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Abstract: The Fermi–Dirac and Bose–Einstein statistics are considered to be key concepts in quantum
mechanics, and they are used to explain the occupancy limit of electron orbitals. We investigate the
physical origin of these two statistics and uncover that the key determining factor is whether an
individual electron spin is measurable or not. Microscopically, a system with individually measurable
electron spins corresponds to the presence of Larmor spin precession in electron–electron interactions,
while the non-measurability of individual electron spins corresponds to the absence of Larmor spin
precession. Both interaction types are possible, and the favored interaction type is thermodynamically
determined. The absence of Larmor spin precession is realized in coherent electron states, and
coherent electrons therefore obey Bose–Einstein statistics.

Keywords: electron statistics; fermions; bosons; exclusion principle; spin correlation; electron
coherence; Darwin Lagrangian

1. The Historic Origin of Electron Statistics Rules

Until the dawn of quantum mechanics, physics was irrelevant to chemistry. This
situation changed dramatically with the introduction of quantum mechanics: the accurate
calculation of electron binding energies has been quantum mechanics’ main success, thus
being able to clarify why fluorine takes an electron from lithium and not vice versa. This
capability of binding energy calculations has eventually established quantum mechanics as
a practical tool for the predictive modeling of chemical reactions.

However, the calculation of electron binding energies explains only half of chemistry;
the remaining challenge 100 years ago was to explain the phenomenological observation
that only two electrons can occupy any given atomic or molecular orbital. This electron
occupancy limiting rule has become known as the exclusion principle.

Phenomenological formulation of the exclusion principle, proposed by Pauli in the
1920s: only one electron may occupy any quantum mechanical state, where the electron
states are defined using four quantum numbers: principal quantum number (n), azimuthal
quantum number (l), magnetic quantum number (m), and spin quantum number (s).

The above-formulated spin quantum number assignment was motivated by the ob-
servation of oppositely oriented spins of the electrons occupying an atomic orbital. When
two electrons have different spin quantum numbers, they are said to be isotropically spin-
correlated (ISC) into opposite directions: a spin measurement made in an arbitrary direction
on one of the electrons allows us to predict with certainty the spin value of the other electron
for the same direction. In other words, isotropic electron spin correlation is an observed
precondition for the two-electron occupancy of a quantum mechanical orbital.

In each quantum mechanical state, the wavefunction forms a standing wave, and the
state is characterized by a well-defined energy eigenstate. This energy eigenstate condition
requires isotropic spin correlation among the electrons occupying a given state; otherwise,
the apparent spin interaction energy would depend on the spin measurement direction,
and there would not be a well-defined energy eigenstate. The presence of ISC electron
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states thus follows from the energy eigenstate condition, and the challenge is to understand
what limits the number of ISC electrons occupying a given quantum mechanical state.

Those quantum mechanical systems where the exclusion principle applies are said
to obey Fermi–Dirac statistics, while quantum mechanical systems without the exclusion
principle are said to obey Bose–Einstein statistics.

Aiming to derive the exclusion principle, Pauli proposed in the 1940s a spin-value-
based distinction between Fermi–Dirac and Bose–Einstein statistics, but his arguments
do not apply to spin-correlated particle pairs. The thousands of articles on the subject of
“non-locality” attest that ISC states do not obey the principle of microcausality, which is
at the core of Pauli’s logic [1]. The exclusion principle has thus essentially remained in a
postulate status.

2. Coherent versus Incoherent Electron States

Let us introduce the following classification of electron states:

• N electrons are said to be in a coherent state if all quantum numbers of each electron
are the same, i.e., they are all in the same quantum mechanical state.

• N electrons are said to be in a incoherent state if each electron is in a different quantum
mechanical state.

In a hypothetical coherent state, each involved electron is part of exactly the same
quantum mechanical wave. In such a coherent state, individual electron properties may
be measured only by such methods that resolve much shorter distances than the quan-
tum mechanical wavelength; for example, the Compton scattering of radiation with a
femtometer-scale wavelength still happens from individual electrons. But, any lower-
resolution measurement on coherent electrons is a simultaneous measurement on all
involved electrons.

In an incoherent state, each involved electron comprises a different quantum me-
chanical wave. In principle, it may be possible to measure individual electron properties
by low-resolution measurements that resolve a longer-distance scale than the quantum
mechanical wavelength.

In the following, we shall explore the applicable electron statistics for the above-
defined incoherent versus coherent state classes.

3. Spin Correlations between Particles Occupying Different Orbitals

Isotropic spin correlation is observed not only for electrons sharing the same or-
bital but also for electrons in different orbitals. For example, the ground-state oxygen
molecule is the so-called “triplet oxygen”: it has two electrons occupying two distinct π∗

orbitals (anti-bonding orbital), and these two electrons are isotropically spin-correlated into
parallel directions.

Isotropic spin correlation is observed between the nuclei comprising a molecule. For
example, the hydrogen molecule has two nuclear spin isomers: the two protons of “ortho-
hydrogen” are isotropically spin-correlated into parallel directions while the two protons
of “para-hydrogen” are isotropically spin-correlated into opposite directions. This system
is significant because the two nuclei are well separated in space; the individual spin state
of each proton is thus measurable, in principle.

Isotropic spin correlation is observed between a bound electron and a nucleus: such
an interaction generates the hyperfine split of the electron’s binding energy. Isotropic spin
correlation is also observed between a delocalized unpaired electron and a nucleus: such
an electron–nucleus spin interaction shows up in NMR measurements, contributing to the
Knight shift in metals.

In all observations, ISC always occurs pair-wise, i.e., the ISC of N > 2 particles
is never observed. Table 1 illustrates this effect for the simplest atoms: an electron is
either spin-correlated to an other electron or to a nucleus but never to both at the same
time. Whether we look at particles sharing the same orbital or particles occupying different
orbitals, we thus observe exactly the same phenomenology of strictly pair-wise ISC coupling.
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This suggests the same origin of the ISC coupling limit, and we therefore look for a
unifying principle. Taking the example of hydrogen spin isomers, it is obvious that Pauli’s
microcausality arguments do not apply to well-separated nuclei, and it is also obvious that
there would be nothing anti-symmetric about the exchange of two separated nuclei.

Table 1. The pattern of spin correlations between electrons and the nucleus.

p+ + e−

(H)
p+ + 2e−

(H−)

3He2+ + e−

(He+)

3He2+ + 2e−

(He)

Hyperfine split yes no yes no
ISC electrons - yes - yes

We approach the challenge of finding a unifying principle by firstly considering what
spin measurement really means. It is well known by the operators of electron spin resonance
(ESR) and nuclear magnetic resonance (NMR) equipment that the particle whose spin they
measure is in a Larmor spin precession. Specifically, the magnetic moment vector generated
by the particle’s spin is Larmor precessing around the externally applied magnetic field
lines. This Larmor spin precession’s angular frequency is [2]

ωL =
gµB

h̄
B

where B is the applied magnetic field strength, µB is the Bohr magneton, and g ≈ 1 + α
2π

is the gyromagnetic ratio of the electron spin. We note that the Larmor spin precession’s
frequency is half of the ωesr “electron spin resonance” frequency [3]: ωesr = 2ωL. The ωesr
value is the experimentally measurable frequency of resonant flipping between the parallel
and anti-parallel spin precession orientations with respect to a sinusoidally varying applied
magnetic field. A consequence of the Larmor spin precession phenomenon is that the
measured h̄

2 spin angular moment, measured via an applied B field, is only the component
of the total angular momentum vector that is pointing along the applied B field.

Is there a principal difference between the magnetic field applied by an external
apparatus and the magnetic field applied by an external particle? Taking the example of a
hydrogen molecule, the magnetic field applied onto the proton by another particle 74 pm
away is principally not different from the magnetic field applied by an external apparatus.
Taking the example of Knight shift measurements, the magnetic field applied onto the
proton by a macroscopically delocalized electron wave is principally not different from the
magnetic field applied by an external apparatus. It is clear from these examples that the
magnetic field of one particle induces a Larmor spin precession of the other particle, i.e.,
each particle of the involved ISC pair undergoes Larmor spin precession. This concept is
illustrated in Figure 1 for a hydrogen molecule’s two protons: the two proton spins are
aligned on the average, while their actual magnetic moment is in a precession. One may
observe in Figure 1 interesting coupling dynamics for the x component of the spin, where
the x axis connects the two protons. Taking the magnetic moment vector of the left proton
to point toward the right proton, the right proton perceives a magnetic field pointing along
the x axis, and its magnetic moment vector will thus be in a precession around the x axis.
In turn, the left proton perceives a magnetic field coming at an angle with respect to the x
axis, causing a tilted precession cone that rotates in sync around the x axis while the actual
magnetic moment vector remains aligned with the x axis. In essence, the entire magnetic
field configuration depicted in Figure 1 is rotating around the x axis. Similar coupling
dynamics can be worked out for the y and z spin directions.

For the purpose of our analysis, we do not need to know details of spin precession
dynamics because, in the following, we shall work with the time-averaged spin measure-
ments of an ISC pair. The key point is the presence of Larmor spin precession and the
individual measurability of particle spins.
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Figure 1. An illustration of two protons’ Larmor spin precession in a hydrogen molecule. Each proton
perceives the other proton’s magnetic field (directed red curves) as an externally applied magnetic
field and Larmor spin-precesses (cones with arrow) around the external magnetic field line.

We established through the above examples that the isotropic spin correlation of
separated particles involves Larmor spin precession. At the same time, each involved
particle has a principally measurable spin state, and thus we can investigate the origin of
strictly N = 2 coupling by taking into account the fact of individually measurable spin states.

4. Isotropic Spin-Coupling Limit for Incoherent Electron States

Considering the phenomenologically observed pair-wise ISC coupling limit, regardless
of the involved particles being on the same orbital or not, the question arises as to whether
the two electrons sharing the same orbital might also be in Larmor spin precession with
respect to the magnetic field generated by the other particle’s spin. In the case of an
antibonding molecular orbital, its two electrons have a large spatial separation distance
because their wavefunction overlap region is mostly empty; therefore, these separated
electrons again perceive the magnetic field of the other electron as an external field. In
turn, this implies Larmor precession and an individually measurable spin state for two ISC
electrons occupying an antibonding molecular orbital.

Let us finally consider an incoherent electron pair sharing the same bonding orbital:
their wavefunctions overlap, and Zeeman split measurements yield the zero sum of the
two oppositely oriented spins. Nevertheless, it may be possible to individually measure
each electron’s spin state by firstly separating them in such a way that does not disrupt
their spin state and then measuring each electron’s spin state. The principal feasibility
of such an individual electron spin state measurement is demonstrated by reference [4],
whose authors studied the molecular photo dissociation of H2 and D2 under linearly
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polarized incident light, employing 33.66 eV photon energy. They measured the angular
correlation function of electromagnetic Lyman-alpha radiation produced by the resulting
atom pair in order to find out whether the atom pair is entangled or not. The authors of [4]
conclude that an entangled electron pair is produced through the photo dissociation of
a hydrogen molecule, and this entanglement originates from their molecular state. The
results of [4] thus demonstrate that it is principally possible to photo-dissociate a bonding
orbital occupying electron pair, without breaking their entanglement, and then measure
their individual spin state.

Up to now, we have established that electrons occupying incoherent states can be
always treated as electrons with individually measurable spin states. In the following, we
consider the implications of individual spin measurability. By definition, N electrons are
said to be isotropically spin-correlated (ISC) if a measurement made in an arbitrary direction
on one of the particles allows us to predict with certainty the spin value of each of the other
N − 1 particles for the same direction.

Theorem 1. Incoherent ISC states exist only for N = 2.

Proof. The idea of the following proof originates from Eugene Wigner, and it has been
adapted by Paul O’Hara for proving the Pauli exclusion principle [5,6]. The logic of the
following proof requires that each electron’s spin state is individually measurable. For this
reason, it only applies to incoherent states, where the electron wavefunctions are different.

Essentially, to show that ISC states exist only for N = 2, it is sufficient to prove that
it is impossible to have three such particles. The impossibility of three ISC particles also
excludes the possibility of N ≥ 3 ISC particles.

Suppose that an ISC state exists for N = 3. We demonstrate in the following para-
graphs that this assumption leads to a mathematical contradiction.

In the interest of clarity, assume without loss of generality that the three ISC particles
are such that they are detected to be in (+,+,+) correlation for an arbitrary measurement
direction. Later, we will generalize the proof to any other correlation type. Define the x axis
along this arbitrary direction and define the z axis in any orthogonal direction to x. We will
perform further spin measurements in the x − z plane. Spin measurements in orthogonal
directions are statistically independent. Although we know a given particle spin to be
|+⟩ along the x axis, a subsequent spin measurement along the z axis of the apparatus
gives a 1

2 probability of measuring the |−⟩ state. In general, a spin state in direction 2θ
with respect to the x axis, given that it is in the state |+⟩ with respect to the x axis, can be
constructed from the rotation R and is given by R|+⟩ = cos θ|+⟩ − sin θ|−⟩. Therefore,
in direction 2θ, the probability of measuring the |+⟩ state is cos2 θ and that of measuring
|−⟩ is sin2 θ. Taking the (x, 2θ) direction with respect to two spin-correlated particles, the
joint probabilities are P(+,+) = 1

2 cos2 θ and P(+,−) = 1
2 sin2 θ. Similarly, for the ket

|−⟩, R|−⟩ = sin θ|+⟩ + cos θ|−⟩ and the joint probabilities are P(−,−) = 1
2 cos2 θ and

P(−,+) = 1
2 sin2 θ. In principle, if three ISC particles exist, a sequence of spin-correlated

measurements in the directions 2θ1, 2θ2, 2θ3 can be performed on the three entangled
particles. Let (s1(θ1), s2(θ2), s3(θ3)) represent each particle’s observed spin values in the
three different directions. Recall that the above-stated spin correlation implies that if any
particle is measured to be in the si(θi) = |+⟩ spin state, the probability of measuring
another particle in the sj(θj) = |−⟩ spin state becomes 1

2 sin2(θj − θi
)
.

Given that sn(θn) = |±⟩ for each n, there exists only two possible values for each
measurement, which we associate with “spin-up” and “spin-down”, respectively. Hence,
for three measurements, there are a total of eight possibilities. In particular,

{(+,+,−), (+,−,−)} ⊂ {(+,+,−), (+,−,−), (−,+,−), (+,−,+)}

implies the following probability relationship:

P{(+,+,−), (+,−,−)} ≤ P{(+,+,−), (+,−,−), (−,+,−), (+,−,+)}
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Consider the meaning of various subsets in the above inequality:
The {(+,+,−), (+,−,−)} subset is interpreted as follows: we measured the spin of

particle 1 to be in |+⟩ state and particle 3 to be in |−⟩ state. The corresponding probability
is 1

2 sin2(θ3 − θ1).
The {(+,+,−), (−,+,−)} subset is interpreted as follows: we measured the spin of

particle 2 to be in |+⟩ state and particle 3 to be in |−⟩ state. The corresponding probability
is 1

2 sin2(θ3 − θ2).
The {(+,−,−), (+,−,+)} subset is interpreted as follows: we measured the spin of

particle 1 to be in |+⟩ state and particle 2 to be in |−⟩ state. The corresponding probability
is 1

2 sin2(θ2 − θ1).
Substituting the above terms into the above inequality, we arrive at

1
2

sin2(θ3 − θ1) ≤
1
2

sin2(θ3 − θ2) +
1
2

sin2(θ2 − θ1)

which is Eugene Wigner’s interpretation of Bell’s inequality. Taking θ3 − θ2 = θ2 − θ1 = π
6

and θ3 − θ1 = π
3 gives 1

2 ≥ 3
4 , which is a contradiction. Therefore, three particles cannot all

be in the same spin state with probability 1.

We note that the specific value of electron spin plays no role in the proof of Theorem 1,
which indicates the irrelevance of Pauli’s spin-value-based classification.

The real reason behind the exclusion principle is the isotropic spin correlation require-
ment of eigenstate-occupying electrons, along with the impossibility of more than two such
electrons in the case of individually measurable spins.

Remark 1. The proof of the above theorem was worked out for (+,+,+)- or (−,−,−)-type spin
correlation. To generalize the proof, suppose that the ISC particles are measured to be (+,−,+)
along an arbitrary measurement direction. Then, the spin outcomes in the three different directions
θ1, θ2, θ3 can be written as

{(+,−,−), (+,+,−)} ⊂ {(+,−,−), (+,+,−), (−,−,−), (+,+,+)}

Essentially, this means that we flipped the |+⟩ to |−⟩ to represent the state of particle 2. Apply-
ing the same probability argument as before, but noting that
P{(+,−,−), (−,−,−)} = 1

2 cos2(θ3 − θ2), the inequality becomes

1
2

sin2(θ3 − θ1) ≤
1
2

cos2(θ3 − θ2) +
1
2

cos2(θ2 − θ1)

Then, taking θ3 − θ2 = θ2 − θ1 = π
2 − π

6 and θ3 − θ1 = π − π
3 gives, as before, 1

2 ≥ 3
4 ,

which is a contradiction.

5. Spin Statistics for Coherent Electron States
5.1. A Review of the Darwin Lagrangian

In this section, we shall make use of the so-called Darwin Lagrangian, which we
therefore briefly review. The Darwin Lagrangian is well known for modeling the interaction
among a large number of massive charged particles. It is defined as follows:

LD =
N

∑
a=1

{
1
2

mav2
a +

1
2
[eAa(ra) · va − eaϕa(ra)]

}
(1)

where ra is the vectorial position of a given particle, ea is its charge value, va is its velocity,
and ma is its mass. Aa(ra) and ϕ(ra) are the vector potential and Coulomb potential at
position ra, and N is the total number of interacting particles.

The Coulomb potential ϕa(ra) is given by
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ϕa(ra) =
N

∑
b ̸=a

eb
rab

where rab = |rab| = |rb − ra| is the Euclidean distance from other particles.
Particles a and b moving parallel to their distance vector have no magnetic interaction,

and consequently only the vb⊥ component of the charge velocity vector shall contribute to
the vector potential at ra:

vb⊥ = vb − (vb · ruab)ruab

where vb is the charge velocity vector, vb⊥ is its orthogonal component to the distance
vector rab, and ruab = rab

rab
is the unit length vector.

The Aab(ra) vector potential contribution of particle b is therefore given by

Aab(ra) =
ebvb⊥

rab
=

=
eb[vb − (vb · ruab)ruab]

rab

We note that Aba · vb = Aab · va.
In the above equations, Aab is the contribution of particle b to the vector potential Aa.

The overall vector potential Aa at ra is the sum of contributions by all other particles:

Aa(ra) =
N

∑
b ̸=a

Aab(ra) =
N

∑
b ̸=a

eb[vb − (vb · ruab)ruab]

rab
(2)

The Aa and ϕa terms are halved in the Darwin Lagrangian in order to avoid a
double counting of contributions to the collective interaction potential, considering that
Aab · va = Aba · vb and ϕab = ϕba.

5.2. A Brief Review of Electron Zitterbewegung

The existence of electron Zitterbewegung was first suggested by De Broglie, who pro-
posed the mc2/h oscillation frequency named after him, which was then directly described
as a light-speed oscillation by Schrödinger. References [2,6] present an experimentally
validated Zitterbewegung model of the electron structure. As shown in [2,6], the electron
spin is generated by its circular Zitterbewegung oscillation. This idea of the electron spin
being generated by circular Zitterbewegung oscillation has a long history; reference [7]
presents a thorough discussion of this topic. The Thomson scattering phenomenon is
electron–light interaction in the low-photon-frequency limit: it measures the electron’s
“reduced Compton radius” size, which corresponds to the radius of light-speed charge
circulation at the mc2/h frequency.

We now demonstrate that the electron’s quantum mechanical wavelength is in fact
the Lorentz-transformed spatial component of its Zitterbewegung oscillation. Consider
an electron moving at kinetic speed v. In relation to light-speed, its speed is characterized

by β = v
c , γL =

(
1 − β2)− 1

2 and rapidity w defined as γL = cosh w. It follows that
cosh2 w − sinh2 w = 1, tanh w = β, and sinh w = γLβ.

In the electron’s rest frame, its Zitterbewegung is a time-wise oscillation. A relativistic
boost rotates the time and space axes into each other according to the following hyperbolic
rotation matrix: (

ct′

x′

)
=

(
cosh w − sinh w
− sinh w cosh w

)(
ct
x

)
Therefore, the time-wise Zitterbewegung oscillation of the rest frame acquires a spatial

oscillation component in the boosted reference frame. Specifically, the Zitterbewegung

frequency of the rest frame is ω
2π = m0c2

h , and this is commonly referred to as the De
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Broglie frequency. The quantum mechanical wavenumber of the rest frame is k0 = 0. The
corresponding wavenumber in the boosted frame is

k
2π

=
ω

2π

sinh w
c

− k0 cosh w =
ω

2π

sinh w
c

Evaluating the right side of the above equation, we obtain

k
2π

=
m0c2

h
γLv
c2

Rearranging the above equation, we finally obtain

h̄k = (γLm0)v = mv = pkinetic

We recognize the above result as the basic postulate of quantum mechanics. However,
it no longer needs to be a postulate: the appearing quantum mechanical wave is simply the
Lorentz-transformed component of the electron’s Zitterbewegung oscillation. In this sense,
all quantum mechanical wavelength measurements validate the Zitterbewegung structure
of the electron, with the Zitterbewegung frequency being mc2/h.

By definition, a coherent state of electrons means that they maintain the same quantum
mechanical wavelength; this implies the coherence of their Zitterbewegung phases, and
vice versa.

5.3. The Stable Equilibrium of Coherent Electron States

Considering the microscopic interaction among electrons, the Zitterbewegung La-
grangian of N interacting charges can be written analogously to the Darwin Lagrangian,
but replacing the kinetic electron speed with the light-speed Zitterbewegung speed vec-
tor c. Specifically, the Zitterbewegung Lagrangian must include the contributions of all
other charges:

LN = −
N

∑
a=1

[ea Aa · ca − eaVa] = 0 (3)

where LN = 0 is the condition for stable equilibrium. In the above equation, A is the
vector potential generated by electrons’ Zitterbewegung rotation at light speed while V is
the Coulomb potential at their charge surface. In the following, we use c = 1 natural units
notation for convenience. Calling rec the electron charge radius, re the Zitterbewegung
radius, me the electron mass, ωe the Zitterbewegung angular speed, and c the charge
velocity vector in a vacuum, we relate these values to each other in natural units notation:

V =
e

rec
=

e
αre

=
1

ere

A =
ec
αre

=
c

ere

where α is the electromagnetic fine structure constant.
The relativistic momentum of the electron charge is always given by eAa = maca.

Calling mo the electron rest mass, the kinetic energy term of any given electron can be
written as

eAa · ca = maca · ca = ma = γm0 =
m0√
1 − v2

a
≃ m0 +

1
2

m0v2
a (4)

The above result means that the ea Aa · ca term already incorporates the electron kinetic
energy. Equation (3) therefore gives the complete Lagrangian equation: unlike in the
classical Darwin Lagrangian case, there is no additional 1

2 mav2
a term.
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Using LN = 0 as the condition for a stable equilibrium, we shall demonstrate the
existence of a coherent state of N electrons as a stable equilibrium state.

Theorem 2. In the absence of noise, N coherent electrons may form a stable equilibrium state.

Proof. When N = 1, the Lagrangian expression becomes La = −[ea Aa · ca − eaVa].
La is always zero as a consequence of the two Aharonov–Bohm equations that relate
the Zitterbewegung rotation phase φ to the electromagnetic potentials. To see this, let
us calculate the differential dφ term, keeping in mind that the Zitterbewegung phase is
equivalent to the quantum mechanical wavefunction’s phase.

On the one hand, the dφ phase change can be calculated from the magnetic Aharonov–
Bohm equation:

dφ = ea Aa · dl = ea Aa · cadt

On the other hand, the same dφ phase change can be calculated from the electric
Aharonov–Bohm equation:

dφ = eaVadt

Dividing the above two equations by dt, we can equate them. Consequently,

La = −[ea Aa · ca − eaVa] = 0 (5)

ea Aa · ca = eaVa

The above result means that each individual electron’s total energy is the same as the
potential energy on the surface of its electric charge.

We now evaluate Aa(ra) and Va(ra) for N interacting electrons:

Aa(ra) =
eaca

αrea
+

1
2 ∑

i ̸=j

ebcb⊥
rab

= (6)

=
eaca

αrea
+

1
2 ∑

a ̸=b

eb[cb − (cb · ruab)ruab]

rab

Va(ra) =
ea

αrea
+

1
2 ∑

a ̸=b

eb
rab

(7)

In both of these last two equations, the first terms are the self-interaction contributions.
In Equation (6), the cb⊥ component of the charge velocity vector cb is orthogonal to the
distance vector rab. Analogously to the Darwin Lagrangian case, only this cb⊥ component
will contribute to the value of the vector potential Aa(ra).

The ea Aa · ca and eaVa terms of Equation (3) can now be calculated as follows:

ea Aa · ca =
e2

a
αrea

c2
a +

1
2 ∑

a ̸=b

eaeb[cb − (cb · ruab)ruab] · ca

rab

eaVa =
e2

a
αrea

+
1
2 ∑

a ̸=b

eaeb
rab

where e2
a = α and c2

a = 1.
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Since all charged particles are electrons, it is possible to write their charges as eaeb = α,
and the expression for LN becomes

LN = −
N

∑
a=1

[
e2

a
αrea

c2
a −

e2
a

αrea
+

1
2 ∑

a ̸=b

α[ca · cb − (ca · ruab)(cb · ruab)− 1]
rab

]
(8)

Considering that the charge speed is always c = 1, the first two terms of the above
expression cancel out. Equation (8) therefore simplifies to

LN = −1
2

N

∑
a=1

∑
a ̸=b

α[ca · cb − (ca · ruab)(cb · ruab)− 1]
rab

This LN Lagrangian is zero (i.e., minimized) for a collection of coherent electrons
where the Zitterbewegung phase is the same for all electron charges, and their Zitterbewe-
gung planes are parallel to each other. In this case, ca · cb = 1, and ca · ruab = cb · ruab = 0.
The LN = 0 result directly follows from these conditions, and therefore the phase-coherent
state of electrons is a stable equilibrium state. The proof of Theorem 2 is thus complete.

Figure 2 illustrates this microscopic constellation of coherent electrons. We emphasize
that the position of coherent electrons is stable only with respect to each other but remains
undetermined with respect to the laboratory frame: each delocalized electron forms a
standing wave, and their positions are distributed within the standing wave. While Figure 2
illustrates a single direction of motion, bound electron states involve a superposition of
this picture along all three spatial axes. This point is demonstrated by the derivation
of the Schrödinger equation in reference [8], which starts from the Lagrangian given
by Equation (5).

Figure 2. An illustration of electrons’ coherent state. The dotted line represents the shared Zitterbe-
wegung axis, the ellipses represent the 0.386 pm radius Zitterbewegung trajectories, and the blue
spheres represent the electron charges. Each electron has the same momentum, and their kinetic
speed vectors point along the Zitterbewegung axis.

The above results directly show the absence of Larmor spin precession in coherent
electrons’ equilibrium planes; the involved Zitterbewegung planes remain parallel to each
other. Since all coherent electrons are part of the exact same quantum mechanical wave,
individual electron spin measurement is impossible. The LN = 0 condition of Equation (8)
allows for adding any number of electrons, and therefore we conclude that coherent
electrons obey Bose–Einstein statistics.

Recalling that any electron’s momentum is given by ea Aa, we can write down the
Hamiltonian that corresponds to LN :

HN =

[
N

∑
a=1

ea Aa · ca

]
−LN =

N

∑
a=1

ea Aa · ca − [ea Aa · ca − eaVa] (9)
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HN =
N

∑
a=1

eaVa

where we use Equation (3) for evaluating LN .
The obtained Hamiltonian expression is rather simple. According to Equation (7),

Va is minimized when the coherent electrons are as far apart as possible. The various con-
stellations of inter-electron distances can be understood analogously to atomic orbitals: all
atomic orbitals are equilibrium states, and the ground-state orbital is the energy-minimizing
equilibrium state. Therefore, in the energy-minimizing coherent state, N electrons maximize
their distance—within the constraints of their enclosure.

One may also calculate the action function corresponding to LN : this calculation
can be found in reference [8] for the N = 1 case, and it shows that the action function
corresponds to the Schrödinger equation.

6. Is Superconductivity the Realization of Coherent Electron States?
6.1. The Bose-Einstein condensed state of superconducting electrons

A superconductor is defined by its ability to conduct electric current without any
measurable resistance below a certain critical temperature (Tc). Since electric resistivity
originates from scattering on crystal defect sites, superconducting electrons must have the
ability to pass through the superconducting material without any scattering on such defect
sites. The simplest way to achieve such an effect is to add and remove those conduction-
band electrons whose wavefunction has a macroscopically large wavelength. Such a large
wavelength no longer scatters on defect sites because of the many orders of magnitude
mismatch with respect to the inter-nuclear distance. This simplest model naturally suggests
some delocalized electrons’ Bose–Einstein condensation, which then accumulate in the
lowest-lying delocalized states.

Despite the above outlined natural match between superconductivity phenomena
and Bose–Einstein condensation, and despite overwhelming experimental evidence of
some form of electron coherence, superconductivity theorists refused to consider Bose–
Einstein condensation-based models in the past. Historically, theorists have focused on
constructing a phenomenological Hamiltonian, which has become known as the BCS theory
of superconductivity. This BCS Hamiltonian was initially formulated over 60 years ago.
The author of [9] emphasizes that BCS theory is phenomenological, and as such it does not
yet provide any physical explanation: “We have all been taught that it [the BCS theory]
is a marvellous success of quantum theory, accounting for persistent currents, Meissner
effect, isotope effect, Josephson effect, etc. Yet on examination one realizes that the model
Hamiltonian is phenomenological, chosen not from first principles but from trial-and-error
so as to agree with just those experiments. Then in what sense can one claim that the BCS
theory gives a physical explanation of superconductivity? Surely, if the Meissner effect did
not exist, a different phenomenological model would have been invented, that does not
predict it; one could have claimed just as great a success for quantum theory whatever the
phenomenology to be explained”. This phenomenological BCS theory’s critical review can
be found in [10].

At present, the Bose–Einstein-condensed state of superconducting electrons is receiv-
ing gradual recognition as a proper physical explanation of superconductivity phenom-
ena [11,12]. In particular, reference [12] presents an experimentally matching superconduc-
tivity model via a thermodynamic analysis of Bose–Einstein condensates.

The key relevance of spin interactions to superconductivity has been recognized by
the authors of references [11,13]. As can be seen in Figure 3, a correlation between the
superconducting temperature Tc and spin fluctuation temperature TSF is established over a
very wide temperature range and across various superconductor families. The correlation
depicted in Figure 3 is called the Moriya–Ueda law. The TSF parameter is derived from the
frequency spread of spin fluctuations. Reaching a high superconducting temperature thus
requires a very dynamic re-organization of electron spin correlations.
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Figure 3. The correlation between Tc and spin fluctuation temperature TSF in various superconduc-
tors. Reproduced from [11].

6.2. Preceding Meissner Effect Models

The key role of electron coherence in superconductivity can be demonstrated via the
analysis of superconductors’ perfect diamagnetism, i.e., the Meissner effect. In the following
paragraphs, we discuss the Meissner effect in the context of BCS theory versus our theory.
While both approaches propose bosonic states of coherent electrons, the Meissner effect
explanations become radically different.

The BCS theory of superconductivity is described in reference [14]; this publication
won the Nobel prize for its authors. According to BCS theory, only short-wavelength elec-
trons near the Fermi surface have a coherent wavefunction. The authors of reference [14]
calculate the existence of a persistent diamagnetic current around the superconducting
perimeter and describe the Meissner effect as the consequence of this persistent current
circulation. As the temperature is lowered from just above Tc to just below Tc while the
superconductor is in a magnetic field, BCS theory claims that the appearance of bound
electron–phonon states causes an electromotive force that induces Meissner current circula-
tion. The main drawback of BCS theory is that circulating electrons have radial acceleration,
and therefore must radiate energy. This means that the Meissner effect must either diminish
with time or, otherwise, it must constantly draw energy from phonons, thereby cooling
the material. Both of these possibilities are contradicted by experiments, and the implied
“superconducting synchrotron radiation” also remains undetected. To remedy this issue,
BCS theorists proposed that superconducting electrons’ electromagnetic interactions are
governed by a modified Maxwell’s equation, while all other electrons interact via the
ordinary Maxwell equation. Specifically, BCS theory proposes the presence of a phonon-
related “Goldstone field” that interacts only with superconducting electrons and causes
their electromagnetic interactions to become short-range, thereby preventing circulating
electrons from emitting radiation. In other words, longitudinal phonons supposedly oscil-
late in precisely such a way that extinguishes the radiation that would otherwise be emitted
by circulating superconducting electrons. Besides lacking any supporting experimental
evidence, this Goldstone field model is also contradicted by the work of Pierre-Gilles de
Gennes, who proposed that the Meissner effect minimizes the total energy of the system,
where the magnetic energy density is given by the usual 1

2µ0
B2 expression, without any

modifications [15].
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6.3. The London Equation

In contrast to the above-outlined complex theories, we employ simple thermodynamic
considerations. Bose–Einstein-condensed electrons start accumulating at the longest wave-
lengths, where the energy gain of multi-electron state occupancy is the highest. Let us
consider what the thermodynamic equilibrium looks like in a superconducting material,
immersed in an external magnetic field. Perfect diamagnetism means that the magnetic
energy density is zero in the interior. In contrast, there is magnetic energy density ϱm in the
exterior, while superconducting electrons’ translational kinetic energy density ϱk is zero in
that region. The challenge is to understand what happens in the transitional surface region
between the exterior and interior zones, where ϱm and ϱk are both non-zero.

Anywhere in the surface region, magnetic energy density is given by

ϱm =
1

2µ0
B2 (10)

The kinetic energy density of superconducting electrons is

ϱk =
me f f

2
v2

s ns (11)

where ns is the density of superconducting electrons, me f f is their effective mass, and vs is
their velocity. The corresponding current can be written as

J = evsns

Maxwell’s equation defines the relationship between J and B:

µ0 J = ∇× B

Substituting the above two equations into (11), we express kinetic energy density in
terms of magnetic field:

ϱk =
me f f

2e2µ2
0ns

(∇× B)2 (12)

Using Equations (10) and (12), we can express the total energy density as a function of
magnetic field:

ϱ(B) = ϱm + ϱk =
1

2µ0
B2 +

me f f

2e2µ2
0ns

(∇× B)2 (13)

Theorem 3. The magnetic field configuration of a superconducting surface region minimizes the
total energy of the system.

Proof. The following proof originates from the idea of Pierre-Gilles de Gennes, who pro-
posed that the London equation describes the energy-minimizing magnetic field configura-
tion, but without proving this proposition [15]. As far as the authors know, all citations
of de Gennes’ work just replicate this proposition, but always without proof. Our proof
therefore represents the first mathematically complete derivation of the London equation.
Suppose that there is a disturbance of or variation in the stationary magnetic field; we
denote this magnetic field variation as vector field G. The derivative of energy density with
respect to infinitesimal magnetic field variations is

ϱ′(B, G) =
∂

∂ε
ϱ(B + εG) |ε→0 (14)

We now evaluate the above differential by substituting Equation (13):

ϱ′(B, G) =
1

µ0
(B · G) +

me f f

e2µ2
0ns

(∇× B) · (∇× G) (15)
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where we obtained the last term by switching the order of the two differential operators:

∂

∂ε
(∇× (B + εG)) = ∇× ∂

∂ε
(B + εG) = ∇× G

The thermodynamic equilibrium requires that the total system energy remains invari-
ant with respect to small changes in the magnetic field, i.e., the system occupies the lowest
energy state:

ˆ

Ω

ϱ′(B, G) dV = 0

for any choice of G, keeping in mind that the variational field G vanishes at the boundary.
The above equilibrium requirement also guarantees that the superconducting-to-normal
phase transition is reversible, which is compatible with calorimetric measurements. Substi-
tuting Equation (15) into the above equilibrium requirement, we obtain

ˆ

Ω

[
1

µ0
(B · G) +

me f f

e2µ2
0ns

(∇× B) · (∇× G)

]
dV = 0

We use the
´

Ω(∇× B) · (∇× G) dV =
´

Ω(∇× (∇× B)) · G dV identity, which is
proven in Appendix A. Note that we substituted ∇× B for the vector field F that is used in
Appendix A. The above equation can therefore be written as

ˆ

Ω

[
1

µ0
B +

me f f

e2µ2
0ns

∇× (∇× B)

]
· G dV = 0

Since the above equation must remain zero for any choice of G, the equilibrium
condition is given by

B +
me f f

µ0nse2 ∇× (∇× B) = 0 (16)

which is known as the London equation. Our simple derivation shows that the London
equation solves for the lowest energy state.

Since magnetic fields have zero divergence, we obtain ∇× (∇× B) = −∇2B, and the
London equation may be written as

∇2B =
µ0nse2

me f f
B (17)

The solution of the above equation is a B = B0e−x/λL -type exponential decay of B
from the surface toward the interior, over the characteristic distance λL:

1
λL

=

√
ns

µ0e2

me f f
(18)

6.4. The Microscopic Structure of Meissner Flows

The above derivation of the London equation is generically formulated, and one may
ask why it does not apply to ordinary metals. The traditional answer has been that ϱk
represents a translational motion that loses energy in ordinary metals but does not lose
energy in superconductors. However, such an answer is wrong because it leads to the above-
discussed paradox of missing synchrotron radiation. Consequently, ϱk must represent
microscopic circular flows; these flows correspond to some quantum mechanical ground
state that cannot lose kinetic energy via radiation. Figure 4 illustrates this microscopic
Meissner flow structure. In ordinary metals, the incoherent Fermi sea wavefunctions
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comprise standing wave modes; these standing waves do not have any degree of freedom
for a microscopic oscillation as shown in Figure 4.

As discussed at the end of Section 5, coherent electron states are occupied by a large
number of electrons, and their inter-electron distances may vary while maintaining their
coherent state. This opens up a new degree of freedom for microscopic oscillations: the
density of coherent electrons can fluctuate around positively charged nuclei.

Figure 4. An illustration of vortices that comprise the Meissner flow. The externally applied magnetic
field (B) is represented by the arrow.

Finally, we may calculate the radius of Meissner flow vortices. A microscopic circular
flow can be modeled as a density oscillation of coherent electrons in the x and y directions,
with a π

2 phase between them. The electron density oscillation around fixed positive
charges is a so-called Langmuir oscillation, and its angular frequency ωL is derived as
follows. Suppose that the density of superconducting electrons has a variation δns from the
mean, and the average flow speed of these electrons is v. The continuity condition along
the x direction becomes

∂(δns)

∂t
= −ns

∂v
∂x

(19)

Taking the time differential of the above equation, we obtain

∂2(δns)

∂t2 = −ns
∂

∂t
∂v
∂x

= −ns
∂

∂x
∂v
∂t

(20)

The electron density variation δns generates an electric field E according to
Poisson’s equation:

∂E
∂x

= − e
ε0

δns (21)

The generated E field changes the momentum of superconducting electrons:

me f f
∂v
∂t

= −eE (22)

where me f f is the effective electron mass. Substituting Equations (21) and (22) into (20), we
obtain a wave equation for δns:

∂2(δns)

∂t2 =
ens

me f f

∂E
∂x

= − e2ns

ε0me f f
δns (23)

This wave equation is solved by the oscillatory motion of superconducting electrons
at the following angular frequency:
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ωL =

√
e2ns

ε0me f f

An analogous analysis for the y direction yields the same frequency. This angular
frequency ωL is the natural oscillation frequency of superconducting electrons. We notice
that ωL can be expressed in terms of the London penetration depth parameter, which is
given by Equation (18):

ωL =
√

c2

√
ns

µ0e2

me f f
=

c
λL

(24)

This remarkable relationship demonstrates that ϱk corresponds to superconducting
electrons’ Langmuir oscillation. Such oscillations in the x and y directions result in a vortex
motion of superconducting electrons, which generates their diamagnetic response. Since
this vortex is in a quantum mechanical ground state, the involved angular momentum is
quantized to h̄:

me f f r⟲(r⟲ωL) = h̄ (25)

where r⟲ is the Meissner vortex radius illustrated in Figure 4. We can now solve for r⟲:

r⟲ =

√
h̄

me f f ωL
=

√
h̄λL

me f f c
(26)

Using the above result, one may evaluate r⟲ for various superconducting materials.
As λL grows with increasing temperature, r⟲ also grows along.

To validate the Langmuir oscillation model of Meissner vortices, we evaluate r⟲
for two well-known superconductors. The lead material has λL(T → 0) = 52 nm and
me f f = 1.9me parameters, yielding r⟲ = 0.1 nm at low temperatures. The YBa2Cu3O6.95 ma-
terial, which is a representative high-temperature superconductor, has λL(T → 0) = 140 nm
and me f f ≈ 2.2me parameters, yielding r⟲ = 0.16 nm at low temperatures. At low temper-
atures, the 2r⟲ diameter has a similar size to the unit cell dimension of these materials.
These examples demonstrate that, at T → 0, a Meissner vortex has a similar diameter to
the unit cell size. This makes sense because these microscopic Langmuir oscillations are
centered around the positively charged Pb and Cu sites, respectively, for these materials.

In summary, the superconducting state of electrons therefore appears to be a practical
realization of the coherent-state analysis presented in Section 5. The noise-limited nature of
coherent electron states is evidenced by the low critical temperature of
most superconductors.

7. Discussion

Our results demonstrate that it is the presence or absence of Larmor spin precession in
electron–electron interactions that determines the applicable statistics. A stable quantum
mechanical wavefunction is an eigenstate solution of the Dirac equation, and such an
eigenstate requires isotropic spin correlation of participating electrons. When Larmor
precession is present, no more than two electrons may form isotropic spin correlation. In
the absence of Larmor spin precession, which is realized by coherent electrons, an arbitrary
number of electrons may form isotropic spin correlation.

It follows from our results that the actual particle spin value plays no role and that
obeying Fermi–Dirac versus Bose–Einstein statistics is not any inherent property of a
particle. Therefore, the categorization of elementary particles into “fermion” versus “boson”
classes is not always applicable.

The phenomenology of superconductivity demonstrates that the stability of the delo-
calized electrons’ coherent state is thermodynamically controlled, and thus the realization
of Bose–Einstein-condensed electron wavefunctions depends on the thermodynamics of a
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given system. Our analysis of coherent electron states demonstrates that they represent
a lower entropy of electrons than the Larmor spin precession involving incoherent states.
These results facilitate a detailed energy change versus entropy change comparison of
possible electron states, which is the pre-condition for a first-principles calculation of the
superconducting transition temperature.

As the preference of Fermi–Dirac versus Bose–Einstein statistics is thermodynamically
determined for a given system, an increasing mechanical pressure eventually becomes a
thermodynamic driver for electron coherence; electron coherence mitigates the growing
pressure by allowing for the shared occupancy of low-energy states. The Bose–Einstein
condensation of electrons should therefore play a role in astrophysical phenomena that
involve extreme gravitational forces and pressures.

Although we focused on electron examples, our equations in fact universally apply to
any particle that has a spin. The Bose–Einstein condensation of electrons is observed in the
few Kelvin to 100 Kelvin temperature range in superconductors. At ultra-low temperatures,
the Bose–Einstein condensation of even 87Rb nuclei is observed [16], as anticipated. The
temperature difference between electron versus 87Rb condensation relates to the inverse
proportionality between the particle mass and its Bose–Einstein condensation temperature.

While the calculation of electron binding energies in the 1920’s clarified one half of
chemistry, it took 100 years to clarify the other half of chemistry, which is related to electron
statistics. We anticipate that our results shall inspire a deeper study of the thermody-
namic conditions that determine the applicability of Fermi–Dirac versus Bose–Einstein
statistics, and this will lead to the rational design of high-temperature superconductors.
Reference [12] represents such a pioneering attempt at exploring the thermodynamics of
delocalized electrons’ Bose–Einstein condensation.
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Appendix A. A Useful Vector Field Identity

Let F, G be vector fields, and let Ω be a volume region in space. Let σ denote the
surface of Ω. The field G will serve as a “variation field”, and therefore we require it to
vanish on the surface of Ω, i.e., G |σ= 0. We start from the following well-known vector
field identity:

∇ · (F × G) = (∇× F) · G − F(∇× G)

We integrate the above equation over Ω:
ˆ

Ω

∇ · (F × G) dV =

ˆ

Ω

(∇× F) · G dV −
ˆ

Ω

F(∇× G) dV

Upon rearranging terms, we obtain
ˆ

Ω

F(∇× G) dV =

ˆ

Ω

(∇× F) · G dV −
ˆ

Ω

∇ · (F × G) dV (A1)
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We evaluate the last term of the above equation by changing from volume integration
to bounding surface integration:

ˆ

Ω

∇ · (F × G) dV =

ˆ

σ

F × G dA = 0

The above equation evaluates to zero because G vanishes on the surface of Ω. There-
fore, Equation (A1) simplifies to

ˆ

Ω

F(∇× G) dV =

ˆ

Ω

(∇× F) · G dV (A2)
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