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Abstract
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1 Introduction

Let Y be a real Banach space, possibly infinite-dimensional. Throughout the paper we
will deal with Y -valued functions. In [1] Ambrosetti has extended the Ascoli–Arzelà
theorem to the space of Y -valued functions defined and continuous on a compact
metric space and equipped with the supremum norm, obtaining that a bounded subset
of the space is relatively compact if and only if it is equicontinuous and pointwise
relatively compact, and establishing a precise formula for the Kuratowski measure of
noncompactness of bounded and equicontinuous subsets of the space. Later,Nussbaum
[24] has estimatedboth theKuratowski and theHausdorffmeasures of noncompactness
of bounded subsets of that space, finding, as a special case, the result of Ambrosetti. On
the other hand, Bartle [11] extended the Ascoli–Arzelà theorem to the spaceBC(�,R)

of all real-valued functions defined, continuous and bounded on a topological space�.

Precisely, a bounded subset M of BC(�,R) is relatively compact if and only if for
any positive ε there is a finite partition {A1, . . . , An} of � such that if x, y belong
to the same Ai , then | f (x) − f (y)| ≤ ε, for all f ∈ M . In [18] the estimates of
Nussbaum have been extended to the space of Y -valued functions defined and bounded
on a general set �, by means of quantitative characteristics which unfortunately do
not allow to obtain a compactness criterion for all bounded subsets of the whole
space. Similar results have been obtained in [5], where the Hausdorff measure of
noncompactness has been estimated in the space of totally boundedY -valued functions
defined on a set�, obtaining implicitly, when� is a topological space, a generalization
of theBartle criterion.We alsomention that in [7–9]measures of noncompactness have
been investigated in the space of Y -valued functions defined, continuous and bounded
on unbounded intervals. Actually, the compactness criterion of Ascoli–Arzelà has
been extended to several more general cases which find applications in many fields
of mathematical analysis. Of interest, in addition to the already mentioned cases, are
the results that generalize the criterion to spaces of differentiable functions (among
others, we recall [3, 6, 15, 23, 27]). In particular, in [15] the relative compactness
has been characterized for subsets of the space of Y -valued functions defined, k-times
continuously differentiable and bounded with all differentials up to the order k on
unbounded intervals. While in [3] the case of real-valued functions defined either on
a compact subset of Rn, or on R

n itself when functions vanish at infinity, has been
considered. Finally, we have to recall that a general version of the Ascoli–Arzelà
theorem concerns the characterization of relative compactness in the space D(�, T ),

that is, the space C(�, T ) of continuous functions between two topological spaces �

and T endowed with the topology of compact convergence (see [19, Theorem 18]).
The results of this paper will cover and extend the mentioned classical and more

recent results on the subject. Our first aim is to construct regular measures of noncom-
pactness equivalent to the Kuratowski and the Hausdorff ones in the space B(�,Y )

of Y -valued functions defined and bounded on a nonempty set �, made into a Banach
space by the supremumnorm.Themain condition is a newequicontinuity-type concept
which we will refer to as extended equicontinuity. Then a quantitative characteristic
measuring the degree of extended equicontinuity, together with the classical quan-
titative characteristics μα, σα, μγ , σγ (where α and γ stand for the Kuratowski
and the Hausdorff measures, respectively) measuring the degree of pointwise relative
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compactness (see [1, 5, 18, 24]), will allow us to estimate the Kuratowski and the
Hausdorff measures of noncompactness of bounded subsets of the space. When �

is an open subset of a Banach space, of independent interest are the results we are
able to obtain in the space BCk(�, Y ) of Y -valued functions defined, k-times contin-
uously differentiable and bounded with all differentials up to the order k on � and
endowed with the norm ‖ f ‖BCk = max{‖ f ‖∞, ‖d f ‖∞, . . . , ‖dk f ‖∞}, and also in
the complete locally convex spaceDk(�, Y ), that is, the space Ck(�,Y ) of Y -valued
functions defined and k-times continuously differentiable on �, endowed with the
topology of compact convergence for all differentials. It is worth mentioning that in
BCk(�,Y ) andDk(�, Y ) the formulation of our equicontinuity-type concept, as well
as of all quantitative characteristics there considered, will depend on each space in a
natural way. From our results we obtain Ascoli–Arzelà type compactness criteria in
spaces of Y -valued functions in very general settings.

The paper is organized as follows. In Sect. 2, we introduce some definitions and
preliminary facts on measures of noncompactness. Then we consider in B(�,Y ) the
generalized measure of non-equicontinuity ω (see [5, 18]) and the quantitative char-
acteristics μα, σα, μγ , σγ . In particular, we put in evidence that ω associated with
any of these quantities (which actually are equivalent), differently from what happens
in the space of totally bounded functions, does not allow in general to characterize
compactness in B(�, Y ). The main results of the paper are presented in the following
two sections. In Sect. 3, we introduce our new equicontinuity-type concept, then we
obtain inequalities and compactness criteria in any Banach subspace of B(�,Y ). It
is worthwhile to notice that, as a particular case when � is a topological space, the
results in BC(�,Y ) hold when � is not necessarily compact and the functions not
necessarily totally bounded, so we generalize at the same time the result of Nussbaum
and the Bartle criterion. In Sect. 4, we obtain inequalities and compactness criteria
in Banach subspaces of BCk(�, Y ) and in the space Dk(�,Y ). In all the spaces,
we always construct regular measures of noncompactness equivalent to the Kura-
towski and the Hausdorff measures. A precise formula for the Kuratowski measure of
noncompactness is obtained for bounded and extendedly equicontinuous subsets of
Banach subspaces of B(�, Y ). Analogous results are obtained in Banach subspaces
of BCk(�,Y ) and in the space Dk(�, Y ). Further, precise formulas for the Haus-
dorff measure of noncompactness are given for bounded and equicontinuous subsets
of the spaces T B(�, Y ) and T BCk(�, Y ), consisting of totally bounded functions
and functions of BCk(�, Y ) which are compact with all differentials, respectively. An
analogous formula is obtained inDk(�, Y ). In the last section, we obtain some results
for pointwise relatively compact subsets of B(�, Y ) under the hypothesis that Y is a
Lindenstrauss space.

In the literature a different approach is sometimes used to obtain measures of
noncompactness in some Banach spaces of Y -valued functions (see, for example, [3,
7, 8]), but not always such measures enjoy the property of regularity.
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2 Preliminaries

In the following we will consider real linear spaces. Given a Banach space E with
zero element θ, we denote by B(x, r) the closed ball with center x and radius r > 0,
and B(E) will stand for B(θ, 1). If M is a subset of E we denote by M, coM and
coM the closure, the convex hull and the closed convex hull of M, respectively.
We use the symbol diamE (M) for the diameter of M in E, or simply diam(M) if
no confusion can arise. If M and N are subsets of E and λ ∈ R, then M + N
and λM will denote the algebraic operations on sets. Next, let ME be the family
of all nonempty bounded subsets of E and let NE be its subfamily consisting of
all relatively compact sets. Given a set function μ : ME → [0,+∞), the family
kerμ = {M ∈ ME : μ(M) = 0} is called kernel of μ. Following [10], we introduce
the concept of measure of noncompactness.

Definition 2.1 A set function μ : ME → [0,+∞) is said to be a measure of
noncompactness in E if the following conditions hold for M, N ∈ ME :

(i) kerμ is nonempty and kerμ ⊆ NE ;
(ii) M ⊆ N implies μ(M) ≤ μ(N );
(iii) μ(M) = μ(M);
(iv) μ(coM) = μ(M);
(v) μ(λM + (1 − λ)N ) ≤ λμ(M) + (1 − λ)μ(N ), for λ ∈ [0, 1];
(vi) if (Mn)n is a sequence of closed sets from ME such that Mn+1 ⊆ Mn for

n = 1, 2, . . . and limn→∞ μ(Mn) = 0, then the intersection setM∞ = ⋂∞
n=1 Mn

is nonempty.

We will say thatμ is a full measure if kerμ = NE .Ameasureμ is called sublinear
if it is homogeneous and subadditive, i.e.

(vii) μ(λM) = |λ|μ(M) for λ ∈ R, and μ(M + N ) ≤ μ(M) + μ(N ),

moreover, μ is said to have the maximum property if

(viii) μ(M ∪ N ) = max{μ(M), μ(N )}.
An important class of measures of noncompactness is that constituted by regular
measures, which are full, sublinear measures with the maximum property. We recall
that given a set M inME the Kuratowski measure of noncompactness of M, denoted
by α(M), is the infimum of all ε > 0 such that M can be covered by finitely many
sets of diameters not greater than ε and the Hausdorff measure of noncompactness
of M, denoted by γE (M), is the infimum of all ε > 0 such that M has a finite ε-net
in E . These measures of noncompactness are regular, besides they are equivalent,
since γE (M) ≤ α(M) ≤ 2γE (M). For our purposes, it is also useful to recall that
the Istratescu measure of noncompactness β(M) of M is the infimum of all ε > 0
such that M does not have an infinite ε-separation, i.e there is no infinite set in M
such that ‖x − y‖ ≥ ε for all x, y in this set, with x 
= y. Moreover, the inequalities
β(M) ≤ α(M) ≤ 2β(M) hold true. For more details on measures of noncompactness
the reader is referred to [4, 10].

Throughout, � will be a nonempty set and (Y , ‖ · ‖) a Banach space, γ will always
stand for γY . We denote by F(�, Y ) the linear space of all functions f : � → Y .
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Given a set of functions M in F(�, Y ), x ∈ � and A ⊆ � we define the subsets
M(x) and M(A) of the Banach space Y by letting

M(x) = { f (x) : f ∈ M}, M(A) = { f (x) : x ∈ A, f ∈ M}. (2.1)

The symbol B(�,Y ) will stand for the Banach space of all bounded functions in
F(�,Y ), endowed with the supremum norm

‖ f ‖∞ = sup{‖ f (x)‖, x ∈ �}.

We denote by T B(�, Y ) the space of all Y -valued functions defined and totally
bounded on �, i.e. such that f (�) is relatively compact, and whenever � is a topo-
logical space, we denote by BC(�, Y ) the spaces of all Y -valued functions defined,
bounded and continuous on �. Both T B(�, Y ) and BC(�,Y ) are Banach subspaces
of B(�,Y ). A function f ∈ BC(�, Y ) ∩ T B(�, Y ) is called compact. Throughout
the paper we will use the symbols MB and NB instead of MB(�,Y ) and NB(�,Y ) if
no misunderstanding is possible, and analogously for all the spaces we will consider.
The same shortcuts will be used in the notations of the quantitative characteristics.

We devote the remaining part of this section to introduce and discuss in B(�,Y )

the quantitative characteristics, based on the classical results on compactness given in
[11, 17, 28], which have been useful tools for the study of compactness, for example,
in spaces of totally bounded or compact functions. Given M ∈ MB, we consider (see
[2, 5, 13, 18, 24, 29]) the quantitative characteristic

ω(M) = inf{ε > 0 : there is a finite partition {A1, . . . , An} of �

such that, for all f ∈ M, diam( f (Ai )) ≤ ε for i = 1, . . . , n}, (2.2)

which, according to [18], generalizes the “measure of non-equicontinuity” of
Nussbaum [24], and the quantitative characteristics (see [1, 18, 24])

μα(M) = sup
x∈�

α(M(x)), μγ (M) = sup
x∈�

γ (M(x)).

It is easy to verify that μγ (M) ≤ μα(M) ≤ 2μγ (M). A set M ∈ MB is called
pointwise relatively compact if μα(M) = 0 (or μγ (M) = 0). We also consider (see
[5, 18]) the quantitative characteristics

σα(M) = α(M(�)), σγ (M) = γ (M(�)).

We have σγ (M) ≤ σα(M) ≤ 2σγ (M). Moreover, μα(M) ≤ σα(M) and μγ (M) ≤
σγ (M).

For the sake of completeness we recall the result of Nussbaum on the estimates of
the Kuratowski measure of noncompactness.

Theorem 2.2 [24, Theorem 1] Let (�, d) be a compact metric space, (T , s) a metric
space and C(�, T ) the space of functions defined and continuous on � with values
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in T , made into a metric space by d∞( f , g) = supx∈� s( f (x), g(x)). Let M be a
bounded set in C(�, T ), set

a = inf{ωN (δ, M) : δ ≥ 0},

where ωN (δ, M) = sup{s( f (x), f (y)) : x, y ∈ �; d(x, y) ≤ δ, f ∈ M} is the
modulus of continuity of M, then

max{μα(M),
1

2
a} ≤ α(M) ≤ μα(M) + 2a.

The above theorem contains the classical result of Ambrosetti [1, Theorem 2.3].
Precisely, if M is a bounded and equicontinuous subset of C(�, T ), then α(M) =
μα(M). Let us observe that in [18] Heinz has extended the result of Nussbaum to
bounded subsets of B(�, Y ). In particular, in his paper (see [18, Theorem 2 and
Proposition 2 (i)]) the following inequalities, which we state using the notations of
this paper, are proved:

max

{

μα(M),
1

2

(

ω(M) − sup
f ∈M

σα({ f })
)}

≤ α(M) ≤ μα(M) + 2ω(M).

(2.3)

Therefore, if M ∈ MT B then sup f ∈M σα({ f })) = 0, so that ker (μα + 2ω) = NT B
and consequently inequalities (2.3) furnish a criterion of compactness in the space
T B(�,Y ) of totally bounded functions (see also [5, Theorem 2.1]). But the same
is not true in the space B(�, Y ). In fact, the following Example 1 shows that the
left-hand side of (2.3) can be equal to zero for a given set M ∈ MB without being
α(M) = 0, which means that the left-hand side of (2.3) vanishes on sets M /∈ NB.

While Example 2 shows that there are sets M ∈ NB such that the right-hand side of
(2.3) does not vanish on M . In other words, ker (μα + 2ω) = NT B and it is a proper
subset of NB, so that the relations given in (2.3) are not adequate to characterize
compactness in B(�, Y ). Before giving the examples, let us observe that given a
function f ∈ B, we have α({ f }) = γB({ f }) = 0 and also μα({ f }) = μγ ({ f }) = 0,
due to the fact that α({ f (x)}) = γ ({ f (x)}) = 0 for all x ∈ �. Moreover, for f ∈ B
we have

ω({ f }) = σα({ f }). (2.4)

Indeed, given a > σα({ f }), that is a > α( f (�)), and {Y1, . . . ,Yn} a partition of f (�)

with diam(Yi ) ≤ a for i = 1, . . . , n, considering the finite partition {A1, . . . , An} of
� with Ai = f −1(Yi ), we find ω({ f }) ≤ a. Vice versa, given b > ω({ f }) and
{A1, . . . , An} a finite partition of � with diam( f (Ai )) ≤ b for i = 1, . . . , n, we have
f (�) = ⋃n

i=1 f (Ai ), which implies α( f (�)) ≤ b. Thus (2.4) follows.
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Example 1 Let � = [0,+∞) and Y = �∞. Consider the sequence ( fk)k in
B([0,+∞), �∞) defined by

fk(x) =
{
en for x = k − 1

n , for n = 1, 2, . . .

θ otherwise.

Set M = { fk : k = 1, 2, . . .}. Then given x ∈ [0,+∞), M(x) = {θ, en} if
x ∈ ⋃∞

k=1

{
n − 1

k : n = 1, 2, . . .
}
and M(x) = {θ} if x does not belong to that

set. Thus M is pointwise relatively compact. Using (2.4) and taking into account that
diam ({en : n = 1, 2, . . .}) = 1 we deduce, for each k ∈ N,

ω({ fk}) = α ( fk([0,+∞))) = α ({en : n = 1, 2, . . .}) ≤ 1.

Since, looking at the Istratescu measure, we have β ({en : n = 1, 2, . . .}) = 1,we find
α ({en : n = 1, 2, . . .}) = 1, so ω({ fk}) = 1 which implies ω(M) ≥ 1. On the other
hand, diam( fk([0,+∞)) = diam ({en : n = 1, 2, . . .}) = 1 for all k, thus taking the
partition {[0,+∞)}we obtainω(M) ≤ 1, thusω(M) = 1.Nowwe prove α(M) = 1.
First we notice that for k 
= s we have

‖ fk − fs‖∞ = sup
x∈�

‖ fk(x) − fs(x)‖ = 1,

so that β(M) ≥ 1, which implies α(M) ≥ 1. At the same time we have diam(M) =
supk,s∈N ‖ fk − fs‖∞ = 1, so that α(M) ≤ 1, and our assert follows. Then, on the
one hand α(M) = 1, on the other hand

μα(M) = 0, ω(M) = 1 = sup
k∈N

σα({ fk}),

which in turn give M /∈ NB([0,+∞),�∞) and

max

{

μα(M),
1

2

(

ω(M) − sup
k∈N

σα({ fk})
)}

= 0.

Example 2 Assume the Banach space Y to be infinite-dimensional and � = B(Y ).

Denote by I the identity function on B(Y ) and let M = {I } in B(B(Y ),Y ). Then
α(M) = γB(B(Y ),Y )(M) = μα(M) = μγ (M) = 0, σα(M) = ω(M) = 2, and
σγ (M) = 1. In particular, M ∈ NB(B(Y ),Y ), but the right-hand side of (2.3) does not
vanish on M .

Further, in view of the above example, the quantitative characteristics ω, σα and σγ

cannot be used in general to characterize compactness inB(�,Y ).The goal of the next
section is to use a new equicontinuity-type concept, and a quantitative characteristic
modeled on it, to fill in this gap.

To close this section, given ψ : MX → [0,∞) any set function in
{μα, σα, μγ , σγ }, from the properties of α and γ we derive that ψ satisfies axioms
(ii)–(v) of Definition 2.1.
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Proposition 2.3 Assume ψ ∈ {μα, σα, μγ , σγ }. Let M, N ∈ MX and λ ∈ [0, 1].
Then

(ii) M ⊆ N implies ψ(M) ≤ ψ(N );
(iii) ψ(M) = ψ(M);
(iv) ψ(coM) = ψ(M);
(v) ψ(λM + (1 − λ)N ) ≤ λψ(M) + (1 − λ)ψ(N ).

Proof As the proof works in the same way for α and γ, we assume ψ ∈ {μα, σα}.
Let M, N ∈ MX and λ ∈ [0, 1]. If M ⊆ N , property (ii) follows immediately from
the definition of ψ.

(iii) Using (ii) we have ψ(M) ≤ ψ(M). We prove the converse inequality.
Let ψ = μα. Let x ∈ �, y ∈ M(x) and f ∈ M such that y = f (x). Let

( fn)n be a sequence of functions in M such that ‖ fn − f ‖∞ → 0 as n → ∞,

then ‖ fn(x) − f (x)‖ → 0. Hence f (x) = y ∈ M(x), so that M(x) ⊆ M(x) and
γ (M(x)) ≤ γ (M(x)). Since α(M(x)) = α(M(x)), we obtain α(M(x)) ≤ α(M(x)),
for all x ∈ �, which implies μα(M) ≤ μα(M).

Let ψ = σα. Let x ∈ �, y ∈ M(�) and f ∈ M such that y = f (x). Repeating
the same argument as before, we find M(�) ⊆ M(�) and then σα(M) ≤ σα(M).

(iv) Using (ii) we have ψ(M) ≤ ψ(coM). We prove the converse inequality. Let
ψ = μα. Let x ∈ �, y ∈ (coM)(x) and f ∈ coM such that y = f (x). Fix
f1, . . . , fn ∈ M and λ1, . . . , λn ∈ [0, 1]with∑n

i=1 λi = 1 such that f = ∑n
i=1 λi fi .

Then y = f (x) ∈ coM(x). Therefore (coM)(x) ⊆ coM(x) for all x ∈ �. Hence
α((coM)(x)) ≤ α(coM(x)) = α(M(x)), and from this follows μα(coM) ≤ μα(M),

as desired.
If ψ = σα, the result follows from the fact that one proves (coM)(�) ⊆ coM(�).

(v) It is immediate, in one case from (λM + (1 − λ)N )(x) ⊆ (λM)(x) + ((1 −
λ)N )(x) for all x ∈ �, and in the other, from (λM + (1 − λ)N )(�) ⊆ (λM)(�) +
((1 − λ)N )(�). �
Remark 2.4 From [24, Example 1] we see that the set functions μα, σα, μγ and
σγ are not in general measures of noncompactness. Let E = C([0, 1],R) and
M = { fn : n = 3, 4, . . .} ∈ ME , where

fn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for 0 ≤ t < 1
2 − 1

n ,
(
t − 1

2 + 1
n

) n
2 for 1

2 − 1
n ≤ t < 1

2 + 1
n ,

1 for 1
2 + 1

n ≤ t ≤ 1.

Then M /∈ NE and μγ (M) = μα(M) = σγ (M) = σα(M) = 0, so that, none of the
given set functions satisfies condition (i) of Definition 2.1.

3 Compactness in Banach subspaces ofB(Ä,Y)

Throughout this section, X will stand for a Banach subspace of B(�,Y ), possibly
B(�,Y ) itself, endowedwith‖·‖∞.Let us introduce the following equicontinuity-type
concept in our general setting.
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Definition 3.1 We say that a set M ∈ MX is extendedly equicontinuous if for any
ε > 0 there are a finite partition {A1, . . . , An} of � and a finite set {ϕ1, . . . , ϕm} of
functions in X such that, for all f ∈ M, there is j ∈ {1, . . . ,m} with diam(( f −
ϕ j )(Ai )) ≤ ε for i = 1, . . . , n.

Next, for a set M ∈ MX we introduce the new quantitative characteristic ωX (M)

that will measure the degree of extended equicontinuity of M .

Definition 3.2 We define the set function ωX : MX → [0,+∞) by setting

ωX (M) = inf{ε > 0 : there are a finite partition {A1, . . . , An} of �

and a finite set {ϕ1, . . . , ϕm} in X such that, for all f ∈ M,

there is j ∈ {1, . . . ,m} with diam(( f − ϕ j )(Ai )) ≤ ε

for i = 1, . . . , n}.

Clearly a set M is extendedly equicontinuous if and only if ωX (M) = 0. Let us
notice that, for M ∈ MX ,we haveωB(M) ≤ ωX (M) ≤ 2ωB(M). The left inequality
is immediate. To show the right one, let a > ωB(M), {A1, . . . , An} a finite partition
of � and {ϕ1, . . . , ϕm} a finite set in B(�, Y ) such that, for all f ∈ M there is
j ∈ {1, . . . ,m} with diam(( f − ϕ j )(Ai )) ≤ a for i = 1, . . . , n. Next for each j, set
Mj = { f ∈ M : diam(( f − ϕ j )(Ai )) ≤ a} and choose ψ j arbitrarily in Mj . Then,
{ψ1, . . . , ψm} is a finite set in X such that, for all f ∈ M there is j ∈ {1, . . . ,m}
with diam(( f − ψ j )(Ai )) ≤ diam(( f − ϕ j )(Ai )) + diam((ψ j − ϕ j )(Ai )) ≤ 2a for
i = 1, . . . , n, as expected.

Proposition 3.3 If X ⊆ T B(�, Y ) and M ∈ MX , then

ω(M) = ωX (M).

Proof Take {ϕ0}, where ϕ0 denotes the null function in X , as a finite set of functions
in the definition of ωX , then ωX (M) ≤ ω(M). Now, we prove the reverse inequality.
Let a > ωX (M), let {A1, . . . , An} be a finite partition of � and {ϕ1, . . . , ϕm} a
finite set in B(�,Y ) such that, for all f ∈ M there is j ∈ {1, . . . ,m} such that
diam(( f − ϕ j )(Ai )) ≤ a, all for i = 1, . . . , n. Set T = ⋃m

j=1 ϕ j (�). Since ϕ j ∈
T B(�,Y ) for j = 1, . . . ,m we have γ (T ) = 0.Therefore, for δ > 0 arbitrarily fixed,
there are y1, . . . , yk ∈ Y such that T ⊆ ⋃k

l=1 B(yl , δ). Hence T = ⋃k
l=1 Kl , where

Kl = T ∩ B(yl , δ), for l = 1, . . . , k. Set Bl = Kl\(⋃�−1
s=0 Ks), for l = 1, . . . , k,

where K0 = ∅. Then {B1, . . . , Bk} is a finite partition of T , and for all j ∈ {1, . . . ,m}
the family {ϕ−1

j (B1), . . . , ϕ
−1
j (Bk)} is a finite partition of �. Let {S1, . . . , Sq} be the

partition of � generated by the partitions {ϕ−1
j (B1), . . . , ϕ

−1
j (Bk)} ( j = 1, . . . ,m)

and by the partition {A1, . . . , An}. Then, for all f ∈ M and for all r ∈ {1, . . . , q} we
can choose j ∈ {1, . . . ,m} such that

diam( f (Sr )) = sup
x,y∈Sr

‖ f (x) − f (y)‖
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≤ sup
x,y∈Sr

‖( f − ϕ j )(x) − ( f − ϕ j )(y)‖ + sup
x,y∈Sr

‖ϕ j (x) − ϕ j (y)‖

≤ a + 2δ,

so that ω(M) ≤ ωX (M). �
The set function ωX : MX → [0,+∞) satisfies axioms (ii)–(v) of Definition 2.1.

Clearly, it is not in general a measure of noncompactness in X .

Proposition 3.4 Let M, N ∈ MX and λ ∈ [0, 1]. Then
(ii) M ⊆ N implies ωX (M) ≤ ωX (N );
(iii) ωX (M) = ωX (M);
(iv) ωX (coM) = !X (M);
(v) ωX (λM + (1 − λ)N ) ≤ λωX (M) + (1 − λ)ωX (N ).

Proof Throughout this proof, given M ∈ MX , a > ωX (M) we denote by
{A1, . . . , An} a finite partition of � and by {ϕ1, . . . , ϕm} a finite set in X such that for
all f ∈ M there is j ∈ {1, . . . ,m} such that diam(( f −ϕ j )(Ai )) ≤ a for i = 1, . . . , n.

Property (ii) follows immediately from the definition of ωX .

Next, observe that the inequality ωX (M) ≤ ωX (M) follows from (ii). To prove the
converse inequality, let δ > 0 be arbitrarily fixed and let g ∈ M . Choose a function
f ∈ M and j ∈ {1, . . . ,m} such that ‖ f − g‖∞ ≤ δ and diam(( f − ϕ j )(Ai )) ≤ a
for i = 1, . . . , n. Thus, for all i, we have

diam((g − ϕ j )(Ai )) = sup
x,y∈Ai

‖(g − ϕ j )(x) − (g − ϕ j )(y)‖

≤ sup
x,y∈Ai

(‖( f − ϕ j )(x) − ( f − ϕ j )(y)‖ + ‖g(x) − f (x)‖

+ ‖g(y) − f (y)‖) ≤ a + 2δ.

Hence, by the arbitrariness of δ, it follows diam((g − ϕ j )(Ai )) ≤ a, and so, by the
arbitrariness of a, we obtain ωX (M) ≤ ωX (M). We have proved (iii).

To prove (iv) enough to show ωX (coM) ≤ !X (M). Let g ∈ coM be arbitrarily
fixed. Let f1, . . . , fk ∈ M and λ1, . . . , λk ∈ [0, 1] with

∑k
s=1 λs = 1 such that

g = ∑k
s=1 λs fs . Denote by H the set of all functions i → h(i) of {1, . . . k} into

{1, . . . ,m}. Fix h ∈ H such that, for all s ∈ {1, . . . , k}, we have

diam(( fs − ϕh(s))(Ai )) ≤ a for i = 1, . . . , n.

We observe that co{ϕ1, . . . , ϕm} is a compact subset ofX .Hence, given δ > 0,we can
choose a finite ‖ · ‖∞-δ-net {ψ1, . . . , ψl} for co{ϕ1, . . . , ϕm} in X . Then the function∑k

s=1 λsϕh(s) belongs to co{ϕ1, . . . , ϕm}, so that there is v ∈ {1, . . . , l} such that

∥
∥
∥
∥
∥

k∑

s=1

λsϕh(s) − ψv

∥
∥
∥
∥
∥

∞
≤ δ.
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Therefore, for all i ∈ {1, . . . , n}, we obtain

diam ((g − ψv)(Ai )) = sup
x,y∈Ai

∥
∥
∥
∥
∥

(
k∑

s=1

λs fs − ψv

)

(x) −
(

k∑

s=1

λs fs − ψv

)

(y)

∥
∥
∥
∥
∥

≤ sup
x,y∈Ai

( ∥
∥
∥
∥
∥

k∑

s=1

λs
(
fs − ϕh(s)

)
(x) −

k∑

s=1

λs
(
fs − ϕh(s)

)
(y)

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

k∑

s=1

λsϕh(s)(x) − ψv(x)

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

k∑

s=1

λsϕh(s)(y) − ψv(y)

∥
∥
∥
∥
∥

)

≤ a + 2δ.

By the arbitrariness of δ and a we have the desired result. So the proof of (iv) is
complete.

Finally, we prove (v). Given N ∈ MX , b > ωX (N ), without loss of generality we
may still assume that {A1, . . . , An} is a finite partition of� and {ϕ1, . . . , ϕm} is a finite
set inX such that for all g ∈ N there is k ∈ {1, . . . ,m} such that diam((g−ϕk)(Ai )) ≤
b, for i = 1, . . . , n.

Let λ ∈ [0, 1] and w ∈ λM + (1 − λ)N , then w = λ f + (1 − λ)g with f ∈ M
and g ∈ N . Choose j, k ∈ {1, . . . ,m} such that diam(( f − ϕ j )(Ai )) ≤ a and
diam((g − ϕk)(Ai )) ≤ b for all i ∈ {1, . . . , n}. Note that co{ϕ1, . . . , ϕm} is a
compact set inX . Thus, given δ > 0,we can choose a finite ‖ ·‖∞-δ-net {ψ1, . . . , ψl}
for co{ϕ1, . . . , ϕm} in X .

Next, let s ∈ {1, . . . , l} such that ‖ψs − (λϕ j + (1 − λ)ϕk)‖∞ ≤ δ. Then, for
i ∈ {1, . . . , n}, we have

diam((w − ψs)(Ai )) = sup
x,y∈Ai

‖(w − ψs)(x) − (w − ψs)(y)‖

= sup
x,y∈Ai

‖(λ f + (1 − λ)g − ψs)(x) − (λ f + (1 − λ)g − ψs)(y)‖

≤ sup
x,y∈Ai

(
‖ψs(x) − (λϕ j + (1 − λ)ϕk)(x)‖ + ‖ψs(y) − (λϕ j + (1 − λ)ϕk)(y)‖

+ ‖λ( f − ϕ j )(x) − λ( f − ϕ j )(y)‖
+ ‖(1 − λ)(g − ϕk)(x) − (1 − λ)(g − ϕk)(y)‖

)

≤ 2δ + λa + (1 − λ)b.

In virtue of the arbitrariness of δ, a and b we obtain (v). �

3.1 MNC equivalent to˛

In this subsection, we prove equivalent relations in Banach subspaces X of B(�,Y )

for the Kuratowski measure of noncompactness. We establish a criterion of com-
pactness and a precise formula for the Kuratowski measure of bounded extendedly



48 Page 12 of 31 D. Caponetti et al.

equicontinuous subsets of the space. The results are new when X properly contains
T B(�,Y ).

Theorem 3.5 Let X ⊆ B(�, Y ) and let M ∈ MX . Then

max{μα(M),
1

2
ωX (M)} ≤ α(M) ≤ μα(M) + 2ωX (M). (3.1)

Proof We prove the left inequality. Let a > α(M) and let {M1, . . . , Mn} be a finite
cover of M such that diam(Mi ) ≤ a for i = 1, . . . , n. For all x ∈ �, we have
M(x) ⊆ ⋃n

i=1 Mi (x). Moreover, for all i ∈ {1, . . . , n}, we have

diam(Mi (x)) = sup
f ,g∈Mi

‖ f (x) − g(x)‖ ≤ sup
f ,g∈Mi

‖ f − g‖∞ = diam(Mi ) ≤ a.

Hence α(M(x)) ≤ a for all x ∈ �, i.e. μα(M) ≤ a. By the arbitrariness of a, we
have

μα(M) ≤ α(M). (3.2)

Now, choose {�} as a partition of � and {ϕ1, . . . , ϕn} as a finite set in X , taking
ϕi ∈ Mi for i = 1, . . . , n. Let f ∈ M, fix i ∈ {1, . . . , n} such that ‖ f − ϕi‖∞ ≤ a,

then

diam(( f − ϕi )(�)) = sup
x,y∈�

‖( f − ϕi )(x) − ( f − ϕi )(y)‖ ≤ 2‖ f − ϕi‖∞ ≤ 2a.

Thus we derive that ωX (M) ≤ 2a, and, by the arbitrariness of a,

ωX (M) ≤ 2α(M). (3.3)

Then (3.2) and (3.3) give max{μα(M), 1
2ωX (M)} ≤ α(M).

Next, we prove the right inequality. First let a > ωX (M). Choose a finite partition
{A1, . . . , An} of � and a finite set {ϕ1, . . . , ϕm} in X such that, for all f ∈ M,

there is j ∈ {1, . . . ,m} such that diam(( f − ϕ j )(Ai )) ≤ a, for all i = 1, . . . , n. Set
Mj = { f ∈ M : diam(( f −ϕ j )(Ai )) ≤ a for i = 1, . . . , n}, for each j . Fix xi ∈ Ai ,

for each i, and observe that for each j we have

α

(
n⋃

i=1

Mj (xi )

)

= n
max
i=1

α(Mj (xi )) ≤ n
max
i=1

α(M(xi )) ≤ μα(M).

Then, let b > μα(M) and, for any fixed j, let {B j
1 , . . . , B j

l j
} be a finite cover of

⋃n
i=1 Mj (xi ) such that diam(B j

s ) ≤ b for s = 1, . . . , l j . Let j be fixed. Denote by
H j the set of all functions h j : {1, . . . n} → {1, . . . , l j }, and for h j ∈ H j consider
the set

Mj,h j = { f ∈ Mj : f (xi ) ∈ B j
h j (i)

, for i = 1, . . . , n}.
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Then, {Mj,h j : h j ∈ H j } is a finite cover of Mj , and diam(Mj,h j ) ≤ b + 2a for all
j . In fact, for f , g ∈ Mj,h j , we have

‖ f − g‖∞ = n
max
i=1

sup
x∈Ai

‖ f (x) − g(x)‖

≤ n
max
i=1

sup
x∈Ai

(‖ f (xi ) − g(xi )‖ + ‖( f − ϕ j )(x) − ( f − ϕ j )(xi )‖

+ ‖(g − ϕ j )(x) − (g − ϕ j )(xi )‖) ≤ b + 2a.

Since {Mj : j = 1, . . . ,m} is a finite cover of M, we infer α(M) ≤ b + 2a, and by
the arbitrariness of a and b we get α(M) ≤ μα(M) + 2ωX (M). �

Now, from the inequalities we have proved, we obtain the following compactness
criterion in X .

Corollary 3.6 Let X ⊆ B(�, Y ). A subset M of X is relatively compact if and only if
it is bounded, extendedly equicontinuous and pointwise relatively compact.

The inequalities (3.1) reduce, for a class of subsets, to a precise formula of
Ambrosetti-type.

Corollary 3.7 Let X ⊆ B(�, Y ) and assume that M ∈ MX is extendedly
equicontinuous. Then

α(M) = μα(M).

In the general case, we get a regular measure of noncompactness equivalent to that
of Kuratowski.

Corollary 3.8 Given X ⊆ B(�, Y ), the set function μα + 2ωX : MX → [0,+∞) is
a regular measure of noncompactness in X equivalent to the Kuratowski measure α.

Proof From Propositions 2.3 and 3.4 it follows thatμα +2ωX satisfies conditions (ii)–
(v) of Definition 2.1. Further conditions (i) and (vi) are consequences of Corollary 3.6.
Finally, it can be easily verified that both μα and ωX are sublinear and enjoy the
maximum property, so the same is true for μα + 2ωX . The equivalence follows from
Theorem 3.5. �

We end this subsection looking at Banach subspaces of T B(�,Y ). In such a case,
the quantitative characteristic σα can be used to improve the left-hand side of (3.1).
We need the following lemma.

Lemma 3.9 Let X ⊆ T B(�, Y ) and let M ∈ MX . Then

σα(M) ≤ α(M).
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Proof Let M ∈ MX , a > α(M) and let {M1, . . . , Mn} be a finite cover of M with
diam (Mi ) ≤ a. Take fi ∈ Mi , for i = 1, . . . n. Since each fi is totally bounded
we have that α(

⋃n
i=1 fi (�)) = 0. Thus, given ε > 0 arbitrarily fixed, we choose a

finite cover {B1, . . . , Bm} of ⋃n
i=1 fi (�) such that diam(Bj ) ≤ ε, for j = 1, . . . ,m.

Next, for each j, fix y j ∈ Bj . Now let f ∈ M and x ∈ � be arbitrarily fixed. First
choose i ∈ {1, . . . , n} such that ‖ f − fi‖∞ ≤ a, then j ∈ {1, . . . ,m} such that
fi (x) ∈ Bj , that is ‖ fi (x) − y j‖∞ ≤ ε. Then ‖ f (x) − y j‖∞ ≤ a + ε, and by the
arbitrariness of ε we have ‖ f (x) − y j‖∞ ≤ a, so that {B(y1, a), . . . B(ym, a)} is a
finite cover of M(�). As σα(M) = α(M(�)), the proof is complete. �
Theorem 3.10 If X ⊆ T B(�, Y ) and M ∈ MX , then

max{σα(M),
1

2
ω(M)} ≤ α(M) ≤ μα(M) + 2ω(M).

Proof From Lemma 3.9 and Proposition 3.3 we have σα(M) ≤ α(M) and ωX (M) =
ω(M). Hence, Theorem 3.5 gives the thesis. �

From the above result we get that ω(M) = 0 implies α(M) = μα(M) = σα(M).

This extends [1, Lemma 2.2] from the case of sets of Y -valued functions defined and
continuous on a compact metric space to the case of sets of Y -valued functions defined
and totally bounded on a general set �.

3.2 MNC equivalent to �

We now provide estimates for the Hausdorff measure of noncompactness, more accu-
rate than those one can derive from the previous results using the known equivalence
between measures of noncompactness and the involved quantitative characteristics.
At first, the following lemma gives the upper estimate of the Hausdorff measure
in B(�,Y ).

Lemma 3.11 Let M ∈ MB, then

γB(M) ≤ μγ (M) + ωB(M).

Proof Let a > ωB(M). Let {A1, . . . , An} be a finite partition of � and {ϕ1, . . . , ϕm}
a finite set in B such that, for all f ∈ M, there is j ∈ {1, . . . ,m} such that diam(( f −
ϕ j )(Ai )) ≤ a, for all i = 1, . . . , n. Set

Mj = { f ∈ M : diam(( f − ϕ j )(Ai )) ≤ a for i = 1, . . . , n}, for j = 1, . . . ,m.

Now, for each i = 1, . . . , n, let xi ∈ Ai be fixed. Then

γ

(
n⋃

i=1

Mj (xi )

)

= n
max
i=1

γ (Mj (xi )) ≤ n
max
i=1

γ (M(xi )) ≤ μγ (M).
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Next, let b > μγ (M) and let {y j
1 , . . . , y j

k j
} be a ‖ · ‖-b-net for ⋃n

i=1 Mj (xi ) in Y .

Finally, let H j be the set of all functions h j : {1, . . . n} → {1, . . . , k j }, and for
h j ∈ H j , define ψ j,h j : � → Y by setting, for x ∈ �,

ψ j,h j (x) =
n∑

i=1

χAi (x)
(
ϕ j (x) − ϕ j (xi ) + y j

h j (i)

)
.

For each fixed j, we show that {ψ j,h j : h j ∈ H j } is a ‖ · ‖∞-(a + b)-net for Mj in
B(�,Y ). To this end, given f ∈ Mj choose h j ∈ H j such that

‖ f (xi ) − y j
h j (i)

‖ ≤ b, for each i ∈ {1, . . . , n}. Then for x ∈ �, by letting i ∈
{1, . . . , n} such that x ∈ Ai , we have

‖ f (x) − ψ j,h j (x)‖ = ‖ f (x) − ϕ j (x) + ϕ j (xi ) − y j
h j (i)

‖
≤ ‖( f − ϕ j )(x) − ( f − ϕ j )(xi )‖ + ‖ f (xi ) − y j

h j (i)
‖

≤ a + b,

which implies

‖ f − ψ j,h j ‖∞ = n
max
i=1

sup
x∈Ai

‖ f (x) − ψ j,h j (x)‖ ≤ a + b.

Consequently the set
⋃m

j=1{ψ j,h j : h j ∈ H j } is a finite ‖ · ‖∞-(a + b)-net for M in
B(�,Y ). The arbitrariness of a and b implies γB(M) ≤ μγ (M) + ωB(M), and the
proof is complete. �
Theorem 3.12 Let X ⊆ B(�, Y ) and let M ∈ MX . Then

max{μγ (M),
1

2
ωX (M)} ≤ γX (M) ≤ 2(μγ (M) + ωX (M)). (3.4)

Proof We prove the left inequality. Let a > γX (M) and let {ϕ1, . . . , ϕn} be a ‖ · ‖∞-
a-net for M in X . Then it is easy to check that {ϕ1(x), . . . , ϕn(x)} is a ‖ · ‖-a-net for
M(x) in Y . Hence supx∈� γ (M(x)) ≤ a, and, by the arbitrariness of a, we have

μγ (M) ≤ γX (M). (3.5)

Next let f ∈ M be arbitrarily fixed and choose j ∈ {1, . . . , n} such that ‖ f −ϕ j‖∞≤a,

then

diam(( f − ϕ j )(�)) = sup
x,y∈�

‖( f − ϕ j )(x) − ( f − ϕ j )(y)‖

≤ 2‖ f − ϕ j‖∞ ≤ 2a.
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By the arbitrariness of a, in view of the definition of ωX (M), choosing {�} as a
partition of � and {ϕ1, . . . , ϕn} as a finite set in X we have

ωX (M) ≤ 2γX (M). (3.6)

Hence by (3.5) and (3.6), the desired result follows. The right inequality follows from
Lemma 3.11, taking into account that γX (M) ≤ 2γB(M) and ωB(M) ≤ ωX (M). �

The compactness criterion given in Corollary 3.6 can be deduced as well from
Theorem 3.12. Moreover, we notice that the set functionμγ +ωX is a regular measure
of noncompactness in X equivalent to γX . From Lemma 3.11 and the left hand side
of (3.4) we obtain the following theorem.

Theorem 3.13 Let M ∈ MB. Then

max{μγ (M),
1

2
ωB(M)} ≤ γB(M) ≤ μγ (M) + ωB(M).

Corollary 3.14 Let M ∈ MB and assume ωB(M) = 0. Then

γB(M) = μγ (M).

Next, we look at the inequalities in T B(�, Y ). The following lemmawill be useful.

Lemma 3.15 If X ⊆ T B(�, Y ) and M ∈ MX , then

σγ (M) ≤ γX (M).

Proof Let M ∈ MX , a > γX (M) and let {ϕ1, . . . , ϕn} be a ‖ · ‖∞-a-net for M in X .

By hypothesis we have γ (
⋃n

i=1 ϕi (�)) = 0, thus given ε > 0 we find a ‖ · ‖-b-net
{ξ1, . . . , ξm} for ⋃n

i=1 ϕi (�) in Y . Then {ξ1, . . . , ξm} is a ‖ · ‖-(a + ε)-net for f (�)

in Y . Indeed, given f ∈ M and x ∈ � arbitrarily fixed, choosing i ∈ {1, . . . , n} such
that ‖ f (x) − ϕi (x)‖ ≤ a and then j ∈ {1, . . . ,m} such that ‖ϕi (x) − ξ j‖ ≤ ε, we
have ‖ f (x)−ξ j‖ ≤ a+ε. Then σγ (M) = γ (M(�)) ≤ a+ε and, by the arbitrariness
of ε, the result follows. �
Theorem 3.16 If M ∈ MT B, then

max

{

σγ (M),
1

2
ω(M)

}

≤ γT B(M) ≤ μγ (M) + ω(M).

Proof By Lemma 3.15 we have σγ (M) ≤ γT B(M). Proposition 3.3 givesωT B(M) =
ω(M), hence the left inequality follows from Theorem 3.12. The right inequality can
be proved in the same way as in Lemma 3.11, with the simplifications due to the use
of the quantitative characteristic ω instead of that of extended equicontinuity. �
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We point out that Theorem 3.16 recovers the result proved in [5, Theorem 2.1
and Proposition 3.1]. Moreover, if M ∈ MT B and ω(M) = 0 we have γT B(M) =
μγ (M) = σγ (M).

Finally, the following example shows that given a set M in MT B, in general
γT B(M) 
= γB(M).

Example 3 Let � = N, Y = �1 (so ‖ · ‖ and γ denote the norm and the Hausdorff
measure of noncompactness in �1, respectively), and let {en}∞n=1 be the standard basis
in �1. We consider the bounded set M = { fk : k = 1, 2, . . .} in T B(N, �1), where

fk(n) =
{
ek for n = k
0 for n 
= k.

Thenwe define g : N → �1 by setting g(n) = 1
2en for n ∈ N; so to have g ∈ B(N, �1),

but g /∈ T B(N, �1). Given k ∈ N, we have

‖ fk − g‖∞ = sup
n∈N

‖ fk(n) − g(n)‖

= max

⎧
⎨

⎩
‖ fk(k) − g(k)‖, sup

n∈N
n 
=k

‖ fk(n) − g(n)‖
⎫
⎬

⎭

= max

⎧
⎨

⎩

∥
∥
∥
∥ek − 1

2
ek

∥
∥
∥
∥ , sup

n∈N
n 
=k

∥
∥
∥
∥
1

2
en

∥
∥
∥
∥

⎫
⎬

⎭
= 1

2
.

This shows that {g} is a ‖ · ‖∞- 12 -net for M in B(N, �1), thus γB(N,�1)(M) ≤ 1
2 . Next,

on the one hand

σγ (M) = γ (M(N)) = γ (∪n∈NM(n)) = γ (∪n∈N{en, 0}) = 1,

hence from Corollary 3.16 it follows γT B(N,�1)(M) ≥ 1. On the other hand, tak-
ing into account that γB(N,�1)(M) ≤ γT B(N,�1)(M) ≤ 2γB(N,�1)(M) we infer
γT B(N,�1)(M) = 1 and γB(N,�1)(M) = 1

2 .

4 Compactness in the spacesBCk(Ä,Y) andDk(Ä,Y)

Throughout this section, the differentiability of functions is considered in the Fréchet
sense. Let us start by introducing the spaces of interest. As before, Y denotes a Banach
space with norm ‖ · ‖. Moreover, we assume that � is an open set in a Banach space Z
and that k ∈ N is fixed. The symbol Ck(�, Y ) will stand for the space of all Y -valued
functions defined and k-times continuously differentiable on �. For f ∈ Ck(�,Y )

we denote by dp f : � → L(Z p,Y ), for p = 0, . . . k, the differential of f of order p,
whereL(Z p,Y ) denotes the Banach space of all bounded p-linear operators endowed
with the standard operator norm ‖ · ‖on. We have L(Z0,Y ) = Y , d0 f = f and
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C0(�,Y ) = C(�,Y ), the space of Y -valued functions defined and continuous on �.

We denote, for each p ∈ {0, . . . , k}, by Wp the space L(Z p,Y ), where W0 = Y ,

thus each dp f is an element of the space C(�,Wp). Moreover, we will denote by αp

and γp (p = 0, . . . , k), respectively, the Kuratowski and the Hausdorff measure of
noncompactness in Wp, where α0 = α and γ0 = γ in Y . Finally, given a set M in
Ck(�,Y ) and p ∈ {0, . . . , k}, we define

Mp = {dp f : f ∈ M} ⊆ C(�,Wp), (4.1)

where M0 = M . Then, for x ∈ � and A ⊆ �, the sets Mp(x) and Mp(A) will be
the subsets of Wp described according to (2.1) by

Mp(x) = {dp f (x) : f ∈ M}, Mp(A) = {dp f (A) : x ∈ A, f ∈ M}.

Now we denote by BCk(�, Y ) the space consisting of all functions f ∈ Ck(�,Y )

which are bounded with all differentials up to the order k, made into a Banach space
by the norm

‖ f ‖BCk = max{‖ f ‖∞, ‖d f ‖∞, . . . , ‖dk f ‖∞},

where ‖dp f ‖∞ = supx∈� ‖dp f (x)‖on.

4.1 Results inBCk(Ä, Y)

For M ∈ MBCk we define the following quantitative characteristics based on those
considered in B(�,Y ), precisely

μα(M) = k
max
p=0

μαp (M
p), μγ (M) = k

max
p=0

μγp (M
p)

and also

σα(M) = k
max
p=0

σαp (M
p), σγ (M) = k

max
p=0

σγp (M
p).

AsubsetM is said to bepointwise k-relatively compact ifμα(M) = 0 (orμγ (M) = 0).
Further, we introduce

ωBCk (M) = inf

{

ε > 0 : there are a finite partition {A1, . . . , An} of � and

a finite set {ϕ1, . . . , ϕm} in BCk(�, Y ) such that, for all f ∈ M,

there is j ∈ {1, . . . ,m} with k
max
p=0

diamWp (d
p( f − ϕ j ))(Ai )) ≤ ε

for i = 1, . . . , n

}

.



Regular measures of noncompactness and Ascoli–Arzelà… Page 19 of 31 48

We call M extendedly k-equicontinuous if ωBCk (M) = 0. If V denotes a Banach
subspace of BCk(�,Y ) equipped with the same norm, then ωV is defined as above by
taking {ϕ1, . . . , ϕm} inV.Note that for k = 0 all these quantities evidently reduce to the
corresponding quantities introduced in Sect. 2 and considered in the space BC(�,Y ).

We are ready to prove the following equivalent relations in the space BCk(�,Y ). The
proof is substantially different from that of Theorem 3.5, although it follows the same
steps of it.

Theorem 4.1 Let M ∈ MBCk , then

max{μα(M),
1

2
ωBCk (M)} ≤ α(M) ≤ μα(M) + 2ωBCk (M). (4.2)

Proof We prove the left inequality. Let a > α(M) and let {M1, . . . , Mn} be a finite
cover of M such that diam(Mi ) ≤ a for i = 1, . . . , n. For all x ∈ �, we have
Mp(x) ⊆ ⋃n

i=1 M
p
i (x), for p = 0, . . . , k. Then,

diamWp (M
p
i (x)) = sup

f ,g∈Mi

‖dp f (x) − dpg(x)‖on ≤ sup
f ,g∈Mi

‖dp f − dpg‖∞

≤ sup
f ,g∈Mi

‖ f − g‖BCk = diamBCk (Mi ) ≤ a.

Hence αp(Mp(x)) ≤ a for all x ∈ �,which impliesμα(M) ≤ a.By the arbitrariness
of a, we have

μα(M) ≤ α(M). (4.3)

Next, choose {�} as a finite partition of� and {ϕ1, . . . , ϕn} as a finite set inBCk(�,Y ),

where ϕi ∈ Mi for i = 1, . . . , n. Let f ∈ M, fix i ∈ {1, . . . , n} such that ‖ f −
ϕi‖BCk ≤ a. Then

k
max
p=0

diamWp ((d
p f − dpϕi )(�)) = k

max
p=0

sup
x,y∈�

‖dp( f − ϕi )(x) − dp( f − ϕi )(y)‖on

≤ 2
k

max
p=0

‖ f − ϕi‖BCk ≤ 2a.

Hence ωBCk (M) ≤ 2a, and, by the arbitrariness of a,

ωBCk (M) ≤ 2α(M). (4.4)

Combining (4.3) and (4.4), we obtain the left inequality of (4.2).
Now, let us prove the right inequality. Let a > ωBCk (M), {A1, . . . , An} a finite

partition of � and {ϕ1, . . . , ϕm} a finite set in BCk(�,Y ) such that, for all f ∈ M,

there is j ∈ {1, . . . ,m} such that

k
max
p=0

diamWp (d
p( f − ϕ j )(Ai )) ≤ a, for i = 1, . . . , n.



48 Page 20 of 31 D. Caponetti et al.

For each j = 1, . . . ,m set

Mj = { f ∈ M : k
max
p=0

diamWp (d
p( f − ϕ j )(Ai )) ≤ a, for i = 1, . . . , n}.

Fix xi ∈ Ai for i = 1, . . . , n. Then for p = 0, . . . , k

α

(
n⋃

i=1

Mp
j (xi )

)

≤ α

(
n⋃

i=1

Mp(xi )

)

= n
max
i=1

αp(M
p(xi )) ≤ μαp (M

p) ≤ μα(M).

Moreover, let b > μα(M) and, for each p = 0, . . . , k, let {B j
1 , . . . , B j

lp( j)
} be a finite

cover of
⋃n

i=1 M
p
j (xi ) such that diam (B j

s ) ≤ b.

Let j ∈ {1, . . . ,m} be arbitrarily fixed, and let H j be the set of all functions h j =
(h j

0, . . . , h
j
k ) where, for each p ∈ {0, . . . k}, h j

p maps {1, . . . n} into {1, . . . , l p( j)}.
Set

Mj,h j = { f ∈ Mj : for p = 0, . . . , k, dp f (xi ) ∈ B j

h j
p(i)

, for i = 1, . . . , n}.

Then {Mj,h j : h j ∈ H j } is a finite cover of Mj in BCk(�,Y ). Moreover, for all
h j ∈ H j , we have

diamBCk (Mj,h j ) = sup
f ,g∈Mj,h j

‖ f − g‖BCk = sup
f ,g∈Mj,h j

k
max
p=0

‖dp( f − g)‖∞

= k
max
p=0

sup
f ,g∈Mj,h j

‖dp( f − g)‖∞.

Now, for all p ∈ {0, . . . k} and for all f , g ∈ Mj,h j , we have

‖dp f − dpg‖∞ = n
max
i=1

sup
x∈Ai

‖dp f (x) − dpg(x)‖on

≤ n
max
i=1

sup
x∈Ai

(‖dp( f − ϕ j )(x) − dp( f − ϕ j )(xi )‖

+ ‖dp(g − ϕ j )(x) − dp(g − ϕ j )(xi )‖ + ‖dp f (xi ) − dpg(xi )‖)
≤ 2

k
max
p=0

diamWpd
p( f − ϕ j )(Ai ))

+ n
max
i=1

sup
x∈Ai

‖dp f (xi ) − dpg(xi )‖ ≤ b + 2a.

Therefore, diamBCk (Mj,h j ) ≤ b + 2a so that α(Mj ) ≤ b + 2a. Since {Mj : j =
1, . . . ,m} is a finite cover of M, we get α(M) ≤ b + 2a and by the arbitrariness of a
and b we find α(M) ≤ μα(M) + 2ωBCk (M). �

We obtain the following new criterion of compactness in BCk(�,Y ).
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Corollary 4.2 A subset M of BCk(�, Y ) is relatively compact if and only if it is
bounded, extendedly k-equicontinuous and pointwise k-relatively compact.

In the literature (see, for example, [3, 7, 8, 15]) there are results that characterize
compactness in BCk(�, Y ), or in proper subspaces of it, for particular � or Y . Let
us now consider, for example, the case Z = R. Then each space Wp = L(Z p,Y ),

for p = 0, . . . , k, can be identified with Y itself. Therefore, whenever � is an open
subset of R and M a bounded subset of BCk(�,Y ), the estimates (4.2) hold with
μα(M) = maxkp=0 μα(Mp).We also notice that in the definition ofωBCk (M), in such
a case, all diameters will actually be calculated in Y . Hence we obtain the following
new criterion of compactness in BCk(�,Y ), which in particular recovers the case
BCk([0,+∞),Y ) (cf. [15]).

Corollary 4.3 Let � be an open subset ofR and let M be a subset of BCk(�,Y ). Then
M is relatively compact if and only if each M p for p ∈ {0, . . . , k} is bounded and
pointwise relatively compact and M is extendedly k-equicontinuous.

Going back to the general case, from (4.2) we obtain an Ambrosetti-type formula
also in the space BCk(�, Y ), and a regular measure of noncompactness equivalent to
that of Kuratowski.

Corollary 4.4 Let M ∈ MBCk be extendedly k-equicontinuous. Then

α(M) = μα(M).

Corollary 4.5 The set function μα + 2ωBCk : MBCk → [0,+∞) is a regular measure
of noncompactness in BCk(�, Y ) equivalent to the Kuratowski measure α.

Remark 4.6 If V is a Banach subspace ofBCk(�, Y ), Theorem 4.1 and the subsequent
corollaries hold true in V.

Now we focus our attention on the Banach space T BCk(�,Y ) consisting of all
functions f ∈ BCk(�, Y ) which are compact with all differentials up to the order
k. The following remark shows that the hypothesis that each dp f (p = 1, . . . , k) is
compact is not redundant.

Remark 4.7 It is well known (see, for instance, [16]) that if f ∈ BCk(�,Y ) is a
compact function, then for each x ∈ � the differentials dp f (x) of f at x, for p ∈
{1, . . . k}, are compact linear operators. On the other hand, there are compact functions
f ∈ BCk(�,Y ) such that the functions dp f : � → L(Z p,Y ) are not compact. For
example, let us consider Z = R, � = ⋃∞

n=1 In with In = (
n − 1

2n , n + 1
2n

)
, Y = �1

and {en}∞n=1 the standard basis in �1. Then we define f ∈ BC1(�, �1) by setting

f (x) = (x − n)en for x ∈ In (n = 1, 2 . . . ).

Clearly f is a compact function. On the other hand, since d f (x) = en if x ∈ In, we
deduce d f (�) = {e1, . . . , en, . . .} and this shows that d f is not compact.
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Now given M ∈ MT BCk , we define ω(M) extending the definition of ω given in
(2.2). We set

ω(M) = inf

{

ε > 0 : there are a finite partition {A1, . . . , An} of �

such that, for all f ∈ M,
k

max
p=0

diamWp (d
p( f (Ai )) ≤ ε

for i = 1, . . . , n

}

,

By the definition, it is immediate to see that

ω(M) = k
max
p=0

ω(Mp). (4.5)

Next, repeating the arguments of Proposition 3.3, given M ∈ MT BCk we find
ωT BCk (M) = ω(M). Arguing similarly as in Lemma 3.9, given M ∈ MT BCk we can
prove σα(Mp) ≤ α(M). Therefore, we obtain the following result as consequence of
Theorem 4.1.

Theorem 4.8 Let M ∈ MT BCk . Then

max{σα(M),
1

2
ω(M)} ≤ αT BCk (M) ≤ μα(M) + 2ω(M).

Now observe that, if � is an open bounded subset of R
n, T BCk(�,Y ) =

BCk(�,Y ) = Ck(�,Y ). Therefore, we can state the following result.

Corollary 4.9 If � be an open bounded subset of Rn and let M ∈ MCk (�,Y ). Then

max{σα(M),
1

2
ω(M)} ≤ αCk (�,Y )(M) ≤ μα(M) + 2ω(M).

If � is an open subset of Rn and, in addition, Y = R, among others, some results
of [3] are recovered. To this end, let us mention that if f ∈ BCk(�,R) then

‖ f ‖BCk = max
0≤|α|≤k

‖Dα f ‖∞,

where ‖Dα f ‖∞ = sup{|Dα(x)| : x ∈ �}, |α| = α1 + · · · + αn and Dα f =
δα1

δx
α1
1

. . . δαn

δxαn
n

f . Keeping in mind this and taking into account (4.5) we deduce the

following compactness criteria.

Corollary 4.10 Let � be an open bounded subset of Rn and let M be a subset of
Ck(�,R). Then the following are equivalent:
(i) M is ‖ · ‖Ck (�,R)-relatively compact,
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(ii) M is ‖ · ‖Ck (�,R)-bounded and ω(M) = 0,
(iii) Mp is ‖ · ‖∞-bounded and equicontinuous for all p = 0, . . . , k,
(iv) Mα = {Dα f : f ∈ M} are ‖ · ‖∞-bounded and equicontinuous for all 0 ≤

|α| ≤ k.

In particular, the above condition (iv) recovers Theorem 2.1 of [3]. Moreover,
denoting by | · |n the Euclidean norm in R

n we define the subspace Ck0(Rn,R) of
BCk(Rn,R) as follows:

Ck0(Rn,R) = { f ∈ Ck(Rn,R) : Dα f ∈ C0 for 0 ≤ |α| ≤ k},

where C0 = { f ∈ BCk(Rn,R) : lim|x |n→∞ f (x) = 0}, endowed with the norm
‖ f ‖Ck

0 (Rn ,R) = max0≤|α|≤k ‖Dα f ‖∞. Then, from Corollary 4.2 and in view of

Remark 4.6, we recover the compactness criterion in the space Ck0(Rn,R) given in
[3, Theorem 3.1].

We complete this section by stating, without proofs, estimates and precise for-
mulas for the Hausdorff measure of noncompactness, involving the quantitative
characteristics μγ and σγ , in the general case of the spaces BCk(�,Y ) and
T BCk(�,Y ).

Theorem 4.11 Let M ∈ MBCk , then

max

{

μγ (M),
1

2
ωBCk (M)

}

≤ γBCk (M) ≤ 2(μγ (M) + ωBCk (M)).

Theorem 4.12 Let M ∈ MT BCk , then

max

{

σγ (M),
1

2
ω(M)

}

≤ γT BCk (M) ≤ μγ (M) + ω(M).

Hence given a subset M of MT BCk which satisfies ω(M) = 0, the formula
γT BCk (M) = σγ (M) (or γT BCk (M) = μγ (M)) holds.

4.2 Results inDk(Ä, Y)

Finally, we apply results of Sect. 3 to derive compactness results in Ck(�,Y ) made
into a complete locally convex space by the topology τ of compact convergence for
all differentials, i.e. the topology generated by the family of seminorms

‖ f ‖Ck ,K = max

{

sup
x∈K

‖ f (x)‖, sup
x∈K

‖d f (x)‖, . . . , sup
x∈K

‖dk f (x)‖
}

K ∈ K,

where the symbol K denotes the family of all compact subsets of �. We set
Dk(�,Y ) = (Ck(�,Y ), τ ). In particular, D0(�, Y ) reduces to the space, simply
denoted byD(�,Y ), of all continuous functions from � to Y endowed with the usual
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topology of uniform convergence on compacta. Further, for a fixed K inK,we denote
by Dk

K (�,Y ) the complete seminormed space of all k-times continuously differen-
tiable functions endowedwith the seminorm ‖·‖Ck ,K .Weuse the notationMDk for the
family of all τ -bounded subsets ofDk(�, Y ). Let us now equip the linear space of all
functions fromK to [0,+∞) with the usual order and with the topology of pointwise
convergence. Then, according to [26, Definition 1.2.1], for a subset M of MDk , the
Kuratowski and the Hausdorff measures of noncompactness generated by the family
of seminorms {‖ · ‖Ck ,K }K∈K are functions αDk (M), γDk (M) : K → [0,+∞)

where αDk (M)(K ) = αDk
K
(M), that is, αDk (M)(K ) is the Kuratowski measure

of noncompactness of M with respect to the seminorm ‖ · ‖Ck ,K , and analogously
γDk (M)(K ) = γDk

K
(M). We refer to [26, Theorem 1.2.3] for the properties of these

generalizedmeasures of noncompactness. In a similarway,wewill introduce the quan-
titative characteristics useful to prove our estimates as functions from K to [0,+∞).

To this end, for M ∈ MDk , and p = 0, . . . , k, we define Mp as in (4.1), and, given
x ∈ � and K ∈ K, we define consequently also Mp(x) and Mp(K ). Moreover, for
M ∈ MDk and K ∈ K we use the following notations

μα,K (M) = k
max
p=0

μαp,K (Mp) with μαp,K (Mp) = sup
x∈K

αp(M
p(x)),

μγ ,K (M) = k
max
p=0

μγp,K (Mp) with μγp,K (Mp) = sup
x∈K

γp(M
p(x)),

σα,K (M) = k
max
p=0

σαp,K (Mp) with σαp,K (Mp) = sup
x∈K

αp(M
p(x)),

σγ ,K (M) = k
max
p=0

σγp,K (Mp) with σγp,K (Mp) = sup
x∈K

γp(M
p(x)),

and

ωK (M) = k
max
p=0

{
inf{ε > 0 : there is a finite partition {A1, . . . , An} of K

such that, for all f ∈ M, diamWpd
p f (Ai ) ≤ ε, i = 1, . . . , n}

}
.

Now, for a given M ∈ MDk we define the set functions

ματ (M), μγτ (M), σατ (M), σγτ (M), ωDk (M) : K → [0,+∞)

by setting for K ∈ K

ματ (M)(K ) = μα,K (M)

μγτ (M)(K ) = μγ ,K (M)

σατ (M)(K ) = σα,K (M)

σγτ (M)(K ) = σγ ,K (M)
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and

ωDk (M)(K ) = ωK (M).

A set M in MDk will be called pointwise τ -relatively compact if ματ (M) = 0 or
μγτ (M) = 0, and τ -equicontinuous if ωDk (M) = 0.

Theorem 4.13 Let M ∈ MDk , then

max{ματ (M),
1

2
ωDk (M)} ≤ αDk (M) ≤ ματ (M) + 2ωDk (M).

Proof Let M ∈ MDk . We have to prove, for each K ∈ K

max{μα,K (M),
1

2
ωK (M)} ≤ αDk

K
(M) ≤ μα,K (M) + 2ωK (M). (4.6)

Let us make an intermediate step. Let (W , ‖·‖W ) be a given Banach space. Coherently
with our previous notations, we denote byDK (�,W ) the complete seminormed space
(C(�,W ), ‖ · ‖C,K ), where

‖ f ‖C,K = sup
x∈K

‖ f (x)‖W ,

and we focus our attention on this space. Set N = { f ∈ DK (�,W ) : ‖ f ‖C,K = 0}
and let us still denote by DK (�,W ) the Banach quotient space DK (�,W )/N of
equivalence classes, by f the class f +N ofDK (�,W )/N and the same for the norm
‖ · ‖C,K . Then, let us observe that the Banach space DK (�,W ) is isometric to the
Banach space (C(K ,W ), ‖ · ‖∞). Therefore, for p = 0, . . . , k, the quotient Banach
spaces DK (�,Wp), endowed with the norm ‖ · ‖C,K , are isometric to the Banach
spaces (C(K ,Wp), ‖·‖∞), so that αC(K ,Wp)(M

p) = αDK (�,Wp)(M
p).Hence in view

of Corollary 3.10, for each p, we have

max

{

σαp,K (Mp),
1

2
ωK (Mp)

}

≤ αDK (�,Wp)(M
p) ≤ μαp,K (Mp) + 2ωK (Mp).

Taking the maximum for p = 0, . . . , k we obtain (4.6) as desired. �
Corollary 4.14 A subset M of Dk(�, Y ) is relatively compact if and only if it is
bounded, τ -equicontinuous and pointwise τ -relatively compact.

Let us observe that in each space Dk(�, Y ) the function ματ + 2ωDk is a regular
generalized measure of noncompactness equivalent to the Kuratowski measure αDk .

We also underline that, for τ -equicontinuous sets M of Dk(�,Y ), we obtain the for-
mula αDk (M) = ματ (M). Moreover, as a particular case of Theorem 4.13, we obtain
estimates for the Kuratowski measure in the spaceDk(Rn,R) (defined for instance in
[20]) and the consequent compactness criterion. For k = 0, Corollary 4.14 is a special
case of the well known general Ascoli–Arzelà theorem [19, Theorem 18]. Finally,
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the same reasoning of Theorem 4.13, using Theorem 3.16, leads to the following
inequalities, which estimate the Hausdorff measure of noncompactness γDk (M) of
sets M ∈ MDk ,

max

{

σγτ (M),
1

2
ωDk (M)

}

≤ γDk (M) ≤ μγτ (M) + ωDk (M).

When ωDk (M) = 0, we obtain the formula γDk (M) = σγτ (M) or γDk (M) =
μγτ (M).

5 A remark inB(Ä,Y)when Y is a Lindenstrauss space

A real Banach space Y is said to be an L1-predual provided its dual Y ∗ is isometric
to L1(μ) for some measure μ. Such spaces are often referred to as Lindenstrauss
spaces and play a central role in the Banach space theory. The Banach space C(K ,R)

of real-valued functions defined and continuous on the compact Hausdorff space K ,

under the supremum norm, is the most natural example of a Lindenstrauss space. We
mainly refer to [12, 14, 22, 25], and to [21] for a survey of results on such spaces.
Let us recall that given a bounded subset H of Y , the Chebyshev radius rC (H) is
defined as the infimum of all numbers c > 0 such that H can be covered with a ball
of a radius c. Thus we have rC (H) = inf{c > 0 : y ∈ Y , H ⊆ B(y, c)} with
1
2diam(H) ≤ r(H) ≤ diam(H). A point z̄ ∈ Y is said to be a Chebyshev centre of H
if H ⊆ B(z̄, rC (H)). The set H is said to be centrable if rC (H) = 1

2diam(H). In [25,
Theorem 1] Lindenstrauss spaces are characterized as those Banach spaces in which
every finite set is centrable. Moreover, if Y is a Lindenstrauss space then every finite
set has a Chebyshev centre and every compact set is centrable (cf. [25, Corollary 1
and Remark 1]). Whenever Y is a Lindenstrauss space we find a better lower estimate
for the Kuratowski measure of noncompactness of bounded and pointwise relatively
compact subsets of the space B(�, Y ).

Proposition 5.1 Assume that Y is a Lindenstrauss space and that M ∈ MB is
pointwise relatively compact. Then ωB(M) ≤ α(M).

Proof Let a > α(M) and choose M1, . . . , Mn such that M = ∪n
i=1Mi and diamMi ≤

a for i = 1, . . . n. Let δ > 0 be arbitrarily fixed. Let i ∈ {1, . . . , n}. Fix x ∈ � and
let Fi,x ⊆ Y be a finite inner ‖ · ‖-δ-net for Mi (x). Let zi,x be a Chebyshev center
of Fi,x in Y , so that Fi,x ⊆ B(zi,x , rC (Fi,x )), where, rC (Fi,x ) = 1

2diam(Fi,x ). By
the hypothesis Mi (x) is a compact set, so that it is centrable, that is, rC (Mi (x)) =
1
2diam(Mi (x)). Now, we define the mapping ϕi : � → Y by setting ϕi (x) = zi,x , for
x ∈ �. Then, for f ∈ Mi arbitrarily fixed, we have

‖ f − ϕi‖∞ ≤ 1

2
diam(Mi ) + δ. (5.1)
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Indeed, for each x ∈ � choosing yi,x ∈ Fi,x with ‖ f (x) − yi,x‖ ≤ δ we have

‖ f − ϕi‖∞ = sup
x∈�

‖ f (x) − ϕi (x)‖ = sup
x∈�

‖ f (x) − zi,x‖
≤ sup

x∈�

(‖ f (x) − yi,x‖ + ‖zi,x − yi,x‖
) ≤ sup

x∈�

‖zi,x − yi,x‖ + δ

≤ 1

2
sup
x∈�

diam(Fi,x ) + δ ≤ 1

2
sup
x∈�

diam(Mi (x)) + δ

≤ 1

2
diam(Mi ) + δ.

We also get ϕi ∈ B(�, Y ). Finally, let f ∈ M and choose i such that f ∈ Mi . Then
using (5.1) we find

diam (( f − ϕi )(�)) = sup
x,y∈�

‖( f − ϕi )(x) − ( f − ϕi )(y)‖

≤ sup
x,y∈�

(‖( f − ϕi )(x)‖ + ‖( f − ϕi )(y)‖) ≤ 2‖ f − ϕi‖∞

≤ 2

(
1

2
diam(Mi ) + δ

)

= diam(Mi ) + 2δ ≤ a + 2δ.

Taking {�} as a partition of � and {ϕ1, . . . , ϕn} as a finite set in B(�,Y ), from the
arbitrariness of a and δ, it follows ωB(M) ≤ α(M), which is the thesis. �

Then combining the previous result with Theorem 3.5 we derive the following
estimates.

Theorem 5.2 Assume that Y is a Lindenstrauss space and that M ∈ MB is pointwise
relatively compact. Then

ωB(M) ≤ α(M) ≤ 2ωB(M).

The following two examples show that the inequalities given in Theorem 5.2 are
the best possible.

Example 4 Let Y be an infinite-dimensional Lindenstrauss space with origin θ. Let
(yn)n be a sequence in Y which satisfies ‖yn − ym‖ ≥ 2 when n 
= m. We now
consider the closed balls B(Y ) and B(yn, 1) = yn + B(Y ) for all n = 1, 2, . . . ,which
for short we will denote by B and Bn, respectively. Clearly, the sets of the sequence
(Bn)n are pairwise disjoint. Let us define fn : Y → Y for n = 1, 2, . . . , by setting

fn(y) =
{

θ for y /∈ Bn

y − yn for y ∈ Bn .

Let us consider the subset M = { fn : n = 1, 2, . . .} of B(Y ,Y ). Given y ∈ Y ,

M(y) = θ if y /∈ ∪∞
k=1Bk and M(y) = {θ, y − yk} if y ∈ Bk, so that M is pointwise
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relatively compact. Now, let us observe that fn(Y ) = fn(Bn) = {y − yn : y ∈ Bn} =
B, for all n, hence by (2.4) we get

ω({ fn}) = α( fn(Y )) = α(B) = 2,

so that ω(M) ≥ 2. On the other hand, since diam( fn(Y )) = diam(B) = 2 for all n,

taking {Y } as partition of Y we obtain ω(M) ≤ 2, thus ω(M) = 2.
Next, we prove α(M) = 1. To this end, having in mind the definition of fn, first

we notice that for all n,m ∈ N with n 
= m we have

‖ fn − fm‖∞ = sup
y∈Y

‖ fn(y) − fm(y)‖ = 1

so that, considering the Istratescu measure of noncompactness of M, we have
β(M) ≥ 1. Since β(M) ≤ α(M), we have α(M) ≥ 1. On the other hand

diam(M) = sup
n,m∈N

‖ fn − fm‖∞ = 1,

so that α(M) ≤ 1, and our assert follows.
Now we show ωB(Y ,Y )(M) = 1. Set ϕ(y) = 1

2

∑∞
n=1 fn(y), for all y ∈ Y . Then

to evaluate ωB(Y ,Y )(M) we consider {Y } as a partition of Y and {ϕ} as a finite set in
B(Y ,Y ). Then given y, z ∈ Y and n ∈ N, we have

‖ fn(y) − ϕ(y) − fn(z) + ϕ(z)‖ = 1

2
‖ fn(y) − fn(z)‖ = 1

2
‖y − z‖ ≤ 1 if y, z ∈ Bn

and ‖ fn(y) − ϕ(y) − fn(z) + ϕ(z)‖ ≤ 1
2 if y, z are not simultaneously both in Bn .

Consequently diam( fn − ϕ)(Y )) ≤ 1, which implies ωB(Y ,Y )(M) ≤ 1. Assume by
contradiction that ωB(Y ,Y )(M) < 1 and let ωB(Y ,Y )(M) = 1 − δ. Then there are a
finite partition {A1, . . . , An} of Y , and a finite set {ϕ1, . . . , ϕm} in Y such that for all
f ∈ M, there is j ∈ {1, . . . ,m} with diam(( f − ϕ j )(Ai )) ≤ 1 − δ for i = 1, . . . , n.

We set, for j ∈ {1, . . . ,m},

Mj = { f ∈ M : diam(( f − ϕ j )(Ai )) ≤ 1 − δ for i = 1, . . . , n},

without loss of generality, we may assume that each Mj is an infinite set. Moreover,
since ω(M) = 2, there is fs ∈ M and i ∈ {1, . . . , n} such that diam( fs(Ai )) ≥ 2− δ.

Fix y, z ∈ Ai such that ‖ fs(y) − fs(z)‖ ≥ 2 − δ, and let j ∈ {1, . . . ,m} such that
fs ∈ Mj . Then

1 − δ ≥ ‖( fs − ϕ j )(y) − ( fs − ϕ j )(z))‖ ≥ ∣
∣‖ fs(y) − fs(z)‖ − ‖ϕ j (y) − ϕ j (z)‖

∣
∣,

so it follows ‖ϕ j (y) − ϕ j (z)‖ ≥ 1. On the other hand, taking fl ∈ Mj with l 
= s we
have fl(y) = fl(z) = 0, thus

‖ fl(y) − ϕ j (y) − ( fl(z) − ϕ j (z))‖ = ‖ϕ j (y) − ϕ j (z))‖ ≤ 1 − δ,
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which is a contradiction, consequently ωB(Y ,Y )(M) = 1 and thus α(M) =
ωB(Y ,Y )(M).

Example 5 Let � = [0,+∞) and Y = (C([0, 1]), ‖ · ‖∞), hence Y a Lindenstrauss
space. Now we define fk : � → Y for k = 1, 2, . . . , by putting

fk(x) =
{

ψn for x = k − 1
n for n = 1, 2, . . .

ψ0 otherwise,

with ‖ψn‖∞ = 1 for n = 1, 2, . . . and ψ0(t) = 0 for all t ∈ [0, 1], so that fk ∈
B(�,Y ). Setting M = { fk, k = 1, 2, . . .} we have that M is pointwise relatively
compact. Moreover, ‖ fk − fs‖∞ = supx∈� ‖ fk(x) − fs(x)‖∞ = 1 (for k 
= s) and
diam(M) = supk,s∈N ‖ fk − fs‖∞ = 1, hence similarly as in the case of Example 4,
we deduce α(M) = 1.

On the other hand, let us consider, for n = 1, 2, . . . and t ∈ [0, 1],

ψn(t) =
{
0 for t ≤ 1 − 1

n

n
(
t − (

1 − 1
n

))
for 1 − 1

n < t ≤ 1,

and put ϕ(x) = 1
2

∑∞
k=1 fk(x) for x ∈ �. To evaluate ωB(M) we consider {�} as a

partition of � and {ϕ} as a finite set in B(�, Y ). Then it is easy to check that

‖ fk − ϕ‖∞ ≤ 1

2
,

whence diam(( f − ϕ)(Y )) ≤ 1
2 , so that ωB(M) ≤ 1

2 . Since α(M) = 1 and
Theorem 5.2 implies 1

2α(M) ≤ ωB(M), we have α(M) = 2ωB(M).
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