we obtain the complete optimal system of families of Lie subalge-
bras:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ5}, {Ξ1 + a1Ξ2}, {Ξ1 + a1Ξ3}, {Ξ1 + a1Ξ5},
{Ξ2 + a1Ξ5}, {Ξ3 + a1Ξ5}, {Ξ1 + a1Ξ2 + a2Ξ5}, {Ξ1 + a1Ξ3 + a2Ξ5}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ2, Ξ5}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ1, Ξ2 + a1Ξ5},
{Ξ1, Ξ3 + a1Ξ5}, {Ξ1 + a1Ξ2, Ξ5}, {Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ3, Ξ4},
{Ξ1 + a1Ξ3, Ξ5}, {Ξ1 + a1Ξ5, Ξ2}, {Ξ1 + a1Ξ5, Ξ3}, {Ξ1 + a1Ξ3, Ξ4 + a2Ξ5},
{Ξ1 + a1Ξ5, Ξ2 + a2Ξ5}, {Ξ1 + a1Ξ5, Ξ3 + a2Ξ5}, {Ξ1 + a1Ξ3 + a2Ξ5, Ξ4},
{Ξ1 + a1Ξ4, Ξ3 + a2Ξ4 + a3Ξ5}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ2, Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ4, Ξ5},
{Ξ1 + a1Ξ5, Ξ3, Ξ4}, {Ξ2 + a1Ξ5, Ξ3, Ξ4}, {Ξ1 + a1Ξ5, Ξ3, Ξ4 + a2Ξ5},
{Ξ1 + a1Ξ2 + a2Ξ5, Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4},
{Ξ1 + a1Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1 + a1Ξ5, Ξ2, Ξ3, Ξ4},
{Ξ1 + a1Ξ5, Ξ2 + a2Ξ5, Ξ3, Ξ4}},
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with a1, a2, a3 ̸= 0. In particular, in the one-dimensional case, SymboLie returns 11
representative families, whereas [21] reports 15 subalgebras. This means that four
additional families are provided in the one-dimensional optimal system, specifically:

{Ξ4}, {Ξ1 + a1Ξ4}, {Ξ4 + a1Ξ5}, {Ξ1 + a1Ξ4 + a2Ξ5}.

By considering the inner automorphism
1 0 0 0 0
0 1 0 0 0
0 0 2

t2+1 − 1 − 2t
t2+1 0

0 0 2t
t2+1

2
t2+1 − 1 0

0 0 0 0 1

 ,

it becomes evident that the families {Ξ4}, {Ξ1 + a1Ξ4}, {Ξ4 + a1Ξ5}, and {Ξ1 +
a1Ξ4 + a2Ξ5} are mapped to {Ξ3}, {Ξ1 + ã1Ξ3}, {Ξ3 + ã1Ξ5}, and {Ξ1 + ã1Ξ3 +
a2Ξ5}, respectively, thus confirming the correctness of the SymboLie result.

7.3.2 System admitting six Noether symmetries

The geodetic Lagrangian of the metric

ds2 = e
2x
a dt2 − dx2 − e

2x
b
(
dy2 + dz2) (a, b ̸= 0)

admits six Noether symmetries L6 which are listed as follows:

Ξ1 =
∂

∂t
, Ξ2 = z

∂

∂y
− y

∂

∂z
, Ξ3 =

∂

∂z
, Ξ4 =

∂

∂y
,

Ξ5 =
∂

∂x
− t

a
∂

∂t
− 1

b

(
y

∂

∂y
+ z

∂

∂z

)
, Ξ6 =

∂

∂s
.

The corresponding system of geodesic equations is

ẗ +
2
a

ṫẋ = 0, ẍ +
1
a

e
2x
a ṫ2 − 1

b
e

2x
b
(
ẏ2 + ż2) = 0,

ÿ +
2
b

ẋẏ = 0, z̈ +
2
b

ẋż = 0.

The complete optimal system of families of Lie subalgebras computed by SymboLie
is as follows:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ5}, {Ξ6}, {Ξ1 + α1Ξ2}, {Ξ1 + a1Ξ3}, {Ξ2 + a1Ξ5},
{Ξ1 + α1Ξ6}, {Ξ2 + a1Ξ6}, {Ξ3 + α1Ξ6}, {Ξ5 + a1Ξ6}, {Ξ1 + α1Ξ2 + a1Ξ6},
{Ξ1 + α1Ξ6 + a1Ξ3}, {Ξ2 + a1Ξ5 + a2Ξ6}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ1, Ξ6}, {Ξ2, Ξ5}, {Ξ2, Ξ6}, {Ξ3, Ξ4}, {Ξ3, Ξ5},
{Ξ3, Ξ6}, {Ξ5, Ξ6}, {Ξ1, Ξ2 + a1Ξ5}, {Ξ1, Ξ2 + a1Ξ6}, {Ξ1, Ξ3 + α1Ξ6},
{Ξ1, Ξ5 + a1Ξ6}, {Ξ2, Ξ5 + a1Ξ6}, {Ξ1 + α1Ξ2, Ξ6}, {Ξ3, Ξ4 + α1Ξ6},
{Ξ3, Ξ5 + a1Ξ6}, {Ξ1 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ3, Ξ5}, {Ξ1 + a1Ξ3, Ξ6},
{Ξ2 + a1Ξ5, Ξ6}, {Ξ1 + α1Ξ6, Ξ2}, {Ξ1 + α1Ξ6, Ξ3}, {Ξ1 + α1Ξ5, Ξ2 + a1Ξ6},
{Ξ1, Ξ2 + a1Ξ5 + a2Ξ6}, {Ξ1 + a1Ξ3, Ξ4 + α1Ξ6}, {Ξ1 + a1Ξ3, Ξ5 + a2Ξ6},
{Ξ1 + α1Ξ6, Ξ2 + a1Ξ6}, {Ξ1 + α1Ξ6, Ξ3 + a1Ξ6}, {Ξ2 + a1Ξ6, Ξ5 + a2Ξ6},
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{Ξ1 + α1Ξ6 + a1Ξ3, Ξ4}, {Ξ1 + a1Ξ4, Ξ3 + α1Ξ6 + a2Ξ4}},
Θ3 ≡ {{Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ2, Ξ6}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5}, {Ξ1, Ξ3, Ξ6},

{Ξ1, Ξ5, Ξ6}, {Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ5, Ξ6}, {Ξ3, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ6},
{Ξ3, Ξ5, Ξ6}, {Ξ1, Ξ2, Ξ5 + a1Ξ6}, {Ξ1, Ξ3, Ξ4 + α1Ξ6},
{Ξ1, Ξ3, Ξ5 + a1Ξ6}, {Ξ1, Ξ2 + a1Ξ5, Ξ6}, {Ξ1, Ξ2 + a1Ξ6, Ξ5},
{Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5 + a1Ξ6}, {Ξ1 + a1Ξ3, Ξ4, Ξ5},
{Ξ1 + a1Ξ3, Ξ4, Ξ6}, {Ξ1 + a1Ξ3, Ξ5, Ξ6}, {Ξ2 + a1Ξ5, Ξ3, Ξ4},
{Ξ1 + α1Ξ6, Ξ3, Ξ4}, {Ξ2 + a1Ξ6, Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ6, Ξ5 + a2Ξ6},
{Ξ1 + a1Ξ3, Ξ4, Ξ5 + a2Ξ6}, {Ξ1 + α1Ξ6, Ξ3, Ξ4 + a1Ξ6},
{Ξ1 + α1Ξ2 + a1Ξ6, Ξ3, Ξ4}, {Ξ2 + a1Ξ5 + a2Ξ6, Ξ3, Ξ4}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ5, Ξ6}, {Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ6},
{Ξ1, Ξ3, Ξ5, Ξ6}, {Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ3, Ξ4, Ξ5, Ξ6},
{Ξ1, Ξ3, Ξ4, Ξ5 + a1Ξ6}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4},
{Ξ1, Ξ2 + a1Ξ6, Ξ3, Ξ4}, {Ξ2, Ξ3, Ξ4, Ξ5 + a1Ξ6},
{Ξ1 + α1Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ1 + a1Ξ3, Ξ4, Ξ5, Ξ6},
{Ξ2 + a1Ξ5, Ξ3, Ξ4, Ξ6}, {Ξ1 + α1Ξ6, Ξ2, Ξ3, Ξ4},
{Ξ1 + α1Ξ5, Ξ2 + a1Ξ6, Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ5 + a2Ξ6, Ξ3, Ξ4},
{Ξ1 + α1Ξ6, Ξ2 + a1Ξ6, Ξ3, Ξ4}, {Ξ2 + a1Ξ6, Ξ3, Ξ4, Ξ5 + a2Ξ6}},

Θ5 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ3, Ξ4, Ξ5, Ξ6},
{Ξ2, Ξ3, Ξ4, Ξ5, Ξ6}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5 + a1Ξ6}, {Ξ1, Ξ2 + a1Ξ5, Ξ3, Ξ4, Ξ6},
{Ξ1, Ξ2 + a1Ξ6, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ6, Ξ3, Ξ4, Ξ5 + a2Ξ6}},

with α1 = ±1 and a1, a2 ̸= 0.
Again, there are differences between the one-dimensional optimal system calcu-

lated by SymboLie and the one reported in [21]. However, verifying the correctness
of the results of our algorithm will be the subject of future work.

7.3.3 System admitting seven Noether symmetries

Consider the geodetic Lagrangian of the metric

ds2 = dt2 −
( x

a

)2b
dx2 −

( x
K

)2 (
dy2 + dz2)

where constants a, b, K ̸= 0. The Lie group of Noether symmetries has a Lie algebra
L7 which is generated by

Ξ1 =
∂

∂t
, Ξ2 = z

∂

∂y
− y

∂

∂z
, Ξ3 =

∂

∂z
, Ξ4 =

∂

∂y
, Ξ5 =

∂

∂s
,

Ξ6 = s
∂

∂t
, Ξ7 = s

∂

∂s
+

t
2

∂

∂t
+

1
2b + 2

(
x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
,

with A = 2t. The corresponding geodesic equations are given by

ẗ = 0, ẍ +
b
x

ẋ2 − x

K2
( x

a

)2b

(
ẏ2 + ż2) = 0,

ÿ +
2
x

ẋẏ = 0, z̈ +
2
x

ẋż = 0.
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The complete optimal system of L7 computed by SymboLie is the following:

Θ1 ≡ {{Ξ1}, {Ξ2}, {Ξ3}, {Ξ5}, {Ξ6}, {Ξ7}, {Ξ1 + α1Ξ2}, {Ξ1 + α1Ξ3},
{Ξ2 + α1Ξ5}, {Ξ3 + α1Ξ5}, {Ξ2 + α1Ξ6}, {Ξ3 + a1Ξ6}, {Ξ5 + α1Ξ6},
{Ξ2 + a1Ξ7}, {Ξ2 + α1Ξ5 + a1Ξ6}, {Ξ3 + α1Ξ5 + a1Ξ6}},

Θ2 ≡ {{Ξ1, Ξ2}, {Ξ1, Ξ3}, {Ξ1, Ξ5}, {Ξ1, Ξ6}, {Ξ1, Ξ7}, {Ξ2, Ξ5}, {Ξ2, Ξ6},
{Ξ2, Ξ7}, {Ξ3, Ξ4}, {Ξ3, Ξ5}, {Ξ3, Ξ6}, {Ξ3, Ξ7}, {Ξ5, Ξ7}, {Ξ6, Ξ7},
{Ξ1, Ξ2 + α1Ξ5}, {Ξ1, Ξ3 + α1Ξ5}, {Ξ1, Ξ2 + α1Ξ6}, {Ξ1, Ξ3 + a1Ξ6},
{Ξ1, Ξ5 + α1Ξ6}, {Ξ1, Ξ2 + a1Ξ7}, {Ξ2, Ξ5 + α1Ξ6}, {Ξ1 + α1Ξ2, Ξ5},
{Ξ1 + α1Ξ2, Ξ6}, {Ξ3, Ξ4 + α1Ξ5}, {Ξ3, Ξ4 + a1Ξ6}, {Ξ3, Ξ5 + α1Ξ6},
{Ξ1 + α1Ξ3, Ξ4}, {Ξ1 + α1Ξ3, Ξ5}, {Ξ1 + α1Ξ3, Ξ6}, {Ξ3 + a1Ξ6, Ξ7},
{Ξ2 + a1Ξ7, Ξ5}, {Ξ2 + a1Ξ7, Ξ6}, {Ξ1, Ξ2 + α1Ξ5 + a1Ξ6},
{Ξ1, Ξ3 + α1Ξ5 + a1Ξ6}, {Ξ1 + α1Ξ2, Ξ5 + a1Ξ6}, {Ξ3, Ξ4 + α1Ξ5 + a1Ξ6},
{Ξ1 + α1Ξ3, Ξ4 + a1Ξ5}, {Ξ1 + α1Ξ3, Ξ4 + a1Ξ6}, {Ξ1 + α1Ξ3, Ξ5 + a1Ξ6},
{Ξ1 + α1Ξ3, Ξ4 + a1Ξ5 + a2Ξ6}},

Θ3 ≡ {{Ξ1, Ξ2, Ξ5}, {Ξ1, Ξ2, Ξ6}, {Ξ1, Ξ2, Ξ7}, {Ξ1, Ξ3, Ξ4}, {Ξ1, Ξ3, Ξ5},
{Ξ1, Ξ3, Ξ6}, {Ξ1, Ξ3, Ξ7}, {Ξ1, Ξ5, Ξ6}, {Ξ1, Ξ5, Ξ7}, {Ξ1, Ξ6, Ξ7},
{Ξ2, Ξ3, Ξ4}, {Ξ2, Ξ5, Ξ7}, {Ξ2, Ξ6, Ξ7}, {Ξ3, Ξ4, Ξ5}, {Ξ3, Ξ4, Ξ6},
{Ξ3, Ξ4, Ξ7}, {Ξ3, Ξ5, Ξ7}, {Ξ3, Ξ6, Ξ7}, {Ξ1, Ξ2, Ξ5 + α1Ξ6},
{Ξ1, Ξ3, α1Ξ5 + Ξ4}, {Ξ1, Ξ3, Ξ4 + a1Ξ6}, {Ξ1, Ξ3, Ξ5 + α1Ξ6},
{Ξ1, Ξ2 + α1Ξ5, Ξ6}, {Ξ1, Ξ3 + α1Ξ5, Ξ6}, {Ξ1, Ξ2 + α1Ξ6, Ξ5},
{Ξ1, Ξ3 + a1Ξ6, Ξ5}, {Ξ1, Ξ3 + a1Ξ6, Ξ7}, {Ξ1, Ξ2 + a1Ξ7, Ξ5},
{Ξ1, Ξ2 + a1Ξ7, Ξ6}, {Ξ1 + α1Ξ2, Ξ3, Ξ4}, {Ξ3, Ξ4, Ξ5 + α1Ξ6},
{Ξ3, Ξ4 + a1Ξ6, Ξ7}, {Ξ1 + α1Ξ3, Ξ4, Ξ5}, {Ξ1 + α1Ξ3, Ξ4, Ξ6},
{Ξ2 + α1Ξ5, Ξ3, Ξ4}, {Ξ2 + α1Ξ6, Ξ3, Ξ4}, {Ξ2 + a1Ξ7, Ξ3, Ξ4},
{Ξ1, Ξ3, Ξ4 + α1Ξ5 + a1Ξ6}, {Ξ1, Ξ3 + α1Ξ5, Ξ4 + a1Ξ6},
{Ξ1, Ξ2 + α1Ξ6, Ξ5 + a1Ξ6}, {Ξ1, Ξ3 + a1Ξ6, Ξ5 + α1Ξ6},
{Ξ1 + α1Ξ3, Ξ4, Ξ5 + a1Ξ6}, {Ξ2 + α1Ξ5 + a1Ξ6, Ξ3, Ξ4},
{Ξ1, Ξ3 + α1Ξ5, Ξ4 + a1Ξ5 + a2Ξ6}},

Θ4 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4}, {Ξ1, Ξ2, Ξ5, Ξ6}, {Ξ1, Ξ2, Ξ5, Ξ7}, {Ξ1, Ξ2, Ξ6, Ξ7},
{Ξ1, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ3, Ξ4, Ξ7}, {Ξ1, Ξ3, Ξ5, Ξ6},
{Ξ1, Ξ3, Ξ5, Ξ7}, {Ξ1, Ξ3, Ξ6, Ξ7}, {Ξ1, Ξ5, Ξ6, Ξ7}, {Ξ2, Ξ3, Ξ4, Ξ5},
{Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ2, Ξ3, Ξ4, Ξ7}, {Ξ3, Ξ4, Ξ5, Ξ7}, {Ξ3, Ξ4, Ξ6, Ξ7},
{Ξ1, Ξ3, Ξ4, Ξ5 + α1Ξ6}, {Ξ1, Ξ3, Ξ4 + α1Ξ5, Ξ6}, {Ξ1, Ξ3, Ξ4 + a1Ξ6, Ξ5},
{Ξ1, Ξ3, Ξ4 + a1Ξ6, Ξ7}, {Ξ1, Ξ2 + α1Ξ5, Ξ3, Ξ4}, {Ξ1, Ξ2 + α1Ξ6, Ξ3, Ξ4},
{Ξ1, Ξ3 + a1Ξ6, Ξ5, Ξ7}, {Ξ1, Ξ2 + a1Ξ7, Ξ3, Ξ4}, {Ξ1, Ξ2 + a1Ξ7, Ξ5, Ξ6},
{Ξ2, Ξ3, Ξ4, Ξ5 + α1Ξ6}, {Ξ1 + α1Ξ2, Ξ3, Ξ4, Ξ5},
{Ξ1 + α1Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ2 + a1Ξ7, Ξ3, Ξ4, Ξ5},
{Ξ2 + a1Ξ7, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ3, Ξ4 + a1Ξ6, Ξ5 + α1Ξ6},
{Ξ1, Ξ2 + α1Ξ5 + a1Ξ6, Ξ3, Ξ4}, {Ξ1 + α1Ξ2, Ξ3, Ξ4, Ξ5 + a1Ξ6}},

Θ5 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ7},
{Ξ1, Ξ2, Ξ5, Ξ6, Ξ7}, {Ξ1, Ξ3, Ξ4, Ξ5, Ξ6}, {Ξ1, Ξ3, Ξ4, Ξ5, Ξ7},
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{Ξ1, Ξ3, Ξ4, Ξ6, Ξ7}, {Ξ1, Ξ3, Ξ5, Ξ6, Ξ7}, {Ξ2, Ξ3, Ξ4, Ξ5, Ξ7},
{Ξ2, Ξ3, Ξ4, Ξ6, Ξ7}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5 + α1Ξ6},
{Ξ1, Ξ3, Ξ4 + a1Ξ6, Ξ5, Ξ7}, {Ξ1, Ξ2 + α1Ξ5, Ξ3, Ξ4, Ξ6},
{Ξ1, Ξ2 + α1Ξ6, Ξ3, Ξ4, Ξ5}, {Ξ1, Ξ2 + a1Ξ7, Ξ3, Ξ4, Ξ5},
{Ξ1, Ξ2 + a1Ξ7, Ξ3, Ξ4, Ξ6}, {Ξ1, Ξ2 + α1Ξ6, Ξ3, Ξ4, Ξ5 + a1Ξ6}},

Θ6 ≡ {{Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ6}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ7}, {Ξ1, Ξ2, Ξ3, Ξ4, Ξ6, Ξ7},
{Ξ1, Ξ3, Ξ4, Ξ5, Ξ6, Ξ7}, {Ξ1, Ξ2 + a1Ξ7, Ξ3, Ξ4, Ξ5, Ξ6}}.

with α1 = ±1 and a1, a2 ̸= 0.
In this case, however, SymboLie returns two additional representative families in

the one-dimensional optimal system. It will be a task for future work to determine
whether these two representatives are indeed unmappable to the remainders.
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