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SARS-CoV-2 infection leading to Coronavirus disease 19 (COVID-19) rapidly 
became a worldwide health emergency due to its elevated infecting capacity, 
morbidity, and mortality. Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder and, nowadays the relationship between SARS-
CoV-2 outbreak and PD reached a great interest. Apparently independent one 
from the other, both diseases share some pathogenetic and clinical features. 
The relationship between SARS-CoV-2 infection and PD is complex and it 
depends on the direction of the association that is which of the two diseases 
comes first. Some evidence suggests that SARS-CoV-2 infection might be  a 
possible risk factor for PD wherein the exposure to SARS-CoV-2 increase the risk 
for PD. This perspective comes out from the increasing cases of parkinsonism 
following COVID-19 and also from the anatomical structures affected in both 
COVID-19 and early PD such as olfactory bulb and gastrointestinal tract resulting 
in the same symptoms such as hyposmia and constipation. Furthermore, there 
are many reported cases of patients who developed hypokinetic extrapyramidal 
syndrome following SARS-CoV-2 infection although these would resemble a 
post-encephalitic conditions and there are to date relevant data to support the 
hypothesis that SARS-CoV-2 infection is a risk factor for the development of PD. 
Future large, longitudinal and population-based studies are needed to better 
assess whether the risk of developing PD after COVID-19 exists given the short 
time span from the starting of pandemic. Indeed, this brief time-window does not 
allow the precise estimation of the incidence and prevalence of PD after pandemic 
when compared with pre-pandemic era. If the association between SARS-CoV-2 
infection and PD pathogenesis is actually putative, on the other hand, vulnerable 
PD patients may have a greater risk to develop COVID-19 being also more prone 
to develop a more aggressive disease course. Furthermore, PD patients with 
PD showed a worsening of motor and non-motor symptoms during COVID-19 
outbreak due to both infection and social restriction. As well, the worries related 
to the risk of being infected should not be neglected. Here we summarize the 
current knowledge emerging about the epidemiological, pathogenetic and 
clinical relationship between SARS-CoV-2 infection and PD.
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Parkinson’s disease and infectious 
diseases

Parkinson’s disease (PD) is the most common worldwide 
neurodegenerative disorder after Alzheimer’s disease, characterized 
by an early and dramatic loss of dopaminergic neurons in substantia 
nigra, leading to motor and non-motor symptoms (1). Up to date, the 
pathogenesis of PD is not fully understood, and it is thought to 
be based on a subtle interplay between genetic and environmental risk 
factors (2). Age represents the greatest risk factor for the development 
of PD and because of the aging of the population as well as the longer 
life expectancy, the prevalence of PD is rapidly increasing; it has been 
estimated that the number of people with PD will double to 50% in 
2030 until a prevalence between 8.7 and 9.3 millions of affected 
individuals (3). Although demographic and genetic factors in the 
pathogenesis of PD are well characterized, the role of environmental 
exposures and particularly that of infectious disease are not clear. 
Many factors have been associated with PD, some are directly 
associated with an increased risk (e.g., pesticide, methamphetamine, 
melanoma, heavy metal exposure) (4), while others seem to 
be somehow protective (e.g., alcohol consumption, caffeine, estrogen) 
that is inversely associated with its risk (5–8). Among others, 
infections have been suggested as possible risk factor for idiopathic 
PD and secondary parkinsonism. This suggestion originates both 
from the description of the post-encephalitic parkinsonism occurred 
after the influenza pandemic in 1918, and from the observation of the 
parkinsonian cluster’s phenomenon (9). According to this hypothesis, 
the risk of developing PD is greater in people who share close quarters 
such as doctors, teachers, nurses thus indicating a common and 
environmental risk factor such as viral infections (10). In fact, some 
researchers suggest a direct contribution of the viral infection or of the 
establishment of post-infectious mechanisms following a viral 
infection in neurodegeneration (11). In this sense, people in contact 
with the public, the reservoir of the infection, could be at greater risk. 
Furthermore, the role of the infections in the pathogenesis of PD 
might be supported by the Braak hypothesis identifying olfactory 
bulbs and peripheral nerves of the gastrointestinal tract as starting 
points of the disease and portal entry for toxins and infectious agents 
(12). Recent meta-analysis indicated that infection was associated with 
an increased risk of developing PD by 20% compared to controls with 
a marked effect for bacterial infection (Odds ratio [OR] = 1.4) and less 
for viral infections (OR = 1.09) (13). However, a distinction should 
be  made between primary PD (i.e., idiopathic) and secondary 
parkinsonism (i.e., post-infective) due to infectious disease. Indeed, it 
has been reported that influenza virus infection is the most common 
viral infection associated with risk of developing parkinsonism, while 
hepatitis C seems to be associated with an increased risk to develop 
PD, but no risk was found for hepatitis B (14). Also, though 
parkinsonism is well documented in patients with chronic human 
immunodeficiency (HIV) virus infection and HIV-associated 
neurocognitive disorders, several evidence did not support HIV as a 

risk factor for the development of PD (15). Some acute viral infection 
may directly involve the basal ganglia such as Japanese Encephalitis 
virus, Coxsackie virus, Western equine Encephalitic virus and West 
Nile virus leading to parkinsonism but their association with PD has 
never been established (9). Recently, a meta-analysis has shown that 
the development of parkinsonism may be  an underdiagnosed 
complication of Dengue virus infection. However, also in this case, as 
for the other viruses mentioned above, there seems to be no data 
showing an association between an increased risk of developing 
idiopathic PD and a previous infection by Dengue virus (16). 
Antigenic mimicry has been hypothesized to explain the increased 
risk of PD after herpes simplex virus 1 (HSV-1) infection. Indeed, 
antibodies to HSV-1 are able to cross-react against some epitopes of 
the α-synuclein, suggesting the possibility of promoting the 
aggregation of α-synuclein (17). The persistence of movement 
disorders about 3-5 years after acute infection by Japanese encephalitis 
B has been associated with lesions of substantia nigra detected by 
neuroimaging studies (11).

Among bacteria, a recent meta-analysis showed as H. pylori 
increase the risk by 1.5-2-fold to develop PD (18). Other study showed 
that seropositive patients for at least five or six among Cytomegalovirus, 
Epstein–Barr virus, Herpes simplex-1, Borrelia burgdorferi, Chlamydia 
pneumoniae and H. pylori are at more risk to develop PD compared to 
healthy controls (19). Despite the high amount of literature published, 
the relationship between infectious diseases and the pathogenesis of 
PD is still controversial. This point needs to be clarified in order to 
prevent and treat the potentially curable factors causing PD. The 
relevance of the association between infectious disease and PD reaches 
great interest in the light of the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) outbreak, leading to Coronavirus 
Disease 2019 (COVID-19). Despite COVID-19 usually presents with 
fever, cough and dyspnea, a wide range of neurological manifestations 
are currently reported (20–22). Of note, Rao et al. recently reported 
three cases of parkinsonism onset after SARS-CoV-2 infection 
characterized by orthostatic hypotension, bradykinesia and rigidity 
few days after symptomatic COVID-19 although these were 
recognized as post-encephalitic parkinsonism that is far from PD 
diagnosis (23). Thus, a clear distinction should be served between 
post-infective parkinsonism and degenerative PD as a consequence of 
SARS-CoV-2 infection. If the former is well-described in literature, 
latter is actually hypothetical, and it is almost based on the dual hit 
hypothesis (12). In this view, it has been hypothesized that 
neurotrophic pathogen (e.g., viral) enters the brain via the olfactory 
bulb or Meissner’s plexus being transported anterogradely or 
retrogradely into temporal lobe and brainstem, through olfactory and 
vagus nerves, respectively (Figure 1). When the pathogen reaches the 
midbrain until substantia nigra, the typical aspect of PD will 
be  unmasked. The term “dual hit” comes out from the two-way 
pathogenetic access of pathogen to the brains (i.e., nasal and 
gastrointestinal) and also it may explain the prodromal and non-motor 
symptoms of PD such as hyposmia and autonomic dysfunction (12).
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However, it is not negligible the detrimental impact of pandemic 
on the clinical course and therapeutical management of PD patients. 
In this review we will summarize the current literature in the field of 
pathogenetic, clinical and therapeutic points of view about the 
relationship between COVID-19 and PD.

Coronavirus and nervous system: 
historical notes

The potential role of the Coronaviruses to determine nervous 
system diseases in humans has been recognized nearly 40 years ago, 
when two coronaviruses were isolated from brain material obtained 
from the autopsy of two patients affected by multiple sclerosis (24). 
Successively, a possible role for Coronaviruses in the pathogenesis of 
postencephalitic parkinsonism has been postulated when mice 
infected with mouse hepatitis virus (i.e., MHV-A59) showed a strong 
tropism for the basal ganglia (25). Few years later, a study on samples 
of cerebrospinal fluid obtained from the tissue bank at the 
Neurological Institute of Columbia Presbyterian Hospital reported, in 
patients with PD compared to normal age-matched controls, an 
elevated CSF antibody response to two Coronaviruses (i.e., MHV-JHM 
and MHV-A59) (26). MHV-A59 infected C57BL/6 mice showed a 
viral presence in the brain localized mainly in the subthalamic 
substance and in the subthalamic nucleus with neuronal loss, gliosis 

and cellular vacuolization. Furthermore, the MHV-A59 genome 
appears to persist for many months in the CNS after infection (25).

Looking at more recent years, it was 2002 when an epidemic of a 
Coronavirus starting in Asia and spreading to throughout the world, 
characterized by severe acute respiratory syndrome was complicated 
by a range of neurological disorders interesting either CNS or PNS 
(27, 28). Similarly, ten years later, a different Coronavirus namely 
Middle East Respiratory Virus (MERS) spread in the Middle East. 
Although intranasal administration of the virus in experimental 
models is followed by subsequent infection of the brain, the presence 
of the virus has never been demonstrated in the CSN of human 
patients (29, 30). SARS-CoV-2 is characterized by a high homology 
both with coronavirus of first epidemic as well as with MERS, and it 
seems to be able to cause injury both to the central and the peripheral 
nervous systems. It should be noted that the Coronaviruses possess 
not only neurotropism but also important neurotoxic properties. In 
fact, starting with the first reported case of acute disseminated 
encephalomyelitis (ADEM) (31), there are other several reports that 
have observed extensive demyelination of the CNS following infection 
by coronaviruses. For instance, Sars-CoV-2 infection has shown to 
be  associated with ADEM in patients with COVID-19 (32). The 
occurrence of encephalitis during Coronaviruses infection is also 
reported, for example, in murine models infected with HCoV-OC43 
(33) or in patients with COVID-19 in which is described a broad 
spectrum of encephalitic manifestations (34).

FIGURE 1

Graphical representation of dual hit hypothesis. (A) Pathogens enter the brain through olfactory epithelium being transported via anterograde transport 
throughout olfactory nerve. (B) pathogens in the intestinal lumen go toward vagus nerve terminations in the Meissner’s plexus being transported via 
retrograde transport throughout vagus nerve until brainstem. The term dual hit comes out from the two-way pathogenetic access of pathogen to the 
brain. Created with BioRender.com.
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Prevalence and outcome of 
COVID-19 in PD patients

Patients with PD are vulnerable, and they may have a higher risk 
to contract SARS-CoV-2 infection as well as they may expedience a 
more severe course of the infection. On the other hand, the shared 
clinical and pathogenetic features between SARS-CoV-2 infection and 
PD suggests that infection may increase the risk of developing PD. In 
this view, the studies exploring the incidence and prevalence as well 
as the magnitude of COVID-19 in patients with PD are relevant. In 
the early period of pandemic era, Antonini et al. revealed that a longer 
PD duration was associated with poorer outcomes from COVID-19 
with high rate of mortality (35). Another earlier study showed as mild-
to-moderate COVID-19 was contracted independently of age and 
disease duration in PD patients as well as the outcome from the 
infection was similarly between mild-stage PD and healthy population 
(36). Some isolated case reports of patients who developed a 
Parkinsonian syndrome with neuroimaging evidence of nigrostriatal 
dopaminergic system deficiency following SARS-CovV2 infection and 
development of COVID-19 have been reported (11, 37). Though 
numerous evidence would support the hypothesis that COVID-19 are 
associated with an increased risk of PD, a recent study showed that 
number of patients with parkinsonism diagnosed within 6 months 
after COVID-19 was low (0.46%) (38). The uncertainty about the 
pre-infection neurological status of patients who experienced 
parkinsonism or PD after COVID-19 is a crucial issue regarding the 
possibility to attribute a causality relationship between COVID-19 and 
PD. Indeed, COVID-19 may only unmask an underlying preclinical 
PD (39). On the other hand, some authors hypothesizes that PD may 
serve as protective factors against SARS-CoV-2 infection since the 
neurodegenerative process occurring in PD may disrupt the gateway 
of the virus and its retrograde diffusion toward olfactory and vagus 
nerves (40). A recent survey showed that the prevalence of COVID-19 
was similar comparing PD patients and healthy subjects (7.1 vs. 7.6%, 
respectively). However, in this study the clinical expression of 
COVID-19 in patients with PD was similar to non-PD patients though 
the former were less likely to report shortness of breath and required 
hospitalization (41). Another study reported a higher prevalence of 
COVID-19 in the PD population compared to that observed in the 
general population without a different mortality rate between PD and 
non-PD patients (42). More recently, a study conducted among 1,294 
resident in nursing homes showed a higher risk of 30-day mortality in 
patient with PD compared to controls after adjustment for gender, age, 
and comorbidities (43). A recent metanalysis including 13 studies 
highlighted among PD patients affected by COVID-19, respectively, a 
hospitalization rate and ICU admission of 39.9 and 4.7% and a 
mortality rate of about 25%; these data were comparable to patients 
without PD (44). In USA, two studies failed to prove PD as 
independent risk factor for severe COVID-19 and death although the 
advanced disease and elderly were proposed as the main risk factors 
for developing severe COVID-19 (45, 46). Finally, a recent cohort 
study over a period of 15 months by Zenesini et al. founded a higher 
risk of SARS-CoV-2 infection in PD patients compared to healthy 
controls as well as a slightly higher risk for hospitalization with a 
30-day mortality risk higher in parkinsonism (58%) than in PD (19%) 
and controls (26%) (47). Given that PD patients are usually older than 
60 years, and that increased age is associated with death in patients 
with COVID-19, age and age-related comorbidity should 

be considered as confounding risk factors among PD population (48, 
49). Therefore, in PD patients the preexisting comorbidity such as 
hypertension, diabetes, and heart failure increases the risk of severe 
COVID-19 (50).

Another aspect to consider is the impact of SARS-CoV-2 outbreak 
in the PD management. COVID-19 had a detrimental effect on the 
in-patient management of PD population such as the difficulty in 
procuring medication and inability to access in health care. Indeed, as 
showed early by Bhidayasiri in the early phase of pandemic, PD 
patients with device-aided therapies (e.g., deep brain stimulation, 
apomorphine and levodopa-carbidopa intestinal gel infusion) 
encountered problems because of elective procedures were almost 
excluded from hospital admissions during lockdown (51). Also, since 
PD patients are vulnerable, the risk of getting SARS-CoV-2 infection 
during hospitalization was not negligible during the SARS-CoV-2 
outbreak and this also may have limited the hospitalization of these 
patients since the risk of hospitalization was higher than the benefits. 
On the other hand, PD should be protected by SARS-CoV-2 infection 
since hospitalization may lead to detrimental effects such as delirium, 
adverse drug reactions and aspiration pneumonia in these patients 
(52). These arguments are true also for other neurological disease. 
Indeed, it has been showed that patients presenting with ischemic 
stroke during the COVID-19 pandemic lockdown period had a 
reduced hospital care and higher hospitalization costs although the 
final outcome was unchanged compared to the period before 
lockdown (53). If the access at the emergency department is 
mandatory in the case of stroke, since PD is a chronic disease, 
telemedicine including remote delivery of treatment (e.g., 
ParkinDANCE program) proved to be successful in providing medical 
services to patients with PD (54, 55).

Although the impact of COVID-19 among the PD population is 
controverse (Table 1) and it needs to be better assessed in the future 
and the risk of severe COVID-19 in PD is still not clear, we agree in 
considering PD patients as vulnerable subjects during 
COVID-19 outbreak.

Shared clinical features between 
COVID-19 and PD

Currently, many reports exist describing cases of parkinsonism 
following SARS-CoV-2 infection (37, 86–89). However, these case 
reports pointed out how parkinsonism may be  a consequence of 
SARS-CoV-2-related encephalitis but did not show a clear link 
between COVID-19 and idiopathic PD. As the relationship between 
acute or secondary parkinsonism and SARS-CoV-2 infection is 
beyond the purpose of this review, we will focus our attention only on 
the association between SAR-CoV-2 and idiopathic PD. Although the 
incidence and the prevalence of PD in people who experienced 
COVID-19 are not clear and the association between SARS-CoV-2 
infection and PD is purely putative, there are several common clinical 
features between PD and COVID-19 (Figure 2). It has been well-
established that COVID-19 in PD patients may worsen both motor 
symptoms such as bradykinesia, rigidity, balance disturbance as well 
as non-motor symptoms (e.g., motivation, intellectual impairment) 
(45). Of note, bradykinesia was the most common worsened 
symptoms followed by gait disturbances, tremor, and rigidity (90). 
Overall, a worsening of Movement Disorder Society Unified 
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Parkinson’s Disease Rating Scale (MDS-UPDRS) was noted in 
pandemic era in PD patients (91).

A study including 5,429 PD patients revealed the worsening of 
non-motor symptoms such as sleeps-disturbances, cognitive function, 
autonomic function, mood disorders, appetite disorders and pain 
(92). Also, emotional symptoms of stress due to COVID-19 concerns 
are not negligible in PD patients (93).

Around the 65% of people with COVID-19 experience hyposmia 
that is also a common prodromal symptom of PD affecting up to 4% 
of patients (94, 95). Olfactory dysfunction after COVID-19 recovery 
may persist in 10 to 20% of patients which may indicate a permanent 
loss of the renewing olfactory neurons, phenomenon that is also seen 
in PD patients (96). Given the increased incidence of encephalitis 
lethargica following Spanish flu in 1920s, it has been theorized that 
neurodegenerative PD may represent a clinical manifestation of long 
COVID (97). This hypothesis may be supported by the increasing 

evidences that COVID-19 may precipitate a neurodegenerative 
process leading to a parkinsonism (98–100). In addition, the finding 
of Lewy bodies in the brain of rhesus macaques infected with SARS-
CoV-2 may support the link between neurodegenerative PD and 
COVID-19, although SARS-CoV-2 RNA has never been found in 
these macaques (101). This finding may be  in line with the 
“hit-and-run” hypothesis according to which a neurotropic virus 
triggers an autoimmune reaction leading to chronic inflammation and 
brain damage (first hit), making it more vulnerable to further 
neurodegenerative changes (second hit) (102, 103). The degeneration 
located at the nigrostriatal level may be explained by the idea that 
dopamine neurons are highly susceptible to systemic inflammation 
thus explaining the clinical phenotype of this post-infective sequelae 
(104). To date, the “hit-and-run” hypothesis has been proposed for 
Spanish Flu in 1920s, H1N1, H5N1, EBV, and HSV-1 (105). Another 
link between PD and SARS-CoV-2 infection is the gastrointestinal 

TABLE 1 Major findings of the clinical and biological relationship between PD and COVID-19.

Features Major findings Reference

Frequency of PD after 

COVID-19
Unknown. Parkinsonism reached a prevalence of 0.46% within 6 month from COVID-19 recovery. (56)

Frequency of COVID-19 in 

patients with PD

No significant difference between patients with PD and the general population (57–59)

Higher in patients with PD (0.9% vs. 0.35%) (60)

Higher in patients with PD (1.1% vs. 0.6%) especially in patients ≥65 years of age (61)

Higher risk of SARS-CoV-2 among PD patients (HR = 1.3) (62)

Outcome of COVID-19 in 

patients with PD

Advanced PD stage and elderly are risk factors for severe COVID-19 (63, 64)

Longer PD duration was associated with higher mortality (65)

Similar outcome between patients with PD and the general population (66)

Similar hospitalization, ICU admission and mortality rates between PD patients and the general 

population
(67)

Increased mortality in inpatients with PD (35% vs. 20%) (61, 68)

Higher risk of 30-day mortality in PD patients compared to controls (69)

Higher risk of hospitalization in PD patients but similar mortality compared with general population (62)

Preexisting comorbidity such as hypertension, diabetes, heart failure increases the risk of severe 

COVID-19 in patients with PD
(70)

Impact on PD symptoms Worsening of motor and non-motor symptom or complaining of new motor or non-motor symptoms (28, 58, 63, 65, 71–73)

Bradykinesia was the most common worsened symptom followed by gait disturbances, tremor, and 

rigidity.
(74)

Worsening of MDR-UPDRS score during pandemic era (75)

Worsening of sleeps-disturbances, cognitive function, autonomic function, mood disorders, appetite 

disorders and pain
(71)

Fear about own and family, depression due to job difficulties, constant worrying due to COVID-19, low 

energy, restlessness, clenched jaw, nervous behaviors were common in patients with PD
(76)

Impact of social restrictions Difficulty in procuring medication and decreased healthcare services and physiotherapy (77–80)

Worsening of balance, cognition and IADL (81)

Worsening of symptoms during lockdown in over 40% of 2,500 PD patients with especially tremor, 

pain, and rigidity
(82)

Higher depression and anxiety in patients with PD and their caregivers due to interruption of non-

pharmacological therapy, COVID-19 worry, interruption of outpatient clinic
(83)

Telemedicine including remote delivery of treatment proved to be successful in providing medical 

services to PD patients
(84, 85)

PD, Parkinson’s disease; ICU, intensive care unit; IADL, instrumental activities of daily life; MDR-UPDRS, Movement disorder Unified Parkinson’s disease rating scale.
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tract involvement as constipation may precede motor symptom in PD, 
symptom that also persists in up to 80% patients after COVID-19 as 
long COVID symptom (106, 107). Cognitive decline affects 15-40% 
of patients with PD (108). There are growing evidences suggesting 
cognitive decline as long-term consequence of COVID-19 infection. 
Taquet et al., showed a dementia prevalence of 5% among COVID-19 
survivors aged more than 65 years within 6 months after SARS-CoV-2 
infection which was higher compared to one after influenza and other 
respiratory tract infection (109). A cross-sectional online study 
including 85.000 participants revealed that the degree of cognitive 
decline in patients with a history of severe COVID-19 was equivalent 
to the loss of 10 years compared to healthy controls (110, 111). 
However, the association between COVID-19 and cognitive decline 
require longitudinal studies with long-term follow-up. Indeed, the 
observation period from COVID-19 outbreak and the potential 
detrimental effect on cognitive function is limited and it did not allow 
to estimate with certainty the risk of cognitive decline in patients who 
experienced COVID-19. Also, participants included in that studies 
were older, and the age-dependent risk of cognitive decline cannot 
be excluded. In Figure 2 the common features between SARS-CoV-2 
and PD are reported. There are other points to discuss: (1) it is 
questionable to ask what the prevalence of COVID-19 in people with 
PD is and what is the magnitude of the infection in these patients; (2) 

it is interesting to know how PD affects the management of COVID-19 
and how COVID-19 affects the therapeutic management of PD; (3) 
finally, the impact of the lockdown on motor and non-motor 
symptoms in these patients should not be neglected.

From neurological complications of 
SARS-CoV-2 to its neurotropism

The recent infection by SARS-CoV-2 is clinically characterized by 
fever, cough, and shortness of breath, associated with the development 
of an acute respiratory distress syndrome (49). However, several 
reports highlighted neurological complications following SARS-
CoV-2 infection involving both central (CNS) as well as peripheral 
nervous system (PNS). First descriptions of neurological 
manifestations occurring in patients with COVID-19 have been 
described in a series of patients in Wuhan, reporting a prevalence of 
neurological symptoms in up to 45% of patients with more severe 
disease (112). Neurological symptoms more commonly were vague 
and consisting in headache, dizziness, and myalgia but they were 
possibly more severe involving both central nervous system (CNS) 
(impaired consciousness, acute cerebrovascular disease, ataxia, and 
seizures) (113) and peripheral nervous symptom (PNS) (taste, smell, 

FIGURE 2

Shared clinical features between SARS-CoV-2 and Parkinson’s disease. Created with BioRender.com.
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and vision impairment, and neuralgia) (114). Of the 125 patients 
reported in the first surveillance study of acute neurological and 
psychiatric complications of COVID-19, 77 (62%) presented with a 
cerebrovascular accident (most commonly ischemic stroke), 39 
patients with altered mental status (31%) (9 patients with unspecified 
encephalopathy, 7 patients with encephalitis). Interestingly, of the 39 
patients with altered mental status, most of them (59%) fulfilled the 
clinical case definition for psychiatric diagnoses (10 new onset 
psychosis, six neurocognitive dementia, 4 affective disorder). Of the 
remaining 9 patients, 6 had a peripheral disorder and 3 other 
neurological symptoms (respectively opsoclonus-myoclonus 
syndrome, sixth nerve palsy, and seizures) (115). It remains to 
be clarified whether the damage caused by the virus to the nervous 
system is direct connected to the invasion of neurons by virions, or 
rather it is indirect such as post-infectious mechanisms (116). In this 
case, the mechanisms of molecular mimicry, epitope spreading, and 
bystander activation may clarify how SARS-CoV-2 infection triggers 
an autoimmune reaction throughout the CNS (i.e., viral-induced 
autoimmunity) leading to autoimmune encephalitis with the finding 
of antibodies against onconeural and surface antigens (e.g., N-Methyl-
D-Aspartate Receptor, voltage-gated potassium channel, amphiphysin, 
myelin oligodendrocyte glycoprotein, etc) as highlighted recently by 
Stoian et al. (65). The autoimmune hypothesis could also be suggested 
by the improvement after immunosuppressive therapy in some 
patients with movement disorders following Sars-Cov-2 infection (11).

The hypothesis of neuroinvasion by Sars-Cov-2 comes from the 
finding of SARS-CoV-2 RNA in the CSF of patients with COVID-19 
(66). Possible routes of invasion of the virus into the CNS, are the 
olfactory epithelium (OE), the olfactory bulb (OB) and the brain 
endothelial cells (ECs). However, it has been shown as the finding of 
viral genome or intrathecal antibody synthesis in patients affected by 
COVID-19 who experienced acute neurological symptom is rare (56). 
Moreover, studies from autopsies conducted on the brains of patients 
who died from COVID-19 have rarely shown a presence of the virus 
in the cerebral parenchyma (117) and some authors did not find 
presence of SARS-CoV-2 both at genomic and antigenic levels in the 
brain (118). It is possible to hypothesize a mechanism of damage on 
the CNS similar to that of the 2009 H1N1 pandemic (CA/09) influenza 
virus which, while not infecting neurons, is capable of inducing the 
death of nerve cells, also including the dopaminergic neurons of the 
substantia nigra, through the induction of a potent inflammatory 
response (57). However, some authors have found the presence of the 
virus directly in the CNS. Indeed, in a group of 24 COVID-19 patients 
who died of respiratory failure, the virus was detected in the dorsal 
cord and substantia nigra of five COVID-19 subjects but not in 
controls, but the neurodegenerative potential of this finding needs 
further investigation (60). Therefore, neuroinflammation and protein 
interactions are the two mechanisms considered most plausible to 
explain a possible neurodegenerative effect on dopaminergic neurons 
caused by SARS-CoV-2.

The olfactory entry route in the 
nervous system of SARS-CoV-2

The mechanisms underlying SARS-CoV-2 neuro-invasion are not 
yet fully understood. It has been shown that SARS-CoV-2 is able to 

infect and replicate in cultures of human neural progenitor cells and 
human induced pluripotent stem cells (hiPSCs)-derived brain 
organoids via ACE2 (69). The expression of this receptor in 
comparison with other tissues is not very high in the CNS (67). In the 
CNS, ACE2 is distributed mainly in the spinal cord, in the substantia 
nigra, in the hippocampus and in the hypothalamus (63). The 
interaction between SARS-CoV-2 and ACE2 is facilitated through the 
priming of protein S by transmembrane serine protease 2 (TMPRSS2) 
(64). However, ACE2 and TMPRSS2 do not frequently co-localize in 
the brain. Differently, the sustentacular non-neuronal cells of the 
olfactory epithelium (OE) have a high level of co-expression of ACE2 
and TMPRSSS2 (62). It is therefore possible that OE represents a point 
of penetration with a subsequent diffusion of Sars-CoV-2 within the 
brain, although the ways of propagation of the virus are not yet 
known. In models of ACE2 Knock-in mice, the localization of SARS-
CoV-2 at the level of the olfactory bulb (OB) is already observable in 
the fourth post-infection day. This site is probably reached by 
retrograde axonal transport starting from the OE of nasal cavity. It is 
important to underline that this type of neuro-invasion can also occur 
regardless of passing through the blood brain barrier (BBB). In fact, 
even in the absence of viraemia SARS-CoV-2 is able to invade the OB 
(119). It is therefore not surprising that a link to neurological disorders 
turns out from the reduction or the loss of sense of smell (hyposmia 
or anosmia), symptoms of COVID-19 pandemic, fully recognized 
among those belonging to the SARS-CoV-2 infection (70). The 
hyposmia observed during SARS-CoV-2 infection might have various 
origins. It can result from direct damage to the sustentacular cells 
which are the cells that express the highest concentration of ACE2 at 
the OE level or from indirect damage to nearby olfactory receptor 
neurons due to the release of inflammatory cytokines and of the 
immune response induced by the virus (120). Autopsy studies have 
shown a poor localization of SARS-CoV-2 in the olfactory receptor 
neurons of the OE cells that do not normally express high ACE2 levels 
(74) (62). However, mRNA localization of SARS-CoV-2 in neurons 
should be investigated in the future (75). Moreover, the uptake of spike 
subunit 1 (i.e., S1) in OB is greater after intravenous administration 
than intranasal administration probably because invasion of the brain 
by SARS-CoV-2 occurs independently of the ACE2 receptor (71). It is 
therefore possible that the loss of the olfactory receptor neurons 
occurs after invasion of the OB due to anterograde degeneration of the 
axon (76).

Blood brain barrier allows 
SARS-CoV-2 penetration into the 
brain

Several evidences suggest that the S1 protein allows the SARS-
CoV-2 to enter the brain through the bloodstream. ACE2 has an 
important role in allowing the uptake of the virus thanks to the wide 
range expression of the receptor into the brain endothelial cells (ECs) 
(63). In particular, the arginine-glycine-aspartate motif of the S1 
protein interacts with the α5β1 integrin expressed on brain ECs. 
Subsequent activation of the mitogen-activated protein kinase 
pathway could facilitate virus entry into the endothelial cells (ECs) 
(81). Rhea and collaborators had shown that in normal mice S1 
subunit of the spike protein is able to cross the BBB   thanks to the 

https://doi.org/10.3389/fneur.2023.1172416
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Iacono et al. 10.3389/fneur.2023.1172416

Frontiers in Neurology 08 frontiersin.org

transcytosis mechanisms and to localize in various areas of the brain 
such as basal ganglia or many regions of the cerebral cortex (71). 
Moreover, several in vitro models of human BBB highlighted that S1 
can penetrate the endothelial barrier (77). The group of Krasemann 
showed that crossing of the BBB by SARS-Cov-2 seemed not to occur 
by compromising the paracellular tight junctions of brain capillary 
endothelial cells but this happened through mechanisms of 
transcellular transport across the cells from the apical side to the 
basolateral compartment (78). Similar result was obtained by other 
researchers (77). However, Yang also revealed a remodeling of the 
tight junctions and a consequent increased permeability of BBB after 
SARS-Cov-2 infection of the brain microvascular endothelial 
cells (83).

Neuroinflammation induced by 
SARS-CoV-2: a link to 
neurodegeneration?

Brundin and colleagues hypothesized that the neuroinflammation 
caused by SARS-Cov-2 may result in the loss of dopaminergic neurons 
(99) Chen showed that SARS-CoV-2 can infect and induce 
inflammation and senescence of dopaminergic neurons derived from 
hiPSCs (82). The persistence of neuroinflammation after infection can 
influence the development of neurological sequelae. Analysis of the 
content of neuronal extracellular vesicles isolated from plasma of 24 
patients recovering from COVID-19 showed the presence of marker 
proteins of neuronal dysfunction such as amyloid beta, neurofilament 
light, neurogranin, total tau, and p-T181-tau in greater quantities 
compared to healthy controls (84). In a cell culture model, it was 
showed that spike protein can modify the content of exosomes 
released by SARS-CoV-2 transfected cells. In fact, infected cells release 
a great number of exosomes enriched of some microRNAs such as 
miR-148 causing neuroinflammation thanks to the activation of the 
human microglia (85). Indeed, microglial cells express the ACE-2 
receptor (121) and these cells are hyper-activated by SARS-CoV-2, 
although the presence of the virus has not yet been demonstrated in 
vivo inside them (122). Biopsy analysis of patients who died from 
COVID-19 showed widespread activation of microglia in several areas 
of the brain, especially in brainstem, while proinflammatory microglia 
in the hippocampus were remarkable only if the course of COVID-19 
was complicated by delirium (123). It might be hypothesized that a 
possible link between development of PD and SARS-CoV-2 infection 
may involve microglia. In fact, it is known that the pro-inflammatory 
microglia play an important role in the loss of dopaminergic neurons. 
Another pathogenetic link between PD and COVID-19 is related to 
similar inflammatory pathways that the two diseases share (124). 
Some researchers suggested that NF-κB-associated inflammatory 
pathways are induced by SARS-CoV-2 infection and it can also lead 
to death of the dopaminergic neurons (124). However, more studies 
are needed to analyze the pathways of this interaction in more detail. 
A further possible link between PD-related neuroinflammation and 
COVID-19 could arise from the fact that COVID-19 and Gaucher 
disease (GD) share upregulation of complement 5a (C5a) and its 
C5aR1 receptor and excessive glycosphingolipids synthesis with 
subsequent activation of the immune system and generation of pro- 
inflammatory cytokines. GB is caused by mutations of the GBA gene, 

which is also a risk factor of PD, so it is possible to hypothesize that a 
similar mechanism is also shared by PD with GBA mutation and 
COVID-19, not only by GD and COVID-19 (125).

Dysfunction of mRNA metabolism, such as its transport or 
degradation, may play a role in neurodegenerative mechanisms (126). 
Some authors have hypothesized a possible neurodegenerative 
mechanism linked to the spike protein which would acquire prion-like 
properties. In particular, according to these authors, following 
vaccination with mRNA vaccines for Sars-CoV-2, the spike protein 
could be produced in excessive quantities by cells and interact with 
other prion-like proteins leading to the formation of aggregates (127). 
It could be hypothesized that this mechanism also occurs following 
viral infection by Sars-Cov-2 and could be  connected 
to neurodegeneration.

SARS-CoV-2-proteins interaction: 
evidence and hypothesis

It has been hypothesized that the vulnerability to PD 
development conferred by SARS-CoV-2 might derive from the 
ability of viral proteins to alter some proteins expressed in the lung 
and disrupt protein–protein interaction in the CNS. Proteins 
released from the lungs, due to the greater pulmonary permeability 
during inflammation induced by SARS-CoV-2 infection, would 
be transported in the circulation by exosomes to the brain, where, 
thanks to their alteration produced by viral components, could 
perturb protein with a role in the development of PD (128). The 
main protein involved in these mechanisms currently appears to 
be  α-synuclein. The expression of α-synuclein is increased in 
neurons following a viral infection and its aggregation induced by 
RNA virus could serve to trap the virus and limit viral replication 
(129). Conversely, one could hypothesize that this mechanism can 
increase the risk of developing PD. It is important to note that 
α-synuclein is expressed not only in neurons of the CNS but also in 
those of the PNS, including neurons of the enteric nervous system 
(130). It has been hypothesized that α-synuclein may serve to 
inhibit the neuro-invasion of viruses from the PNS to the CNS 
(131). SARS-CoV-2, a RNA virus, is able to infect the neurons of 
the myenteric plexus due to the high expression of ACE2 in these 
cells (132). The overexpression of α-synuclein in SNP cells has been 
hypothesized to constitute a defensive mechanism that seeks to 
circumscribe the virus but also an alteration that predisposes to the 
subsequent development of PD according to the Braak hypothesis 
of the disease (133). Recently, in order to find a possible molecular 
link between SARS-CoV-2 infection and the development of PD, 
the group of Semerdzhiev showed that the spike protein fails to 
induce the aggregation of α-synuclein, while protein N has the 
ability to induce precipitation of α-synuclein into the amyloid fibrils 
characteristic of PD (134). The immunohistochemical analysis of 
the skin biopsy samples from five patients who experienced postural 
tachycardia syndrome after SARS-CoV-2 infection showed the 
presence of the α-synuclein in a phosphorylated form, the 
pathological state of α-synuclein in PD or dementia with Lewy 
bodies, multiple system atrophy and pure autonomic failure (135). 
However, COVID-19 patients experiencing neurological symptoms 
possess serum and CSF alpha-synuclein levels comparable to those 
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of COVID-19 patients without neurological manifestations (136). 
Therefore, more data are needed to clarify the role of α-synuclein 
induced by viral infections such as SARS-CoV-2 as a risk factor for 
PD symptoms development.

Anti-parkinsonian drugs in the 
pandemic era

A brief discussion should be  reserved for some anti-
parkinsonian drugs during the pandemic era. It has been reported 
that dopamine agonists may be protective against severe COVID-19 
although another study did not show this benefit (45, 137). 
However, the mechanism underlying the benefit effect of dopamine 
agonist against severe COVID-19 is unknown. It would seem that 
dopamine agonists are capable of inducing an inhibition of Sars-
CoV-2 replication, mainly through an action on the D2 receptor, 
recapitulating the antiviral effects of dopamine (Limanaqi F et al., 
2022). Moreover, it must be considered that generally dopamine 
agonists are used in the initial or mild stages of the disease, 
therefore in patients less advanced in the natural history of 
PD. Also, amantadine, an anti-viral drug used to treat levodopa-
induced dyskinesia has been hypothesizing to disrupt the lysosomal 
machinery needed for SARS-CoV-2 replication or to block the 
viroporine channel of SARS-CoV-2 preventing the release of the 
viral nucleus into cells (58, 59, 61). Accordingly, to these hypotheses, 
several studies has been published indicating the potential role of 
amantadine in the prevention of the clinical symptoms related to 
COVID-19 (68, 72). Some authors showed that patients with PD 
taking amantadine had lower COVID-19-related mortality (72) or 
a lower rate of SARS-CoV-2 infection (73) compared to those who 
were not taking it. Although it is not an antiparkinsonian drugs, a 
brief consideration should be  reserved to the mysterious 
relationship between vitamin D, PD and COVID-19. Patients with 
PD often have reduced levels of vitamin D (79). The group of Fasano 
and colleagues also observed a higher percentage of unaffected PD 
patients in the vitamin D group than in the control group who did 
not take vitamin D supplementation (41). Daily intake of 2,000-
5,000 IU of vitamin D3 is able to slow the clinical progression of 
disease in patients with PD and also offers the advantage of 
protecting patients from COVID-19 (80). These observations agree 
with the fact that vitamin D has been shown to possess some 
antiviral properties (138) and neuroprotective effects. In fact, 
studies on rodents have shown that the supplement of vitamin D 
not exceeding the toxicity levels is able to reduce the extent of the 
loss of dopaminergic fibers induced by toxic substances (139). 
Moreover, vitamin D is able to reduce inflammation by decreasing 
the production of proinflammatory cytokines such as interferon-
gamma and tumor necrosis factor-alpha (140, 141). This likely 
could be a common point in both PD and COVID-19, since the 
inflammation associated with cytokine hyper-production often 
coincides with clinical worsening during the course of COVID-19 
(142, 143) and at the base of PD there are also important 
inflammatory mechanisms (144). However, even in this case the 
results are conflicting because there are several studies that have not 
shown any ability of vitamin D to influence the course and outcome 
of COVID-19 (145).

Conclusion

The link between SARS-CoV-2 and PD is multi facet. Whether the 
higher prevalence and incidence of PD in patients who experienced 
COVID-19 are controverse, the hypothesis that COVID-19 may 
increase the risk of PD is actually unlikely. On the other hand, patients 
with PD showed a worsening of motor and non-motor symptoms 
during COVID-19 outbreak due to both infection and/or social 
restriction. Also, due to the nature of neurodegenerative disease, older 
age and comorbidities, PD patients are vulnerable during the 
COVID-19 outbreak since they reported higher mortality and 
morbidity compared to healthy population. Many are the clinical and 
pathogenetic shared features between SARS-CoV-2 infection and PD 
although much remains to be  clarified about this complex and 
bidirectional relationship. Although cases of acute parkinsonism 
following SARS-CoV-2 infection are reported, the possibility of higher 
risk of occurrence of idiopathic PD following SARS-CoV-2 infection 
is still controverse. Current data suggesting the development of 
idiopathic PD associated with SARS-CoV-2infection is currently only 
a hypothesis. Of course, due to the short interval period from SARS-
CoV-2 outbreak we cannot have reliable data about the incidence of 
idiopathic PD among infected people and therefore we  cannot 
estimate the risk to develop PD after COVID-19. Longer longitudinal 
studies are needed to better clarify the relationship between 
COVID-19 and the development of idiopathic PD. Looking at the 
several shared featured between SARS-CoV-2 infection and idiopathic 
PD pathogenesis, we believe that prospective evaluation of patients 
with permanent hyposmia and gastrointestinal symptoms after 
COVID-19 might help to better clarify the relationship between 
COVID-19 and idiopathic PD incidence.
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