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Abstract

Nowadays, an increasing number of applications exploit users who act as intelligent sensors and can quickly provide high-
level information. These users generate valuable data that, if mishandled, could potentially reveal sensitive information.
Protecting user privacy is thus of paramount importance for crowdsensing systems. In this paper, we propose BLIND,
an innovative open-source truth discovery system designed to improve the quality of information (QoI) through the
use of privacy-preserving computation techniques in mobile crowdsensing scenarios. The uniqueness of BLIND lies in
its ability to preserve user privacy by ensuring that none of the parties involved are able to identify the source of the
information provided. The system uses homomorphic encryption to implement a novel privacy-preserving version of
the well-known K-Means clustering algorithm, which directly groups encrypted user data. Outliers are then removed
privately without revealing any useful information to the parties involved. We extensively evaluate the proposed system
for both server-side and client-side scalability, as well as truth discovery accuracy, using a real-world dataset and a
synthetic one, to test the system under challenging conditions. Comparisons with four state-of-the-art approaches show
that BLIND optimizes QoI by effectively mitigating the impact of four different security attacks, with higher accuracy
and lower communication overhead than its competitors. With the optimizations proposed in this paper, BLIND is up
to three times faster than the baseline system, and the obtained Root Mean Squared Error (RMSE) values are up to
42% lower than other state-of-the-art approaches.
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1. Introduction

Smartphones are among the most widely used devices
worldwide, with more than 7.7 billion smartphone sub-
scriptions by 2027. Their pervasive use has led academic
and industrial research efforts over the past fifteen years to
focus on the potential offered by such devices, which equip
a plethora of embedded sensors, such as cameras, micro-
phones, GPS, gyroscopes, accelerometers, and proximity
sensors (Khan et al., 2013).

These sensory technologies, combined with the advanced
sensing capabilities of humans, have been used to actively
monitor some real world phenomena, giving rise to the
Mobile Crowdsensing (MCS) paradigm (Liu et al., 2019).
Along with the promising technologies of 6G, which pave
the way for a fully connected world by providing ubiqui-
tous wireless connectivity for all (Akyildiz et al., 2020),
MCS aims to be a major contributor to applications such
as health monitoring (Santani et al., 2018), environmental
pollution monitoring (Becnel et al., 2019; Al-Janabi et al.,
2020b, 2021), and social networking (Kim et al., 2022).
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giuseppe.lore@unipa.it (Giuseppe Lo Re), sdas@mst.edu (Sajal
K. Das)

Since users may often act selfishly or even mali-
ciously (Agate et al., 2021b), and smartphone sensors may
be faulty, uncalibrated, or tampered with (Barnwal et al.,
2019), the rich information collected by MCS systems may
be unreliable. Assessing and improving the quality of in-
formation (QoI) available is one of the most important
and widely studied challenges of MCS (Zhao et al., 2021).
Given that the information collected cannot be assumed
to be accurate, Truth Discovery (TD) systems brought a
significant contribution in this regard by providing means
to obtain high-quality information (Sun et al., 2018). The
end goal is to collect and analyze user-generated data from
mobile devices. However, this data can be extremely sensi-
tive as it can include personal information such as location,
physical activity, browsing habits, etc. Therefore, it is cru-
cial to protect users’ privacy during the data collection and
analysis process. Indeed, while the collected data, when
aggregated, may reveal useful information to share with
the community (Alkaim and Al_Janabi, 2020; Al-Janabi
and Alkaim, 2020; Al-Janabi and Al-Janabi, 2023), it also
poses serious privacy issues that the user is often unaware
of (Yu et al., 2022), and that TD systems designers have
often ignored. Since participants usually send their obser-
vations of phenomena to a cloud server, it is easy to see
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how this data could be misused to violate users’ privacy
without their knowledge.

One of the most promising solutions for ensuring privacy
is the use of cryptographic techniques that allow data to
be securely processed directly on the user’s device, with-
out having to be transferred to a centralized server in plain
text. Recently, many researchers have begun to address
the problem by proposing privacy-preserving truth discov-
ery systems that are able to estimate aggregate informa-
tion without revealing the origin of the data, by exploiting
homomorphic cryptographic systems and treating data in
encrypted form.

However, having user devices perform these costly cryp-
tographic operations presents several challenges in terms of
scalability and applicability to real-world scenarios. First,
performing many cryptographic operations requires a large
amount of energy, which can significantly reduce the bat-
tery life of mobile devices. This can be a major concern
for users, who may be unwilling to participate in the MCS
process if there is a risk of draining their device’s battery
quickly. In addition, as the number of users increases,
the amount of data to be processed also increases, which
can make the system unfeasible in practice (Al-Janabi and
Alkaim, 2022; Kadhuim and Al-Janabi, 2023; Mohammed
and Al-Janabi, 2022).

Despite these challenges, the need to ensure user pri-
vacy in an MCS context makes the use of these on-device
cryptographic techniques essential. The goal is therefore
to strike a balance between privacy protection and com-
putational and energy efficiency. This requires the de-
velopment of new cryptographic techniques that are both
secure and efficient, or the use of alternative approaches
that minimize the need for costly cryptographic operations
performed directly on users’ mobile devices. Our solution
does both, improving on existing systems by optimizing
cryptographic operations and involving users as little as
possible in cryptographic computations, in order to make
the process realistic and scalable.

To this end, we propose BLIND, a novel privacy-
preserving truth discovery system for mobile crowdsens-
ing, offering a new advanced model for optimizing the QoI
by clustering user observations. This happens in a com-
pletely privacy-preserving way, while keeping secret both
the users’ reports, their association with respective clus-
ters, and the identity of outliers. Aggregated information
from multiple clusters may be significant in itself or may
be further combined to obtain a single truth, depending
on the application scenario.

A key limitation of many existing works is that they re-
quire all users to participate in the truth discovery process
at the same time and to remain connected throughout the
process, as they must constantly interact with each other
and the server. In a mobile crowdsensing context, the idea
that all users must remain connected during the entire
process is unrealistic, and this can be a serious problem.
Mobile users have unpredictable behavior, and their device
may lose connection, be turned off, or run out of battery

power. BLIND, on the other hand, minimizes the opera-
tions that users have to perform on their mobile devices,
which has significant implications for a privacy-preserving
system in a mobile scenario. By limiting user involvement
to the initial encryption of data, the system reduces the
computational load on mobile devices. This is much more
sustainable in terms of energy and computational cost, and
preserves the user’s battery and device resources.

BLIND is also very scalable and can handle a large num-
ber of users without the risk of overloading their devices;
the extra cryptographic operations only impact the server,
which can be scaled both vertically and horizontally as
needed.

Another key advantage of BLIND is being open source.
To the best of our knowledge, we are the first to release an
open source version of a privacy-preserving truth discovery
system. This is particularly relevant for privacy-preserving
TD applications, since gaining user trust is critical to the
success of such systems, as discussed in (Zigomitros et al.,
2020). Moreover, being open source, BLIND is easily ex-
tensible and can be tailored to different application sce-
narios. Our source code is freely accessible on GitHub1.

The proposed solution has been extensively tested on a
real-world dataset and the results obtained clearly demon-
strate how our system outperforms its direct competitors
in terms of achievable accuracy. Finally, scalability tests
performed on synthetic data demonstrate its suitability in
applications with a large number of users.

The main contributions are summarized as follows.

• This work introduces BLIND, a novel truth discovery
system that improves the QoI by clustering observa-
tions and discarding unreliable data while preserving
users’ privacy.

• A novel secure privacy-preserving protocol is provided
to cluster user data in a Mobile Crowdsensing system,
without revealing confidential information.

• It is demonstrated that BLIND is secure and that
no information about users is disclosed to any of the
parties involved in the protocol.

• Extensive experiments based on real data are con-
ducted to evaluate the performance of our system
in terms of accuracy and to compare it with other
state-of-the-art approaches in realistic scenarios that
include four different security attacks. Experimental
results show that BLIND outperforms its competitors.

• A further evaluation on the communication overhead
and scalability of BLIND (both server-side and client-
side) is proposed using a synthetic dataset to test the
system under challenging conditions.

1https://github.com/ndslab-unipa/BLIND
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Table 1: Comparison of the main privacy preserving truth discovery systems proposed in the literature with BLIND.

Homomorphic cryptography Offline computation Low client-side effort Open source

PPTD (Miao et al., 2019) X - - -
L-PPTD (Miao et al., 2017) X X - -
EPTD (Xu et al., 2017) X X - -
LPTD-I (Zhang et al., 2019b) X - - -
RPTD-I (Zhang et al., 2019a) X - X -
PPTDS-I (Zhang et al., 2019c) - X X -
EPTD-I (Zhang et al., 2020a) - - X -
SATE (Zhang et al., 2020b) X X X -
BLIND (proposed system) X X X X

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes most relevant work in literature. Sec-
tion 3 presents our problem formulation and system model
and Section 4 provides some background on PPC tech-
niques. Our system is described in detail in Section 5.
Section 6 formally demonstrate the security and privacy-
preserving characteristics of BLIND. Section 7 presents our
experimental results and Section 8 discusses strengths and
limitations of the system and provides our insights on the
experimental evaluation. Finally, Section 9 concludes the
paper.

2. Related Work

Over time, researchers in the field of Mobile Crowd-
sensing (MCS) have attempted to address issues regarding
three main aspects: how to define the concept of QoI, how
to encourage the submission of high-quality observations,
and how to estimate and improve the quality of the infor-
mation received (Liu et al., 2019). MCS systems are used
for an extremely wide range of applications, such as health
monitoring (Santani et al., 2018), traffic monitoring (Bhat-
tacharjee et al., 2018), environmental pollution monitor-
ing (Becnel et al., 2019), and vehicular networks (Cheng
et al., 2022). Given the extremely varied nature of the
data collected (Al-Janabi and Al-Janabi, 2022; Al-Janabi
et al., 2023, 2020a; Al-Janabi and Al-Barmani, 2023), it is
difficult to agree on a definition of QoI, and much of the
research has focused on this task. Moreover, given that
information collected by MCS systems may be affected by
selfish or malicious behavior of the participants (Shehada
et al., 2018) and that data provided by sensors may be
inaccurate or tampered with, it is necessary to optimize
the QoI of the observations provided by users.

Another issue that researchers have addressed is the
need to design incentive mechanisms that keep users inter-
ested in participating to MCS systems (Luo et al., 2017),
while also encouraging them to share high-quality accu-
rate information (Restuccia et al., 2018b). Much of the
recent research in MCS systems has specifically addressed
detecting and incentivizing reliable participants while op-
timizing QoI (Khan et al., 2019), often overlooking other
key aspects such as maintaining user privacy.

One of the first truth discovery frameworks proposed in
literature, called CRH (Li et al., 2016), models the issue
of conflict resolution in heterogeneous data (both categor-
ical and continuous) as an optimization problem. To solve
this problem, the authors proposed an iterative algorithm,
which inspired many subsequent truth discovery systems
over the past years. Although this system is regarded as pi-
oneristic for QoI optimization and represents the baseline
to compete with, in terms of MCS accuracy, it completely
overlooks a critical issue, namely the privacy of partici-
pants.

2.1. Privacy Preserving Truth Discovery Systems
Many studies show that a small amount of data or fea-

tures derived from social networks (Liao et al., 2018) or
from demographic reports, opportunely filtered, is suffi-
cient to uniquely identify a citizen (Cecaj et al., 2016).
Neverova et al. (2016), for example, show that even human
kinematics, perceived through sensors equipped on com-
mon smartphones, convey important information about
the user’s identity. In addition, the same data received
from users can often be exploited without their knowledge
for targeted advertising (Chorppath and Alpcan, 2013). In
other contexts, data submitted by users may be extremely
sensitive and maintaining their secrecy is paramount, as in
the case of e-Voting systems (Agate et al., 2021a). In this
regard, a regulatory gap is being closed recently, which
has often left companies free to exploit user data indis-
criminately and for a variety of purposes out of context.
Despite regulatory efforts, we believe that a different ap-
proach should be used to collect this important informa-
tion without putting users’ privacy at risk. General ap-
proaches to ensure privacy protection in pervasive systems
are described by Bettini and Riboni (2015).

While many works have been concerned with discover-
ing the truth in case of conflicting information (Restuccia
et al., 2018a), only a few exploits Privacy-Preserving Com-
putation (PPC) techniques to ensure users’ privacy (Li
et al., 2013). In particular, homomorphic encryption al-
lows a third party to perform operations on encrypted
data, without becoming aware of users’ confidential in-
formation. As a result, users can assign heavy compu-
tations to cloud servers without compromising their pri-
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Table 2: Comparative analysis of the proposed approach with previous works.

System name Techniques Dataset Evaluation
measures

Advantages Disadvantages

CRH(Li et al.,
2016)

Optimization
framework, Weighted

deviation minimization

Weather
forecast, Stock,

Flight

Error rate, Mean
Normalized

Absolute Distance

Estimation of
source reliability,
Adaptation for
large-scale data

Not privacy preserving

PPTD(Miao
et al., 2019)

Homomorphic
cryptography,

threshold Paillier

Synthetic,
custom
realistic

MAE, RMSE,
running time

Parallelization
with MapReduce

techniques

Computational burden
for users, assumes
non-colluding users

L-PPTD(Miao
et al., 2017)

Homomorphic
cryptography, Paillier

Synthetic,
homemade
realistic

Error rate, RMSE Low user effort User data is not
encrypted when sent

EPTD(Xu et al.,
2017)

Homomorphic
cryptography, one-way

trapdoor function
Not specified

Running time,
communication

overhead

CRH accuracy
estimation

Involves users in all
phases, assumes

non-colluding users

LPTD-I(Zhang
et al., 2019b)

Homomorphic
cryptography,

threshold Paillier,
one-way hash chain

Synthetic
Running time,
communication

overhead

Resistant to false
data injections

Fully trusted
authority,

computational burden
on users

RPTD-I(Zhang
et al., 2019a)

Homomorphic
cryptography, Paillier,
one-way hash chain

Real world,
simulated

Communication
overhead, RMSE,

running time
Fog computing Fully trusted authority

PPTDS-I(Zhang
et al., 2019c) Data pertubation Not specified Running time Low user effort

User data not
encrypted when sent,
fully trusted authority

EPTD-I(Zhang
et al., 2020a) Data perturbation

Data from
custom

application

MAE, RMSE,
running time Low user effort Low level of security,

fully trusted authority

SATE(Zhang
et al., 2020b)

PCDD cryptosystem,
data perturbation Not specified

Communication
overhead, running

time
Low user effort User data not

encrypted when sent

DTD(Kang et al.,
2023)

Majority Voting
Inference, Trust

Inference

SuavDS,
AepDS

Specificity,
Sensitivity,

F1-score, Accuracy

Cost-effectiveness
of worker

recruitment
Not privacy preserving

UTD(Xiao and
Wang, 2023)

Joint Maximum
Likelihood Estimation

Education,
SFV, Trec,
Product,
Sentiment

Precision, Acc.,
Recall, F1-score,

MAE, RMSE

Includes many
existing methods
as special cases

Not privacy preserving

BLIND
Homomorphic

cryptography, Paillier,
K-Means

Real world,
synthetic

RMSE,
communication

overhead, running
time

Low user effort,
open-source

Semi-honest third
party

vacy. Many works investigate the techniques of PPC
and homomorphic encryption, highlighting which elemen-
tary and complex operations can be carried out respecting
data privacy constraints (Lagendijk et al., 2012; Rane and
Boufounos, 2013). Table 1 summarizes the main charac-
teristics of the most relevant systems proposed in the lit-
erature.

Among the first works that preserve privacy,
PPTD (Miao et al., 2019) leverages homomorphic
encryption techniques, i.e., the Threshold Paillier cryp-
tosystem, to implement the iterative algorithm of CRH.
However, the computation of truth values is not performed
offline, and instead the system requires a direct involve-
ment of users in the decryption of intermediate aggregated
data with a consequent considerable computational and
communication effort for users. In order to overcome these
limitations, the same authors proposed two lightweight

privacy-preserving truth discovery frameworks, L-PPTD
and L2-PPTD (Miao et al., 2017).

Both exploit two non-colluding cloud platforms and an
additively homomorphic cryptosystem to assign weights to
users’ reports. However, the former relies on users to com-
pute these weights in an encrypted manner, thus imposing
a heavy computational burden on them, while the latter
estimates weights in plaintext, putting users’ privacy at
risk. Conversely, in our solution, users only participate in
the initial phase of the protocol, encrypting private values
for each task and sending them to the server, thus ensuring
their privacy as well as requiring low computational effort
on their side. Xu et al. (2017) propose EPTD, a system
that performs better than PPTD, but at the price of using
a symmetric key shared between all users of the system,
which makes it particularly vulnerable to malicious users
and not feasible in practice.
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Zheng et al. (2017) use the two-server model to create
truth discovery systems that respect users’ privacy. In the
two-server model, one server collects and manages all user
data in encrypted form, while the second one supports
all those steps where decryption of intermediate aggregate
data is required. Zheng et al. (2018) propose a privacy-
aware truth discovery system that is designed specifically
for the crowdensing application scenario, decreasing band-
width and computational resources required from users.

Recently, Zhang et al. proposed several systems that im-
plement the same CRH algorithm in a privacy preserving
fashion and which differ for the application context, such
as LPTD-I for cognitive Internet of Things (CIoT) (Zhang
et al., 2019b), and RPTD-I for vehicular ad hoc network
(VANET) (Zhang et al., 2019a).

Two alternatives proposed by the same authors that do
not use homomorphic cryptosystems, but exploit data per-
turbation techniques, are EPTD-I (Zhang et al., 2020a)
and PPTDS-I (Zhang et al., 2019c). A novel solution
called SATE, presented in (Zhang et al., 2020b), solves
the same problem by mixing homomorphic encryption and
data pertubation. In recent years, several truth discovery
methods have been proposed to infer true claims from mul-
tiple conflicting sources. (Xiao and Wang, 2023) provides
a unified perspective on the existing methods and proposes
a new algorithm. (Kang et al., 2023) proposes new tech-
niques to improve the quality of collected data, including
reducing bias and recruitment costs, and increasing accu-
racy and cost-effectiveness, which may have significant im-
plications for the Industrial Internet of Things. However,
neither of these solutions offers privacy guarantees.

Table 2 shows the comparison among the previous works
from six points of view, including the techniques exploited,
the dataset used in the experiments, the main measures
used to evaluate results, the main advantages and disad-
vantages of each system. Analyzing Table 2, we can gain
several insights on related work and their limitations com-
pared to our approach. Many systems, such as CRH, DTD,
and UTD, lack privacy-preserving measures altogether. In
contrast, BLIND integrates the use of homomorphic cryp-
tography, which guarantees user privacy to a significant
extent. Some methods, such as PPTD and LPTD-I, im-
pose a high computational burden on users. The latter
also requires a fully trusted authority, which may not al-
ways be feasible. BLIND manages to reduce user effort,
which is an important advantage for real-world applica-
tion. Many existing systems, including LPTD-I, RPTD-I,
PPTDS-I, and EPTD-I, rely on a fully trusted author-
ity. This assumption can limit the applicability of these
systems, since an authority like that may not always be
available. In contrast, BLIND only assumes a semi-honest
third party, making it more flexible and realistic for many
use cases. Moreover, BLIND stands out as the only system
listed that is open-source, which can facilitate its adoption
and adaptation by other researchers and developers. Over-
all, BLIND presents a significant step forward in terms of
privacy protection and real-world applicability, by reduc-

ing user effort. It employs a unique combination of tech-
niques and offers the additional advantage of being open
source.

Unlike many previous works, which exploit CRH for
truth discovery, we propose an alternative model of QoI
optimization, based on the clustering of user observations
and the subsequent removal of outliers. A few works deal
with clustering in a privacy preserving manner using K-
Means (Mohassel et al., 2019; Yuan and Tian, 2017). In
(Yuan and Tian, 2017), a single user holds all the data in
plaintext and relies on a server for clustering in a privacy
preserving manner. Such a system, however, is not suit-
able in a scenario where two or more users want to keep
their data private. In (Jäschke and Armknecht, 2018), K-
Means is used to clustering data from multiple users, but it
is implemented using a fully homomorphic scheme, which
makes it unusable in practice, resulting in run times of
up to hundreds of days. Experimental results extensively
show that BLIND outperforms its competitors while mit-
igating different security attacks.

3. Problem Formulation and System Model

The goal of a truth discovery system is to identify events
when multiple data sources provide different information
about one or more phenomena. We want to achieve this
goal in a privacy-preserving fashion so that no one can
exploit user information for malicious purposes that harm
the interests of the participants. We therefore consider
a cloud service provider (SP), which collects information
from users in a privacy-preserving manner, without actu-
ally being able to view its content. Despite these limita-
tions, the SP can aggregate the multitude of values coming
from users, excluding false and noisy information, and fi-
nally obtain the truth value regarding a certain fact.

In BLIND, we assume the SP is as an honest-but-curious
(semi-honest) party, which follows the protocol correctly,
but tries to get as much information about the users as
possible from the data received. This seems a rather weak
adversarial model but it is adequate for a multitude of
scenarios (Lagendijk et al., 2012; Shen et al., 2017). In
addition, Goldreich et al. (1987) demonstrated how a pro-
tocol that computes a privacy-preserving function in the
semi-honest model can be automatically converted into an
equivalent protocol that maintains its privacy properties
even in the malicious model.

We consider a set of n users U = {u1, u2, . . . , un}. This
set includes users willing to share their knowledge (e.g.,
through a smartphone application) about events of inter-
est for the SP, motivated by a reward or incentive mecha-
nism that generally leads them to participate only if their
privacy is preserved. In our model, users can give false
or inaccurate answers to the SP in order to obtain more
rewards.

We also consider a set of q tasks T = {t1, t2, . . . , tq} as-
signed to each of the users. Each task represents an infor-
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SP

Users

BH

Tasks

Figure 1: Entities involved in BLIND (Service Provider, Blind
Helper, users).

Table 3: Notation used for the problem formulation.

Symbol Description

SP the service provider
BH the blind helper
n number of users
q number of tasks
U set of users
T set of tasks
ui user i belonging to the set U
tj task j belonging to the set T
vij reported value of user ui for task tj
Vi reported values of user ui for all the q tasks
U⇤ set of unreliable users
u⇤
i i-th unreliable user belonging to the set U⇤

V ⇤
i noisy reported values of user ui for all the q tasks

vj estimated truth value for task tj

mation of interest on which the system requires a response
or opinion from users.

Therefore, the SP asks each user to send q vij answers
values Vi = {vi1, vi2, . . . , viq}, where vij is the answer of
user ui for task tj . Although vij values individually may
not put users’ privacy at risk, they may reveal sensitive
information about them when analyzed as a whole, thus
compromising their privacy. It is essential that users never
reveal this information in unencrypted form.

The SP should not receive plaintext data from users,
nor should it have the tools (e.g. cryptographic keys) to
decipher such data. At the same time, the SP has to calcu-
late aggregate values from that secret data sent by users.
To solve this problem we decided to take advantage of
homomorphic cryptography that allows the SP to perform
operations on encrypted data, and to include a third party
that acts as a blind helper (BH), which securely holds the
cryptographic keys useful for the execution of homomor-
phic protocols and blindly helps the SP with some compu-
tations, as will be explained in the following sections. The
BH, like the SP, will be considered honest-but-curious, and
it is assumed that the necessary legal and risk management
measures are in place to ensure that BH and SP cannot
collude to violate users’ privacy. Figure 1 summarizes the
scenario and the entities described above.

!" #"" #"$ #"% #"&
!$ #$" #$$ #$% #$&
!% #%" #%$ #%% #%&
!& #&" #&$ #&% #&&

'" '$	 '%	 '&

Figure 2: Matrix showing how BLIND operates. Rows represent
users, columns represent tasks.

The SP exploits the data collected on individual tasks
without actually being able to read their content, discards
noisy or false information and thus obtains a value as close
as possible to the real one resulting from the aggregation
of only good reports.

Figure 2 shows how BLIND operates. In this matrix,
rows represent users, columns represent tasks and cells are
values sent to the SP. We are interested in performing ver-
tical aggregations to obtain the truth about a task (yellow
selection in the picture). The process of discarding infor-
mation sent by unreliable users is highlighted by the purple
dashed selection in the figure.

Let us call V ⇤
i the noisy or false information provided

by a user u⇤
i belonging to the set of unreliable users U⇤.

Truth values vj are calculated as a function of the values
suggested by good users, discarding V ⇤

i values. Table 3
summarizes the notation used so far.

As we will see in the next section, homomorphic en-
cryption can meet the needs of the scenario considered, al-
lowing the SP to take into account only true information,
excluding noisy or false reports without actually knowing
their content, whilst preserving the confidentiality of the
information sent by participating users.

4. Multi-Party Computation Background

In this section we will present some basic concepts and
techniques of secure multi-party computation. In particu-
lar we will focus on a few homomorphic encryption prop-
erties provided by some important probabilistic encryp-
tion schemes (e.g., Paillier’s scheme (Paillier, 1999)). Such
schemes, unlike deterministic ones, produce different ci-
phertexts when encrypting the same plaintext. This prop-
erty is obviously fundamental to maintain user privacy,
especially when the number of possible answers is small
(e.g. yes or no questions or binary values in general). We
refer the reader to (Lagendijk et al., 2012; Fontaine and
Galand, 2007) for an exhaustive documentation on all the
properties we will present.

4.1. Homomorphic Additive Properties
Let M and C denote respectively the set of plaintexts

and the set of ciphertexts. An encryption scheme is addi-
tively homomorphic if a relation of such form is satisfied:

E(m1) ·C E(m2) = E(m1 +M m2), 8m1,m2 2 M (1)
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where ·C is a generic operation carried out on two en-
crypted messages which results in the encryption of the
sum (+M) of the two plaintext messages. Paillier and
Benaloh schemes are two of the most used asymmetric
homomorphic schemes where such operation is the multi-
plication of two encrypted plaintexts. Note that both m1

and m2 must be encrypted with the same public key PK.
As consequence of Equation 1 we can obtain another

relevant property. Any encrypted message E(m) raised to
the power of p results in the encryption E(m · p), as we
can see in Equation 2:

E(m)p =
pY

i=1

E(m) = E

 
pX

i=1

m

!
= E(m ·M p), 8m, p 2 M

(2)

Other properties may be easily derived from the two
defined above. For example, the subtraction between en-
crypted messages E(m1) and E(m2) can be obtained as
follows:

E(m1 �M m2) = E(m1) ·C E(�m2)

= E(m1) ·C E(m2)
�1, 8m1,m2 2 M

(3)

The division between an encrypted message E(m) and a
plaintext scalar value p can be derived directly from Equa-
tion 2:

E

✓
m

p

◆
= E(m)

1
p , 8m, p 2 M (4)

Cryptosystems that allow the multiplication of two en-
crypted messages are called multiplicative homomorphic,
while Paillier’s cryptosystem is additively homomorphic.

In the following section we present the blinding tech-
nique, which allows more complex operations such as com-
puting the square of an encrypted message or multiplying
two encrypted messages. The disadvantage of this tech-
nique is that it requires a communication protocol between
two parties, with an increase in computational complexity.

4.2. Blinding Technique to Multiply Encrypted Values
Suppose there are three entities, namely Alice, Bob, and

Charlie, and consider the following scenario. Charlie wants
Alice to perform computations on his secret message m,
without Alice discovering the contents of m. For this pur-
pose, Charlie encrypts m with the public key of a third
party, Bob, and sends the resulting E(m) to Alice.

If the computations are those described in the previous
section, Alice can operate directly on the ciphertext as just
discussed. To perform more complex operations (such as
calculating the squared value), however, Alice needs to
collaborate with Bob.

Indeed, Bob could easily help Alice by decrypting E(m)
and performing these operations, but Alice does not want
him to know the value of the plaintext m (since that would

violate Charlie’s privacy), so she cannot send the message
to Bob directly.

To solve this issue, Alice can alter the encrypted message
by choosing a random value r, encrypting it with Bob’s
public key and multiplying the resulting E(r) by E(m).
According to the first additive property (Equation 1), the
following identity holds: E(m) · E(r) = E(m+ r).

If r has the right random properties, Alice can safely
send E(m + r) to Bob. Bob can then decrypt the value,
perform some operations, re-encrypt it and send the re-
sult back to Alice, without learning anything useful in the
process. This technique, named blinding, can be very use-
ful, for example, to calculate the square of an encrypted
message E(m) without knowing the key to decipher it.

Alice, who wants to know the value of E(m2), sends to
Bob E(m) · E(r) = E(m + r) = E(z). Bob, knowing the
private key, obtains z and calculates z2. At this point, he
encrypts z2 with the public key and send E(z2) back to
Alice, who can now obtain the value of E(m2) as follows:

E(m2) = E(z2 � 2mr � r2)

= E(z2) · E(m)�2r · E(�r2).
(5)

By generalizing Equation 5, the blinding technique can
also be used to compute the product between two mes-
sages that are only available in encrypted form. Note that
such operation cannot be performed directly with homo-
morphically additive cryptosystems. Alice, who wants to
obtain the encrypted value of the product of two messages,
E(m1 · m2), sends to Bob the two values E(m1 + r1) =
E(z1) and E(m2 + r2) = E(z2). Bob, knowing the pri-
vate key, decrypts the values received, thus obtaining z1
and z2, and performs the product between the two values.
Note that the blinding technique used prevents Bob from
knowing the values of the messages m1 and m2, since both
have been blinded with r1 and r2 values respectively. At
this point, Bob encrypts the product with his public key
and sends E(z1 · z2) to Alice, who can now compute the
desired value as follows:

E(m1 ·m2) = E(z1z2 �m1r2 �m2r1 � r1r2)

= E(z1z2) · E(m1)
�r2 · E(m2)

�r1 · E(�r1r2).
(6)

4.3. Paillier Cryptosystem
A cryptosystem that has only the additive homomor-

phic property is called partially homomorphic. A cryp-
tosystem that supports arbitrary calculation on encrypted
texts is known as fully homomorphic. The existence of
a fully homomorphic cryptosystem solves any problem of
secure calculation from a theoretical point of view. Unfor-
tunately, nowadays fully homomorphic cryptographic sys-
tems are mainly of theoretical interest and too inefficient
to be used in practice. For this reason, we used an asym-
metric partially homomorphic cryptosystem, namely the
Paillier scheme.
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The Paillier cryptosystem is a probabilistic asymmet-
ric algorithm for public key cryptography and exhibits the
additive homomorphic properties just described. The fol-
lowing steps are performed for the generation of the public
and private key pair:

• Two large prime numbers of the same dimension p
and q are chosen. Then, the following property is
respected: gcd(pq, (p� 1)(q � 1)) = 1.

• Calculate the product n = pq, and � = lcm(p� 1, q�
1), where � is the least common multiple of p� 1 and
q � 1.

• Choose an integer random value g, with g 2 Zn2 ; in
other words g  n2. Make sure that for this value g,
the modular multiplicative inverse µ exists, where µ
is:

µ =

�
(g� mod n2)� 1

n

⌫�1

mod n (7)

The result of the division is different from zero only
when g is at least greater than n.

The public key, PUb, is given by the pair of values (n, g)
while the private key, PRb, is given by the pair (�, µ).

Given a message m we want to encrypt with m positive
integer less than n and a random integer r between 0 and
n, the encrypted message c can be obtained from:

c = gmrn mod n2. (8)

The inverse operation, given an encrypted message c,
allows us to recover the original message, as follows:

m =
(c� mod n2)� 1

n
µ mod n. (9)

Equations 8 and 9 show that each time the message m is
encrypted, a different ciphertext c is obtained, even when
using the same public key PUb, since there is a random
value r involved. It is also worth noting that r is not
necessary for the decryption operation.

Since Pallier cryptosystem allows only the encryption of
non-negative integers, and we are also interested in repre-
senting negative and fractional numbers, encoding is nec-
essary prior to the encryption operations. In addition, the
encoding used must maintain the homomorphic properties
of Pallier cryptosystem.

5. The Privacy-Preserving Truth Discovery Sys-
tem

In this section we present BLIND, our privacy-
preserving MCS system which exploits the multi-party
computation techniques presented in Section 4. The goal
of the service provider (SP) is to obtain aggregate results
from users whilst maintaining the privacy of individual
participants.

Encrypt

User SP BH

!!

Compute Distances

Find Closest 
Centroid

Update Centroids

Convergence

Outlier Removal

Encryption

K-means

Outlier Removal No

Yes

!

Decrypt

"#"
"$"%!

Figure 3: Architecture of the proposed system.

As shown in Figure 3, in order to aggregate data anony-
mously and, at the same time, improve the quality of in-
formation obtained by the SP, we propose a system that
performs the following operations:

1. Encrypted data sent by users are grouped in clusters
in a privacy-preserving way, through a modified ver-
sion of the K-Means algorithm.

2. The result of the K-Means is used to discard outliers.

3. New centroids are calculated for each cluster, discard-
ing the outliers.

4. The SP calculates a final truth value for each task, as
a function of the centroids computed in step 3.

At all times during this process, values sent by users
remain secret and known only to themselves. In addi-
tion, the SP does not need to know which cluster users
belong to, or which users are considered outliers, in order
to calculate the aggregate results of interest. Therefore,
both are kept secret and are not known to either the SP
or the users. Moreover, all messages are exchanged via a
secure and authenticated communication channel, exploit-
ing TLS. Ultimately, the SP learns the aggregate values
for each task, either grouped by cluster (which may be
of interest in certain usage scenarios) or as a single final
value.

Given the notations introduced in Table 3 and Table 4,
we can express the above requirements in a more formal
manner. For all users ui 2 U , during the execution of
protocol P , Vi is known only to ui:

8ui 2 U :Vi 2 Knowledge(ui) ^ Vi /2 Knowledge(SP )^
Vi /2 Knowledge(BH).
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Table 4: Symbols used in the security protocol.

Symbol Description

PUb public key of BH
PRb private key of BH
PUs public key of SP
PRs private key of SP
k number of clusters
Cl centroid of l-th cluster
Di vector of distances of Vi from the k centroids
dil distance of Vi from l-th centroid
Ai k-dimensional indicator vector, with ail = 1 if ui

belongs to the l-th cluster, or 0 otherwise
E+

b (·) encrypted version of (·) by using PUb

E+
s (·) encrypted version of (·) by using PUs

x0 blinded version of x using a random value r0

W vector of s elements with increasing values
[w1, w2, ..., ws], used for the vectorization technique

⇡(·) permutation of (·) by applying the permutation vec-
tor ⇡

During the execution of protocol P , the association of
user ui to clusters (Ai) and the determination of outliers
(set U⇤) is kept private. Thus:

8ui 2 U :Ai /2 Knowledge(ui) ^ U⇤ /2 Knowledge(ui)^
Ai /2 Knowledge(SP ) ^ U⇤ /2 Knowledge(SP )^
Ai /2 Knowledge(BH) ^ U⇤ /2 Knowledge(BH).

At the conclusion of protocol P , the SP obtains the
estimated truth values vj , for each task tj :

8tj 2 T : vj 2 Knowledge(SP )

Depending on the service offered, the SP may then de-
cide whether or not to share the final result with the users
participating in the system.

5.1. Hypothesis and Limitations
The implementation of a privacy preserving mobile

crowdsensing system using homomorphic encryption to en-
sure data privacy can be the right approach to protect the
privacy of users and their sensitive data. However, there
may be some limitations to consider, as with any security
and privacy approach. The problem at hand is even more
challenging than it may appear at first glance, because it
is not possible to directly apply the techniques described
in Section 4, which refer to a two-party computation sce-
nario. If each participant used their own public-private
key pair, it would not be possible to combine values from
different users, as is necessary for K-Means. Naturally, the
homomorphic properties of a cryptosystem are only guar-
anteed when the same key is used throughout the entire
process. Ciphertexts obtained using different keys cannot
be combined in any way. It is therefore necessary that all
users encrypt their data with the same public key. The
SP could generate the public-private key pair to use and
distribute the public key to all participants, but this, al-
though possible, would make the protocol more complex

and leave most of the computationally heavy calculations
to the users themselves.

Indeed, the SP could not perform these heavy calcula-
tions, as it owns the private key that would allow it to
violate the secrecy of values sent by participants. Users
would then have to perform many of the calculations nor-
mally carried out by the SP, which is not appropriate in
mobile contexts, where users’ devices have power and bat-
tery constraints. To avoid these problems, as discussed in
Section 3, we propose to include another entity in the pro-
tocol, i.e., a third party that acts as a blind helper (BH).
The BH will create a public-private key pair that will be
used to encrypt users’ secret values. Then, the BH will be
asked by the SP to carry out some computations necessary
to update the cluster centroids.

Extreme care will be taken to ensure that the BH can
never decipher the secret information belonging to the
users or to the SP. To this end, the SP will use the blinding
techniques described in Section 4 when it is necessary to in-
volve the BH in some calculations. Summarizing, thus, the
BH will only have a supporting role, and will never learn
any secret information about the users’ data, their cluster
membership, the outliers’ identities, or the centroids.

Moreover, homomorphic encryption and the Paillier
cryptosystem can be computationally intensive, requiring
significant resources to compute and decrypt the data. Ho-
momorphic encryption can also significantly increase the
size of encrypted data compared to plaintext data, requir-
ing more bandwidth and storage. This can be a problem
in mobile devices where resources are limited.

With our approach, we shift the computational burden
and the majority of message exchanges to the server side
of the system, between the SP and the BH, in order to
minimize the burden on users, who only contribute to the
protocol in the initial phase. Scalability is another chal-
lenge for mobile crowdsensing systems in general. The
use of homomorphic encryption can make the system less
scalable, especially when it comes to a large number of
participants and large amounts of data to be processed.

We will show in the experimental section that the ap-
proach proposed in this paper is scalable and suitable for
the mobile crowdsensing context. Implementing a mo-
bile crowdsensing system using homomorphic encryption
and the Paillier cryptosystem requires advanced technical
skills and attention to detail. An incorrect implementation
could compromise the security of the system; any exten-
sions or modifications require careful analysis.

Finally, the security of homomorphic encryption de-
pends on the secure management of encryption keys. Loss
or compromise of keys could lead to violations of privacy
and data integrity. Despite these challenges, the use of
homomorphic encryption is an important step in protect-
ing privacy in mobile crowdsensing systems. However, it
is crucial to carefully balance the benefits and limitations
of these techniques to ensure the security and effectiveness
of the overall system.
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Figure 4: Flowchart of the operations performed by BLIND.

5.2. Privacy-Preserving K-Means Protocol
This section describes in detail the operations performed

by BLIND in each phase of the protocol. Figure 4 is a
flowchart that summarizes these operations and provides
a visual guide to better understand how our system works.

At the start of the procedure, the BH generates the
asymmetric key pair (PUb and PRb) needed for Paillier’s
encryption and shares the public key (PUb) with both
users and SP. In the following, we will denote with E+

b (x)
values encrypted with the public key of the BH. Please
note that all random values required for key generation and
blinding techniques are obtained by exploiting a crypto-
secure pseudo-random number generator (CSPRNG).

Users only participate in the initial phase of the pro-
tocol. In particular, the user ui encrypts with PUb his
private values for each task, vij , and sends them to the
SP. Users also send v2ij to the SP, for each task, appro-
priately encrypted. These values will be used to calculate
users’ distances from cluster centroids, as will be explained
in the following.

From this moment on, user participation is no longer
required. This is important both to reduce the computa-
tional load on users’ devices and to ensure that they can-
not interfere with the execution of the protocol. Since we
are considering q tasks in our application, the SP randomly
generates k q-dimensional centroids, C1, C2, . . . , Ck, which
will be the starting values representing the k K-Means clus-

ters. Squared Euclidean distance is used as error measure.
The main task of the SP will be to update, iteratively,
the values of the k centroids until the end of the K-Means
algorithm (for example after a fixed number of iterations,
or when the average distance from the nearest centroids
converges).

The first step in each iteration is to calculate, for each
user ui, the encrypted version of Di = [di1, di2, . . . , dik]
distances between the Vi values and the k centroids. The
SP can calculate the encrypted version of dil, E+

b (dil), with
the following formulas:

E+
b (dil) = E+

b (
qX

j=1

(vij � clj)
2)

= E+
b (

qX

j=1

v2ij) · E+
b (

qX

j=1

vij · (�2clj)) · E+
b (

qX

j=1

c2lj)

=
qY

j=1

E+
b (v

2
ij) ·

qY

j=1

E+
b (vij)

�2clj ·
qY

j=1

E+
b (c

2
lj).

(10)
Note that the SP knows the values of each clj and can en-

crypt them with PUb, and that both E+
b (vij) and E+

b (v
2
ij)

are sent to it by user ui. The SP then calculates Equa-
tion 10 and obtains E+

b (dil) for each user ui and each cen-
troid Cl.

Now the SP needs to calculate, for each user, the cen-
troid with minimum distance, which is argminl dil.

5.3. Privacy-Preserving argmin
Computing the encrypted version of argminl dil in a pri-

vacy preserving way is not a trivial task. The desired end
result is the encrypted version of a k-dimensional indicator
vector Ai, with ail = 1 if ui belongs to the l-th cluster, or
0 otherwise.

All this will be possible with the help of the BH. During
the whole process, neither the SP nor the BH will have to
acquire information about the distances of individual users
from each cluster. Likewise, in the end, nobody will know
which cluster each user belongs to. The only result will
be the encrypted E+

b (Ai) vector for each user ui, which
represents argminl dil.

To calculate the argmin, the SP will need to compare
encrypted values (i.e., distances) to each other. However,
this is not straightforward using an additive homomorphic
cryptosystem such as Paillier. For this reason, we will first
present a series of privacy-preserving protocols to perform
these comparisons and subsequently we will describe the
final protocol needed for calculating the actual argmin.

5.3.1. Secure Comparison between two Encrypted Values
In this section we will show how to compare two en-

crypted values in a privacy-preserving manner. We will
proceed in steps, first introducing a protocol to compare
an encrypted value, E+

b (x), with a plaintext one, y (e.g., a
threshold) and then presenting another protocol to com-
pare two encrypted values to each other. In both cases,

10
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Figure 5: Sequence diagram describing the comparison between a
ciphertext and a plaintext (Protocol 1).

the result of the comparison will be a plaintext boolean
value (true or false).

However, we don’t want the SP to learn the result of the
comparison. We will thus show how to alter these proto-
cols to obtain the result of the comparison in encrypted
form (i.e., E+

b (0) or E+
b (1)), so that the SP cannot decrypt

it.
It is worth noticing that the Paillier cryptosystem op-

erates on integers between 0 and n. As explained in Sec-
tion 4.3, with an appropriate encoding it is also possible to
represent and work with negative and fractional numbers.

In the following, for all proposed protocols, we will al-
ways assume that input values are properly encoded and
that all results, including intermediate ones, are within
the range of representable values. This is generally not a
problem for reasonable key lengths (e.g., 1024 bits), but
obviously longer keys can always be used if the applica-
tion needs to represent unusually large values. A bigger
key provides greater security, but it also results in longer
execution times, as will be discussed in the experimental
section.

Protocol 1. Given a ciphertext E+
b (x) and a plaintext

value y, the following protocol between the SP and the BH
allows the SP to compare x and y without either party
learning the value of x. The result of the comparison in
plaintext will be only known by the SP.

First, the SP generates a new asymmetric key pair (PUs

and PRs) and shares the public key (PUs) with the BH. In
the following, we will denote with E+

s (x) values encrypted
with the public key of the SP. To run the protocol, the SP
must send E+

b (x) to the BH, which knows PRb, and can
thus decrypt the message. Since we do not want the BH
to learn the value of x, the SP needs to blind this value
before sending it, as explained in Section 4. To this end,
the SP exploits a CSPRNG to choose a random value r0

and computes the blinded value E+
b (x

0) as follows:

E+
b (x

0) = E+
b (x+ r0) = E+

b (x) · E
+
b (r

0). (11)

The SP then adds the same r0 value to the plaintext
value y, obtaining y0 = y + r0. Since the same random
value r0 is added to both x and y, the order relationship
between the two values remains unchanged, assuming that
all values are within the representable range. At the same
time, though, the SP can send the value E+

b (x
0) to the BH

without revealing the value of x.
The problem we want to solve is a variation of the

well known Yao’s millionaire problem (Yao, 1982). To
efficiently solve this problem, we heavily modified and
adapted to our use case the vectorization technique pro-
posed by Liu et al. (2017).

The SP creates a vector of z elements with increasing
values, W = [w1, w2, ..., wz], with w1  y0  wz. As will
be discussed in the following, the number of elements of
W and the granularity of the values [w1, w2, ..., wz] will de-
termine a trade-off between computational efficiency and
result accuracy.

The goal of the SP is to represent y0 as a vector of z
values, Y 0

v = [y0v1, y
0
v2, ..., y

0
vz]. The SP chooses two val-

ues, �� and �+, which will be used to fill Y 0
v . More pre-

cisely, y0vi will be equal to �� if y0  wi, or �+ otherwise,
8i 2 {1, ..., z}. Note that, with the homomorphic encryp-
tion system used, repeatedly encrypting the same value
(e.g., �� or �+) always generates different ciphertexts, as
described in Section 4.

After that, the SP sends E+
b (x

0), E+
s (Y

0
v), and W to the

BH, which decrypts E+
b (x

0) and obtains x0. The BH finds
the smallest index i for which x0  wi, and returns

E+
s (y

0
vi + 0) = E+

s (y
0
vi) · E+

s (0) (12)

to the SP. Finally, the SP decrypts E+
s (y

0
vi) and obtains

y0vi, which will be equal to �� if x is less than or equal to
y, or �+ otherwise.

Figure 5 summarizes the protocol just described. Note
that the BH cannot decrypt E+

s (y
0
vi), so it does not know

the result of the comparison. Also note that the BH multi-
plies E+

s (y
0
vi) by E+

s (0) before returning it to the SP. This
operation does not change the value of y0vi, once decrypted
(it is equivalent to adding 0). The effect of this null sum,
however, is to change the ciphertext of E+

s (y
0
vi). If the BH

did not do this, the SP could simply compare the returned
ciphertext with the ciphertexts of the E+

s (Y
0
v) elements and

find out which is the smallest value of W that is greater
than x.

A further consideration relates to the number of
elements of W and the granularity of the values
[w1, w2, ..., wz]. The more fine-grained the W values are,
in fact, the more accurate the comparison will be. At the
same time, however, the number of encryption operations
performed will be proportional to the number of elements
of W . Note that the protocol may incur non-negligible
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errors if the vectorization returns the same result for dif-
ferent values; this is the case if the difference between the
two values is less than the gap between two consecutive
elements of W. For example, if W = [. . . , 1.4, 1.5, 1.6, . . .]
and the two compared values are x = 1.56 and y = 1.55,
Protocol 1 will erroneously return ��. Since the SP knows
the range of values used in the application, it can always
choose an appropriate granularity to avoid such errors.
Moreover, the values in W do not need to be evenly dis-
tributed. Conversely, they can also be sparse, depending
on the expected distribution of values to compare, using
fine granularities for some ranges and coarse granularities
for others.

Example. We now present a simple numerical example
to clarify the comparison procedure described above. In
this example, the SP wants to know if E+

b (x), with x = 5.4,
is less than or equal to y = 5.2. Let us assume the SP
chooses �� = 12.6, �+ = �2.1 and r0 = �3.1. First, the
SP blinds both E+

b (x) and y with r0, obtaining E+
b (x

0) =
E+

b (2.3) and y0 = 2.1. Then, the SP vectorizes y0. To do
so, if the SP chooses s = 7 and W as follows:

B = [1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5],

the vectorized y0 will be filled with �� and �+ accordingly:

Y 0
v = [��, ��, ��, �+, �+, �+, �+]

= [12.6, 12.6, 12.6,�2.1,�2.1,�2.1,�2.1].

The SP then encrypts Y 0
v with PUs and sends it to the

BH, together with E+
b (x

0) and the unencrypted W . The
BH decrypts E+

b (x
0), obtaining x0 = 2.3, and finds the

lowest index i for which x0  wi. If we consider indices
starting from 1, then i = 5 in this case, because w6 = 2.3
is equal to x0 = 2.3.

The BH then returns E+
s (y

0
v6 + 0) = E+

s (�2.1) to the
SP. The SP decrypts it, obtaining y0v6 = �2.1, which is
�+, and infers that x is greater than y, without learning
anything about x.

The following protocol shows how to compute the com-
parison between two ciphertexts in a privacy-preserving
manner.

Protocol 2. Given two ciphertexts, E+
b (x1) and E+

b (x2),
the following protocol between the SP and the BH allows
the SP to compare x1 and x2 without either party learning
the values of x1 or x2.

The protocol proceeds as follows. First, the SP com-
putes the following value:

E+
b (x1 � x2) =

E+
b (x1)

E+
b (x2)

= �. (13)

Then, the SP can use Protocol 1 to compare � with the
plaintext value 0, obtaining the desired result.

Finally, as mentioned at the beginning of this section,
we are interested in a variant of the problem where the
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Figure 6: Sequence diagram describing the comparison between two
ciphertexts values with encrypted result (Protocol 3).

SP does not get the result of the comparison in plaintext.
Instead, we want the SP to get E+

b (0) or E+
b (1), so that it

cannot decrypt it. To solve this new problem, we introduce
a new protocol.

Protocol 3. Given two ciphertexts, E+
b (x1) and E+

b (x2),
the following protocol between the SP and the BH allows
the SP to compare x1 and x2 without either party learning
the values of x1 or x2, or the result of the comparison. At
the end of the protocol, the SP will get E+

b (1) if x1 is less
or equal than x2, or E+

b (0) otherwise.

First, the SP chooses �� and �+ such that �� = �+ + 1.
Then, we proceed as in Protocol 2 until the BH is sup-
posed to return E+

s (y
0
vi) to the SP (Equation 12). Instead

of returning the value directly, the BH chooses a random
value r00 and blinds the value as follows:

E+
s (y

00
vi) = E+

s (y
0
vi + r00) = E+

s (y
0
vi) · E+

s (r
00). (14)

Then, the BH encrypts r00 with PUb and sends both
E+

s (y
00
vi) and E+

b (r
00) to the SP. The SP decrypts E+

s (y
00
vi),

obtaining y00vi. Finally, the SP encrypts both y00vi and �+
with PUb and computes the encrypted result of the com-
parison between x1 and x2 as follows:

E+
b (y

00
vi � r00 � �+) =

E+
b (y

00
vi)

E+
b (r

00) · E+
b (�+)

. (15)

E+
b (y

00
vi� r00) will be either E+

b (��) or E+
b (�+). Since the

SP chose �� and �+ such that �� = �++1, subtracting �+
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from E+
b (y

00
vi � r00) yields E+

b (1) if x1 is less or equal than
x2, or E+

b (0) otherwise. This concludes the protocol.
Again, note that repeated encryptions of the same values

(0 or 1) always yield different ciphertexts. Figure 6 shows
the whole protocol.

In summary, using Protocol 3 the SP is able to compare
two encrypted values, E+

b (x1) and E+
b (x2), obtaining the

result in encrypted form, without either the SP nor the
BH learning anything about x1 and x2.

5.3.2. Privacy-Preserving argmin Protocol
Now that we know how to compare encrypted values,

we can present a novel protocol to calculate the encypted
version of argminl dil in a privacy preserving way. The
goal, as written above, will be to obtain, for each user
ui, the encrypted k-dimensional indicator vector Ai =
[ai1, ai2, ..., aik], with ail = 1 if user ui belongs to the l-
th cluster (i.e., if ui’s values, Vi, are closest to the l-th
centroid, Cl), or 0 otherwise.

Intuitively we could use the comparison between two
encrypted values, as described in the previous section, to
calculate the argmin directly, by securely comparing each
encrypted distance with all the others. However, this is in-
efficient because it would require k · (k�1) secure compar-
isons, where k is the number of clusters. Given that com-
parisons are very expensive operations, computationally-
wise, this might be a problem.

For this reason, we propose to exploit the comparison
procedure in which the SP learns the result of the com-
parison in plaintext (true or false) to efficiently calculate
the E+

b (Ai) vector. Obviously, this procedure cannot be
applied directly, because otherwise the SP would learn the
index of the cluster closest to each user (plus other infor-
mation from intermediate calculations).

The goal is then to permute the distance vector Di be-
fore computing the Ai indicator vector. This can be done
with the help of the BH, which causes other problems,
since the BH knows the private key to decipher E+

b (Di) and
cannot handle this data directly. We introduce a novel pro-
tocol exploiting the blinding and permutation techniques
described by Rane and Boufounos (2013).

Protocol 4. Given the encrypted distances E+
b (dil) of user

i with each cluster centroid l, the following protocol between
the SP and the BH uses (k � 1) secure comparisons to
compute the encrypted version of argminl dil without either
party learning the value of any of the dil, or the plaintext
version of the argmin, or any other private information
about users.

First, the SP creates a k-dimensional vector R0 =
[r01, r

0
2, . . . , r

0
k] of random values, which is used to blind

the k values of the vector Di as follows:

E+
b (D

0
i) = E+

b (Di) · E+
b (�R0) = E+

b (Di �R0), (16)

where E+
b (�R0) is multiplied by E+

b (Di) element-wise to
obtain E+

b (Di�R0), as described in Section 4.2. Note that

Service Provider Blind Helper
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Generate PUb, PRb
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b (D

0
i) and R0

⇡s, E
+
b (⇡s(D0

i)), ⇡s(R0
)
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i)), E
+
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))
Decrypt E+
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s (⇡s(R0
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s (�), R
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+
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s (�)

Compute E+
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Figure 7: Sequence diagram describing the protocol to compute the
encrypted version of argmin (Protocol 4).

�R0 is used in the product instead of R0 to streamline
subsequent calculations. Then, the SP generates a random
permutation vector, ⇡s, and permutes both E+

b (D
0
i) and

R0, obtaining, respectively, ⇡s(E
+
b (D

0
i)) and ⇡s(R0). Since

the encryption of a vector is element-wise, it is always true
that ⇡(E(X)) = E(⇡(X)) for every permutation ⇡ and
vector X. In the following, we will denote the encryption
as the outermost operation, for clarity of notation.

At this point, the SP encrypts ⇡s(R0) with its public key,
and sends both E+

b (⇡s(D0
i)) and E+

s (⇡s(R0)) to the BH.
The BH decrypts E+

b (⇡s(D0
i)) and gets ⇡s(D0

i). Note
that the BH cannot infer any useful information from
⇡s(D0

i), because its values are both blinded and permuted.
The BH creates a k-dimensional vector R00 =

[r001 , r
00
2 , . . . , r

00
k ] of random values and a random permuta-

tion vector, ⇡b. Then, the BH uses both these vectors to
blind and permute E+

s (⇡s(R0)), as follows:

E+
s (�) = E+

s (⇡b(⇡s(R
0)�R00)), (17)

where R00 is subtracted from ⇡s(R0) element-wise. The BH
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also computes the vector ↵ as follows:

↵ = ⇡b(⇡s(D
0
i) +R00), (18)

where, again, R00 is added to ⇡s(D0
i) element-wise. Finally,

the BH encrypts ↵ with its public key, and sends both
E+

s (�) and E+
b (↵) to the SP.

The SP decrypts E+
s (�), obtaining � = ⇡b(⇡s(R0)�R00).

Now the SP possesses both E+
b (↵) and �. Note that ↵ +

� is a very interesting vector, as shown by the following
formulas:

↵+ � = ⇡b(⇡s(D
0
i) +R00) + ⇡b(⇡s(R

0)�R00)

= ⇡b(⇡s(D
0
i) +R00 + ⇡s(R

0)�R00)

= ⇡b(⇡s(D
0
i +R0))

= ⇡b(⇡s(Di)),

(19)

where the last step of Equation 19 is obtained by using
Equation 16. The SP cannot compute ↵ + � directly, be-
cause it only knows E+

b (↵) and �. It can, however, encrypt
� with PUb, and sum it to E+

b (↵) element-wise, obtaining
E+

b (↵+�). From Equation 19, we can derive the following
formula:

E+
b (↵+ �) = E+

b (⇡b(⇡s(Di))), (20)
where E+

b (⇡b(⇡s(Di))) is the encrypted version of the
Di vector, permuted both by the SP and the BH. At
this point, the SP can trivially calculate the argmin of
E+

b (⇡b(⇡s(Di))), comparing the elements of the vector with
the current (encrypted) minimum, keeping track of the cor-
responding index. Since the vector E+

b (⇡b(⇡s(Di))) is per-
muted, the SP can repeatedly use the comparison proce-
dure that returns a boolean value in plaintext (Protocol 2),
without learning anything about the argmin of the origi-
nal vector E+

b (Di). Indeed, the SP can simply compute the
minimum encrypted value in E+

b (⇡b(⇡s(Di))) with (k � 1)
comparisons, as required, and obtain the corresponding
index, which is the argmin of E+

b (⇡b(⇡s(Di))).
The SP then sends the argmin of the doubly permuted

vector to the BH. The BH uses ⇡b, which it knows, to undo
one of the two permutations, and to get the argmin of the
⇡s(Di) vector.

Note that, again, the BH does not get any new infor-
mation, since it only learns the argmin of the permuted
vector. The BH uses this value to create the indicator
vector ⇡s(Ai), where all elements are equal to 0, except
for the one corresponding to the argmin of ⇡s(Di), which
is equal to 1.

Then, the BH encrypts ⇡s(Ai) with PUb, and sends
E+

b (⇡s(Ai)) to the SP. Finally, the SP uses ⇡s, which it
knows, to undo the last permutation, obtaining E+

b (Ai) as
desired. Figure 7 shows the whole protocol.

5.4. Privacy-Preserving centroids update
The next step is updating the Cl centroids, for each

l = 1, 2, . . . , k, computing the sum:

E+
b (Cl) = E+

b

 
1

|U l|

nX

i=1

Vi · ail

!
, (21)

where U l is the set of users belonging to the l-th clus-
ter, and |U l| is its cardinality. To calculate the terms of
the sum in Equation 21, the SP needs to obtain, for each
task j, E+

b (vij · ail), where vij is an element of vector Vi,
and ail is a scalar value. Both Vi and ail are known to
the SP only in encrypted form. This operation is possi-
ble by exploiting a protocol that is executed with the help
of the BH, using blinding techniques to keep secret values
from being revealed, as explained in Section 4. The sum
in Equation 21 can be easily calculated using the additive
homomorphic property, as follows:

E+
b

 
nX

i=1

Vi · ail

!
=

nY

i=1

E+
b (Vi · ail). (22)

In a similar way, the factor 1/|U l| in Equation 21 can be
calculated by summing up the encrypted values ail for each
ui and then it can be multiplied using blinding techniques.

At the end of each iteration, then, the SP gets E+
b (Cl)

for l = 1, 2, . . . k. By exploiting, once again, blinding tech-
niques with the BH, the SP decrypts these values and
learns the updated unencrypted centroids, which will be
used in the next iteration to calculate the new distances
from users’ values. Note, once again, that the only val-
ues known by the SP are the centroids (aggregated val-
ues), and that nobody knows which clusters each user be-
longs to (not even the users themselves). These properties
are maintained until the last iteration, when the K-Means
ends.

5.5. Privacy-Preserving Outlier Removal

In order to remove the outliers in a privacy-preserving
way, and thus improve the accuracy of our truth discov-
ery system, as will be shown in the experimental section,
the SP must take an additional step, which is a modified
version of one of the K-Means iterations. The SP recalcu-
lates the distance of the users’ values to the centroids, and
identifies, for each user, the minimum distance E+

b (dil) and
the encrypted vector E+

b (Ai), as explained in the previous
section.

At this point the SP compares E+
b (dil) with a plain-

text threshold. The comparison can be done in a privacy-
preserving manner, as in Protocol 3.

The output will still be an encrypted value, E+
b (oi). In

particular, oi will be equal to 0 if ui is considered an out-
lier, or 1 otherwise. Now the SP calculates, with blinding
techniques, the vector E+

b (Ãi) for each user, as follows:

E+
b (Ãi) = E+

b (Ai · oi). (23)

This new vector Ãi takes into account, anonymously,
whether a user has been classified as an outlier or not. Ãi

is then used instead of Ai to update the centroids one last
time, as described above. As a result, the SP gets the k
cluster centroids without outliers, in a privacy-preserving
way.
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In the end, the SP can obtain the final truth for each
task j by calculating the following weighted average:

E+
b (vj) = E+

b

 
1

|U | ·
kX

l=1

|U l| · clj

!

=
kY

l=1

E+
b (|U

l|)
clj
|U| .

(24)

Considering that the SP knows both |U | and all clj ,
Equation 24 is easy to calculate. Finally, the BH helps the
SP to decipher vj , using blinding techniques to prevent the
BH from learning unnecessary information.

Depending on the application scenario, alternative func-
tions to obtain a single truth value might be preferable.
For example, the SP could easily choose the best centroid,
i.e., the one with the most users, by exploiting the en-
crypted information it has available.

6. Security Analysis

In this section we present the security analysis of BLIND
by following an approach similar to Miao et al. (2017),
demonstrating that the SP is able to optimize QoI by clus-
tering user observations, while not revealing their private
data to any of the parties involved in the protocol.

Suppose there are n � 2 users and q � 1 tasks, and that
users have sent their encrypted values to the SP. If both
SP and BH are honest-but-curious and are not colluding
with each other, then values sent by users remain secret
and known only to themselves at all times during the QoI
optimization and thereafter. Furthermore, none of the par-
ties involved will learn each user’s cluster membership or
the identity of the outliers.

To prove the security of BLIND, we need to show that
none of the parties involved, i.e., users, SP, and BH, learn
any secret information. Users do not receive any infor-
mation about other participants, neither in plaintext nor
encrypted form. Indeed, their only involvement occurs at
the beginning of the protocol, when participants send their
observations. Please remember that all messages are ex-
changed via a secure communication channel. Neverthe-
less, even if users were able to intercept some of the mes-
sages, they would not be able to decrypt them because
they do not know the private key PRb.

Now, we need to show that SP and BH also do not gain
access to confidential information and cannot infer any-
thing even in the intermediate protocol steps. Recall that
SP and BH are honest-but-curious, which means that they
follow the protocol, but may try to infer extra information.
We will proceed with a step-by-step analysis of the data
held by SP and BH.

At the beginning of the protocol, the SP knows E+
b (vij)

and E+
b (v

2
ij) for all users i and all tasks j. Since the SP

does not know the related private key, however, it cannot
determine the corresponding plaintext values. Remember

that repeatedly encrypting the same value always gener-
ates different ciphertexts, as described in Section 4, thus
the SP cannot infer whether two users have submitted the
same values for a given task.

The SP can then calculate E+
b (dil) for each user ui and

each centroid Cl, i.e., the encrypted distances between
users and centroids, by applying Equation 10. This is done
by exploiting the homomorphic properties of the Paillier
cryptosystem, without revealing the plaintext versions of
user values and distances and without involving the BH.

Then, the SP has to find, for each user, the nearest cen-
troid by computing the encrypted version of argminl dil.
As shown in Protocol 4, the SP can compute these values
working together with the BH, without either party learn-
ing (i) the value of any of the dil, (ii) the plaintext version
of the argmin, or (iii) any other private information about
users.

The next step entails the SP updating the centroids,
by using Equations 21 and 22. This operation is possible
by exploiting protocols executed with the help of the BH,
using blinding techniques to keep secret values from being
revealed, as demonstrated in Section 5.4.

At the end of each iteration, then, the SP gets the en-
crypted centroids E+

b (Cl). Using, once again, blinding
techniques with the BH, the SP decrypts these values and
learns the updated unencrypted centroids, which will be
used in the next iteration to calculate the new distances
from users’ values. In summary, the only plaintext values
known by the SP are the centroids. Neither the SP nor
the BH learn each user’s cluster membership. These prop-
erties are maintained in all iterations until the end of the
K-Means protocol.

Then, in the outlier removal phase, the SP compares
each encrypted distance E+

b (dil) with a threshold, to de-
termine whether or not to include each user’s values in
the final truth computation. Using Protocol 3, the SP is
able to perform these comparisons in a privacy-preserving
manner, obtaining the result in encrypted form, as a vector
that takes into account, anonymously, whether a user is an
outlier or not. Finally, the SP can obtain the estimated
truth values for each task by computing Equation 24 with
the help of the BH, once again exploiting blinding tech-
niques to avoid revealing secret values.

7. Experimental Results

In this section we will analyze the performance of the
proposed truth discovery system from different points of
view. In the first part we will discuss the accuracy of our
approach, comparing BLIND with existing relevant sys-
tems. All the comparisons have been performed on a real
world dataset that collects opinions sent by users in ten
years, from 2008 to 2017. In order to thoroughly test the
resilience of all compared systems against attacks of vari-
ous kinds that aim to decrease the quality of information,
we will present several attack scenarios that model realistic
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situations. In the second part we will compare the com-
munication overhead of BLIND with other relevant work.
Finally, in the third part of this experimental section we
will show the scalability of our approach by varying dif-
ferent parameters, such as number of users, number of
tasks, number of clusters and key length. In order to test
the scalability of the system over an extensive range of
parameters, we used synthetic data produced specifically
to reflect real-world scenarios. In addition to testing the
scalability of the system on the server side, we also con-
ducted a series of experiments to verify scalability from
the perspective of participants using their mobile devices.
Considering the mobile crowdsensing application scenario,
this final set of tests is extremely important. In fact, while
the servers can be scaled both horizontally and vertically,
it is critical that the system be usable by participants with
older devices. Thus, these latest tests show how BLIND
can actually be used in real-world applications.

All of our experiments were carried out using a VM
equipped with 8 GB RAM and 8 cores Intel(R) Xeon(R)
CPU E5-2643.

7.1. QoI Optimization Comparison
In this section we evaluate the accuracy of BLIND, test-

ing it with a real world dataset to verify the effective-
ness of our approach. For comparison reasons, we imple-
mented CRH (Li et al., 2016), PPTD (Miao et al., 2019),
DTD (Kang et al., 2023) and UTD (Xiao and Wang, 2023).
To the best of our knowledge, CRH and PPTD are consid-
ered among the most relevant work in the field, since they
inspired many other approaches. CRH is not a privacy-
preserving system, but it is still a benchmark for truth
discovery accuracy.

Many of other systems inspired by CRH, including
PPTD, differ primarily in aspects related to maintain-
ing users’ privacy, while the formulas used for truth dis-
covery are very similar to each other (or, in some cases,
identical). In particular, L-PPTD (Miao et al., 2017),
EPTD (Xu et al., 2017), LPTD-I (Zhang et al., 2019b),
and RPTD-I (Zhang et al., 2019a) obtain the same QoI
results as PPTD. For presentation reasons, in the follow-
ing graphs we indicate only PPTD as the representative
system of all this category.

Although CRH, in its basic version, would be equiva-
lent to PPTD, the authors of the former point out that
their system is susceptible to the presence of outliers. To
mitigate the impact of outliers, a variant of CRH uses
alternative formulas that exploit the normalized absolute
deviation as loss function and selects the truth value based
on the weighted median of values. In the experiments, we
present this outlier-resistant variant of CRH (henceforth
referred to simply as CRH).

DTD and UTD, like CRH, are not privacy-preserving
systems. Evaluating the accuracy of a privacy-preserving
TD system like BLIND against truth-discovery systems
that don’t prioritize privacy is both important and chal-
lenging. This is largely because preserving privacy often

involves trade-offs, and systems that focus primarily on
truth discovery may use sophisticated techniques that may
produce superior results, albeit without preserving privacy.

7.1.1. Methodology
To carry out our experiments, we used a real world

dataset from the UCSD Book Graph (Wan and McAuley,
2018) project, collected by the UC San Diego University.
The data was extracted from the popular book review site
Goodreads in 2017 and then updated in 2019. The full
dataset contains information on approximately 2.3 million
books, 876 thousand users and over 100 million ratings
expressed by users on books. Each rating submitted by a
user is a value ranging from 1 (lowest) to 5 (highest) stars.

Given the large amount of total data, the full dataset
is also divided into sub-datasets based on the genre of the
books. Some of these sub-datasets are denser (i.e., the
number of ratings per book is higher) than others. In
particular, we wanted to select the largest possible set of
users who all rated the same books. Doing this, however,
is more difficult than it might seem. We can represent this
problem in the form of a matrix, where the rows denote
users and the columns denote books. A value of 1 in cell
(i, j) indicates that the i-th user rated the j-th book, while
a value of 0 indicates that the book was not rated by that
user. However, selecting the largest non-contiguous rect-
angular sub-matrix consisting only of 1-entries is an NP-
complete problem called maximum edge biclique (Peeters,
2003). For cases with a lot of data it is not feasible to find
an exact solution.

To avoid this problem, we adopted a simple heuristic,
by first selecting the n books with the highest number of
ratings, and including in the test data only the users who
have rated all of them. Doing so, we obtained a clique of
98 users and 10 books, which serves as the basis for our
experiments. Our ground truth consists of the average
ratings of the books in the full dataset, which takes into
account years of ratings submitted by all Goodreads users.

In order to fully test the capabilities of the compared
systems in improving the quality of information, even in
the presence of noisy data or malicious users, we also con-
sidered different variants of the dataset, envisaging mul-
tiple attack patterns. Specifically, four different types of
attacks are considered in the experiments we present:

• Random attack, where attackers (which in this case
could also be regular “lazy” users) send random rat-
ings for all books.

• Slandering against one target, in which each attacker
decides independently a target and tries to penalize
it, reducing its average rating; to implement this type
of attack using as much real data as possible, we have
considered real users who rated n�1 books, and set
to 1 (minimum score) their rating for the remaining
book.
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Figure 8: Results of the elbow method.

• Slandering against two targets, similar to the previous
case, except that the targets are two different books,
selected independently by each attacker.

• Orchestrated slandering, in which the attackers col-
lude to lower the ratings of the j-th book in a coor-
dinated way; to implement this type of attack we se-
lected real users who rated all books except the j-th,
setting to 1 their rating for the book targeted by the
attack.

We have chosen the RMSE (Root Mean Squared Er-
ror) as the main metric to measure the accuracy of the
systems. All experiments have been repeated 1000 times
and we present the average of the results obtained. We
also conducted analysis of variance tests for all considered
scenarios to show that there is a statistically significant
difference among the performance of the various truth dis-
covery systems.

7.1.2. QoI Optimization Results
Before comparing with other systems, we present an

analysis of the two main parameters of BLIND in order
to study how they affect performance. The parameters we
consider are the number of clusters, k, and the threshold
to discard outliers.

As regards k, we have employed the traditional approach
used for K-Means, called elbow method. The idea is to run
K-Means with different values of k and calculate the sum
of squared errors (SSE), as shown in Figure 8. The point
in this curve where the slope changes drastically, which
looks like an elbow, indicates the best value of k to use,
so that the number of clusters is not too large. Figure 8
shows the result of these experiments, highlighting how 2
is the value of k to use in our case.

Another set of experiments focused on the choice of the
threshold to use for discarding outliers. We defined the
threshold as a multiplier in relation to the average dis-
tance of user values from their respective centroids. A
threshold of 2, for example, discards those values which
have a distance more than double the average.

As expected, the performance of BLIND as k varies is
also affected by the number and type of attackers. In gen-
eral, we have observed that a small number of clusters is
better suited to cases where there are few attackers, while

Figure 9: RMSE obtained by different variants of BLIND when vary-
ing the threshold multiplier.

using more clusters results in a system that performs bet-
ter in the presence of a large number of attackers and less
well if there are few of them. Our goal in this set of exper-
iments is to estimate reasonable values for the parameters,
which are suitable for different situations that could hap-
pen in a real context. For the sake of this experiment,
then, we selected a medium-low number of attackers (30)
and the simplest type of attack, as described earlier (ran-
dom attack).

Figure 9 presents a summary of the experiments we con-
ducted. This figure shows how variations in both the num-
ber of clusters k and the threshold level impact the RMSE
values obtained. Systems demonstrating lower RMSE val-
ues are indicative of superior performance due to fewer
inaccuracies. A higher threshold implies that more val-
ues, even those that might be on the borderline of being
outliers, are included in the calculations. On the flip side,
when the threshold is reduced, the systems become more
stringent, thereby discarding a larger amount of outliers.

Our results correlate well with the elbow method’s find-
ings, where the system with k = 2 clusters consistently
yields the most effective results, proving its robustness to
various threshold settings.

Analyzing the trends, we observe that as we increment
the threshold, the RMSE values generally follow an up-
ward trend. This rise gradually flattens out when the
threshold reaches a high enough level. At this point, the
system has already incorporated almost all data values into
the computation, leaving out only the most extreme val-
ues. These extreme value are consistently rejected unless
the threshold multiplier is ramped up to extraordinarily
high levels.

In the following, for all comparisons with other work in
the literature, we used the system with k = 2 and thresh-
old = 1. We also present the results obtained by the sys-
tem with k = 1, as baseline to discuss how the number
of clusters affects the performance of BLIND against all
proposed attacks.

Figure 10 shows the result of the comparison. On the x-
axis, the number of attackers varies from 0 to 100 (i.e., 50%
of the total users), while the y-axis shows the RMSE values
obtained by the compared systems. As in Figure 9, sys-
tems with lower values are the ones that perform best. In
the graphical representation of our results, we have chosen
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(a) Random attack. (b) Slandering against one target.

(c) Slandering against two targets. (d) Orchestraded slandering against one target.

Figure 10: RMSE obtained by the compared systems with random, slandering and orchestrated slandering attacks.

to omit error bars that would otherwise indicate the confi-
dence intervals. This decision was driven by the fact that
the confidence intervals associated with our experiments
are so small that their inclusion would not contribute sig-
nificantly to the visual interpretation of the results.

Figure 10a shows the behavior of the systems when sub-
jected to the random attack. PPTD, representative of a
wide range of truth discovery systems, performs the worst
of all. As the number of attackers increases, its RMSE
continues to grow steadily, meaning that its performance
degrades in a scenario of increasing adversaries. In con-
trast, the outlier-resistant variant of CRH responds better
to this attack, showing a surprising resilience to an in-
creasing number of attackers up to a certain point, with a
steady RMSE value. Unsurprisingly, the behavior of CRH
is that of a step function, as shown in Figure 10a. This is
consistent with the use of the weighted median instead of
the mean as a criterion for selecting the final truth value.
However, beyond 40 attackers, we can observe an uptick
in RMSE, suggesting the limit of the system’s resilience
against adversaries.

The DTD system’s RMSE increases steadily with the
number of attackers, suggesting that it also struggles with
increasing adversarial conditions, albeit at a more grad-
ual rate than PPTD. The UTD system exhibits a sur-
prising behavior. Although the RMSE shows an overall
increasing trend with the number of attackers, it presents
some fluctuations. Its performance appears more consis-
tent compared to the others, but it also suffers from in-
creasing adversaries. Our system in the k2 variant obtains
the best results. In particular, as noted earlier, the system
with k = 1 is slightly better than k2 when the number
of attackers is 0 or otherwise very low. As the number of

attackers increases, however, the system with k = 2 per-
forms remarkably well, and succeeds in eliminating outliers
effectively, greatly improving the quality of information
over the other systems. Specifically, the k1 variant seems
to maintain a rather steady progression, but beyond 45
attackers, it experiences a noticeable surge in RMSE val-
ues. Despite this, it performs better than PPTD and is
somewhat comparable to DTD, under a high number of
attackers.

The best performing system is undoubtedly the k2 vari-
ant of our system. It starts with a high RMSE at zero
attackers, but rapidly improves as the number of attack-
ers increases. It then maintains a steady and low RMSE
for the rest of the attack range, making it the most resilient
system to adversarial conditions. Its performance remains
impressive, with slight fluctuations but no alarming surges,
even in the face of a high number of attackers. This ro-
bustness, combined with a generally low RMSE, suggests
that k2 is the superior performer under these conditions.

When varying the number of attackers, the mean RM-
SEs obtained are 1.649, 1.383, 1.104, 0.811, 1.201, and
0.693 for PPTD, CRH, DTD, UTD, k1, and k2, respec-
tively. Thus, PPTD, CRH, DTD and UTD obtained, re-
spectively, a mean RMSE that is 138%, 100%, 59%, and
17% higher than our system with k = 2.

Figures 10b and 10c show slandering attacks with one
or two targets, respectively. Overall, the TD systems are
less affected by this attack, compared to the random one.
PPTD shows the highest vulnerability, with a high RMSE
that escalates as the number of attackers increases. Com-
paring the two figures, moreover, we can notice that PPTD
obtains better results when the slandering is against a sin-
gle target (Figure 10b), while it presents a higher RMSE
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Table 5: Comparison of the communication overhead of PPTD, EPTD and BLIND for each iteration.

Phase PPTD EPTD BLIND

Weights update 5nq + 3n+ (h� 1)(4q + 2) n(4q + 3) 9nk � 3n
Truth update nq + 2q(h� 1) + 2(h� 1) nq + q 3nqk

when the attack is against two targets (Figure 10c).
The CRH system seems to be highly resistant to slander

attacks, taking advantage of the weighted median to ignore
erroneous data even with many attackers, with its RMSE
remaining consistent in the two scenarios. However, this
value is relatively high compared to other systems even
with zero attackers.

For both types of slander attacks, DTD’s RMSE starts
relatively low and increases as the number of attackers
grows. This system seems to handle small number of at-
tackers reasonably well but struggles as the number of at-
tackers grows. UTD obtains the best performance against
this type of attack. Its RMSE starts low and has a lower
rate of increase compared to the other systems, indicat-
ing a higher resilience to slander attacks. As for k1 and
k2, their results are better when the attack is against two
targets, contrary to PPTD. In particular, the system with
k = 2 performs better against the attack in Figure 10c
when the number of attackers is low. Our baseline system,
k1, displays good resilience to the increasing numbers of
attackers. In the one-target slander attack, in particular,
its RMSE increases slower than PPTD and DTD but faster
than UTD. Focusing on our system of interest, k2’s RMSE
starts relatively high compared to the other systems but
displays great resilience against increasing attackers both
in the one-target and two-target slander scenarios.

Finally, Figure 10d shows a more elaborate attack,
namely orchestrated slandering against a single target. As
described above, this attack involves malicious users col-
luding to lower the average rating of a particular book.
Such scenarios, where several attackers work together to-
wards a common goal, are often problematic for truth dis-
covery systems for multiple reasons. First, in an orches-
trated slandering attack, a large number of attackers col-
lude to provide a consistent false rating. This means that
TD systems cannot rely on the assumption that the truth
is the opinion of the majority. Moreover, since our attack-
ers are real users who have rated all books fairly except the
target, their behavior may not significantly deviate from
normal until the point of the attack. This can make it dif-
ficult for TD systems to identify these users as attackers.

The results clearly show that the RMSE increases in
most systems as the number of attackers rises. This in-
dicates that as more false information is introduced, it
becomes increasingly difficult for these systems to discern
the truth, leading to higher error rates.

Indeed, CRH is susceptible to this type of attack, as
shown in the figure. Its classic step function behavior is
also present here, although as the number of attackers in-
creases, the RMSE of CRH increases dramatically. The

Table 6: Default values of the parameters used in the scalability
experiments.

Parameter Value

# of users 1000
# of clusters 3
# of tasks 10
Key size 1024 bit

abrupt increase in RMSE at 60 attackers implies a weak-
ness in handling high volumes of coordinated false infor-
mation. PPTD behaves similarly to the cases of unorches-
trated slandering attacks, with its RMSE steadily increas-
ing along with the number of attackers. Its inability to
distinguish between true and false ratings in the context
of orchestrated slander is highlighted here.

The steady increase in RMSE for both DTD and UTD
highlights the challenges they face in identifying and ex-
cluding the ratings from the orchestrated attack. They
seem unable to discern outliers effectively when those out-
liers are part of a coordinated group.

Our baseline k1 system, while better than the previous
ones, also exhibits a consistent rise in RMSE, demonstrat-
ing the big challenges posed by these orchestrated attacks
and yielding results similar to those in Figure 10a (random
attack). Notably, our k2 system outperforms all others,
demonstrating its superior ability in maintaining high ac-
curacy despite the increase in attackers. After an initial
increase, it manages to reduce the RMSE significantly, sug-
gesting an effective mechanism to cope with the high vol-
ume of false information. The fact that the RMSE remains
mostly constant thereafter, even with increased attackers,
demonstrates a robust resilience against this type of at-
tack. This is due to its outlier detection and its approach
that is different from the other systems.

On average, when varying the number of attackers,
PPTD, CRH, DTD and UTD obtained, respectively, an
RMSE that is 76%, 61%, 37%, and 29% higher than our
system with k = 2. In our comprehensive investigation, we
have conducted Analysis of Variance (one-way ANOVA)
tests for all considered scenarios, involving the four dis-
tinct attack types. Each case presented a statistically sig-
nificant difference among the performance of the truth dis-
covery systems, as indicated by the low p-values obtained
(typically much less than 0.05). This consistent statis-
tical significance across all cases confirms the robustness
of our experimental methodology and demonstrates that
the differences observed in the RMSE between the truth
discovery systems are not due to random chance, but are
reflective of their performance characteristics.
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7.2. Communication Overhead

In this section we will compare the communication
overhead of BLIND with other relevant state-of-the-
art approaches, namely PPTD (Miao et al., 2019) and
EPTD (Xu et al., 2017), which are two of the systems
that implement the truth discovery iterative algorithm of
CRH. In this comparison, CRH, DTD and UTD are not
included since they are not privacy-preserving systems.

Table 5 shows the communication overhead of the three
systems during an iteration of their respective protocols.
All values for PPTD and EPTD are taken from (Xu et al.,
2017). Since BLIND implements a different truth discov-
ery model than either PPTD or EPTD, we merged the first
two rows from the original table to carry out the compari-
son. In BLIND, the “weights update” of PPTD and EPTD
is comparable to the computation of user distances and the
subsequent calculation of the argmin, for each user. The
“truth update”, on the other hand, is easily comparable to
the centroids update phase of BLIND. All values listed are
intended to be multiplied by the size of an encrypted value,
which is not shown for the sake of presentation clarity. It is
worth recalling that n denotes the number of users, q indi-
cates the number of tasks, and k represents the number of
clusters. PPTD uses an additional parameter h that rep-
resents the minimum number of users needed to decrypt
values, as provided by the Threshold Pallier cryptosystem.

As written above, the “weights update” phase for BLIND
includes both user distances and argmin calculations. The
SP computes the encrypted version of user distances by it-
self, without involving the BH. No messages are exchanged
in this phase, hence there is no communication overhead.

The argmin computation was extensively detailed in
Section 5.3.2. For each user, it is necessary to compute
the argmin of a vector of k elements. In terms of ex-
changed values, at the beginning of the protocol, the SP
sends to the BH k blinded distances and k random values,
for a total of 2k values. Next, the BH sends to the SP
the two k-dimensional vectors E+

b (↵) and E+
s (�). The SP,

at this point, performs (k � 1) secure comparisons, for a
total of 3(k � 1) exchanged values. Finally, the SP and
the BH send a k-dimensional vector to each other, for a
total of 2k values. Thus, the communication overhead of
the argmin phase for a user is 6k + 3(k � 1) = 9k � 3
values. If we consider n users, the cumulative overhead is
9nk� 3n values exchanged. In the centroid update phase,
qk multiplications are performed for each user to calculate
Equation 22, while the summation is carried out locally
by the SP. Each multiplication involves sending 3 values,
as described in Section 4. When considering n users, then,
the overall values exchanged are 3nqk.

To make sure the comparision is fair, we need to esti-
mate the magnitude of the parameters k and h, which are
specific to BLIND and PPTD, respectively. The factor k
represents the number of clusters, which is typically very
small. Effectively, increasing the number of clusters does
not always lead to better QoI, as shown by our experiments

on the real world dataset in Section 7.1. In our analysis,
the elbow method (Fig. 8) indicated 2 as the ideal number
of clusters. In the following, we will therefore consider k
as a constant. The parameter h of PPTD, on the other
hand, can assume high values (proportional to the number
of users n), since the security of the whole system increases
the higher the value of h.

As regards the “weights update” phase, the asymptotic
communication overhead of PPTD is O(nq + hq), that of
EPTD is O(nq) and that of BLIND is O(n). It is worth
noticing that BLIND is the only system whose overhead
is not affected by the number of tasks q, in this phase,
making it the most efficient. Finally, in the “truth update”
phase, the asymptotic communication overhead of PPTD
is O(nq+hq), while EPTD and BLIND both exhibit O(nq)
overhead.

7.3. Scalability of the System

In this section we will evaluate the performance of our
system in terms of execution times. We will analyze the
scalability of BLIND when varying some key parameters,
i.e., the number of users, the number of clusters (k param-
eter of the K-Means), the number of tasks performed by
users and the length of the encryption key in bit.

7.3.1. Methodology
In the following, we will compare several versions of our

privacy preserving truth discovery system, which take ad-
vantage of different kinds of performance optimizations.
We will examine five different system variants:

• baseline: basic system without optimizations;

• fast_dist : system that efficiently calculates users’
distances from each cluster, exploiting Equation 10.
Compared to the baseline system, fast_dist needs to
ask users the encrypted version of their squared val-
ues, E+

b (v
2
ij), for each task, as described in Section 5.2,

but this allows a significant reduction in execution
times, as will be shown by the results;

• fast_argmin: system that efficiently calculates the
argmin (Protocol 4), instead of using the simpler but
slower method mentioned in the same section;

• fast_outlier : system that speeds up the outlier re-
moval phase if the system has reached convergence.
If this is the case, fast_outlier avoids recalculating
the encrypted mininum indicator vector E+

b (Ai) for
each user, since it will be unchanged from the last K-
Means iteration; instead, E+

b (Ai) can be stored and
reused from the previous step;

• fully_optimized : system that exploits all the op-
timizations described above simultaneously, i.e.,
fast_dist, fast_argmin and fast_outlier.
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Table 7: Comparison of execution times of the different system phases under different optimizations with the default parameters reported in
Table 6, i.e., 1000 users, 3 clusters, 10 tasks, and 1024 bit key size.

baseline fast_dist fast_argmin fast_outlier f_optimized

K-Means 1.00x (332.3s) 0.61x 0.84x 1.00x 0.45x
Outlier removal 1.00x (114.6s) 0.48x 0.89x 0.22x 0.20x

Total time 1.00x (446.9s) 0.55x 0.86x 0.67x 0.34x

Synthetic data are generated according to a uniform dis-
tribution with values between 0 and 10. The default values
of the parameters used in the experiments are given in Ta-
ble 6. In each series of experiments we vary one of those
parameters, leaving the others unchanged. In the results
we report the average execution times of the various sys-
tems, normalized in such a way that the baseline system
requires 1 computation unit when using the default pa-
rameters. For the 1.00x baseline system we also report the
absolute execution times of our Python implementation on
our test hardware. Note that by using higher-performance
hardware or lower level languages such as C, the absolute
times may decrease quite a bit. For example, our tests
show that homomorphic operations on data performed in
Python can take up to 6.81x the time required by an equiv-
alent Paillier library in C.

7.3.2. Server-side Scalability Results
Table 7 compares all five systems with the default pa-

rameters that are reported in Table 6. In addition to
the total execution time, we also present the partial time
needed to calculate the K-Means and that for the removal
of outliers, also normalized according to the baseline sys-
tem. The K-Means phase performs a variable amount of
iterations (generally between 2 and 4) until convergence,
when no more changes from the previous iteration.

Unsurprisingly, each system is faster than the baseline,
with different levels of performance. The fast_dist opti-
mization reduces the time taken for the K-Means phase
by about 39%, making it faster than the baseline. The
fast_argmin optimization also speeds up this phase, but
less effectively, reducing the time to 84% of the base-
line. The fast_outlier optimization makes no change to
this phase compared to the baseline. This is because
fast_outlier only optimizes the outlier removal phase.
The K-Means phase of fast_outlier is therefore identi-
cal to the baseline system, as shown by its 1.0x execution
time. The most significant improvement comes from the
fully_optimized system, which reduces the time taken to
just 45% of the baseline. In the outlier removal phase,
the fast_dist optimization achieves a 52% reduction in
time, while the fast_argmin optimization only gives an
11% time reduction. The fast_outlier and fully_optimized
optimizations perform particularly well in this phase, re-
ducing the time to 22% and 20% of the baseline, respec-
tively. Unsurprisingly, the fully_optimized system that
exploits all optimizations at once is the fastest one, with
execution times of 0.45x, 0.20x and 0.34x for K-Means,

outlier removal and total time, respectively. Thus, the
fully_optimized system is 3 times faster than the baseline.
The outlier removal phase is the one that benefits the most
from optimizations, improving the baseline execution time
by a factor of 5.

Figure 11 shows a comparison of the execution times of
the five analyzed systems, by varying the selected param-
eters (i.e., number of users, number of clusters, number of
tasks and key length) one at a time. Each group of graphs
shows the average execution times for the K-Means and
outlier removal phases, as well as the total time. As in the
previous set of experiments, we have omitted error bars to
avoid visual clutter, since the confidence intervals are low.

It is worth noticing that, in all cases, the fully_optimized
system is consistently the fastest, even when varying pa-
rameters. At the same time, as pointed out above, the
fast_outlier system is identical to baseline in the K-Means
phase and close to fully_optimized in the outlier removal
phase.

Figures 11 (a-c) show the trend of execution times as
the number of users increases from 100 to 10, 000. We
can observe that execution times increase linearly with re-
spect to the number of users, for all systems. The base-
line system consistently trails behind, suggesting that the
optimizations in the other systems significantly improve
execution times. Aside from the fully_optimized system,
as users increase, the single optimization with the greatest
effect is fast_dist. This is as expected, considering that
the distance calculation times become more impactful as
the number of users increases.

Surprisingly, while fast_argmin is the least effective op-
timization as the number of users varies, it becomes very
important as the number of clusters increases, as shown in
Figures 11 (d-f). Once again, the fully_optimized system
consistently performs better than other systems across all
phases and across all numbers of clusters, reinforcing the
previous conclusion that the optimizations significantly
improve system performance. Indeed, in this case, only the
execution times of fast_argmin and fully_optimized follow
a linear growth as the number of clusters increases, while
the other systems follow a superlinear but subquadratic
growth. This can be explained by the fact that the argmin
calculation is O(k), where k is the number of clusters, in
the fast_argmin and fully_optimized systems, while it is
O(k2) in other systems. Since the argmin calculation is
only a portion of the total execution time, the result is
correctly a superlinear but subquadratic growth.

The fast_dist optimization performs comparatively bet-
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(a) K-Means vs. # of users. (b) Outlier removal vs. # of users. (c) Total time vs. # of users.

(d) K-Means vs. # of clusters. (e) Outlier removal vs. # of clusters. (f) Total time vs. # of clusters.

(g) K-Means vs. # of tasks. (h) Outlier removal vs. # of tasks. (i) Total time vs. # of tasks.

(j) K-Means vs. key size. (k) Outlier removal vs. key size. (l) Total time vs. key size.

Figure 11: Experiments on the scalability of BLIND when varying different parameters.

ter when the number of clusters is low but shows a steeper
increase in execution time as the number of clusters grows,
especially noticeable in the K-Means phase. This suggests
that this optimization might not scale as well with the
increasing complexity of calculations related to more clus-
ters. Both the fast_outlier and fast_argmin optimizations
have less drastic increases in execution time with more
clusters than fast_dist, particularly noticeable in the Out-
lier removal phase.

The greater rise in the execution time of the K-Means
phase from 9 to 10 clusters in Figure 11 (d) is explained
by the increase in the number of iterations performed by
the system to achieve convergence. In general, the number
of iterations for convergence increases with the number of
clusters, suggesting that the algorithms take longer to con-
verge with more complex data structures (more clusters).
Interestingly, this increase in iterations does not affect the

fully_optimized system as severely as the other systems,
emphasizing its robustness. It can also be noted that the
increase in the execution time of the outlier removal phase
in Figure 11 (e) is more regular, since it is not influenced
by the number of iterations performed.

Figures 11 (g-i) show the trend of execution times
as the number of tasks performed by users varies from
1 to 20. The growth is linear for all systems, and
fast_dist is the most effective single optimization, after
the fully_optimized system. Surprisingly, the number of
iterations performed by K-Means is less when the num-
ber of tasks is 5 than when it is 1, and this explains why
execution times increase slightly or even decrease (system
fast_dist in Figure 11 (g)) in this particular case. This
could imply that having more tasks can potentially help
the algorithms to reach convergence faster, thus reducing
the number of iterations. Once again, the outlier removal
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Figure 12: Relative importance, in terms of execution time, of the
K-Means and outlier removal phases.

phase is not sensitive to the number of K-Means iterations
and therefore shows a more regular growth.

Figures 11 (j-l) show that all systems display a marked
increase in execution time as the key length increases
across all phases (K-Means, outlier removal, and total).
This indicates that encryption complexity heavily influ-
ences execution time. The baseline system execution time,
for example, increases almost 35 times varying from a 1024
bit key to a 4096 bit one, while the fully_optimized system
time is about 12x with the same key. Note that the exe-
cution time for the baseline system is about 35x in both
the K-Means phase and the outlier removal phase, with a
4096 bit key. The fully_optimized system, on the other
hand, shows an execution time of 15.5x in the K-Means
phase and only 7.37x in the outlier removal phase. This
is because the fully_optimized system performs much less
cryptographic operations in the outlier removal phase with
respect to other systems, and this has a positive effect on
the total execution time, especially when such operations
are extremely time-consuming, with a large cryptographic
key. The 2048 bit key, on the other hand, results in an
execution time of 5.94x for the baseline system and 2.1x
for the fully_optimized system.

All other systems are in between these two extremes, as
expected. In the K-Means phase, the fast_outlier has the
most noticeable increases in execution time as key length
grows (excluding the baseline), indicating that this system
might be particularly sensitive to encryption complexity.
In contrast, fast_argmin and fast_dist systems also in-
crease but at a slightly lower rate, suggesting these opti-
mizations handle increased encryption complexity better.
In the outlier removal phase, the execution times for all
systems rise steeply with key length, but fully_optimized
remains the most efficient. fast_dist and fast_argmin
have a slightly better response to key length increase than
fast_outlier and baseline.

Finally, we analyze the relative importance, in terms
of execution time, of the K-Means and outlier removal
phases with respect to the complete truth discovery sys-
tem. To this end, Figure 12 compares two versions of
the fully_optimized system when varying the number of
users from 1, 000 to 10, 000. The first system, called mul-
tiple_it, is the one that has been analyzed so far, where the
K-Means performs multiple iterations until convergence is

reached. The second system, called single_it, performs
only a single iteration of the K-Means, regardless of con-
vergence. The times reported are, once again, normalized,
so that the total execution time of the baseline system with
default parameters corresponds to 1 computation unit.

Consistent with the results obtained in the QoI opti-
mization experiments, we observe that the K-Means phase
generally takes longer than the outlier removal phase. Of
course, this also depends on the number of iterations per-
formed by the K-Means algorithm. As expected, the to-
tal execution time of the single_it system is always lower
than the multiple_it one, since the number of iterations
performed is different. At the same time, however, mul-
tiple_it is able to speed up the outlier removal phase, by
applying the same optimizations of the fast_outlier sys-
tem. Such optimizations are impossible if the K-Means
has not reached convergence, as in the case of the single_it
system. In this case, the outlier removal phase is as expen-
sive as a normal K-Means iteration. This is highlighted by
the single_it bars in Figure 12, where the outlier removal
phase represents about half of the total time, regardless of
the number of users. On the contrary, the multiple_it sys-
tem bars show that its outlier removal phase has a much
smaller impact on the total time. This is obvious, consid-
ering that multiple_it performs multiple iterations of the
K-Means.

Indeed, for the multiple_it system, the K-Means phase
consistently accounts for more than 70% of the total execu-
tion time, while the outlier removal phase contributes less
than 30%. This shows the dominance of K-Means clus-
tering in terms of computational complexity in the mul-
tiple_it system. On the contrary, in the single_it sys-
tem, the execution time is distributed more evenly be-
tween the K-Means and outlier removal phases. The out-
lier removal phase takes up approximately 55% of the to-
tal time, on average, whereas the K-Means phase accounts
for around 45%. This indicates that limiting the number
of K-Means iterations significantly reduces its execution
time, to the point where outlier detection becomes the
most time-consuming operation.

In conclusion, the optimizations performed by multi-
ple_it are remarkable, since the execution times of the
outlier removal phase are much lower in multiple_it with
respect to single_it, when compared directly. This might
be important if the SP wants to run the outlier removal
system several times, for example by varying the thresh-
old used to discard unreliable data, as shown in the QoI
optimization experiments.

7.3.3. Client-side Scalability Results
In this section we present another set of experiments

we performed to test the scalability of the system from
the perspective of end-users using their mobile devices.
Experiments regarding client-side scalability are crucial for
assessing the feasibility, adaptability, and future-proofing
of a privacy-preserving truth discovery system used for
mobile crowdsensing.
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(a) Client-side scalability vs. number of users. (b) Client-side scalability vs. number of clusters.

(c) Client-side scalability vs. number of tasks. (d) Client-side scalability vs. key length.

Figure 13: Experiments on the scalability of BLIND on the client side.

We tested the execution time of encryption operations
using Paillier’s cryptosystem on a Samsung Galaxy S8, a
2017 smartphone. To perform the tests, we used an open-
source benchmark suite available on GitHub2, which is also
compatible with iOS and Android.

In the following experiments, we compare two of
the systems presented earlier, namely baseline and
fully_optimized, since the other optimizations do not af-
fect the execution time on the client side. Figures 13 (a-c)
show the results of our experiments. Times are expressed
in milliseconds.

We can immediately observe that, in Figures 13 (a)
and (b), the execution time is about 24 ms and it is con-
stant as the parameters (number of users and number of
clusters), vary. At the same time, we can see that the
fully_optimized system requires about 50 ms. This is as
expected. Indeed, one of the strengths of BLIND is that
users only have to encrypt their data once with their public
key at the beginning of the protocol, with minimal effort.
This makes the system very scalable on the client side,
since many of the parameters that generally increase the
client-side complexity of other privacy-preserving systems,
such as the total number of users or the number of clusters,
have no effect on the computations that each user has to
carry out in BLIND.

From the user’s point of view, the only thing that mat-
ters is the number of values to encrypt. In the baseline

2https://github.com/snipsco/paillier-libraries-benchmarks

system, the number of values to encrypt is equal to the
number of tasks, since the user only has to submit the
encrypted version of its values, E+

b (vij).
In order to compute encrypted distances from centroids

more efficiently, as in the fast_dist and fully_optimized
systems, it is necessary that the user also sends the en-
crypted version of his values squared, E+

b (v
2
ij), as described

in Section 5. Since the number of values to encrypt is dou-
bled, this generally results in doubling the time required
on the client side, as well. However, since the number of
values required from the user is generally small (on the
order of a dozen), the overall time is still very low, and
the system is still scalable and applicable to real-world
scenarios.

This can be seen in Figure 13 (c), which shows a linear
growth for both systems as the number of tasks increases.
As argued above, 10 tasks is a reasonable number to focus
on in a mobile crowdsensing application. With 10 tasks,
the amount of time required by users is about 239 ms for
the baseline system and 477 ms for the fully_optimized
system. This is still quite reasonable and shows that the
cryptographic operations required by BLIND are perfectly
usable in a real crowdsensing application without affecting
the user experience.

Finally, Figure 13 (d) shows the time required for dif-
ferent key lengths. As discussed above in the server-side
scalability experiments, the length of the cryptographic
keys used for the homomorphic operations has a signifi-
cant impact on the execution times.
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As the figure shows, the growth is exponential in this
case. The encryption times with 256 and 512 bit keys are
so small that the bars are not visible in the graph (i.e.,
about 2 ms and 7.4 ms for the fully_optimized system,
respectively). However, such key lengths do not provide
adequate security. On the other hand, up to 2.4 seconds
for encrypting a single value with a 4096-bit key is too
much for a practical application (this would mean about
24 seconds for 10 tasks in a typical application).

As it stands, there is a trade-off between privacy and
efficiency. Using long cryptographic keys provides better
security but requires more computational resources. These
client-side scalability experiments can help determine that
1024 bits is a good key length that balances privacy and
efficiency, providing secure communication without bur-
dening user devices.

With a 1024-bit key, the average time required for a typ-
ical crowdsensing application with 10 tasks would be less
than 500 ms on the fully_optimized system, which is quite
reasonable considering that this is the only computational
effort required from users and that newer mobile devices
would further reduce this time.

8. Discussion

BLIND proposes an innovative solution to the challenges
of privacy preserving truth discovery systems for mobile
crowdsensing. Overall, this study answers multiple ques-
tions:

1. Is it possible to implement a system that improves
the QoI of data collected through mobile crowdsensing
while respecting the privacy of participants?

2. What is the communication overhead of such a sys-
tem? Is the system scalable to real-world application
scenarios?

3. Is the system scalable from a server-side perspective
as various operational parameters change, such as
number of users, number of tasks, cryptographic key
length, etc.?

4. Is the system scalable from the perspective of the end-
users as well, who are often using devices that have
limited power and computing resources?

Answering these questions is critical to assessing the fea-
sibility and usability of BLIND in real-world cases and to
evaluate its possible integration with existing crowdsens-
ing systems. Our extensive experimental evaluation cov-
ered such challenges, showing how BLIND solves them and
how it compares with relevant work in the literature, by
highlighting strengths and limitations of our approach.

The first issue that we analyzed was the choice of feasible
parameters to tune our system. Although automatic and
dynamic tuning of these parameters could be the subject
of future research, our experiments showed that a thresh-
old value hovering around 1 consistently delivers optimal

performance across all system configurations (Figure 9).
This suggests that at this threshold value, BLIND achieves
a balance between including a sufficient amount of data
for a significant analysis and excluding enough outliers to
maintain the overall accuracy of the results. Thus, this
particular threshold level could be considered a sweet spot
for optimal system performance.

We then tried to answer question (1) by analyzing how
BLIND can privately improve QoI in mobile crowdsensing
systems. We compared BLIND (in two variants named
k1 and k2) to both privacy-preserving and non-privacy-
preserving TD systems in multiple scenarios with an in-
creasing number of malicious users. By analyzing the re-
sults, we can draw interesting insights on their relative
performances under varying adversarial conditions. Start-
ing with the PPTD and CRH systems, we see a significant
contrast in their resilience to an increase in the number
of attackers. This is both surprising and interesting, since
PPTD is inspired by CRH, and it means that the outlier-
resistant version of CRH proposed by its authors is re-
markably effective in improving the system.

The performance patterns of both the UTD and k2 sys-
tems, in terms of RMSE, offer an interesting comparison.
Initially, the UTD system starts with the lowest RMSE
among all systems, indicating the highest accuracy in truth
discovery. However, as the number of attackers increases,
its RMSE also rises, suggesting that the system’s perfor-
mance decreases in the face of adversarial conditions.

Contrastingly, the k2 system initially starts with a
higher RMSE, particularly when there are zero attackers.
This could be due to the system’s outlier removal method,
which might initially remove useful data points rather than
actual outliers in the absence of attackers.

However, as the number of attackers increases, an inter-
esting shift occurs. The k2 system improves and its RMSE
decreases, settling to a consistently low value that it main-
tains despite further increase in attackers. The outlier re-
moval method, which initially seemed a liability, becomes
an asset when dealing with adversarial conditions.

UTD performed slightly better than all other systems,
including BLIND, for a specific attack type, namely slan-
dering against one or two targets. A common challenge for
both attacks is the randomness and independence in the
choice of targets by the attackers. This makes it difficult
for the systems to discern patterns and effectively counter
the attacks.

When comparing the performance of the k2 and UTD
truth discovery systems under slandering attacks, it is im-
portant to note that, while UTD may show slightly supe-
rior performance in terms of RMSE, the performance of
k2 remains quite impressive. Indeed, despite the slander
attacks, k2 maintains a relatively stable RMSE even as
the number of attackers increases. Moreover, it is cru-
cial to highlight the different aims of the two systems.
While UTD focuses solely on truth discovery, k2 serves
a dual purpose by also aiming to preserve the privacy of
its users. The necessity to balance these two often conflict-
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ing objectives inevitably impacts the ability of k2 to match
the RMSE values achieved by UTD. In an era where pri-
vacy concerns are becoming increasingly important, while
systems such as UTD might provide slightly superior ac-
curacy, they do so at the cost of privacy. By managing to
achieve remarkable accuracy while preserving privacy, the
k2 system offers a more balanced solution for private truth
discovery.

To answer question (2), we evaluated the communica-
tion overhead of BLIND, comparing it with other relevant
state-of-the-art approaches. The novel approach adopted
by BLIND allowed it to outperform the competition in this
comparison, exhibiting low overhead both for updating
the required weights and updating the truth values, with
asymptotic communication overhead of O(n) and O(nq),
respectively.

To answer question (3), we performed a series of tests
regarding the server-side scalability of BLIND, compar-
ing different versions of the system with various optimiza-
tions. The fully_optimized version of the system clearly
stands out in terms of overall efficiency, providing signifi-
cant time reductions in both the K-Means and outlier re-
moval phases. While the other optimizations also provide
improvements in speed, their effects are not as consistent
or as effective. In general, the linear increase of execution
time with the rise in user count indicates the scalability of
these systems. However, this also underlines the need for
performance optimization, particularly when dealing with
large user bases.

The experiments on key length showed a possible limi-
tation of the system, since the increase in execution time
is exponential in this case. As mentioned above, it is cer-
tainly necessary to find an appropriate compromise be-
tween security and efficiency in this case. A 1024-bit key
seems to be the best choice, providing both satisfactory
security and execution times compatible with real appli-
cations. However, it is worth noting that the computations
performed on the server side can be accelerated by scal-
ing the servers both horizontally and vertically, and that
we are talking about batch computations which have no
real-time requirements. Thus, we can conclude that the
runtimes achieved by BLIND are perfectly acceptable in
real application scenarios.

As a result of BLIND’s optimization efforts, the sys-
tem fully_optimized is on average 3 times faster than the
baseline. Nevertheless, future research efforts could be di-
rected at finding new optimizations to further improve the
efficiency of BLIND.

These efforts will also focus on client-side performance
optimization, which answers the last of our questions
about the feasibility of BLIND for users with mobile de-
vices. Indeed, any significant computational load on these
devices, such as running complex algorithms, can drasti-
cally affect battery life and slow down the device, leading
to a poor user experience. As a result, users may become
disinclined to use the service, which in turn, can affect
the amount of data being collected. In particular, client-

side scalability ensures that users with older devices can
still participate. This broadens the potential user base,
making the system more accessible, which is particularly
important for crowdsensing applications.

The results are very encouraging. BLIND requires min-
imal computational effort from end-users, who only need
to encrypt their data at the beginning of the protocol and
do not need to stay connected or perform additional oper-
ations. The system proved to be extremely scalable from
the client side. Again, a potential limitation of the sys-
tem is the sharp rise in complexity due to increasing the
cryptographic key size, but 1024-bit keys have proven to
be perfectly adequate to maintain execution times in the
range of a few hundred milliseconds for a typical crowd-
sensing application.

9. Conclusions

In this work we studied the possibility of improving QoI
of the observations provided by users, without knowing
either the content of the data or the users who actually
provided it. To accomplish this task, we proposed BLIND,
an open source privacy-preserving truth discovery system
for mobile crowdsensing.

Encrypted data sent by users is anonymously grouped
in clusters so as to preserve privacy through a modified
version of the K-Means algorithm that exploits homomor-
phic encryption techniques. The result obtained is used
to discard outliers which are not close enough to any of
the cluster centroids. Finally, a single truth value for each
activity is calculated as a function of the centroids.

We demonstrated that BLIND is secure and that no
information about users is disclosed to any of the parties
involved in the protocol. We released the source code of
BLIND and made it publicly available.

We also extensively evaluated the performances of
BLIND, comparing it with other state-of-the-art work by
using a real world dataset. Results showed that BLIND
outperforms other systems in reducing the impact of four
security attacks. We further investigated the communica-
tion overhead of BLIND and compared it with other rele-
vant work. Finally, we evaluated the scalability of our ap-
proach both server-side and client-side by using a synthetic
dataset to test the system under challenging conditions.

Our solution offers interesting perspectives for the de-
velopment of future truth discovery systems and is a sig-
nificant step forward in safeguarding participants’ privacy.

Incorporating the concept of user reputation into the
model, while preserving their privacy through a reputation
management system, may be an interesting area for future
research, as it would further enhance the QoI of the truth
discovery system. Other possible directions for future work
include allowing BLIND to dynamically reconfigure itself
according to the context, and trying to further optimize
the system, both server-side and client-side, to make it
even more scalable.
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