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Abstract—Plateau waves (PW) in intracranial pressure (ICP)
often manifest in traumatic brain injury (TBI), presenting as
abrupt increases in ICP exceeding 40 mmHg, accompanied by a
decrease in cerebral perfusion pressure (CPP). The occurrence of
PWs is a significant cerebrovascular phenomenon with potentially
devastating effects for the patient, which is reflected in heart
rate variability (HRV), typically assessed by RR intervals in
electrocardiographic recordings. This study employs the spectral
formulation of mutual information rate (MIR) to dynamically
quantify the coupling between RR intervals and ICP across 27
episodes of PWs from 7 patients with TBI. Furthermore, this
measure of information theory can be decomposed into entropy
rate components related to complexity, each of which can be
integrated into frequency bands with physiological significance.
Our findings demonstrate the feasibility of using non-parametric
spectral measures to analyze cardio-cerebral interactions. Specif-
ically, during PW events, complexity decreases across all fre-
quency bands examined, indicating increased regularity in RR
intervals. Changes in dynamic coupling during PW may be linked
to autonomic nervous system dysfunction, potentially stemming
from the interaction between the parasympathetic system and
ICP. These results suggest the potential inclusion of information-
theoretic measures into intensive care units (ICU) monitors to
improve the prediction and management of these stress episodes.
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I. INTRODUCTION

Traumatic brain injury (TBI) is one of the common causes
of acute brain injury (ABI) causing a significant global
socioeconomic burden. In TBI, the occurrence of plateau
waves (PWs) in intracranial pressure (ICP) monitoring poses
a critical challenge. This prolonged increase in pressure,
exceeding 40 mmHg for more than 5 minutes, can exacerbate
secondary brain injury and complicate overall patient man-
agement [1]. Indeed, ICP peaks may vary in proportion based

H.P and A.P.R were partially supported by CMUP, member of LASI,
which is financed by national funds through FCT, under the project
UIDB/00144/2020. H.P. thanks Fundação para a Ciência e Tecnologia (FCT),
Portugal for the Ph.D. Grant 2022.11423.BD. L.S, Y.A. were supported by Si-
ciliAn MicronanOTecH Research And Innovation CEnter ”SAMOTHRACE”
(MUR, PNRR-M4C2, ECS 00000022), spoke 3-Università degli Studi di
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on cerebrospinal compliance, with a gradual alteration of the
waveform as ICP rises, indicating an increased pathological
stress. Furthermore, the autonomic nervous system (ANS)
significantly influences the regulation of ICP and cerebral
autoregulation, both of which are impacted by PWs. The
autonomic stress that triggers PWs is reflected in Heart Rate
Variability (HRV), as can be seen in Fig. 1 the stress episode
decreases heart rate (HR). Past studies using conventional
HRV methods [2] showed that median HRV spectral values,
integrated in the low (LF, 0.04 − 0.15 Hz) and high (HF,
0.15−0.4 Hz) frequency bands, typically increase immediately
before and during PWs, decrease after the event, and then rise
during recovery.

Advancements in technology have equipped ICUs with
devices enabling continuous brain monitoring, proving cru-
cial for detecting secondary brain damage [3]. Multimodal
Brain Monitoring (MBM) assesses cerebral function using
multiple modalities in a single patient, offering an integrated
interpretation of potential secondary insults. Simultaneous,
time-synchronized data collection, and integrated display are
essential for providing targeted, individualized care. In fact, the
previous work of Almeida et al. [4] employed AutoRegressive
Fractionally Integrated Moving Average Generalized Autore-
gressive Conditional Heteroskedasticity (ARFIMA-GARCH)
modeling to effectively measure the extended correlations and
fluctuating volatility of HRV. The application of this modeling
approach, combined with MBM, was successful in assessing
HRV dynamics in diverse acute cerebral conditions such
as intracranial hypertension, decompressive craniectomy, and
brain death. Their findings demonstrated the model capacity
to capture alterations in HRV dynamics related to TBI and
the impact of medical interventions. Some recent studies,
using the integrative approach of Network Physiology [5],
have employed multiscale partial information decomposition
of Transfer Entropy (TE) within a Vector AutoRegressive Frac-
tionally Integrated (VARFI) framework [6], [7], or frequency-
based spectral decomposition with Vector AutoRegressive
(VAR) modeling [8], demonstrating the efficacy of dynamic
multiscale network analysis in characterizing HRV changes
during PWs.

Information theory has proven to be a flexible and reliable



Fig. 1. PW episode and its preliminary analysis were conducted in ICM+ (Cambridge Enterprise, UK), with Heart Rate (HR, green) measured in beats
per minute, Systolic Blood Pressure (sABP, red) along with Cerebral Perfusion Pressure (CPP, yellow) measured in mmHg, intracranial pressure (ICP, blue)
recorded in mmHg, and Amplitude of ICP (AMP, purple) measured in mmHg.

framework for studying and describing the dynamics of com-
plex systems. In this context, the Mutual Information Rate
(MIR) quantifies the information shared by the two processes
per unit of time and can be easily decomposed in the frequency
domain thus allowing the study of physiological systems with
a rich oscillatory content. With the aim of improving the
understanding of the mechanisms underlying the interaction
between RR and ICP, in this study MIR is used to assess
brain/heart crosstalk in time and in specific frequency bands.

II. SPECTRAL MUTUAL INFORMATION RATE

Let us consider two ergodic stationary stochastic processes
X and Y with zero mean. Their current states are denoted by
Xn and Yn, and their past states by Xq

n = [Xn−1, . . . , Xn−q]
and Y q

n = [Yn−1, . . . , Yn−q], where q sets the history length
(embedding dimension). The degree of association between
the two processes is quantified by the MIR, an information-
theoretic measure defined as [9]

IX;Y = lim
q→∞

1

q
I (Xq

n;Y
q
n ) . (1)

where I(·; ·) denotes the Mutual Information (MI). Thus, the
MIR is a symmetric measure quantifying the information
shared between two random processes per unit of time. This
measure of dynamic coupling can be decomposed in terms
of other information-theoretic measures, offering valuable in-
sights into the dynamics of each process and the coupling
relationships within the analysed bivariate system. Specifically,
the MIR can be decomposed as the sum of the entropy rates
(ER) of the two involved processes X (HX ) and Y (HY ),
minus the joint ER of the two processes (HX,Y ) [9]

IX;Y = HX +HY −HX,Y , (2)

where the ERs can be written in terms of conditional entropies,
HX = H(Xn | Xq

n), HY = H(Yn | Y q
n ), and HX,Y =

H(Xn, Yn | Xq
n, Y

q
n ).

The MIR decomposition in (2) can be represented in the
frequency domain, since spectral counterparts of the ERs can
be defined starting from the power spectral density (PSD)
of the bivariate process [X,Y ]. The latter is a symmetric
2 × 2 matrix P[XY ](ω) containing the spectra of the two
scalar processes X and Y as diagonal elements (PX(ω) =
F{RX(k)}, RX(k) = E[XnXn−k], and PY (ω) = F{RY (k)},
RY (k) = E[YnYn−k]), and their cross-spectra as off-diagonal
elements (PXY (ω) = F{RXY (k)}, RXY (k) = E[XnYn−k],
where ), where ω ∈ [−π, π] is the normalized frequency
(ω = 2π f

fs
with f ∈

[
− fs

2 ,
fs
2

]
, fs denoting the sampling

frequency), and F{R·(k)} is the Fourier transform of the
autocorrelation or cross-correlation functions. Specifically, the
spectral measure of ER of the process X (or, analogously, of
Y ) is defined as [10]

hX(ω) =
1

2
log

(
2πePX(ω)

)
, (3)

while a spectral measure of the MIR between the processes
X and Y is given by [11]

iX;Y (ω) =
1

2
log

PX(ω)PY (ω)∣∣P[XY ](ω)
∣∣ , (4)

where | · | stands for matrix determinant. Specifically, the
spectral ER and MIR quantify the rate of generation of new
information in a random process and the information shared
by the two processes per unit of time at each frequency
ω, respectively. Crucially, the spectral information measures
defined in Eqs. (3) and (4) can be easily linked to the
time-domain measures outlined in Eq. 2 through the spectral
integration property [12]:

HX =
1

2π

∫ π

−π

hX(ω)dω, (5)

IX;Y =
1

2π

∫ π

−π

iX;Y (ω)dω. (6)



The spectral integration property has the dual role to link
interaction measures in the time and frequency domains, but
also to enable the quantification of these measures in specific
spectral bands of physiological interest.

A. Non Parametric Estimator

Different methods exist to estimate the PSD of random
processes, each with its own strengths and weaknesses. The
selection of the method relies on signal traits, data availabil-
ity, and analysis needs, often involving a trade-off among
frequency resolution, variance reduction, and computational
complexity [13], [14]. There are two different well-known
typologies of methods: non-parametric algorithms and para-
metric approaches, as for example, the one based on VAR
models [15]. In this work, the nonparametric weighted covari-
ance (WC) method [16], which exploits the Fourier Transform
of the sample auto-correlation and cross-correlation functions
of the data, was employed. The WC estimator of the PSD
computes the cross-PSD between X and Y as [14]

P̂XY (ω) =

τ∑
k=−τ

w(k)R̂XY (k)e
−jωk, (7)

where j =
√
−1. Considering that L is the number of data

samples, τ ≤ L− 1 is the max lag for correlation, w is a lag
window of width 2τ (w(k) = 0 for |k| > τ ), normalized
(0 ≤ w(k) ≤ 1) and symmetric (w(−k) = w(k)), and
R̂XY (k) denotes the biased estimator of cross-correlation
function [17]. In this study, the Parzen window was employed
due to its significantly lower side-lobe level compared to the
Hanning and Hamming windows. Additionally, it maintains
non-negativity for all frequencies and yields non-negative
spectral estimates [17]. For the Parzen window, the relation-
ship between the bandwidth (Bw) of the spectral window
and the lag τ at which correlation estimates are truncated is
Bw = 1.273fs/τ .

III. APPLICATION TO PLATEAU WAVES OF INTRACRANIAL
PRESSURE

A. Protocol, Signal Acquisition and Time Series Extraction

This study involves a dataset comprising 27 episodes of
PWs from 7 patients (6 males, mean age 42) with severe
TBI, monitored in the neurocritical care unit (NCCU) at
Centro Hospitalar São João (CHSJ) [2]. Approval from the
local research ethics committee and written consent from the
patients were obtained. Using the ICM+® software, different
signals were acquired, including electrocardiogram (ECG),
arterial blood pressure (ABP), intracranial pressure (ICP),
cerebral perfusion pressure (CPP), and the expired CO2 level,
as detailed in [2].

The R-to-R intervals of the ECG (RR) and the amplitude of
the ICP signal (AMP) time series were extracted and used in
this work, the latter were calculated as the difference between
systolic and diastolic ICP points within each cardiac cycle.
For each patient, the two time series were segmented into six
phases: two 15-minute baseline periods (B1 and B2) occurring

prior to the onset of PW, until ICP increased by more than 20
mmHg; the PW phase, corresponding to ICP exceeding 40
mmHg; four 15-minute recovery baseline phases (B3-B6). A
sliding window Hampel filter [18] was employed to detect
and replace outliers. After visual inspection, the stationarity
of the extracted segments was assessed using the augmented
Dickey-Fuller (ADF) test [19].

B. Data Analysis and Statistical Analysis

To account for variations in heart rate within frequency
bands with physiological meaning, the MIR between RR and
AMP (IRR;AMP ), the ER of RR (HRR), ER of AMP (HAMP )
and the joint ER (HRR,AMP ) were computed following the
approach described in Sect. II. For each subject and segment,
the truncation lag for the correlation estimates was obtained
by fixing Bw = 1.273fs/τ = 0.015 Hz [13] and setting
fs = 1/RR, where RR is the mean RR. The spectral profiles
of the ER and MIR measures were integrated in the low-
frequency (LF, 0.04 − 0.15 Hz) and high-frequency (HF,
0.15 − 0.4 Hz) bands of the spectrum [20]. Time domain
counterparts were obtained by integrating the spectral profiles
along the whole frequency axis.

As regards data analysis, the differences between baseline
and PW phases were evaluated through a Z-test with a
significance level of α = 5%. This analysis considered the
estimated marginal means (EMM) of the repeated measures
model [21] and incorporated the Bonferroni correction for
multiple comparisons, n =

(
7
2

)
= 21. The models EMM were

computed using MATLAB R2023b software (MathWorks,
Natick, MA, USA).

C. Results and Discussion

Results are shown in Fig. 2 in terms of violin plots with
overlapping individual values of MIR and its decomposition
terms. LF (panel a), HF (panel b) and the corresponding time-
domain values (panel c).

In the LF band, HRR, HAMP , and HRR,AMP , depicted
respectively in Fig. 2(a1)-(a3), exhibit a significant decrease
during the PW phase when compared with the baseline phases
preceding the PW (B1 and B2), followed by a gradual increase
(especially for HRR,AMP ). This is likely to indicate increased
regularity in AMP and RR, and suggesting a slow recovery.
Even after an hour, complete recovery may not be achieved,
revealing the high level of stress in these episodes [22], [23].
On the other hand, IRR;AMP is significantly higher during
the stress phase, particularly when compared with the baseline
phases observed after the PW (B3, B4, B5, B6), this can be
a result of the interaction between the slow waves of ICP and
RR intervals [24].

In the HF frequency band, a similar trend is observed;
specifically, a statistically significant decrease of HRR mov-
ing from B1 to the PW phase is detected, as shown in
Fig.2(b1). Additionally, both HAMP and HRR,AMP , dis-
played in Figs.2(b2)-(b3), exhibit significantly lower values in
PW compared to all the baseline phases. Conversely, the rise in
ICP during PW results in an increase of the dynamic coupling



Fig. 2. Violin plots illustrating distributions of the spectral measures of MIR and its decomposition terms, alongside with individual values, across B1, B2,
PW, B3, B4, B5, and B6 phases for the (a) LF and (b) HF frequency bands, and (c) the corresponding time domain measures obtained by integrating across all
frequencies. The lines represent kernel density estimates of the data, and the shadow in the center of the violin represents the 25th and 75th percentiles, with
the center point marking the median. Statistical analysis employed a post-hoc test with Bonferroni correction for estimated marginal means (EMM) within a
repeated measures model: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

IRR;AMP , as illustrated in Fig. 2(b4). However, contrarily
to what happens in the LF band, IRR;AMP is significantly
lower in phases B1 and B2 when compared to PW. These
findings suggest a potential interaction between ICP and the
parasympathetic system, which may be attempting to restore
the declining cerebral blood flow observed during these intense
stress events [23]. The analysis did not take into account
the respiratory signal, despite evidence showing that higher
respiratory frequency diminishes the amplitude of heart rate
oscillations [25]. Conversely, increases in tidal or static lung
volume tend to increase variability in the RR intervals [25]–
[27]. Consequently, the impact of mechanical ventilation in
the ICU could significantly affect HRV variation in the high-
frequency band [28], so further studies must be conducted to
assess this issue.

Finally, the time-domain measures reflect to some extent
the behavior observed in the LF and HF bands, as shown in
Fig. 2(c), since the time domain counterparts can be seen
as average values of spectral measures integrated in these
frequency bands. In summary, we observe a reduction in HRR,
HAMP , and HRR;AMP (Figs. 2(c1)-(c3)), corroborating [22],
where a parametric estimator accounting for long-range corre-
lations was employed. The coupling, measured by IRR;AMP ,
increases significantly during the stress phase compared with
the baseline phases preceding and following the stress episode
(Fig. 2(c4)). These findings further support the presence of a
potential feedback loop from ICP to RR interval, particularly
highlighting its amplification during episodes of PWs [29].

It is important to stress out that the time domain measures
are not able to discriminate among different physiological ef-
fects associated with the activity of the ANS, hence the impor-
tance of integrating measurements into physiologically mean-
ingful frequency bands [20]. For example, in Figure 2(c2), it is
evident that the statistically significant differences in the time
domain are primarily influenced by the values obtained in the
HF band, as illustrated in Figure 2(b2). Regarding IRR;AMP ,
Figure 2(c4), the significant decrease observed in baseline
phases after the PW episode is mainly related to the LF band,
as summarized in Figure 2(a4). This decrease possibly reflects
sympathetic activation during the stress phase and subsequent
recovery in the following baseline phases.

IV. FINAL REMARKS

This study highlights the feasibility of examining cardio-
cerebral interactions in pairs of physiological time series
during PW episodes using the spectral formulation of MIR.

During plateau wave occurrences, complexity decreases,
indicating increased regularity in RR intervals and AMP
processes, often signaling a pathological state. The increase
in dynamical coupling during this phase is possibly associated
with the abrupt rise in ICP and its interaction with the
parasympathetic system.

The obtained results suggest new possibilities for the quan-
titative analysis of plateau waves. Indeed, while some already
used methods provide indicators or early warnings, an accurate
prediction is still not feasible. Furthermore, integrating time



varying methods [30] with information measures like MIR
and its components could in perspective offer further valuable
insights for predicting this stressful episode.
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