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Abstract
Many industrial sectors face increasing production demands and the need to reduce costs, without compromising the quality.
The use of robotics and automation has grown significantly in recent years, but versatile robotic manipulators are still
not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot
technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot
programs for specific manufacturing tasks still relies on programming trajectory waypoints by hand. The use of virtual
simulation software and the availability of the specimen digital models can facilitate robot programming. Nevertheless, in
many cases, the virtual models are not available or there are excessive differences between virtual and real setups, leading
to inaccurate robot programs and time-consuming manual corrections. Previous works have demonstrated the use of robot-
manipulated optical sensors to map the geometry of samples. However, the use of simple user-defined robot paths, which
are not optimized for a specific part geometry, typically causes some areas of the samples to not be mapped with the
required level of accuracy or to not be sampled at all by the optical sensor. This work presents an autonomous framework to
enable adaptive surface mapping, without any previous knowledge of the part geometry being transferred to the system. The
novelty of this work lies in enabling the capability of mapping a part surface at the required level of sampling density, whilst
minimizing the number of necessary view poses. Its development has also led to an efficient method of point cloud down-
sampling and merging. The article gives an overview of the related work in the field, a detailed description of the proposed
framework and a proof of its functionality through both simulated and experimental evidences.
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1 Introduction

1.1 Motivation

This work is motivated by the need to develop an effective
approach to measure the geometry of workpieces. In recent
years, the use of robotics has increasingly penetrated
the manufacturing and the construction industries [1–3].
Besides being attractive to make production phases more
cost-effective, robotics and automation have been used
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to speed up quality inspections [4, 5] and to operate
in hazardous environment precluded to human access
[6, 7]. Many industrial automated systems are based on
robotic arms that manipulate actuators and sensors through
predefined tool paths in structured environments. The robot
tool paths are typically defined on the digital Computer-
Aided Design (CAD) models of the parts to be machined,
assembled, disassembled and/or inspected. The process of
generating robot tool-paths using simulation software is
known as Off-Line Path-planning (OLP) [8]. Unfortunately,
the digital models often differ from their respective real
counterparts and time-consuming human intervention is
required to correct the software OLP robot paths and ensure
they meet the required levels of accuracy [9]. Therefore,
highly versatile robotic arms that could be used for flexible
autonomous systems are still mainly used to automate
repetitive tasks in large industries with well-structured
environments. Indeed, besides of the investments required
to enable efficient and profitable use of robot technology,
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the efforts needed to program robots are only economically
viable in case of large lot sizes. Research efforts have been
put into developing more intuitive programming methods
to reduce the programming time [10]. In some specific
scenarios (e.g. robotic welding), the path inaccuracy is
corrected by seam tracking based on laser profiling
sensors for real-time program adaptation [11]. However,
the adaptation strategy is limited to simple workpiece
geometries. More promising approaches use computer
vision to reconstruct the real workpiece geometry and
automatically generate robot programs for each new part
[12]. Besides three-dimensional (3D) object reconstruction
becoming important in numerous industrial applications
such as smart manufacturing, industrial automation and
Industry 4.0 [13], there exists a wide variety of applications
that would benefit from real-time computer vision systems,
capable of autonomous object reconstruction. It is the case
of virtual reality (VR) games and simulations, augmented
reality (AR) applications or systems that include obstacle
detection [14].

1.2 Related work

A plethora of methods and systems have been proposed for
the acquisition of the geometry of real-life objects, ranging
from those which employ active sensor technology, passive
sensor technology or a combination of various techniques.
The data produced by a 3D scanner is point cloud of
the object surface. A well-established classification of the
sensors used for 3D reconstruction divides them into two
types: contact and non-contact sensors [15]. Contact 3D
scanners probe the subject through physical touch, while the
object is firmly held in place [16, 17]. Non-contact solutions
can be further divided into two main categories: active and
passive. Passive 3D scanning solutions rely on detecting
reflected ambient radiation. Most solutions of this type
detect visible light because it is a readily available ambient
radiation, but other types of radiation (e.g. infrared) could
also be used. Passive methods can be very cheap, because in
most cases they do not need particular hardware but simple
digital cameras. On the other hand, active scanners emit
some kind of radiation or light and detect its reflection or
attenuation [18]. Regardless of the deployed technique, 3D
scanners have much in common with cameras. Like most
cameras, they have a cone-like field of view and can only
collect information about surfaces that are not obscured.
While a camera collects colour information about surfaces
within its field of view, the main objective of a 3D scanner is
to collect distance information about the surfaces within its
field of view. Many types of 3D scanning sensors have been
designed and used in real applications. Among the scanning
sensors, the ones that can be easily integrated with robotic
arms to perform automated object reconstruction, can be

divided into two categories. The first category comprises
the depth cameras (also known as 3D cameras). Depth
cameras are designed to return point clouds. Such devices
can consist of two conventional grey-scale cameras (stereo-
cameras [19]) or sensors that provide RGB colour and
depth for each pixel (RGB-D cameras [20]). The second
category comprises all those devices that use the controlled
emission and reception of light signals (laser beams) as
fundamental measurement tool [21]. In the reception phase,
a laser scanner can use different techniques for calculating
the distance between the laser source and the point hit by the
laser beam. According to the technique used, laser scanners
are based on trigonometric calculation (triangulation), time-
of-flight (when they calculate the distance through the time
elapsed between the emission of the laser and the reception
of the return signal [22]), or on phase difference (when
the calculation is performed by comparing the phase of
the emitted signal and the return signal [23]). For most
practical situations, a single acquisition from one point of
view will not produce a complete model of the subject of
interest. Multiple scans, even hundreds, from many different
directions are usually required to obtain information about
all sides of the subject. Several works have advanced
the process of bringing the point clouds, originating from
multiple scans, into a common reference system (a process
that is usually called alignment or registration). The merged
point clouds create the complete 3D model. This whole
process, going from the single range map to the whole
model, is usually known as the 3D scanning pipeline [24,
25]. Complete 3D reconstruction of a scene is typically
achieved by establishing a relative motion between the
scanning system and the object to reconstruct, while data
is captured by the system. Hand-held 3D scanners rely
on the user to move slowly around the object, visiting
all object areas of interest, while data is acquiring. When
a scanning system is manipulated by a robotic arm, the
problem of determining the scanning path arises. Previous
works have obtained good automated 3D reconstructions of
parts by moving a robot-manipulated 3D scanner around a
given component through a predefined path, along which
multiple views of the scene are collected. In [26], the
authors proposed using a robot arm to move a non-contact
passive 3D scanning system, following spiral paths lying
on paraboloid primitives and stopping at regular intervals
with the camera pointing at the centre of the paraboloid, to
collect photogrammetric views of relatively small industrial
parts. Although this may be an acceptable scanning path
for some objects, it can cause some portions of the part
to not be scanned at all, some other areas to not be
scanned to a satisfactory or acceptable extent and/or, on
the contrary, some remaining areas to be over-sampled.
Fixing the path trajectory and the spacing with which
data is captured produces sub-optimal 3D reconstructions,
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since the acquisition path is not targeted to any specific
object. Manual determination of optimal view poses for
surface scanning is a time-consuming and expert-dependent
task and, despite of the efforts, redundant views are
usually deployed. OLP software allows simulating the
reachability of view poses and avoiding collisions, when
the approximate CAD model of the part to reconstruct is
available. Nevertheless, finding the optimum set of view
poses for a robot-manipulated 3D scanning system, in order
to efficiently reconstruct a given scene using the minimum
number of views is still an open problem [27, 28]. It is known
under the name of View Pose Planning (VPP) [17, 29].

1.3 Contribution

This work presents a mathematical framework for adaptive
and incremental 3D reconstruction of specimens, through
the use of a robot-manipulated optical 3D scanner. It
allows computing the next optimal view pose after each
measurement view. Compared with previous works [30,
31], the proposed approach does not require any prior
knowledge about the shape of the object, meaning that
the formulation creates a best-guess representation of the
subject of the 3D scanning and updates it after each
measurement data. Crucially, the method is suitable to
obtaining measurable/quantitative results, since it seeks
to reach a user-defined target sampling density, which is
provided as fundamental input parameter. Such sampling
density is expressed as number of points per surface unit
(e.g. points/mm2). Compared to other recently published
works, the present approach does not make use of neural-
network paradigms [28], exhibiting more deterministic
performance. The framework is accompanied by the
definition of meaningful stopping criteria, whose fulfilment
leads to the termination of the iterative computation of the
next view pose and the output of the final result in the
form of merged point cloud and reconstructed tessellated
model (triangular mesh surface). The framework has not
been developed to work only with specific sensor hardware
and is adaptable to operate with data streams obtained
through a generic range scanning sensor, either depth
camera or 3D laser scanner type sensor. Its development
has also led to an efficient method for point cloud down-
sampling and merging. The framework functionality has
been tested through MATLAB-simulated data, obtained
from synthetic views of a computer graphics 3D test model
developed at Stanford University [32]. The MATLAB-based
code is openly available (https://doi.org/10.5281/zenodo.
4646850) and can be used by the research community for
future developments. In order to validate the framework
in experimental scenarios, the control computer has been
interfaced with a robot arm and a low-cost RGB-D camera
to reconstruct the geometry of a 3D printed version of

the Stanford University test model and of an additional
industrial test piece.

1.4 Article structure

The remaining of the article is structured as follows.
Section 2 describes the theoretical foundations of the
framework. Section 3 illustrates the experimental setup, the
hardware components and the interfacing platforms utilized
for the validation tests. The results arising from simulations
and synthetic data sets are illustrated in Section 4. The
results obtained through real sensor data sets are presented
in Section 5. Finally, Section 6 draws the conclusions and a
prospect of future work.

2 Theoretical foundations

This section starts defining all the metrics of 3D scanning
sensors and of point clouds, which are used herein
to describe the theoretical foundations of the approach
presented in this work and discuss the simulations and
the experimental results. Then, it describes the approach
used for incremental merging of the point clouds acquired
from different view poses. Finally, this section focuses on
explaining the method elaborated to select the next best
acquisition view pose and suitable stopping criteria for
adaptive incremental 3D reconstruction.

2.1 Definition of metrics

Before any algorithm can be described, it is necessary to
define all the parameters and variables that intervene in
the mathematical formulation of the problem of interest.
Figure 1a and b show, respectively, point clouds collected
through a depth camera type sensor and a laser scanner
type sensor. An orthogonal reference system is centred at
the sensor data origin. Like a conventional RGB camera,
a depth camera has a pyramidal sampling volume, whose
dimension depends on the horizontal field-of-view angle
(ϑ) and on the vertical field-of-view angle (θ). These angles
are bisected by the −→w vector. Like in conventional RGB
cameras, depth cameras allow obtaining equally spaced 3D
point samples arranged in a rectangular grid, whose number
is equal to the product of the sensor horizontal and vertical
pixel resolution (respectively Rh and Rv), when sampling a
flat surface parallel to the −→

u − −→v plane. The total surface
area sampled on such plane, at distance d from the −→

u − −→v
plane, is equal to:

Adepth−camera = a ∗ b =
(

2d ∗ tan

(
ϑ

2

)) (
2d ∗ tan

(
θ

2

))

= 4d2 ∗ tan

(
ϑ

2

)
tan

(
θ

2

)
(1)
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Fig. 1 Fundamental working parameters for a depth camera sensor
(a) and a laser scanner sensor (b), representation of the vectors for
the computation of the local sampling density on an example surface

(c–d), local sampling densities (e–f) and centrality factors (g–h) com-
puted for all points collected by the generic depth camera and laser
scanner

Assuming that the Cartesian coordinates of the sampled
point Pi ≡ [

xi, yi, zi

]
are given with respect to the

reference system (−→u , −→v , −→w ) of the 3D scanning, the
distance di between the plane −→

u −−→v and the parallel plane
for a sampled point, is di = zi . A laser-based 3D scanner,
schematically represented in Fig. 1b, operates the deflection
of the sampling laser beam in angular coordinates. In this
work, the angles θ and ϑ are defined as the angles that
the position vector forms with the x-z and y-z plane,
respectively. Typically, the user can set the desired scanning
range, defining lower and upper limits, with −π ≤ ϑmin <

0, 0 ≤ ϑmax ≤ π , −π ≤ θmin < 0 and 0 ≤ θmax ≤ π .
Moreover, the user can usually set the number of points to be
captured in such angular ranges. As a result, when sampling
the detectable portion of the inner surface of the sphere with
radius r centred at the sensor origin, a laser scanner allows
obtaining equally spaced 3D point samples arranged in a
rectangular spherical grid. The total area sampled on such
portion of the spherical surface is equal to:

Alaser−scanner = r2 ∗
∫ ϑmax

ϑmin

dϑ ∗
∫ θmax

θmin

cosθ dθ

= r2 ∗ (ϑmax − ϑmin) ∗ [sin (θmax) − sin (θmin) ] (2)

For the purposes of this work, it is crucial to define the local
sampling density, given as sampled number of points per
squared unit of length (e.g. points/mm2), for every sampled
point. Figure 1c and d represent the points captured by a

depth camera and a laser-based sensor through scanning
a generic surface. Asampling vector (−→s i) is defined for
the ith sampled point (Pi), as the unitary vector normal to
that surface for Pi where the sensor would acquire equally
spaced samples. Whereas −→

s i is always perpendicular to the
flat surface parallel to the −→

u − −→v plane at distance di for
the depth camera type sensor, it is always normal to the
surface of sphere centred at the sensor origin with radius ri ,
for the laser-scanner type sensor. Therefore, in the case of
a depth camera, −→

s i is equal to −−→w , while it is always the
radial vector pointing to the sensor origin (−→s i = O − Pi),
in the case of a laser scanner. Indicating with −→

n i the vector
normal to the scanned surface and with γi the angle that this
vector forms with −→

s i , the local sampling density (ρi) at the
ith sampled point, in case a depth camera or a laser scanner
is used, is herein defined as:

ρi = RhRv

A
depth−camera
i

∗ cos (γi)

= RhRv

4d2
i ∗ tan

(
ϑ
2

)
tan

(
θ
2

) −→
s i

−→
n i∣∣−→s i

∣∣ ∣∣−→n i

∣∣ (3)

ρi = RhRv

Alaser−scanner
i

∗ cos (γi)

= RhRv

r2
i (ϑmax − ϑmin) [sin (θmax) − sin (θmin) ]

−→
s i

−→
n i∣∣−→s i

∣∣ ∣∣−→n i

∣∣ (4)

It is worth highlighting that Rh, Rv , ϑ , θ , ϑmax , ϑmin,
θmax and θmin are known working parameters of the sensor
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and di , ri and −→
s i can be easily computed using the

coordinates of the acquired point and the known pose
of the scanning device. The only variable that must be
approximated is −→

n i , which is the local normal of the
scanned surface at the point Pi . Indeed, the surface is not
analytically known before the scan and the objective of
the scan is to reconstruct the shape of the surface. In this
work, the local normal is inferred through fitting a local
plane to neighbouring points [33], in order to approximate
its perpendicular vector. The orientation of the normal is
set based on the knowledge of the sensor pose, making
sure that the absolute value of γi (the angle formed by−→
n i with −→

s i) is smaller than π/2. Figure 1e and f give a
representation of the local sampling densities computed for
all points collected on the example surface by the generic
depth camera and laser scanner. Referring to the notation
given in Fig. 1a and b, the same scanning resolutions and
angular ranges are used for the depth camera and laser
sensor (Rh = 6, Rv = 4, ϑ/2 = ϑmax = −ϑmin = π/6
and θ/2 = θmax = −θmin = π/9). The same colormap and
colour bar limits have been set in Fig. 1e and f to facilitate
the comparison of the different local sampling densities
relative to the points sampled through the depth camera and
the laser scanner. As expected, the low values (∼ 10−3)
are due to the low horizontal and vertical resolution used
for the sake of producing clear schematic representations.
Much higher resolutions are typically used to obtain useful
results in real applications. The last metric used by this
work is named as centrality factor (σ ). The centrality factor
is a nondimensional parameters, whose value is comprised
between 0 and 1, being σ = 1 for a point measured at the
centre of the sensor field-of-view and σ = 0 for points
measured at the boundary of the field of view. This factor
is computed as in Eqs. 5 and 6 for depth cameras and laser
scanners, respectively:

σi = min

(
1 −

∣∣∣∣tan−1
(

xi

zi

) ∣∣∣∣
(

2

ϑ

)
, 1 −

∣∣∣∣tan−1
(

yi

zi

) ∣∣∣∣
(

2

θ

))

(5)

σi = min

⎛
⎝ 1 −

∣∣∣tan−1
(

xi

zi

)
− ϑmax+ϑmin

2

∣∣∣ ( 2
ϑmax−ϑmin

)
,

1 −
∣∣∣tan−1

(
yi

zi

)
− θmax+θmin

2

∣∣∣ ( 2
θmax−θmin

)
⎞
⎠ (6)

2.2 Incremental down-sampling andmerging

As it was said in the introduction, in most situations, the
acquisition of a single point cloud from one point of view
cannot produce a complete 3D reconstruction of an object.
Multiple point clouds, collected with different sensor poses
are typically required. The alignment/registration process of
bringing the multiple point clouds into a common reference
system is quite straightforward, when the accurate position
and orientation of each sensor pose are available, which

is always the case for robot-manipulated 3D scanners. In
this work, it is assumed that the sensor data origin is
accurately calibrated as robot Tool Central Point (TCP)
and all collected point clouds get registered into the
manipulation robot base reference system, using the sensor
pose (position Cartesian coordinates and orientation Euler
angles), obtained as feedback from the robot controller.
Therefore, the resulting merged point cloud may be intended
as the set of all points collected through all sensor views.
At first glance, it would be possible to think the sensor
should be positioned at a distance from an object surface
that allows capturing as many points as are needed to reach
the desired target density. If such target density is denoted
with ρ∗, expressed as number of points per surface unit
(e.g. points/mm2), the optimum sensor view distance (d∗

g )
or view radius (r∗

g ) can be extrapolated from Eqs. 7 and 8,
for depth cameras and laser scanners respectively:

d∗
g = 1

2

√
RhRv

ρ∗tan
(

ϑ
2

)
tan

(
θ
2

) (7)

r∗
g =

√
RhRv

ρ∗ (ϑmax − ϑmin) [sin (θmax) − sin (θmin) ]
(8)

The subscript “g” is given to d∗
g and r∗

g , since they purely
derive from geometrical considerations. Placing a depth
cameras at distance d∗

g or a laser scanner at radial distance
r∗
g allows reconstructing the object geometry exactly at

target density only when a planar (for depth cameras)
or a spherical surface (for laser scanners) is the surface
under inspection. This is far from any real applications,
when a generic surface is to be mapped. Moreover, most
manufacturers of 3D scanners specify that the sampling
inaccuracy/noise of their sensors depends on the distance of
the captured points. Assuming the expected measurement
noise of a 3D scanner is defined as a percentage of sampling
distance (ε = noise/d or ε = noise/r), it is possible
to compute the maximum distance that allows mapping a
surface with measurement noise smaller than or equal to n∗:

d∗
n = n∗

ε
or r∗

n = n∗

ε
(9)

These limit values are denoted with the “n” subscript,
since they originate from measurement noise considera-
tions. Thus, in practical application, the optimum view
distance (d∗ or r∗) is chosen as the lower value between d∗

g

and d∗
n (d∗ = min(d∗

g , d∗
n)) or r∗

g and r∗
n (r∗ = min(r∗

g ,
r∗
n)). Some sensors with high values of percentual noise (ε)

force mapping objects/environments at distances that lead
to sampling densities much higher than the target density
(e.g. when d∗

n � d∗
g or r∗

n � r∗
g ). Moreover, due to the

overlap between the field of view of the 3D scanning sen-
sor positioned at different locations, simply appending all
collected points to a comprehensive point cloud may lead
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to vast regions with too many redundant points. This means
that many more points, compared to those required to fulfil
the target sampling density, are collected in some regions of
an object, making the merged point cloud difficult to pro-
cess in timely fashions and to store in physical memories.
For these reasons, solutions to down-sample the collected
points and obtain a uniform point density across the result-
ing point cloud are typically found in many works [14, 34].
Although down-sampling algorithms have been presented
elsewhere, it is worth describing what down-sampling and
merging algorithms were implemented in this work, for the
sake of making the entire incremental 3D reconstruction
pipeline as clear as possible. Figure 2a gives an explanatory
scene, showing an initial state point cloud (originating from
two sensor data sets captured at O1 and O2) and a dense
point cloud, newly received from the sensor at O3. The new
point cloud is intentionally assumed to have a point density
much higher than the target sampling density and captured
with a noticeable spatial overlap with the field of view of the
sensor in O1 and O2. Therefore, referring to this scene, it
is possible to describe the process of merging the j th point
cloud data set with the initial state point cloud, originating
from all previously acquired data sets (from the 1st to the
(j − 1)th sensor pose). The average distance between any
point of an ideal point cloud, which maps the surface of an

object with the target density (ρ∗), and its closest neighbour
point should be equal to l = ρ∗−1/2. Indeed, any square of
area l2 lying on the surface of the object should contain only
one of the sampled points. This assumes that approximating
the object surface to a plane is acceptable, in the neighbour-
hood of the square. In these terms, down-sampling a point
cloud to meet the target density requirement would consist
in finding all squares with side equal to l that lie on the
reconstructed object surface and contain more than one sam-
pled point. Wherever multiple points are detected within a
square, only one point should be kept as a representative of
them. This process is quite computationally expensive for
large point clouds.

In this work, a much more efficient sub-optimal
algorithm has been found, which uses cubic containers
rather than squares. The area of the largest planar surface
that can be inscribed in a cube is

√
2 times larger than area

of the square face of the cube. Therefore, in this work the
volume containing the points of both the initial and new

cloud is partitioned with cubes of side l∗ =
(√

2ρ∗
)−1/2

.

Indicating with Pi≡ [px
i , p

y
i , pz

i ] the ith point of the initial
state cloud and with Qk≡ [qx

k , q
y
k , qz

k ] the kth point of the
new cloud, being k ∈ N | 1 ≤ k ≤ (Rh ∗ Rv), the
local normals (−→n i and −→

n k) are computed as described in

Fig. 2 Initial state points and
new incoming points (a).
Grouping points into cubes of
side equal to the target sampling
density (b). Example of
selection of maximum sampling
density point in a cube
containing only one old point,
only new points and both old
and new points (c). Resulting
merged and down-sampled new
initial state (d)
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Section 2.1 through fitting a local plane to the six closest
neighbouring points, taken from the whole set of points (old
and new), before the down-sampling of the new cloud is
performed. Thus, the stack indices, along the x, y and z
direction (ax

i , a
y
i , az

i , bx
k , b

y
k and bz

k ∈ Z), of the respective
cubes (Ai and Bk) that contain the two points are calculated,
dividing their Cartesian coordinates by l∗ and rounding to
the closest integer numbers. As it is illustrated in Eqs. 10
and 11, working with arrays, a computer can efficiently
compute the set of all cubes comprising the initial state
points (A) and the set of cubes for new points (B). Through
the intersection of A and B (12), it possible to identify the
set C of cubes that contain both initial state points and new
points. The set Aold (subset of A), which contains cubes
with only one initial state point, is defined as the difference
between set A and set C (13). Finally, the set Bnew (subset
of B), which contains cubes with only new points, is defined
as the difference between set B and set C (14). The cubes
belonging to these sets are represented in Fig. 2b.

The merged initial state point cloud is assumed to be
already down-sampled, since it is intended to be the result of
the down-sampling and merging operations performed right
after the acquisition of the (j−1)th point cloud. Figure 2c
gives close up examples of the points found within cubes
belonging to Aold , Bnew and C, where the points from the
initial state cloud are displayed as circles, the points from
the new cloud are showed as squares and the colour of the
points is related to their respective local sampling densities
(ρ).

A =

⎡
⎢⎢⎢⎢⎣

. . .

Ai−1

Ai

Ai+1

. . .

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

. . . . . . . . .

ax
i−1 a

y

i−1 az
i−1

ax
i a

y
i az

i

ax
i+1 a

y

i+1 az
i+1

. . . . . . . . .

⎤
⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

. . . . . . . . .

px
i−1 p

y

i−1 pz
i−1

px
i p

y
i pz

i

px
i+1 p

y

i+1 pz
i+1

. . . . . . . . .

⎞
⎟⎟⎟⎟⎠/l∗

⎤
⎥⎥⎥⎥⎥⎥⎥

(10)

B =

⎡
⎢⎢⎢⎢⎣

. . .

Bk−1

Bk

Bk+1

. . .

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

. . . . . . . . .

bx
k−1 b

y

k−1 bz
k−1

bx
k b

y
k bz

k

bx
k+1 b

y

k+1 bz
k+1

. . . . . . . . .

⎤
⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎣
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C = A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)} (12)

Aold = A − C = {x | (x ∈ A) ∧ (x /∈B)} (13)

Bnew = B − C = {x | (x ∈ B) ∧ (x /∈A)} (14)

The down-sampled and merged point cloud, which will
constitute the updated initial state cloud, will have a number
of points equal to the sum of the cubes in all three sets,
since only one point per cube is to be selected. This allows
a computer to allocate the memory space required for such
point cloud. Each cube of Aold contains one and only one
initial state point, which is transferred to the updated initial
state. Every cube in Bnew comprises points of the new cloud
and the point which presents the maximum local sampling
density is selected to become part of the updated initial
state. Finally, each of the cubes in C always contains one
point from the old cloud and one or more points from the
new cloud; among them, the point with the maximum local
sampling density is selected as representative. Therefore,
in this work, the point representative of each volumetric
partition is not randomly selected among those present in
every cube, but the local sampling density (ρ) is used as
a quality propriety to select the best point. This typically
allows only the points that carry lower measurement noise
levels to be transferred to the updated initial state cloud
and to progress along the 3D reconstruction pipeline. It
should be noted that the approach used in this work
performs efficient incremental down-sampling and merging
in a single pass, since merging takes place during down-
sampling. Furthermore, the indexing of the points, operated
through Eqs. 10 and 11, minimizes the computational effort.
Figure 2d shows the updated initial state point cloud.

2.3 Next best view pose computation

In order to automate the acquisition of data for object
reconstruction, it is necessary to be able to select the sensor
poses through a suitable algorithm. Assuming the first
sensor pose is human-defined and no additional information
about the object geometry is provided to the algorithm,
this work introduces an approach able to maximize the 3D
reconstruction of the object surface, while minimizing the
number of sensor poses required to achieve this objective.
The 3D geometry mapping is operated incrementally,
meaning that the system updates the object reconstruction,
in the form of a merged point cloud and a tessellated
triangular surface, right after each new point cloud is
acquired by the sensor from a new pose. Following the
acquisition of the J th point cloud from the sensor at pose
OJ , the set of all visited sensor poses (O1, O2, . . . , OJ )
and the updated initial state point cloud (as illustrated
in Section 2.2) are used to compute the next best view
pose (OJ+1). This is the pose that allows maximizing the
mapping information that can be retrieved from the sensor
to reconstruct the real geometry.

1901Int J Adv Manuf Technol (2021) 116:1895–1911



In this work, a tessellated mesh that reconstructs the
mapped object surface (with a level of detail corresponding
to the user-defined target sampling density) is computed
at each step, by applying the Poisson-based surface
reconstruction algorithm described in [35] to the updated
initial state point cloud. As example, the subplots in Fig. 3
show the reconstructed surface relative to the updated initial
state point cloud given in Fig. 2d.

Therefore, it is checked if line-of-sight exists between
the barycentre of each mesh triangle and every visited
sensor pose. For the barycentres that are within the field of
view of the sensor at a given pose, the ray casting method
presented in [36] is used, determining whether the line
segment that links each barycentre to the sensor pose has
only one intersection with the mesh and if this intersection is
at the barycentre. Therefore, the sampling densities relative
to each sensor pose are computed according to Eq. 3 for
depth cameras and Eq. 4 for laser scanners (see Fig. 3a–
c). Indicating with ρi,j the sampling density of the ith

barycentre, relative to the j th sensor pose, the cumulative
value (see Fig. 3d) at the ith barycentre is computed as:

ρ̂i,J = min

(
ρ∗ ,

J∑
1

ρi,j

)
(15)

The selection of the minimum value between ρ∗ and∑J
1 ρi,j , which is operated in Eq. 15, should not surprise the

reader, since it is promptly justifiable as the mathematical
consequence of the down-sampling described in Section 2.2.

2.3.1 Objective function definition

In this work, it has been observed that all values of ρ̂i ,
with 1 ≤ i ≤ T (where T is the number of triangles in
the Poisson reconstruction mesh), may exceed the target
sampling density ρ∗ even when some areas of the object
are still to be mapped. This is likely to happen when the
object surface is sampled with a standoff distance smaller
than d∗

g (for depth cameras) or r∗
g (for laser scanners). In

such case, it is difficult to use ρ̂i alone to formulate an
objective function, which is suitable to determine the next
best sensor pose (OJ+1) and valid stopping criteria for the
incremental 3D reconstruction. Moreover, it is important
that the next sensor pose does not coincide with any of the
previously visited poses (O1, O2, . . . , OJ ). However, ρ̂i

does not convey enough information about such previous
poses. This problem is solved by defining the cumulative
centrality factor σ̂i (see Fig. 3h) as:

σ̂i,J = max(σi,1, σi,2, . . . , σi,J ) (16)

where σi,j is the centrality factors of the ith barycentre,

Fig. 3 Sampling density relative to each sensor pose (a–c), cumulative
sampling distance (d), centrality factor relative to each sensor pose (e–
g), cumulative centrality factor (h) and corrected cumulative sampling
density (i)
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relative to the j th sensor pose, as it is defined in Eq. 5 for
depth cameras and Eq. 6 for laser scanners (see Fig. 3e–
g). The value of the cumulative centrality factor is always
comprised between 0 and 1, being equal to 0 at the boundary
of the cumulative surface mapped from all sensor poses and
equal to 1 at the intersection between the sensor pose view
directions and the mapped surface (see Fig. 3h). As a result,
σ̂i is rich of information about all previous sensor poses.

Therefore, a parameter herein named as corrected cumu-
lative sampling density (λi,J ) is introduced for the defini-
tion of the objective function. λi,J is the product of the
cumulative sampling density and centrality factor (λi,J =
ρ̂i,J ∗ σ̂i,J ) (see Fig. 3i). The corrected sampling density
inherits its unit from ρ̂i (e.g. points/mm2), since σ̂i is nondi-
mensional. Whereas the colour of the triangles in the surface
reconstruction mesh shown in Fig. 3a–d depends on the
barycentres sampling density and cumulative sampling den-
sity, it depends on the centrality factor and cumulative
centrality factor in Fig. 3e–h and on the corrected cumula-
tive sampling density in Fig. 3i. It is worth highlighting that
the same colormap and colour bar limits ([0, ρ∗] for Fig. 3a–
d and i and [0,1] for Fig. 3e–h) are used to facilitate the
comparison of the plots.

Thus, this work defines the objective function F (OJ+1)

as the difference between the theoretical number of
points necessary to map the surface represented by the
reconstructed mesh, with uniform target density equal to
ρ∗, and the prediction of number of points sampled at the
(J + 1)th step. Indicating with ai the area of the ith triangle
of the mesh, calculated through Heron’s formula, we have:

F (OJ+1) =
(

ρ∗
T∑
1

ai

)
−

(
T∑
1

λi,J+1ai

)
(17)

where
∑T

1 ai is, recognisably, the total mesh area and
λi,J+1 is the cumulative corrected sampling density, inferred
through assuming a new point cloud is collected with the
sensor positioned at the pose OJ+1.

2.3.2 Searching through the multi-dimensional space

The best next sensor pose is the pose that minimizes the
objective function, given in Eq. 17. A sensor pose is a vector
with six coordinates (O = [

ox, oy, oz, oA, oB, oC

]
), being

ox , oy and oz the Cartesian coordinates of the sensor origin
and oA, oB and oC the Euler angles of the sensor reference
system. Since F (OJ+1) is a non-continuous function of six
variables, it is not possible to find its minimum analytically.
In this work, the multi-dimensional search space is probed
through computing the value of the objective function at
several test poses. The test poses are chosen conveniently, to
speed up the selection of the optimum next sensor pose. The
approach deployed in this work consists in offsetting the

barycentres of the mesh triangles, where λi,J < ρ∗, along
the triangles normals by d∗ (for depth cameras) or r∗ (for
laser scanners). The resulting points are sorted according to
the ascending order of the corrected cumulative sampling
density of their parent triangles and the first K points are
selected as suitable positions. This defines the poses in
Cartesian coordinates. Figure 4a shows the first five test
positions for the example mesh surface. The definition of
the Euler angles, which describe the orientation of the test
sensor poses, requires particular attention. Indeed, since the
field of view of depth cameras and laser scanners does not
present axial symmetry, the amount of surface a sensor can
map is affected by the rotation of the sensor around its view
axis. Therefore, a number (H ) of different orientations of
the field of view with respect to the view axis are considered
for each test position, for the sake of better probing the
search space. Adopting the opposite of the parent triangle
normal vector as view axis direction (−→w k) for the kth test
position, the other two vectors −→

u k,h and −→v k,h (relative to
the hth orientation of the sensor pose reference system with
respect to −→w k) are computed through Rodrigues’ formula
[37]. Indicating with αh the angle that defines the hth

orientation, it is possible to assume that the orientation at αh

and at αh ± π would map the same amount of surface, for
depth cameras and laser scanners. It is worth noting that this
assumption implies −ϑmin = ϑmax and −θmin = θmax , for
laser scanner type sensors. Therefore, in this work, αh has
been defined as:

αh = π ∗ (h − 1)

H
(18)

with 1 ≤ h ≤ H . This produces constant-spaced test
orientations in the range [0 , π). This concept is illustrated
in Fig. 4b. Once the vectors of the sensor pose orthogonal
reference system are known, it is straightforward to extract
the Euler angles from the relative rotation matrix (Rk,h =[ −→

u k,h
−→v k,h

−→w k

]
) [38].

Thus, the total number of test poses is equal to K ∗ H ,
since we have H sensor orientations for each of the K

positions. The experimental validation undertaken by this
work has led to determine that K = 20 and H = 5 are good
values for practical applications, resulting in a total of up to
100 test poses. All constraints given by real physical setups
are considered by discarding any positions that cannot
be reached by the sensor manipulator, due to kinematic
limitations and or collisions. There, unsuitable positions are
prevented from being used as test poses. Therefore, the
number of items belonging to the set of test poses (T ) may
be limited by the physical constraints (robotic reachability
and/or collision avoidance).

Figure 5a shows the evaluation of the objective function
value at the test poses for the given example. The minimum
function value is obtained at the 45th test pose, relative
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Fig. 4 The first five test view point and direction (a) and illustration of the selection of four sensor orientations for each selected test direction (b)

to k=9 and h=5 (αh= 4
5π radians). Then, this is taken

as the next best pose (OJ+1). Figure 5b illustrates the
sensor fiend of view at OJ+1. Interestingly, this approach
conveniently defined the next best pose to map the portion
of the objective surface that has been sampled the least
by previous poses, due to the high local surface gradient.

Fig. 5 Evaluation of the objective function value at the test poses (a) and
illustration of the determined next best pose for the given example (b)

Undoubtedly, selecting the best next pose among a large
but finite number of test poses, used to probe the objective
function in the multidimensional search space, may lead to
choosing a pose corresponding to a local minimum of the
objective function rather than the absolute minimum. This
has been deemed acceptable for the scope of this work.

2.4 Stopping criteria

Once the next best pose is defined, it is used to control
the sensor manipulation system and acquire a new point
cloud at the specified location. Then, the new point cloud is
down-sampled and merged with the initial state point cloud
and these steps can repeat again, incrementally generating
a 3D reconstruction of the object of interest. Hence, it
is immediate to understand the need of defining suitable
stopping criteria, which regulate the interruption of the
iterative reconstruction process. The described framework
exposes meaningful variables that are suitable for this scope.
In this work, it was deemed satisfactory to stop the iterative
data capture and 3D reconstruction when the objective
function (evaluated at OJ ) is null or when the set of test
poses is empty.
F (OJ ) = 0 ∨ T = {} (19)

3 Experimental setup

The presented framework has been validated through sim-
ulated and real data sets. The experimental setup consists
of an Intel� RealSenseTM Depth Camera D435i. It is a
low-cost 3D active infrared stereo camera with expected
measurement noise ε = 0.02 (2% of distance), a min-
imum depth distance of 280mm at maximum resolution
(1280×720) and of 175 mm at lower resolution (640×480).
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The depth camera is manipulated through a KUKA KR10-
R1100-2 robot. The robot has six degrees of freedom, a
reach of up to 1100 mm and a stated pose repeatability of
± 0.02 mm. Given the limited working envelope of the robot
in use, the depth camera was used with a depth frame res-
olution of 640 × 480 points, in order to allow all-round
mapping of small objects. The sensor horizontal and verti-
cal field-of-view angles were, respectively, ϑ = 74◦ and
θ = 62◦. A bespoke data acquisition software module was
developed, using the Interfacing Toolbox for Robotic Arms
(ITRA) [39, 40], to synchronize the robotic sensor manip-
ulation with data collection. The depth camera data origin
was calibrated as robot TCP, using the hand-eye calibra-
tion procedure described in [41]. Collision avoidance wa
ensured for all the robotic trajectories, to move from any
actual robot pose to the next pose, implementing the effec-
tive solution proposed in [42]. A MATLAB-based simu-
lation environment was developed through integrating the
virtual CAD model of the camera with the virtual model of
the robot. In order to make the results of this work replicable
and comparable with the outcomes of future investigations,
an openly available computer graphics 3D test model, devel-
oped in 1994 at Stanford University [32, 43], was used.
The model, often referred as Stanford Bunny consists of
a tessellated surface with 69451 triangles, determined by
3D scanning a ceramic figurine of a rabbit. The model was
imported in the virtual simulation environment. Figure 6
shows the real and the virtual experimental setup used for
the investigations of this work.

Both the robot and a true-scale 3D printed version of the
reference sample are placed onto a levelled optical table.
The robot manipulator is firmly bolted onto the table by
means of a 20-mm-thick steel flange. The sample is suppor-
ted and raised from the table surface through an 80-mm-high
plinth that positions the barycentre of the Stanford Bunny
base at an offset of 435 mm along the x-axis and the y-axis
and an offset of 60 mm along the z-axis, with respect to the
robot base reference system. The simulation environment is
a virtual twin version of the real environment.

4 Simulations

A MATLAB-based function was developed to generate a
synthetic sensory point cloud for any given pose of the
sensor. This was achieved by implementing a ray casting
algorithm (based on [36]) to find the intersection points
between the sampling directions (originating from the
sensor) and the triangular mesh of the reference sample. The
simulations of this work have the objective of validating
the robustness of the 3D reconstruction approach. Given
the stated maximum measurement noise of the utilized
sensor (2% of distance), the distance between the test

Fig. 6 Real (a) and virtual (b) experimental setup, showing the
Intel� RealSenseTM Depth Camera D435i, mounted onto the KUKA
KR10-R1100-2 robot, and the 3D printed Stanford Bunny test model

poses and the target surface was limited to 200 mm, which
gives an expected maximum deviation of 4 mm between
the sampled point clouds and the real geometry. Figure 7
shows the simulated incremental 3D reconstruction of the
Stanford Bunny, using the presented framework to meet
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Fig. 7 Simulated full 3D
reconstruction of Stanford
Bunny with target density ρ∗ =
0.05 points/mm2, through an
initial starting pose (a) and four
autonomously generated sensor
poses (b–e)

a user-specified target sampling density of ρ∗ = 0.05
points/mm2 (5 × 104 points/m2). This value of target density
was chosen, since it corresponds to a length of a down-
sampling cube side edge l∗ = 3.76 mm, which is similar
to the expected amplitude of the measurement noise of the
sensor in use, when mapping surfaces at average distance of
200 mm. Indeed, measurement noise much higher than the
average distance between the points may negatively affect
the accurate estimation of the surface normals. Only the
first pose was defined a priori. All following poses were
autonomously defined as best next poses, using the approach
described in Section 2. The sensor poses were constrained
to stay above the base of the sample (oz > 60mm), in order
to avoid collisions between the robot and the optical table
and map the visible surface of the object (the whole
surface excluding the sample base). Figure 7 illustrates the
achieved reconstruction process, which was simulated using
the pose given in Fig. 7a as starting pose. The simulation
demonstrates the possibility enabled by the presented

framework to reconstruct complex surface geometries, with
a minimum number of effective and autonomously chosen
sensor poses. The simulation was repeated using four other
starting poses. All simulated reconstructions met the first
stopping condition in Eq. 19, effectively reaching the tar-
get sampling density throughout the surface of the referen-
ce sample. Although the screenshots relative to these addi-
tional simulations are not presented here, in order to limit
the length of this article, all relevant quantitative results are
summarized in Table 1.

As it was expected, some user-specified initial poses
are more convenient than others and this influences the
whole reconstruction process. This causes the number of
necessary sensor poses to vary. Nevertheless, it is interesting
to note that all simulated reconstructions led to very similar
results, in terms of number of points in the down-sampled
cloud, number of triangles in the reconstruction mesh and
extension of the mapped surface, despite of the difference
in the starting pose and consequent next best poses used

Table 1 Simulations
quantitative results. The first
column relates to the
simulation illustrated in Fig. 7.
The following columns regard
the other simulations, which
were run using different
starting poses

Initial pose (coordinates in [mm] x = 435 x = 635 x = 435 x = 235 x = 435

and angles in [deg]) y = 435 y = 435 y = 635 y = 435 y = 235

z = 350 z = 150 z = 150 z = 150 z = 150

A = 95 A = -90 A = 0 A = 90 A = 180

B = 0 B = 0 B = 0 B = 0 B = 0

C = 180 C = 90 C = 90 C = 90 C = 90

Num. poses required 5 5 4 6 7

Num. raw points 231707 227070 191858 297023 343165

Down-sampled points 5131 5234 5109 5242 5256

Num. mesh triangles 35433 35313 35133 37459 36389

Reconstructed surface [mm2] 51163 52106 51206 51824 51904
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Fig. 8 Full 3D reconstruction of Stanford Bunny with target density
ρ∗ = 0.05 points/mm2, through an initial starting pose (a) and six
autonomously generated sensor poses (b–g)

in the reconstruction pipeline. The values of the mapped
surface extension are very close to the area of the Stanford
Bunny surface (excluding its base), which is 51954 mm2,
as measured from the reference sample original tessellated
mesh. The small deviations, between the extension of the
reconstructed surfaces and the reference area, are smaller
than 1.6%. They are thought to have been caused by the
fact that the reference virtual model and the reconstructed
model are, obviously, not represented by the same set of
triangulated points.

5 Sensor data results

Real-data reconstructions were undertaken by means of the
physical laboratory setup described in Section 3. Figure 8
illustrates the reconstruction of the Stanford Bunny, with
target sampling density ρ∗ = 0.05 points/mm2, using
the first pose in Fig. 7 as initial sensor pose. The real
system required a total of seven poses to obtain the full
reconstruction of the reference sample, which exceed the
respective simulation by two poses. This is caused by the
fact that the real sensor typically fails to return some of the
surface points that are within the sensor field of view. This is
evident if one compares Fig. 8a with Fig. 7a. The extension
of the surface mapped through the real data in Fig. 8a is
smaller than the ideal reconstruction relative to the same
view pose, given in Fig. 7a. The variable reflectivity of the
sample causes some areas of the surface to reflect too little
or too much light, impeding accurate sampling (within the
sensor acceptance thresholds). This leads to the deviation of
the real deployed sensor poses from the simulated poses. It
is worth pointing that more sophisticated sensors, capable
of returning less compromised point clouds, would produce
better adherence with simulated pose coordinates and pose
sequencing. Nevertheless, the real data reconstructions

Fig. 9 CFRP automotive sample used as additional test case
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performed in this work proved the capability of the proposed
framework to flexibly adapt to real scenarios and different
starting poses and to be used with low-cost sensors.

In order to further demonstrate the flexibility of the pro-
posed framework, an industrial specimen was reconstructed
using the same data acquisition setup. The specimen was
a 4-mm-thick carbon fibre reinforced plastic (CFRP) shell
sample, moulded into a curved contour by the automotive
industry. Composite parts often suffer geometry distortion
due to their elastic spring back when they are extracted from
the curing mould, which makes geometry mapping a requi-
rement for dimensional assessment or for programming suc-
cessive robotic machining. The sample had a rectangular
size of circa 250 × 600 mm (Fig. 9). For the curvatures of the
sample surface, this specimen was deemed representative of
the challenging geometries often found in composite sam-
ples, where the mapping of the lateral surface of stiffening
stringers and ribs requires bespoke sensor view pose plan-
ning. Figure 9 shows the contour of the sample surface for
the section corresponding to the maximum geometry height.

The sample was uniformly sprayed with a removable
white matte powder (Spray-Rotrivel U, manufactured by

CGM s.r.l), which gave an approximately Lambertian finish
with a reflectance spectrum flat in the visible spectral region
[44]. This maximized the mapping performance of the depth
camera in use. Figure 10 shows the reconstruction of the
test sample through the approach presented in this work.
The first point cloud was acquired through a user-defined
pose, capturing the central part of the sample (Fig. 10a). The
target sampling density (0.05 points/mm2) was achieved
throughout the sample surface, through eleven successive
autonomously computed poses (Fig. 10b–l).

The resulting reconstructed surface was compared with
the ground-truth point cloud, which was acquired by a
Hexagon ROMER Absolute Arm RA-7520SE (Fig. 11).
This is a metrology tool, based on a passive arm equipped
with a laser profiler and high-accuracy encoders. The stated
precision of the scanning system is 53μm. Figure 11b shows
the deviation map, between the reconstructed geometry and
the ground-truth point cloud. The deviations are within
the expected range of 0–4 mm, since the sensor had an
accuracy of 2% and the average sensor standoff used for
the data collection was set to 200 mm. Nevertheless, the
discontinuities in the error distribution in the deviation map

Fig. 10 Full 3D reconstruction of CFRP automotive test sample with target density ρ∗ = 0.05 points/mm2, through an initial starting pose (a) and
eleven autonomously generated sensor poses (b–l)
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Fig. 11 Acquisition of
ground-truth point cloud
through the Hexagon ROMER
Absolute Arm (a). Map of
deviation between the
reconstructed geometry and the
ground-truth (b)

seems to suggest that it may also be partially caused by the
propagation of the inaccuracy in the calibration of the robot
TCP (the camera centre) onto the registration of the point
clouds.

6 Conclusions and future work

Several applications require a digital model of an object to
create a virtual twin of the part and/or to inform automated
systems that need to interact with it. In most situations, the
acquisition of a single point cloud from one point of view
cannot produce a complete 3D reconstruction of an object.
Multiple point clouds, collected from different poses are
typically required. Manual determination of optimal view
poses for surface scanning is time-consuming and expert-
dependent. Moreover, when the scanning sensor is manipu-
lated by a robotic arm, it is necessary to consider the robot
kinematic constraints and avoid collisions. Finding the opti-
mum set of view poses for a robot-manipulated 3D scanning
system, in order to efficiently reconstruct a given object
using the minimum number of views, is still an open pro-
blem. This article presented a mathematical framework for
automating the 3D reconstruction of specimens. The app-

roach is suitable to be used with two large families of 3D
scanners: depth cameras and laser scanners. Compared with
previous works, the presented framework does not need
a priori information about the shape of the object, since it
incrementally creates and updates the digital reconstruction
of the part. The method allows mapping the surface of an
object to meet a user-defined target sampling density. Effi-
cient incremental down-sampling and merging is performed
in a single pass, through an indexing algorithm that minimi-
zes the computational effort. The framework code is made
publicly available, at https://doi.org/10.5281/zenodo.4646850,
and can be used by the research community for future
developments. The robustness of the approach was tested
through simulated data. In order to validate the framework
in experimental scenarios, a computer was interfaced with
a robot arm and an RGB-D camera to reconstruct the geo-
metry of a 3D printed version of a reference test model
and of an industrial test piece. The investigations proved the
capability of the proposed framework to flexibly adapt to
real scenarios and different starting view poses and to be
used with low-cost sensors.

The selection of the best next pose among a large but
finite number of test poses, used to probe the objective
function in the multidimensional search space in this work,
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may lead to choosing a pose corresponding to a local mini-
mum of the objective function rather than the absolute mini-
mum. Although this has been deemed acceptable for the
scope of this work, future work should focus on enhancing
the ability to converge to deployable poses corresponding
to the absolute minimum of the objective function for all
sampling steps.
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36. Möller T, Trumbore B (1997) Fast, minimum storage ray-triangle
intersection. Journal of Graphics Tools 2(1):21–28

37. Mebius JE (2007) Derivation of the Euler-Rodrigues for-
mula for three-dimensional rotations from the general for-
mula for four-dimensional rotations. Xiv General Mathematics.
arXiv:math/0701759. Accessed 31 March 2021

38. Slabaugh GG (1999) Computing Euler angles from a rotation
matrix. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.371.6578&rep=rep1&type=pdf. Accessed 31 March 2021

39. Mineo C, et al. (2019) Interfacing toolbox for robotic arms with
real-time adaptive behavior capabilities. University of Strathclyde.
https://doi.org/10.17868/70008

40. Mineo C et al (2020) Enabling robotic adaptive behaviour
capabilities for new industry 4.0 automated quality inspection
paradigms. Insight-Non-Destructive Testing and Condition Moni-
toring 62(6):338–344

41. Khan A, Aragon-Camarasa G, Sun L, Siebert JP (2016) On the
calibration of active binocular and RGBD vision systems for dual-
arm robots. In: 2016 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, Qingdao (China)

42. Wong C, Mineo C, Yang E, Yan XT, Gu D (2020) A
novel clustering-based algorithm for solving spatially-constrained
robotic task sequencing problems. IEEE/ASME Transactions on
Mechatronics. https://doi.org/10.1109/TMECH.2020.3037158

43. Turk G, Levoy M (1994) Zippered polygon meshes from range
images. In: Proceedings of the 21st annual conference on
computer graphics and interactive techniques. Association for
Computing Machinery, New York, pp 311-318

44. Lu R (2017) Light scattering technology for food property, quality
and safety assessment. Contemporary Food Engineering Series.
CRC Press, Boca Raton. https://doi.org/10.1201/b20220

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1911Int J Adv Manuf Technol (2021) 116:1895–1911

https://doi.org/10.1117/12.334326
https://doi.org/10.1111/1467-8659.00574
https://doi.org/10.1007/s13243-020-00091-x
https://doi.org/10.1109/ICRA40945.2020.9197435
https://doi.org/10.3390/s21062030
https://doi.org/10.1007/978-1-4471-4011-5
http://arxiv.org/abs/math/0701759
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.371.6578&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.371.6578&rep=rep1&type=pdf
https://doi.org/10.17868/70008
https://doi.org/10.1109/TMECH.2020.3037158
https://doi.org/10.1201/b20220

	Autonomous 3D geometry reconstruction through robot-manipulated optical sensors
	Abstract
	Introduction
	Motivation
	Related work
	Contribution
	Article structure

	Theoretical foundations
	Definition of metrics
	Incremental down-sampling and merging
	Next best view pose computation
	Objective function definition
	Searching through the multi-dimensional space

	Stopping criteria

	Experimental setup
	Simulations
	Sensor data results
	Conclusions and future work
	Declarations
	References


