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Although mathematical modelling of pressure-flow dynamics in the cardiocirculatory system has a lengthy history, readily finding
the appropriate model for the experimental situation at hand is often a challenge in and of itself. An ideal model would be relatively
easy to use and reliable, besides being ethically acceptable. Furthermore, it would address the pathogenic features of the
cardiovascular disease that one seeks to investigate. No universally valid model has been identified, even though a host of
models have been developed. The object of this review is to describe several of the most relevant mathematical models of the
cardiovascular system: the physiological features of circulatory dynamics are explained, and their mathematical formulations are
compared. The focus is on the whole-body scale mathematical models that portray the subject’s responses to hypovolemic
shock. The models contained in this review differ from one another, both in the mathematical methodology adopted and in the
physiological or pathological aspects described. Each model, in fact, mimics different aspects of cardiocirculatory physiology and
pathophysiology to varying degrees: some of these models are geared to better understand the mechanisms of vascular
hemodynamics, whereas others focus more on disease states so as to develop therapeutic standards of care or to test novel
approaches. We will elucidate key issues involved in the modeling of cardiovascular system and its control by reviewing seven of
these models developed to address these specific purposes.

1. Introduction

The quantitative understanding of the pathologic compensa-
tion to injuries is a key factor in improving the survival of
trauma victims. In the process of devising enhancement for
trauma care, and in particular for countering hemorrhagic
shock, a thorough review of published contributions was a
necessary first step. The present review reports the results
of this investigation.

In the literature, there are a large number of mathemati-
cal models simulating human hemorrhage for different levels
of blood loss from minimal to life-threatening or lethal. In
general, understanding the time-dependent global hemody-
namics is essential for predicting hemodynamic collapse
and mortality after trauma and should be accounted for in
mathematical models of the response to trauma.

In cases where trauma and hemorrhage lead to shock, rel-
evant changes can occur on a relatively short time scale and

typically involve acidosis/hypoxia, transcapillary refill, baro-
reflex control, etc.

The aim of our investigation was to select a certain
number of representative mathematical models, models that
succeed in reproducing the pathophysiologic response to
hemorrhage, explicitly representing the most significant
hemodynamic variables, those variables or indicators which
medical doctors focus upon when interpreting the likely
evolution of their patients and the effectiveness of the admin-
istrated therapies.

We believe that simulation technology combined with
ever increasing data processing capacity may prove to be a
decisive tool for understanding cardiocirculatory hemody-
namics. By using computational models, experimental data
can be interpreted more objectively. Model-directed experi-
mentation serves not only to refine the models and identify
their parameters but also to clarify the interpretation of other
experimental results.
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We can consider this process as a synergistic interplay
between experimental and computational phases.

Since Grodins published his own global dynamic model
in 1959, many mathematical models have followed [1]. The
wide variety of such models differ in terms of their purpose
and the methodology adopted.

Authors such as Frank [2], Guyton et al. [3-9], and Gro-
dins et al. [1, 10] conducted experiments in their own labora-
tories, while others, like Beard et al. [11], Batzel et al. [12],
and Zenker et al. [13], used reported results obtained from
animal models. Still others, such as Siam et al. [14], relied
mainly on theoretical models.

The choice of models reviewed here reflects our focus on
the mathematical modeling of the response to hypovolemic
shock. We selected whole-body scale models considering, as
key hemodynamic variables, arterial and venous pressures,
cardiac output, cardiac frequency, and stroke volume.

The structure of this paper is as follows: in the remaining
part of the introduction, a very brief description of each of
the considered models is given, in order to situate them in
context, with respect to each other. In the overview section,
a general classification of the existing models is offered, so
that interested readers may rapidly focus their attention with
regard to the chronological development and the functional
and operational characteristics of the models. In Materials
and Methods, a brief description of the procedure followed
to identify and select the models is shown. In Results, each
specific model is presented and discussed in detail: this sec-
tion represents the main body of the current work. A short
discussion comparing modeling approaches and some con-
cluding remarks complete the paper.

As a universally recognized “standard” for the basic mor-
phology of the arterial pressure pulse, the Windkessel model
of the arterial tree [15] is described first. Furthermore, this
model may also be considered a foundation for the other
six models described [2].

Hemodynamic models of the circulatory system often
employ “lumped-parameter” methods, assuming uniform
distributions of pressure within vascular compartments. A
zero-dimensional model (i.e., “lumped-parameter” model)
may use an analogy with electrical circuits, where blood flow,
viscosity, and pressure are analogous to current, resistance,
and voltage, respectively.

According to this analogy, frictional losses are resistors,
inertance of blood flow is represented as inductors (for large
vessels), and vessel elasticity translates into capacitors. In
electrical network analysis, Kirchhoffs current and voltage
laws make it possible to determine voltage drops and current
flows through every component of the circuit.

In its initial conceptualization as a 2-component Wind-
kessel model, Otto Frank [2] devised a capacitor in parallel
with a resistor. The former represented a reserve of “stressed”
blood volume within large-vessel arteries, whereas the latter
accounted for dissipative losses incurred as blood makes its
way throughout the systemic circulatory tree. The appeal of
“lumped-parameter” models is self-evident, given their
mathematical versatility. In fact, they are both easily deriv-
able and can be expressed as simple ordinary differential
equations.
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The second model that we illustrate, i.e., the Guyton,
Coleman, and Granger model [3], is arguably the most
popular and comprehensive circulatory-system model.
Guyton’s very extensive model has been in some sense
the pioneer of the whole investigation into mathematical
modelling of the circulation: it consists of many equations
addressing most relevant aspects of total-body cardio-
circulatory compensation by concentrating, in turn, on
specific subsystems (renal, haemopoietic, thirst, cardiac
pump, etc.) [3].

A salient feature of long-term blood pressure control is
the dominant role of the kidney. The model describes the
importance of renal control of blood volume in maintaining
physiological blood pressures in response to perturbations,
also quantifying response of the kidneys to such changes
[3]. The importance of the SNS (sympathetic nervous sys-
tem) in maintaining long-term blood pressure control is only
marginally considered in the Guyton-Coleman-Granger
model.

While extremely comprehensive, the model is very
complicated, has not been validated on actual perturbation
experiments, and is prone to adopt numerical shortcuts
(thresholds, etc.).

In any case, the Guyton model remains the most widely
studied cardiovascular model to date. Notwithstanding, it
continues to fuel numerous debates [16] as to its validity in
representing the human cardiovascular system [17, 18].

In 1959, Grodins [1] formulated a comprehensive math-
ematical model of the cardiovascular system. Two different
circuits arranged in series compose this model: systemic cir-
cuit and pulmonary circuit. The left and right ventricles are
instead represented by two pumps. The Grodins’ model is a
compartimental model in which arterial and venous storage
volumes of the systemic and pulmonary circuits are two
different compartments and, with mass balance equation,
the relationships for blood inflow and outflow from the com-
partments are modeled [1].

With volumes equated to compartments, we have arterial
and venous-storage compartments, i.e., systemic and pulmo-
nary circuits, respectively.

The compartment equations involve mass balance rela-
tionships for blood inflow and outflow from the compart-
ments. In this model, arterial blood pressure P, and the
baroreflex mechanism which acts to stabilize P, during sig-
nificant perturbations, such as hemorrhage, are taken into
account by relationships between resistance and metabolic
factors [1]. Embedded into the model for both the right and
left ventricles, as measureable cardiovascular determinants,
namely, P, cardiac frequency F, systemic resistance R,
and cardiac output Q [1], their relationships can be expressed
mathematically.

Batzel et al. [12] design their cardiovascular model based
on Grodins’ four-compartment model employing Starling’s
law of the heart and introducing the Bowditch effect [1].
The autonomic control system developed by the Authors acts
on a single feedback loop and allows to evaluate the effect of
hearth rate on stabilizing arterial pressure during a hemor-
rhage. In particular, this model proposes a baroreflex control
system that allows the study of the characteristic changes in
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blood pressure and heart rate during and after acute blood
loss of varying degrees of severity.

In order to evaluate oxygen delivery at physiological and
at hemorrhagic conditions for different fluid resuscitation
regimes, a hemodynamic model of the human adult cardio-
vascular system was developed by Siam et al. [14]. This model
comprises a cardiovascular compartment and an interstitial
compartment between which there is fluid exchange. It fur-
ther represents the distribution of blood to different organ
systems, the interaction among vascular beds, the blood pres-
sure gradients, and blood flow and oxygen delivery through-
out the cardiovascular system. The Authors’ goal was to
explore optimal fluid volumes and infusion rates so as to
maximize tissue oxygen delivery rate of Dy, [14]. As a sec-

ondary objective, they sought to define clinical markers (or
endpoint) that could be monitored during fluid resuscitation
so as to predict maximum Do, values [14].

Beard et al. [11], starting from the pressure-diuresis and
pressure-natriuresis relationships considered by Guyton in
his model [3], have developed a new model of long-term con-
trol of arterial blood pressure. In fact, Beard et al. assert that
the “three laws of long-term arterial pressure regulation” of
Guyton [19] constitute tautologies [20, 21]. Both baroreflex
and renal mechanisms (i.e., the renin-angiotensin system)
are factored into the model, thus their interactions with key
effector organs, such as the vascular smooth muscle, heart,
and kidney. The model is explicitly documented allowing
for definition and reproducibility: all model equations are
reported in the original publications and are validated based
on experimental data. Parameter values are reported as well:
all parameter values were estimated by comparing model
simulations to measured data. This model is used to investi-
gate the mechanisms that explain the chronic pressure natri-
uresis curves and to examine the mechanism by which the
stimulation of the baroreflex reduces the arterial pressure.
Hypotheses concerning the etiology of primary hypertension
are also advanced [11].

Finally, we describe Zenker et al’s model [13]. With
respect to the currently available models, its outstanding fea-
ture is that it uses a simplified representation of the cardio-
vascular system and its control to simulate volume loss
(e.g., hemorrhage). Notwithstanding its simplicity, it can
portray the evolution over time of most clinically relevant
variables, such as mean arterial pressure, heart rate, venous
pressure, and cardiac output.

It consists of a continuous representation of the left heart,
as a pump, the systemic circulation with the large arteries,
treated as linear capacitors (as in the Windkessel model),
with the arterial pressure controlled by a physiological feed-
back loop [2]. For purposes of simplification, the pulmonary
circulation is excluded. His simplified 5-ODE model of the
cardiovascular system is inclusive of baroreflex pressure con-
trol, with specific focus on the interactions between myocar-
dial contractility, intravascular volume, and peripheral
resistance.

Zenker et al’s model is geared for simulation scenarios
less concerned with intrabeat details, but instead mainly
focused on continuous interbeat dynamics [13].

2. Overview

The present section offers a synthesis of the panorama of
available cardiocirculatory models, organized systemati-
cally. This synthesis is mostly based on Kappel and Batzel
[22] and Shi et al. [23] to which the readers refer for
details.

In this section, we examine some key features concerning
the modeling of the respiratory and cardiovascular control
systems. Moreover, we summarily describe some of the sig-
nificant models which have been generated to address these
issues. The understanding of the underlying cardiovascular
mechanisms and their control systems is sufficiently well
understood to develop a number of mathematical models to
try to explain their workings. However, cardiovascular con-
trol systems involve a complex set of interrelationships
among such quantities as heart rate, blood pressure, cardiac
output, and blood vessel resistance, such that the description
of the control relationships is far from complete. We will
consider several crucial areas of cardiovascular control and
some milestones of the modeling approaches that have been
used to elucidate the control processes. One approach to ana-
lyzing the cardiovascular and respiratory systems entails the
application of optimality conditions, based on optimal con-
trol theory, into the design of these systems and the modeling
process.

Mathematical models of the cardiovascular system may
belong to several categories, such as the following [22]:

(i) Models of the mechanical cardiocirculatory system
(ii) Models of control of the cardiocirculatory system
(iii) Pulsatile versus nonpulsatile models
(iv) Comprehensive versus restricted models

(v) Models classified according to dimensionality

The seminal investigation into the mechanics of the car-
diovascular system by way of mathematical analysis dates
back to 1899 with the work of Frank [2] and his followers,
subsequently pursued by Aperia [24] and MacDonald [25].
Modeling of the mechanical system deals arterial and venous
blood flow, the cardiac cycle, and other phenomena not
involving active control processes [22].

Given the complexity of the entire cardiovascular system,
many models have focused only on less comprehensive
aspects, such as pressure-flow studies in arterial or venous
compartments [25-45], left heart-artery studies [46-48], car-
diac activity and circulation [49, 50], the baroreflex loop [51-
54], local resistance autoregulation [55-57], resistance-
pressure-flow relationships [58, 59], baroreflex control of
heart rate variability [60, 61] and contractility [62, 63], or
the influence of specific physiological states, such as sleep
[64], or pathological conditions such as hemorrhage under
different fluid resuscitation regimes [12, 14] or medical inter-
ventions [65]. The interrelatedness of the various mecha-
nisms requires that models address the issue of meaningful
simplification while bearing in mind the unitary nature of
the system as a whole.



Arguably, the more a model includes the totality of con-
stituent parts that make up the cardiovascular system, the
more comprehensive it is defined. Conversely, local models
are of narrower scope, focusing on a key feature or a discrete
subset of these. By this criterion, a number of comprehensive
cardiovascular system models have been developed. In turn,
they are distinguished according to the nature of blood flow,
as either pulsatile (involving effects determined by the
cardiac cycle) or nonpulsatile, each incorporating one or
more mechanisms of cardiovascular control [22].

Many comprehensive models of the cardiovascular sys-
tem stem from Grodins’ seminal four-compartment model
presented in 1959 [1, 66]. It comprises both a systemic and
a pulmonary circuit arranged in series, whereby the left and
right ventricles are equated to pumps. Mirroring Grodins’
respiratory model, the basic structure consists of compart-
ments representing volumes, i.e., the arterial and venous
blood storage volumes of the systemic and pulmonary cir-
cuits, respectively. The compartment equations define
mass-balance relationships between inflow and outflow
within and among compartments. Specifically, in Grodins’
model, the control processes included interrelationships
between peripheral resistance and metabolic factors affecting
arterial blood pressure P, , along with baroreflex responses
for stabilizing P, perturbations, notably hemorrhage [22].

Notwithstanding its empirical underpinnings, it effec-
tively provided the groundwork regarding the interrelation-
ships among key cardiovascular variables, most notably: P,
, heart rate H, systemic resistance R,, and cardiac output Q
for both cardiac chambers [22].

Pulsatility is crucial to certain cardiovascular phenomena
[67-73]. For example, pulsatile arterial blood flow results in a
fairly steady distribution of blood to all tissues of the body,
which could not occur otherwise. The role of pulsatility is
also key to the baroreflex response to certain situations, as
described by Ursino et al. [54]. However, since these pulsatile
features are essentially superimposed on the underlying gen-
eral flow, models using nonpulsatile flow more aptly lend
themselves to other applications, e.g., pharmacokinetic stud-
ies. Similarly, whenever pulsatility has no decisive role, for
example, when all the tissue compartments can be equated
to a single compartment, the role of pulsatility con equally
be overlooked. Indeed, Grodins’ model is nonpulsatile as
are subsequent models [74-77].

Another pulsatile model can be found in DeBoer et al.
[78] who used difference equations. The latter describe how
the features of one beat influence the characteristics of the
next.

The model includes key cardiovascular parameters like
(sympathetic) baroreflex control of heart rate and peripheral
resistance and cardiac contractility. However, lesser contrib-
utors to blood pressure, such as those determined by the
mechanics of respiration as well as Windkessel properties,
are also incorporated [22].

The model was used to investigate short-term physiolog-
ical variations in heart rate and blood pressure as well as the
effects of specific pharmaceuticals. A noteworthy finding was
the observation that the 10-second Meyer wave could be
modeled in terms of a delay in the baroreflex loop. Studies
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of bifurcation, as described by Eyal and Akselrod [79], have
also been based on this model.

Kappel and Peer instead adapted Grodins’ model to study
physiological transitions, such as from the resting state to
physical exertion [80, 81]. Their model included a relation-
ship between systemic resistance and local venous O, con-
centration as described by Peskin [57], in turn based on the
work of Huntsman et al. [82]. At steady state, heart rate H
and contractility are related through the Bowditch effect,
according to which cardiac contractility increases with
increasing rates. Studies conducted by Kappel and Peer [80]
demonstrated that any stability requires that contractility
adapt to higher rates with a certain time lag.

Accordingly, a dynamical relationship between rate H
and contractility was modeled via a second-order differential
equation. The most significant aspect of Kappel and Peer’s
model was the introduction of optimal control as the crucial
mechanism underlying arterial blood pressure control. In
this approach, optimality refers to minimizing deviations in
both blood pressure and energy requirements by penalizing
extreme variations in heart rate, in turn acting as the ultimate
controller. Through this “black box modeling” of the control
systems for the baroreceptor loop, we can also determine the
influence that the optimality criteria have on the entire yield
of the system. Additionally, optimality criteria were applied
to baroreflex function in Kappel and Peer [80, 81] as well as
into a study of cardiovascular-respiratory control during
exercise by Timischl [83].

Guyton and Coleman’s comprehensive model was a
milestone in cardiovascular modeling [84]. Since its primary
concern revolved around blood pressure and the control
mechanisms thereof, especially in hypertensive states, the
model mainly focused on fluid regulation and thus renal
function, ultimately [22].

Besides incorporating variable fluid volume and kidney
function, the Guyton-Coleman model included the cardiac
effects of hemodynamic load, autonomic reflexes (including
baroreflex and chemoreflex function), and autoregulation of
flow within tissue compartments [22].

Model simulations lent ample support for the preemi-
nence of kidney function in the long-term control of arterial
blood pressure. Recently, Beard et al. developed a model of
long-term control of arterial pressure incorporating Guyton’s
concept of pressure-diuresis/natriuresis as physiological
input-output relationships [11]. For other applications, such
as short-term blood pressure control, fluid levels can be
assumed constant; thus, kidney function needs not be taken
into consideration (e.g., see [83]).

A number of models have limited their investigations
into specific features of the baroreflex control loop or other
control features. One such model by Kenner [85] represented
the autoregulatory pressure and flow controls in the periph-
eral arteries as well as the baroreflex mechanism by first-
order transfer functions. The latter allows for linear analysis
of overall stability within the system.

Ursino et al’s mathematical model [54] describes the
effects of pulsatile flow on the hemodynamic properties and
functioning of the cardiovascular system. Aside from the
mass balance equations, the model also included
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representations of the cardiac pump, sympathetic control of
heart rate, peripheral resistance, and pressure-volume rela-
tionships of systemic veins. Model simulations reproduced
experimental findings, corroborating the role of pulsatility
in carotid baroreflex control. Lafer studied the effects on car-
diac contractions via sympathetic and parasympathetic ner-
vous system interactions as well as the dependency of
stroke volume on ventricular compliance [86].

The cardiac effects of time delay on baroreflex control
have also been investigated by Cavalcanti and Belardinelli
[87] and Ottesen [88]. Via simple mathematical models of
short-term blood pressure control, these Authors analyzed
stability properties subjected to one-second delay increases
in the baroreceptor loop. In a recent mathematical model
by Ursino [89], a range of important factors involved in the
control of short-term arterial pressure were included. It con-
sists in a six-compartment description of the vascular system
with a model of the pulsating heart and two groups of baro-
receptors, also accounting for SNS activity. Also included are
the influence of arterial pressure (baroreflex), sympathetic
activity, cardiac cycle, systemic peripheral resistance, and
heart contractility. The model, whose results were consistent
with experimental data, was used to simulate clinical scenar-
ios involving baroreflex responses, among which are varying
degrees of acute hemorrhage [22].

2.1. Combined Cardiovascular-Respiratory Models. The car-
diovascular and respiratory systems are by no means inde-
pendent of one another, but rather their functioning is
largely the product of their interactions. The mechanisms
for cardiovascular control interact with those for respiratory
control causing delays due to transport time in the blood-
stream between the lungs and the chemoreceptors (central
and peripheral) that measure the levels of PaCOZ and Py,

modified during the ventilation.

The rate and distribution of blood flow also influence the
efficiency of gas exchange in the lungs and the function of tis-
sue compartments. Vasomotor activity is related to respira-
tory center activity such that increases in its activity also
tend to increase respiration. The recent model of the human
respiratory control system by Ursino et al. [90, 91] incorpo-
rates several of these cardiorespiratory interactions, focusing
on responses to hypoxic and hypercapnic stimuli. The model
presented by Timischl [83] can be viewed as a combined and
extended rendition of preexisting work by Kappel and Peer
[80] and Khoo et al. [92]. This cardiocirculatory and respira-
tory model integrated some mechanisms in order to imple-
ment an optimal control.

Timischl et al. [64] further extended the model to include
wake-to-sleep transitions and subsequently incorporated
delays into the respiratory submodel [93]. Wabel and Leon-
hardt [94] also presented a model to simulate the cardiovas-
cular and respiratory systems. Availing themselves of the
MATLAB toolbox Simulink for their simulations, they rede-
signed the model devised by Coleman and coworkers. The
heart, circulatory and respiratory systems, kidneys, and key
nervous system control mechanisms, as well as humoral,
i.e., endocrine, components, were all included [22].

2.2. Dimensionality. In function of the desired goals and
accuracy of the study, models can be chosen according to
varying dimensionalities in representation. In particular,
the physiology of the cardiocirculatory apparatus can be
studied through zero-dimensional (0D) and one-
dimensional (1D) mathematical models. An underlying
assumption of 0D models is the uniform distribution of the
essential variables (i.e. pressure, flow and volume) regardless
of the compartment (i.e., organ, vessel, or vessel segment) at
any given time. In contrast, the higher dimensional models
allow for variations of these parameters [23].

0D models are geared to evaluate the hemodynamic
interactions of components of the cardiovascular system, in
the whole cardiocirculatory system. Instead, 1D models can
efficiently characterize pulse wave transmission in the arterial
tree, at a fraction of the computational requirements of
higher order computational modelling.

0D modeling is a theoretical useful frame that utilizes the
concept of the hydraulic-electrical analogue. As hydraulic
impedance takes into account the effects of the frictional loss,
the elasticity of the vessel wall, and the blood inertia on the
blood stream, the electrical impedance integrates the effects
of resistance, capacitance, and inductance on the electrical
circuits [23]. Blood flow is described via the continuity equa-
tion for mass conservation, whereas the flow of electrons in
the circuit follows KirchhofF’s first and second circuit laws
and Ohm’s law.

Thus, conventional methods for analysis of electric cir-
cuits can be applied to investigate cardiovascular dynamics,
where resistance R, inductance L, and capacitance C in the
electric circuit describe the effects of friction, inertia, and ves-
sel elasticity on blood flow, respectively. 0D cardiovascular
modelling draws from Windkessel’s original modeling of
arterial flow, later employed to represent the heart, cardiac
valves, and veins [23].

A host of 0D models has been spawned to describe spe-
cific characteristics of each circulatory subsystem. In terms
of cardiovascular mechanics, a significant characteristic of
1D models consists in their capacity to depict wave transmis-
sion effects on the vasculature. Instead, two-dimensional
(2D) models have a distinct role, relative to the vasculature,
since they are well-adapted to representations of radial vari-
ations of velocity in axisymmetric tubes. In regions charac-
terized by turbulence, the computing power of three-
dimensional (3D) solutions is required to describe complex
flow patterns. For detailed 3D cardiovascular flow modelling,
see [49, 95-99]. “Lumped-parameter” models can be catego-
rized by complexity, from the minimally complex (e.g.,
Windkessel models) to the extremely complex that may even
include autonomic and endocrine feedback loops (e.g., the
1972 Guyton model) [3]. One classification divides the
models into subgroups, namely, single- and multicompart-
ment models.

In single-compartment models, the aggregate vasculature
system, or its subsystems, can be reduced to one or more
resistance-compliance-inductance  (RLC)  combinations
(according to the anatomical distribution considered). The
single-compartment prototype was the seminal two-
element Windkessel model, originally designed by Hales in



1733, then mathematically formalized in 1899 by Otto Frank
[100]. The Windkessel model has two components in paral-
lel, a capacitor C emulating the storage function of large elas-
tic arteries and a resistor R that equates to peripheral
resistance vessels [23].

Albeit simple, RC combination models still have practical
applications in the clinical setting. For instance, knowing
peripheral resistance and the aortic pressure pulse waveform,
overall arterial compliance can be calculated [100, 101]. In
addition, it is often used in cardiovascular modeling to repre-
sent afterload, notwithstanding the limit of having a single
time constant. To simulate added arterial features, Landes
[102] further elaborated the Windkessel configuration by
introducing the resistance R, in series with the RC Windkes-
sel model. Westerhof and coworkers extensively focused on
this model, alternatively referred to as the Westkessel model,
or RCR model [102]. The added resistance R, stands for the
typical impedance of the arterial network [103], representing
a significant improvement in high frequency performance
[102]. The sum of the resistances R, + R equates to the total
systemic vascular resistance of the previous (Windkessel)
RC model, while the capacitance C accounts for the mechan-
ical elasticity of the arterial vascular bed [102].

However, the RCR model has demonstrated a number of
shortcomings, in in vivo studies. In particular, the latter
include underestimations of peak aortic flow and mean arte-
rial pressure, of significant degree for the former, yet mar-
ginal for the latter. In addition, aortic pressure and flow
waveforms result entirely unrealistic. Nevertheless, the RCR
model is still widely employed in cardiovascular modelling,
with reference to afterload, to evaluate cardiac functioning
in a host of physiological or pathological settings [104].

Concurrently to the Westkessel RCR model, Burattini
and Natalucci developed their own [105]. To describe the
arterial features, the latter adopted an alternative configura-
tion of the three-element RCR model. In it, a small resistance
R, was used in series, not with the RC combination, but
rather with the capacitor C. Conceptually, this coupling of
the small resistance R, to the capacitor C should account
for arterial viscoelasticity [23].

With the introduction of the aforementioned inertial
term L, the vessel impedance calculation is more precise in
the midfrequency spectrum. In detail, by integrating the iner-
tia of the blood flow via a RLCR1 model, Landes [102] suc-
ceeded in enriching the RCR model. In particular, by
incorporating the inertial effect of blood flow via a RLCR1
model configuration, Landes [102] succeeded in enriching
the RCR arterial model. Likewise, Westerhof et al. also incor-
porated the inertial effect of blood flow into the RCR model,
obtaining however an altogether diverse RLCR2 four-
element arterial model [106, 107].

A number of independent comparative in vivo studies,
specifically designed to test modeling accuracy of the RC,
RCR, RLRCI, and RLRC2 models, have demonstrated the
RLRC1 model to perform best [108]. For most applications,
RC, RCR, and RLRC1 models adequately address overall
hemodynamics. In fact, in circulatory beds such as the aorta
and major vessel branches, venous pressure and pressure pul-
sation are negligible. However, in the coronary and pulmo-
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nary circulatory beds, the venous contribution must also be
considered [109].

In single-compartment models, the entire systemic vas-
culature represents a single block, thus eliminating the need
to compute pressures and flow rates of individual branches.
On the contrary, in multicompartment models [110-115],
each segment or compartment has its own resistance R, com-
pliance C, and inductance L, depending on the local charac-
teristics, which are then compiled into a unified model of
the whole network system. For each study, the models can
be tailored to suit the specific region(s) of interest and
required accuracy. For each study, the models can be tailored
to suit the specific region(s) of interest and required accuracy
[23].

The building blocks for the development of vessel
network models, in multiple-compartment models, consist
in suitable RLC models for each vessel segment [110, 116].

In particular, Formaggia and Veneziani [117] and Milisic
and Quarteroni [118] provided formal derivations of four
compartment model configurations capable of describing
individual vessel segments from which several multicompart-
ment models have been developed, spanning from single
branch models to those of greater complexity. Generally,
researchers partition the systemic vasculature into segments
of every caliber [54, 69, 119] and then connect the segments
into a loop.

In order to investigate blood-flow distribution and pres-
sure/flow curves in individual simulated vessel branches,
other Authors have designed multibranch, multicompart-
ment models [110, 116, 120-123]. For full-body models for
the systemic arterial network, see [123-125].

Increasingly sophisticated and advanced configurations
of 0D models have had widespread applications as reliable
tools in the study of cardiovascular physiology. Although
1D models have been traditionally confined to the study of
arterial hemodynamics, more recent applications in the clin-
ical diagnosis of cardiovascular pathology (e.g., arterial
hypertension and atherosclerosis) have been successful [23].

Since overly simple models generally have unsatisfactory
accuracy, the researcher must often accept a trade-off
between level of model sophistication and its reliability,
according to the investigator’s specific needs. Since 0D car-
diovascular models, especially those of higher complexity,
are essentially intended for research, it comes as no surprise
that few integrated 0D models have had clinical applications
[23].

3. Materials and Methods

After a comprehensive literature search on cardiovascular
modeling in PubMed, Google Scholar, Ovid, ScienceDirect,
and Cochrane Library search engines, we selected seven
models that we deemed representative of the category of cir-
culatory models able to simulate hemodynamic responses to
hypovolemic shock, at the whole-body scale.

The global hemodynamics models typically consist in a
closed-loop hydraulic circuit. The various components of
the body are represented as lumped, i.e., zero-dimensional
and descriptions, with bleeding as an option.
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As regards the constitutive equations of the models, these
will be concisely described. Moreover, authorship of dia-
grams and graphs herein included or cited are duly acknowl-
edged in the references to the original papers. For each work,
the mathematical notations, along with any tables, are
reported as used by the Authors. Developing a uniform nota-
tion for all the models described in the present review would
have proved challenging and not always possible.

4. Results

This section is dedicated to the description of the chosen
models.

4.1. Windkessel. Mathematical modeling and parameter esti-
mation may help to understand the cardiovascular system
but is hampered due to the dynamic interactions within the
vascular tree. A well-known approach to operationalizing
cardiovascular modeling is via the Windkessel models
(WM). The 2-element Windkessel model (2WM) considered
in this discussion dates back to 1899. It is the first lumped-
parameter arterial model designed by the German physiolo-
gist Otto Frank in 1899 [2].

According to this model, the human systemic arterial tree
works as an elastic reservoir which, through the aortic valve,
receives blood from the left ventricle, in a pulsatile manner,
and supplies blood to the arterioles and capillaries, viewed
collectively as being equivalent to vascular resistance. Down-
stream to microvascular bed (capillaries), we have the sys-
temic venous circulation, which is attributed a value of zero
pressure. In its most simplified form, we may consider the
following one-tank model (Figure 1):

In this model formulation, Q,, is the instantaneous aortic
flow; p is the pressure in the tank, which is constant in every
point and representative of aortic pressure; V is the volume
of the reservoir, representative of the volume of blood con-
tained in the arteries; C is the compliance of the tank
(=dV/dP), representative of the total arterial compliance;
p, is the venous pressure; and R is the peripheral resistance,
defined as the ratio between the drop of arterio-venous pres-
sure (P — P,) and the flow rate flowing through the arterioles
and capillaries, assuming that the volume V is a linear func-
tion of pressure P (i.e., V=Vo+ C- P), where Vo is a con-
stant equal to the volume of the tank at zero pressure.
Then, it is possible to write the overall volume for the tank
as follows:

dp p-p,
Cr =Qu =~ withP,=0. (1)

The corresponding electrical analog may be considered as
follows (Figure 2) with the corresponding differential
expressed by the equation:

dPaO Pao
=Q, - 2. 2
ar dt an Rper ( )

In essence, it consists of two lumped parameters, i.e.,
resistance R and compliance (alternatively labeled capaci-

tance) C which are both ascribed to blood vessels. The effec-
tiveness of the use of WM is based on the direct
correspondence between these electrical components and
their intrinsic physiological value. In fact, according to the
law of the Hagen-Poiseuille (nonideal fluid dynamics), the
resistance is strictly dependent on the radius of the blood ves-
sel and the compliance represents elasticity. Large vessels
represent compliances, whereas smaller vessels are equated
to resistances.

Resistance vessels in the arterial tree are mainly repre-
sented by small arteries and arterioles, whereas C is mainly
determined by the elastic properties of large vessels, predom-
inantly the aorta. The 2WM thus provided insight into the
contribution of the different arterial properties to the work-
load of the heart. The 2WM also provided the basis for differ-
ent methods of estimating C, such as the decay time method
[2], the area method [126, 127], and the pulse pressure
method [128]. However, the 2-element model is of limited
value in mimicking systemic input impedance (Z,,) [107].
Also, when aortic flow is used as an input, this model pro-
duces unreliable wave shapes of aortic pressure and flow
[107, 128]. This is mainly due to the poor representativeness
of the aortic Z;, at frequencies in the medium to high range.
To overcome this known weakness of the 2WM, Westerhof
et al. [129], on the basis of new information about Z, , intro-
duced the 3SWM.

In the latter model, an additional resistance Z_ is added. It
stands for the characteristic impedance of the proximal part
of the arterial bed (aorta) and is subsequently applied to the
same electrical circuit as the classic 2-element model. Bor-
rowing from electronics, the concepts of characteristic
impedance of the transmission medium and of Z_ propaga-
tion velocity of a wave, and taking into account the reflection
properties of the waves, we can state that physiologically Z,
integrates the capacitive and inertial effects of the proximal
ascending aorta. It is derived from transmission-line models
and allows to adjust for the above-mentioned weakness. Z. is
connected in series with the 2-element windkessel circuit.
The corresponding electrical analog is considered in
Figure 3, and the relative equations are as follows:

dP P
ik o I
a dt ao Rper (3)

Pa():Pac+Zc'Qa0'

C

The introduction of Z, considerably improves the model
at medium to high frequencies. As a consequence, the WM
model produces more realistic pressure and flow wave shapes
and a better fit with experimental data [107, 129, 130]. The
3WM is thus based on hemodynamic principles and has
become the conventional lumped-parameter model of sys-
temic circulation. Nevertheless, this model still presents some
limitations when compared to experimental data [129]. In
particular, C tends to be overestimated and Z.
underestimated.

In order to reduce the above errors in the low frequency
range, owing to the characteristic impedance, the addition
of a fourth element in the Windkessel circuit has been
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FIGURE 1: One-tank Winkessel model (adapted from Fig. 1 in Westerhof N., Lankhaar J.W., and Westerhof B.E., “The Arterial Windkessel”,

Med Biol Eng Comput, 2009, 47, p. 132).

F1GURE 2: Two-element Windkessel model.
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FiGure 3: Three-element Windkessel model.

proposed [131], although originally introduced by Burattini
and Gnudi [132]. The 4-element Windkessel model (4WM)
thus expands the 3-element WM with an inertance L. The
latter was placed in parallel with the characteristic impedance
to form the 4WM thus consisting of two dynamic elements.
Consequently, we need two states to describe its dynamics.
The state vector consists of states F;(t) and P, (t) with F,(t
) denoting flow through the total arterial inertance. Again,
assuming Q,, (¢) as an input, the state equations are derived
from the 4WM in the figure below.
The relative equations are as follows:

C dPac _ Q Pac
ar At — Xao Rper >
dF, (4)
2l-z(Q. -F),
dt C(an l)

PaOZPac+ZC(Qa0_F1)'

This fourth element (Figure 4) is an inertance equal to the
sum of all inertances in the arterial segments, i.e., total arte-
rial inertance [131].

The impact of total arterial inertance is mainly limited to
the mean term. Similarly, it affects input impedance only for
very low frequencies. This is important due to the fact that
this is the very range where the 3-element WM lacks
precision.

Other researchers have instead introduced an inertance
in series with the characteristic impedance [108, 132-135].
Whereas high frequencies would affect arterial-input imped-
ance with this series inertance, such effects do not occur at
low frequencies. Although the inertance theoretically implies
an increase in the impedance modulus in the high-frequency
range, the inertance adopted minimizes those effects at low
frequency. Of note, Segers et al. [136-138] and Burattini
and Di Salvia [133] also adopted the 4-element WM. In prac-
tice, inertance results are quite difficult to estimate which is
the rationale for preferring the 3-element WM. This 4-
element model nevertheless offers undeniable advantages: it
accounts for the inertia of the whole arterial system; it per-
mits Z, to come into play at the full spectrum (low, medium,
and high) of frequencies.

4.2. Guyton. The pioneering work of Guyton et al. [3] (hence-
forth referred to as G72) which perform an analysis of the
overall regulation of the cardiovascular system constitutes
the first physiological model characterized by a functional
integration (or horizontal integration) [139]. The Authors
represented their mathematical model through a series of
components functionally combined to simulate the key sub-
systems underlying the physiology of cardiovascular regula-
tion. This model enables a multiorgan analysis of the
regulation of the overall cardiovascular system capable of
exploring events over time intervals, ranging from seconds
to weeks or even months [139].

Guyton initially strived for extreme simplicity in devising
his model of the cardiovascular system. He focused on the
role of blood volume and vascular capacity. Thereby, he
modeled a closed hydraulic loop that, at the same time, was
able to account for short-term regulation of cardiac output.
Subsequently, Guyton directed his efforts towards long-
term regulation of arterial pressure. For the latter, two
slow-acting mechanisms were deemed crucial: (1) the capac-
ity to determine wide fluctuations in urinary output at rela-
tively constant blood pressure (corresponding to the renal
function curve, in Guytonian terms) and (2) long-term vas-
cular autoregulation (i.e., changes in the extent of vasculari-
zation, constriction, or dilation of existing vessels) so as to
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Fi1GURE 4: Four-element Windkessel model.

adapt blood flow to meet oxygen demand in tissues [140]. At
this second-stage, the model better explained the transient
dynamics and steady state of renal hypertension. The third
version of Guyton’s model was further enriched by endocrine
and neural facets, whose parameters have an established
bearing on the renal function curve [140].

The G72 model consists of 18 modules (comprising over
350 elementary components), including approximately 160
variables, more than 40 of which constitute variables of state
(cf. diagram in Guyton et al. [3, 141]). The model contains a
total of approximately 500 values (i.e., model variables,
parameters, and constants) [139].

Conceptually, Guyton constructed his original model
around a “central” hub (called circulatory dynamics module)
interacting with 17 spokes (peripheral modules) each corre-
sponding to a separate physiological function [139].

Upon examination of the original code and published
diagram, one may notice that, besides its interconnected
module structure, the model allows for a wide range of time
scales in the individual modules, spanning from intervals as
short as 5 x 10™# min (characteristic of autonomic control)
to as long as 10* min (that is, timeframes typical of chronic
degeneration or remodeling, e.g., cardiac hypertrophy)
[139]. Specifically, long-term regulatory effects on cardiovas-
cular activity (the foremost of which represented by the
renin-angiotensin-aldosterone axis) adopt time constants in
the order of hours or days, whereas short-term regulation
(most notably, baroreceptor reflexes) is more aptly measured
in seconds.

The simulations obtained via the G72 model were used to
perform simultaneous analyses of the main effects resulting
from several types of stresses on the cardiovascular system
[139]. Moreover, these simulations were even used to predict
patterns of physiological behaviors that would have taken
years to observe experimentally in vivo [139]. It also served
to identify parts of the system where knowledge was still lack-
ing, thus helping in the design of further research. Overall,
however, the model has a merely descriptive value of the
workings of cardiovascular system regulation. The foremost
limits of the model consist in the impossibility to take into
account most of the pathologies of interest.

Building on the foundation of the Guyton model, various
Authors, such as Ikeda et al., designed more sophisticated ver-
sions. Ikeda et al. [142], however, included acid-base regula-
tion parameters and variables (ie., inputs/outputs),
contemplating a host of solutes and metabolites. In addition,
the respiratory subsystem, which is functionally interrelated

with the subsystem regulating acid-base balance, was in turn
based on a model provided by Grodins et al. [66, 143]. The
three generations, i.e., evolutionary stages, of Guyton’s model
were described by Sagawa [140].

4.2.1. First Generation of Guyton’s Model of the Circulatory
System. Guyton envisioned the entire hydraulic loop of circu-
lation as opening at the vena cava-right heart junction, ana-
lyzing it at two ports, i.e., the atrium and vena cava [144]
(cf. Fig. 1 in Sagawa [140], p. 260). In this way, both ports
were forced via a single flow, which was the only way to
maintain the total blood volume constant in the open loop.
Thus, two curves could be derived from this open-loop anal-
ysis: one curve derived from the atrial port, describing the
relationship between cardiac output and right atrial pressure
(the Starling curve for cardiac output), and another curve
from the vena cava port, pertaining to the relationship
between venous return and right atrial pressure (i.e., the
venous return curve). In a closed-loop system, the steady-
state cardiac output and venous return equal each other
[140]. Consequently, the intersection between the two curves
was used to find the equilibrium point for cardiac output and
venous return as well as for right atrial pressure in the closed-
loop system. The venous return curve was based on a simpli-
fied model of the systemic vascular bed consisting only of
resistances and capacitances for the arterial and venous com-
partments, respectively [140]. In this system, one of the most
important parameters is represented by blood volume.

Via the total vascular capacity parameter, the blood
volume determines the static filling pressure which can
be measured in the absence of flow within the system. It
is represented by the ordinate intercept of the venous
return curve (cf. Figs. 1-2 in Sagawa [140], p. 260). The
relationship allowed a graphic representation of how vari-
ations in blood volume, vascular resistance, and capacity
in arterial or venous compartments, along with several
other physiological and pathological perturbations, affect
the equilibrium point, i.e., cardiac output and mean right
atrial pressure [145].

4.2.2. Second Generation of Guyton’s Model of the Circulatory
System. It is noteworthy that systemic arterial pressure was
absent in the foregoing equilibrium diagram (First-Genera-
tion Model) [140]. Initially, Guyton focused mainly on car-
diac output and its regulation [146]. Yet, arterial pressure is
nevertheless the most frequently measured variable in exper-
imental and clinical settings. Arterial hypertension directly or
indirectly underlies significant cardiovascular morbidity and
mortality in developed countries. Mean arterial pressure is
the product of cardiac output and total systemic vascular
resistance. The typical clinical picture of chronic hyperten-
sion is accompanied by significantly increased total periph-
eral resistance notwithstanding the apparently normal
cardiac output [140, 147].

Based on the above considerations, the second stage of
Guyton and his coworker’s analysis [148] addressed this
prominent health issue. They identified sequences of cardio-
vascular and renal events whose physiological interactions
could give rise to patterns of chronic hypertension within a
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week or two. By tweaking parameters of renal function and
urine output, desired increases in blood volume and thus car-
diac output could be achieved within several days [140]. The
increased cardiac output elicited rises in arterial pressure,
which in turn increased urine production so as to match
exogenous fluid intake [140]. Ultimately, a new point of equi-
librium is reached at a higher arterial blood pressure and car-
diac output, with an increase in total blood volume (cf. Fig. 4
in Sagawa [140], p. 261).

Two noteworthy features are, on the hand, the slope of
the curve, whose steepness determines significant decreases
in urinary output even with minimal pressure reductions at
the renal artery, and on the other hand, the fact that marked
increases in blood and interstitial fluid volumes can eventu-
ally result from reductions in urine output that are relatively
minute, with respect to overall fluid intake. This time-
dependent process is represented by the integrator illustrated
in the diagram [140]. The increases in blood volume in turn
manifest as increases in cardiac output and thus arterial pres-
sures. Over a period of days, these events constitute an
integrating-type negative feedback loop that controls urinary
output with respect to water intake, so as to maintain a bal-
ance between water intake and urine output [140].

The system (cf. Fig. 5 in Sagawa [140], p. 261) shows that
the renal manipulations produce rightward shifts in the renal
function curve, whereas the equilibrium state (cf. Fig. 4 in
Sagawa [140], p. 261) exhibits that a considerable increase
in blood volume and cardiac output must be produced before
arterial pressure rises sufficiently to balance urinary output
with water intake by this rightward shift of the renal function
curve alone [140].

Consequently, Guyton incorporated into his model a cru-
cial hypothesis, which had no relationship with the renin-
angiotensin system. According to the underlying hypothesis
regarding the microvasculature, blood flow in excess of local
tissue demands for oxygen automatically and proportionally
increases resistance, with inverse effects on blood flow (i.e.,
oxygen supply). Although the onset of the postulated autore-
gulatory control of resistance vessels takes seconds or
minutes, it may last for hours, if not days [140]. It involves
both acute and chronic changes in vascular diameter but also
in vascularization, via variations in the density of microves-
sels in tissues (cf. Fig. 6 in Sagawa [140], p. 262); it illustrates
how the autoregulation is. The long-term autoregulatory
(incorporated into Guyton’s model) increase in total periph-
eral resistance also persists as a significant hypothesis in Guy-
ton’s third-generation model [140].

4.2.3. Third Generation of Guyton’s Model of the Circulatory
System. In the latest generation of Guyton’s model [3, 141]
of circulation, the pathogenesis of renal hypertension main-
tains its pivotal role. Meanwhile, many studies of physiology
continued to add to the knowledge regarding the workings of
the renin-angiotensin-aldosterone system, elements of which
were embedded into the third generation model [149].
Among the latter, we recall the role of autonomic nervous
control of salt and water balance, including the thirst mech-
anism and the control of ADH release via vascular mechano-
receptors as well as via central osmoreceptors. In addition,
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renal sympathetic vasomotor reflexes were also taken into
account [140].

That being said, critics of Guyton’s model note its short-
comings as regards its limited contribution to our under-
standing of the pathophysiology of circulation [140].
Certain limitations can be defined nonspecific to the Guyto-
nian model, although further amplified by the sheer bulk of
the model itself. In fact, however detailed, it remains an
extreme over simplification of the reality of the cardiovascu-
lar system.

The details of the dynamics at the cellular level would
have to be incorporated into the model in order to account
for the effects of thermoregulation, physical exertion in heat
or cold, shock, the effect of gravity on cardiac output, and
arterial pressure, just to name a few. These complex situa-
tions cannot predict by the model. Similarly, the effects on
blood volume distribution of common perturbations such
as epinephrine infusion allow rough approximations, at best
[150, 151]. To its favor, however, the strength of the Guyto-
nian model consists in its potential for simulating long-
term phenomena as regards control mechanisms of arterial
pressure and the dynamics of blood and interstitial fluid vol-
ume, via a formal model. As with any predictions, they are as
valid as the underlying assumptions regarding the structures
and parameters. However, the probability of obtaining valid
conclusions is inversely proportional to the number of the
incorporated assumptions. Therefore, for large-scale models
such as Guyton’s, it is crucial to avail oneself of as many
experimentally established findings as possible concerning
the interrelationships and the parametric shifts of each com-
ponent of its subsystems. Guyton was quite cognizant of
these inherent limitations, as exemplified by the following
quote [3]:

An important factor that allows a systems analysis such as
this to predict actual function with good accuracy is the
extreme stability of the actual circulatory control system.
Because of this stability, the function of any single block, or
of any single control mechanism, can be in error as much as
+50 percent (sometimes even more than this) without signifi-
cantly affecting the overall output of the system. . . ., If it were
not for the extreme stability of the overall circulatory control
system we would have to know far more basic physiology to
make such a systems analysis as this work [3].

One interpretation of the above statement highlights that
the overall stability of arterial pressure and cardiac output
in vivo, in the face of significant perturbations to individual
components of the circulatory system, is paralleled in their
model, despite wide fluctuations in parameter variations. In
the ultimate analysis, it likely characterizes the essential fea-
tures of the cardiovascular system to a sufficient degree of
accuracy [140]. Accordingly, when the model registers
marked departures from equilibrium, whether in pressure
or flow, serious concern appears warranted. However, the
inherent difficulties in accurately tracking the internal work-
ings of a complex system through a limited set of variables
are all too obvious [140]. Despite these challenges, Guyton’s
group delved into this real-world system and experimentally
corroborated the structural and parametric values of their
formal models with some degree of success [140].
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Specifically, the most important, although least supported
experimentally, hypothesis in Guyton’s model is the long-
term autoregulatory increase in total systemic resistance,
whereas its counterpart, i.e., autoregulatory decreases in vas-
cular resistance following sudden drops in tissue perfusion, is
well documented in both animal and human experiments
(see Coleman, et al. [152]).

A more advanced version of G72, originally created in
1992, was eventually stabilized. Despite never being pub-
lished as such, it subsequently became the flagship version
for Guyton’s group, surviving in Fortran and C within his
group, but was also adopted by other teams, even with a
rather sophisticated command-line user interface in MS-
DOS (MODSIM [153]).

The G72 model has the advantage of having a formal
description as well as having adequate experimental data
regarding its various components. However, the Guyton
models, together with their subsequent versions [154], do
not account for pulsatile cardiac function.

This poses major limitations, for instance, when studying
heart failure (HF) inasmuch as [155]:

(1) There is an inability to adequately represent the sys-
tolic and diastolic characteristics of HF and biventri-
cular desynchronization

(2) The maximum arterial pressure derivative, as well as
other useful clinical variables, eludes being simulated

(3) More realistic representations of short-term regula-
tory loops (such as the baroreceptor reflexes) inexo-
rably rely on such pulsatile variables

4.3. Grodins. Most comprehensive models for the cardiovas-
cular system stem from Grodins’ four-compartment model,
presented in 1959, as extensions or modifications thereof
[1, 66]. This model is a resistive-capacitive model composed
of three basic blocks: two pumps representing left and right
hearts and a block representing the systemic and pulmonary
circuits as depicted in Figure 5.

Analogous to Grodins’ respiratory model, the basic
model structure consists of compartments representing vol-
umes. In particular, the volumes are the arterial and venous
blood storage volumes of the systemic and pulmonary cir-
cuits. Mass balance relations for blood flow inputs and out-
puts of the compartments underlie the compartment
equations [1].

In the model, there are also some control processes
obtained by implementing a baroreflex mechanism by
which it is possible to stabilize the arterial pressure P,
during possible traumatic events (e.g., hemorrhage). Fur-
thermore, there are relationships between systemic resis-
tances and metabolic factors that allow the analysis and
understanding of the interrelations of some of the most
significant hemodynamic variables: arterial pressure P,
heart rate H, systemic resistance R, and cardiac output
Q for both hearts [1].

Here, we illustrate the fundamental equations of the
model considering the simplification proposed from Noor-
dergraaf in his passage [156].
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The purpose of Grodins is to simulate the steady-state
conditions of the cardiovascular system considering the
Frank-Starling law as the basis of the description of the
behavior of the heart. Therefore, the volume work performed
by the heart is [1]:

w, = SVd. (5)

S is the proportionality constant that represents the
“strength” of the ventricle, and v, is the diastolic volume.
w, can also be expressed as the product of stroke volume v,
and mean arterial pressure P, [1]:

w sp A (6)

S=V

Rest volume v, is defined as [1]:
V, =V — V. (7)

Ignoring the atrial contributions and posing that the ven-
tricular relaxation occurs immediately at the end of the sys-
tole, that the filling of the relaxed ventricle is a linear
process driven by a constant venous pressure and hindered
by internal viscoelastic frictions, and that the unstressed vol-
ume of the relaxed ventricle is zero, Grodins’ ventricular fill-
ing law is obtained [1]:

describing the relationship between diastolic volume at time
t(v,;), venous filling pressure (Py,), compliance of the relaxed
ventricle (C), and total viscous resistance (R).

Assuming R and C linear and time-invariant, since at ¢
=0, v,=v,, the solution of the previous differential equation
is [1]:

V,=CPy +(V, - CPy)e """ (9)

In steady-state conditions, for an isolated ventricle,
assuming a constant systole duration of 0.2s, the duration
of filling f is assumed to be related to dependent on heart rate
n (cycles per second) and it is defined as [1]:

t=—-02. (10)

S|~

The cardiac output Q is given by [1]:
Q=nv,. (11)

The set of equations (5)-(11), hold for both hearts, with
equation (10) in common, represent eleven independent
equations. Instead of considering the complete vascular tree,
we have the peripheral flow given by [1]:

PA_PV

Rper

Qper = > (12)
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F1GURE 5: The complete mechanical system (adapted from Fig. 6 in Grodins [1], p. 96).

where R, stands for peripheral resistance. The pressure-

volume relationship on the arterial side is [1]:

1

P,= C—AVA, (13)
and on the venous side [1]:
p= v, (14)
Cy
Defining [1]:
B=V,+V, (15)

and taking into account that these 4 equations are valid both
for the systemic and for the pulmonary circuit, another 8
equations must be added and so the number of independent
equations rises to 19.

Considering the steady-state restrictions under which the
system will operate (i.e., the flows outgoing from the right
and left heart must be equal to each other and at the same
time equal to the flows in the systemic and pulmonary cir-
cuit) [1]:

QL = QR =Q,
Q= Fs, (16)
QR = FP)

moreover, it must be considered that the total amount of cir-
culating blood is equal to the sum of the blood present in the
systemic and pulmonary tree [1]:

By =By +B,. (17)

In this way, 4 more equations are added to the previous
19, bringing the total number to 23.

The given set of equations describes the Grodins model, a
mathematical model by which it is possible to describe the
cardiovascular system. Grodins is one of the first scholars
to have experimented with the use of computers in the anal-

ysis of physiological phenomena affecting the human body,
in particular the cardiorespiratory system.

We want to recall that Grodins’ pioneering work began in
the 1950s when he first suggested the use of control theory to
explain the respiratory system and its regulatory mecha-
nisms. In 1954, Grodins presented his seminal work [157]
in which the respiratory system is represented as a closed-
loop feedback system.

4.4. Siam. For the purpose of simulating and evaluating arte-
rial oxygen delivery at normal and at hemorrhagic conditions
under different fluid resuscitation regimes, a hemodynamic
model of the human adult cardiovascular system was devel-
oped by Siam and his colleagues [14, 158]. By way of the
model, hematocrit and mean arterial pressure can be used
to optimize infusion rates and volumes for effective resuscita-
tion maneuvers. The calculations thus identify the optimal
fluid replacement regimen required to assure maximal oxy-
gen delivery rates at the given conditions of controlled bleed-
ing [14].

Cell necrosis ultimately leading to multiorgan failure
occurs only in the end stages of severe hemorrhagic hypovo-
lemia [159-161]. These, however, result from a cascade of
systemic events that alter hemodynamic parameters and
blood composition, ultimately impairing oxygen delivery to
vital organs [14]. Another matter of debate concerns the opti-
mal volumes and rates of fluid replacement. Various animal
models have been developed to address the effects of various
fluid volumes and rates on mortality and rebleeding end-
points [162-165]; nevertheless, the optimal fluid resuscita-
tion protocol remains elusive [14].

The Authors designed a mathematical-model study to
explore optimal fluid volumes and infusion rates so as to
maximize tissue oxygen delivery D, rate [14]. Another

objective was to define clinical markers (or endpoints) that
could be monitored during fluid resuscitation so as to predict
maximum Dy, values [14]. The physiological underpinnings
of such an optimal point (i.e., of maximal Dy, rate) are the
inverse effects of fluid administration on cardiac output
(CO) and hematocrit (HCT), which are the two major deter-
minants of oxygen delivery [14]. In the context of fluid
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replacement therapy, the temporal dynamics of tissue oxygen
delivery rate were elucidated. Such studies served to establish
effective fluid-replacement protocols of infusion rates and
volumes, i.e., capable of assuring continuous and maximal
oxygen delivery. Furthermore, the impact of fluid type (i.e.,
crystalloids or colloids) on the hemodynamic responses and
oxygen delivery to tissues was also studied [14].

Their hypothesis revolved around the notion of the exis-
tence of an optimal value of oxygen delivery, where fluid
administration could be interrupted. The latter point could
be established in the field using HCT and mean arterial pres-
sure (MAP) values as the two main determinants of oxygen
delivery [14].

4.4.1. Description of the Model. The model structure (cf. Fig. 1
in Siam et al. [14], p. 84) is based on prior model versions
[166]. We can see that the system comprises separate com-
partments: a cardiovascular compartment and an interstitial
compartment, between which there is fluid exchange. It is a
structural representation of the distribution of blood to dif-
ferent organ systems, the interaction among vascular beds,
the blood pressure gradients, and blood flow and oxygen
delivery throughout the cardiovascular system [14].

The cardiovascular model aimed to reproduce hemody-
namic responses under conditions of hemorrhage and fluid
resuscitation. The system model is subdivided into heart, a
systemic circulation, a pulmonary circulation, and an inter-
stitial compartment. The intravenous fluid load, flow, CO,
and capillary pressure levels (i.e., rates of fluid exchanges
between the intravascular and interstitial compartments)
could be readily simulated [14]. The structural and mathe-
matical aspects of the model: pressure, flow, and volume of
individual chambers throughout the cardiac cycle are illus-
trated in Table 1 (cf. Tab. Al in Siam et al. [14], p. 92). The
model consists of multiple elements. Specifically, the aorta
is subdivided into nine anatomical segments representing
the aortic root, the arch, four thoracic aorta segments, and
three abdominal aortic segments, respectively [14]. Each aor-
tic segment in turn consists of a three-element circuit mim-
icking viscosity, fluid inertia, and vessel compliance,
respectively [14]. Finally, the aorta gives rise to seven arterial
branches that correspond to the relevant anatomical vascula-
ture. Each arterial segment terminates with a capillary bed-
equivalent resistor connecting the systemic arterial circula-
tion to the corresponding venous circulation [14].

Each systemic artery/systemic vein pair represents a two-
element unit, whose fluid mass and acceleration forces are
disregarded [167]. In the context of blood losses and fluid
resuscitation, HCT invariably drops such that the lessened
blood viscosity is considered to have negligible effects on
resistance [168]. Three segments concur to model the pulmo-
nary circulation (ie., pulmonary artery, capillary bed, and
veins), where each segment consists in a two-element unit.
The interstitial space was modeled so as to elucidate fluid
shifts between the different compartments [14]. Thus, the
relations between the interstitial fluid (ISF) volume and
hydrostatic and oncotic pressures are duly taken into
account. Actually, the latter show a certain degree of similar-
ity to earlier relations adopted by Barnea and Sheffer [166].
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The Authors’ underlying assumption is that net changes in
the ISF volume can occur only thanks to fluid shifts between
the intravascular and interstitial spaces. In addition, capillary
permeability was assumed to be constant and independent
regardless of conditions of shock or variations in colloid con-
centrations. Bleeding entails loss of fluids, red blood cells, and
colloids as well [14]. The severity of a given hemorrhage
depends on relationship between arterial-end capillary hydro-
static pressures and the variations in resistance values in
response to hemorrhage (so as to assure flow). The following
equations express the concentration and the amount of oxy-
gen delivered by a deciliter of blood (Eq. (18)) [14]:

[O,] =ax P02 + [HbO,],
[Hb] = HCT x [Hbgpc), (18)
[HbO,| = Sa0, x HbO x [Hb],

2 max

where « is the solubility coefficient of oxygen in blood, [O,] is
the total oxygen concentration, [HbO,] is the concentration of
oxygen bound to hemoglobin, PO, is the partial oxygen pres-
sure, Sa0, is the oxygen saturation of hemoglobin [Hb],
[Hbggc] is the hemoglobin concentration in g/deciliter of red
blood cells (RBCs), the hematocrit (HCT) is the mass of
hemoglobin per deciliter of blood, and HbO, | .. is the maxi-
mum oxygen-carrying capacity of Hb [14]. In this model, total
oxygen content of blood is calculated as the sum of oxygen dis-
solved in the blood and oxygen transported by RBCs. In sys-
temic arteries, hemoglobin saturation was assumed to be
complete and the oxygen concentration per unit volume of
RBCs was considered constant [14].

The oxygen delivery rate [Dy, ] as a function of CO at any

given time t is expressed as [14]:
Do, (t) = [O,(t)] x CO(t). (19)

The described model was used to study the normal hemo-
dynamic response, the bleeding phase, bleeding control, and
the monitoring phase without treatment, the fluid resuscitation
phase, and the follow-up phase. Class II, III, and IV hemor-
rhages were simulated to study their effects on hemodynamic
variables. The simulation sequences were repeated for each class
of hemorrhage applying a wide range of infusion rates [14].

4.4.2. Fluid Exchange. The fluid exchange model assumes the
concentration of colloids in the interstitial space is constant
(2%, [166]) with no leakage of colloids from the intravascular
into the interstitial compartment [14]. The volumes of
plasma and RBCs are calculated separately. For the plasma
volume during conditions of hemorrhage, see equation (10)
in Table 1, which takes into account the combined effects of
fluid volume losses from bleeding and the subsequent fluid
exchanges with the interstitial space [14]. In equation (10),
Qpjeed (t) is the bleeding-volume rate which comprises both
plasma and red blood cell losses. Whereas RBC losses are
assumed to occur only during hemorrhagic phases, HCT
levels vary during hemorrhage as well as throughout fluid
resuscitation [14]. See also Table 1 for calculations of red
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TaBLE 1: Model equations and list of symbols (adapted from Tab. Al in Siam et al., [14], p. 92).

Model equations

Systolic and diastolic pressures

Psyst,x(t) = max (Emax,x.EN,c(tn)(Vx(t) - Vx,0)> 0) [14] (1)
Pdiast,x(t) = Dl,x X IOY(DZ"Y)'e(DZ’X'VX(m + D3,x In (D4,xVx(t)) [14] (2)
Px(t) = max (Psyst,x(t)’ Pdiast,x(t)) [14] (3)

Fluid exchange
2.5x107%V, - 37,for V, < 14.8L,
= . s [170] )
1.0 x 107*V,, — 1.48, otherwise

7 =0.22740C% | +2.1755¢C; [170] (5)
Ja(t) = (Pa_cap(t) = P ig()) I Rexen, = (Ma_cap (£) = 7 s (£) )/ Rexer, [14] (6)
To(£) = (Py_cap(£) = Py _ig(£) ) ! Rexen= (70, _cap (£) = 71, 35(£)) Rexer [14] 7)
Jeap (£) = Jo (1) +1,(t) [14] ®)
Bleeding
Qpieed (£) = Po_cap (t)/Ryjeeq [14] )
AV pagma (£)/dt = = Qpieeq (£)*(1 = HCT (1)) + Jeop (1) [14] (10)
AVypc(t)/dt = =Qpjeea(t)*HCT(¢) [14] (11)
Controlled hemorrhage
AV ptasma ()18 = Qe (1) + Jcap (1) [14] (12)
Co (1) = (e norm - (HCT(DHCT yorm) - Vipana (8) + Cie - Vit ()Y pagmal£) [14] (13)
List of symbols
Symbol Description
Pyt Systolic pressure
Piag Diastolic pressure
D Diastolic parameter
14 Chamber volume
X Chamber index
E Elastance
T Oncotic pressure
Vi Interstitial fluid volume
Ceal Interstitial colloid concentration
Ja Arterial-end fluid transfer rate
I, Venous-end fluid transfer rate
Jeap Capillary fluid transfer rate
Py cap Arterial-end hydrostatic pressure
Py cap Venous-end hydrostatic pressure
TCa_cap Capillary arterial end oncotic pressure
Py Interstitial pressure
TCa_is Interstitial arterial-end oncotic pressure
Toy_is Interstitial venous-end oncotic pressure
Ceol_is Interstitial colloid concentration
Ryjeed Bleeding resistance
V slasma Plasma volume
Vrec RBC volume

HCT Hematocrit
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TaBLE 1: Continued.

Model equations

HCT

norm
CCOLB
CC017B7 norm
leeed

Qinf

Cinf

Vv
R

inf

exch

HCT initial value
Blood total colloid concentration
Blood protein initial concentration
Bleeding rate
Infusion rate
Infused colloid concentration
Infused volume

Fluid exchange resistance

blood cell volume losses, i.e., equation (11), while blood
oncotic pressure is expressed by the concentration of colloids
according to equation (5). The variation in blood proteins
concentration during both hemorrhage and fluid resuscita-
tion is assumed to be proportional to the value of HCT, as
ComPUted bY CcolB(t) = CcolB norm ° (HCT(t)/HCTnorm)
(equation (12), [169]). The total weight of blood proteins is
giVeIl by WprotB(t) = CcolB(t) : Vplasma(t) [14]

During colloid fluid infusions, the plasma colloid concen-
tration is increased as a function of the fluid infusion rate. The
weight of infused colloids is calculated as W ;¢(£) = Cys -
Vine(£) [14]. Similarly, the concentration of blood colloids,
under conditions of controlled hemorrhage and colloid fluid
treatment, is expressed as follows: C gp(t) = (W op(t) +
WcolB inf(t))/(vplasma(t)) [14] In this expression, Vplasma(t)
was computed by the integral of equation (12) which accounts
for the combined effect resulting from infusion and fluid
exchanges with the interstitial compartment [14]. Fluid
exchange between the intravascular and interstitial compart-
ments is given by net filtration of fluid as blood flows along
the capillary vessel (see equation (8)). The fluid moves from
one compartment to another through an exchange resistance
R4 (considered constant and equal for both capillary ends)
[14]. The flow of fluid at each capillary end is composed of
two components: one is proportional to the hydrostatic pres-
sure difference, and the second component is proportional to
the difference in oncotic pressure [14].

4.5. Batzel. In their paper [12], Batzel et al. explicitly focus on
modeling the behavior of the Cardiovascular System (CVS)
with particular regard to hemorrhage-induced control sys-
tem responses. The Authors consider a single feedback loop
so as to study the impact of increased heart rate on stabilizing
arterial blood pressure in response to acute hemorrhage of
various degrees. A reference to future applications regards
implementing additional control elements and the investiga-
tion of transfusion mechanisms in the clinical setting.

We will recapitulate the contents, in an effort to highlight
those aspects that the Authors deemed most salient. In [4] Guy-
ton illustrates P response curves to various degrees of blood
loss from hemorrhage, in both compensated and uncompen-
sated conditions. Compensatory mechanisms consist of a num-
ber of key control loops (ie., (1) baroreceptor reflexes, (2)

hormonal vasoconstrictors, (3) chemoreceptor reflexes, and
(4) autotransfusion (transcapillary refill) of interstitial fluids
[171]) aimed at stabilizing the CVS during bleeding.

The Authors derived the fundamental model equations
and their underpinnings (see Fig. 3 in Batzel et al., [12], p.
3) by starting from the cardiovascular system and taking
account the lungs (FP) as well as tissue compartments (F,)

(12,93, 172, 173]:

¢,.P.=Q-F, (20)
tsPos = F= Qs (21)
Py =F,— Qp (22)
CpPop=F, = Qs (23)
S =0y, (24)

S =0, (25)
0;==y,0, - a8+ BH, (26)
o,=-y,0,-a,S,+f,H, (27)
H=u, (28)

Cys = Uy. (29)

The model equations are mainly due to the work of Gro-
dins [1, 66, 143] and Kappel and Peer [80, 81]. In particular,
the Authors conceptualized the cardiovascular system as a
systemic and pulmonary circuit, connected in series and
two hearts (left and right ventricle) that pump the blood
within them.

Equations (20) and (21) represent mass balance equa-
tions for blood flowing through the arterial systemic (as)
and venous systemic (vs) compartment, respectively, while
equation (22) gives the mass balance equation for the venous
pulmonary (vp) component.

Assuming that the volume of circulating blood is a con-
stant, the arterial pulmonary (ap) pressure is given by equa-
tion (23).

Cardiac output can vary by modifying heart rate (H) or
contractility (S). The Bowditch effect defines the relationship
of proportionality between H and S. Equations (24)-(27)
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reflect that left (S;) and right (S,) contractilities of the ventri-
cles are determined by the heart rate.

Table 2 succinctly defines the cardiovascular parameters
adopted by Batzel et al. [12]. Table 3 lists the values of these
parameters, where ¢, ¢, ¢,p> and c,,, express the capacitances
of the different compartments of the cardiovascular system.

Via Ohm’s law, equations (30) and (31) define blood
flow F, where P, is arterial blood pressure, P, is venous
pressure, and R; and R, represent the systemic and pul-
monary resistances, respectively. Details can be found in
[12, 80, 174].

F — as VS) 30

o= (30)
pP,-P

FP:apTPVP' (31)

Left (Q;) and right (Q,) heart cardiac outputs are
defined as the mean blood flow over the length of a pulse
[12]:

B oGPy (D (Si(1), Pog(1)) (1 - Ky)
QO =H Vo =H- R+ 15,0, a0
6P ()f (S,(8), Pp() (1= K,)
=H-V tr(r) — H-
U =H N = 5 Tk + £ (8,0, Py (1),
(32)
V.. is the stroke volume, and it is a function of con-

str
tractility S, intraventricular pressure P, and P,, and time

of diatole t,, etc. The formula f is a minimum function
to exclude values for V, [80] greater than filling volume.
In detail, k;, k,, and f are defined as [12]:

tq
kl—exp( R1C1>

t 33)
ko=exp (-1 ), (
o xe)

f(s,p)=05(s +p) —0.5((p—s)* +0.01) 7,
Instead, for t;, we have the following equation [80]:
td = tc - ts, (34)
where
60
f=— 35
= (33)

is the duration of heart cycle and t, is the duration of the
systole. Using the empirical formula [80]:

t,=k- tllz—K<§3> , (36)
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where x is a constant with 0.3 <k <5, we obtain [12]:

ty=ty(H)= % - x(%) 1/2. (37)

Equations (28) and (29) are the control equations of
the model [12]:

H=M1,('3V5=1/l2, (38)

where in particular u, and u, represent the temporal var-
iations in heart rate H and venous compliance c,,. The
controls u, and u, are derived by way of the cost func-
tional [12]:

J:Oqa (Pas - PJ;) “ra, (va - PJJS)Z +qy ()" + q, () dt,

(39)

which optimizes the system. Feedback control can be
obtained by linearizing around a steady state and applying
a Riccati algebraic equation to derive the feedback gain
matrix. According to finite-dimensional control system
theory, this control will be suboptimal [175].

4.5.1. Modeling Hemorrhage. In modeling hemorrhage, the
Authors argue that the following points must be considered
[12]:

(1) Site and rate of bleeding from the cardiovascular
system

(2) Modeling of the transcapillary refill
(3) How to implement a transfusion

(4) How to implement hemorrhagic shock: cardiocircu-
latory system deterioration, physiological function
of the organs, and maximum heart rate

(5) Implementation of inefficiencies in system function-
ing due to blood loss, filling pressure, or increased
heart rate produced solely by baroreflex and/or hor-
monal mechanisms

In particular, the Authors argue that [12]:

(1) Arterial blood loss should be modeled so that the loss
rate, blood volume, and pressure decrease together

(2) Even though transcapillary refill only restores about
15% of blood plasma volume, it is a crucial factor in
stabilizing blood pressure and ultimately should be
modeled

(3) There are a number of options as to the type of fluid
and regimen to be considered in a transfusion

(4) A characteristic feature of hemorrhagic shock is
reduced cardiac performance due to insufficient car-
diac perfusion. Therefore, there can be either
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TaBLE 2: Cardiovascular parameters (adapted from Tab. 1 in Batzel et al,, [12], p. 24).

Symbol Description

o Coefficient of S in the differential equation for o

Apes R, = A, Cyo,

B Coeflicient of H in the differential equation for o

frac Upper compartment fraction of basic total prone systemic volume
Cas Capacitance of the arterial part of the systemic circuit

Cap Capacitance of the arterial part of the pulmonary circuit

Cys Capacitance of the venous part of the systemic circuit

Cup Capacitance of the venous part of the pulmonary circuit

F, Blood flow perfusing the lung compartment

F, Blood flow perfusing the tissue compartment

H Heart rate

y Coeflicient of ¢ in the differential equation for ¢

P, Mean blood pressure in arterial region of the systemic circuit
Py Mean blood pressure in arterial region of the pulmonary circuit
Py Mean blood pressure in venous region of the systemic circuit
P, Mean blood pressure in venous region of the pulmonary circuit
Q Cardiac output

R, Resistance in the peripheral region of the pulmonary circuit
R Peripheral resistance in the systemic circuit

N Ventricular contractility

Cly Compliance of the respective relaxed ventricle

R, Total viscous resistance of the respective ventricle

o Derivative of S

u Control function

Vi Ventricular stroke volume

V, Total blood volume

vU Total unstressed volume

Lr Left and right of the heart circuit, respectively
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TAaBLE 3: Parameter values (adapted from Tab. 2 in Batzel et al. [12],
p- 24).

Parameter Value/range Unit

Vo 5.0-2.712 1

H o 100 min!

Cas 0.01002 1. mmHg ™
Cys 0.643 1. mmHg™!
Cap 0.03557 1- mmHg ™
Cp 0.1394 I-mmHg™'
R, 18.41 mmHg - min1™
R, 1.965 mmHg - min1™'
a 89.47 min~2

a, 28.46 min >

B 68.71 mmHg - m™!
,3, 1.66 mmHg - m™!
¥ 37.33 min~!

Y, 11.88 min~}

g 0.01289 1- min~’

< 0.06077 1-min~!

R 11.350 mmHg - min1™
R, 4.158 mmHg - min]™

ischemia or dysfunction due to deviations from opti-
mal CO, and O, levels

(5) Once the maximum sustainable heart rate is sur-
passed, further reductions in blood volume will tend
to imply a new steady state at a reduced P,

(6) Thus the system may stabilize at a lower P, or con-
tinue to deteriorate with ongoing volume losses
and/or system performance is compromised with
cardiocirculatory shock. Apart from human and ani-
mal studies, data from hypovolemia in dialysis
patients can provide some human corroboration of
simulated results. The Authors cite a review by Cooke
et al. [176] to justify the use of lower-body negative
pressure (LBNP) in order to perturb homeostasis in
the cardiovascular system and study hemorrhagic
shock in humans

According to Secher et al. [177], three distinct stages
characterize the heart rate response to reversible hypovole-
mia can be identified. The first stage corresponds to a loss
of up to 15% of circulating blood volume. Under these
conditions, there is a slight increase of heart rate (<100
beats/min) and total peripheral resistance that can com-
pensate for the loss of blood; arterial pressure is relatively
maintained (preshock). The second stage occurs with a
reduction in a blood volume of approximately 30%. Such
a blood loss leads at a decrease in heart rate, total periph-

Computational and Mathematical Methods in Medicine

eral resistance, and blood pressure due to C-fibres from
the left ventricle [177] (i.e., von Betzold-Jarisch reflex).
During the third phase, there is a further drop in blood
pressure due to protracted bleeding with increased tachy-
cardia (>120 beats/min).

In control and hemorrhage algorithm, let us now sum-
marize the feedback controls that are considered in the
algorithm that simulates hemorrhage [12]:

(1) At each time t, the control mechanisms tend to bring
the system back to equilibrium, whereby arterial
systemic pressure P,  equals pressure prior to hemor-
rhage, P, . In the steady-state calculation, there is
one degree of freedom

(2) Heart rate is characterized by a maximal sustainable

value, H, ...

(3) If at equilibrium P, = P, ;, we have that H> H, .;
then the control tries to rebalance the system by
“piCking” H = He,max
The control design ensures that the transition from an

initial perturbation (which could also be an initial stationary

state) x' to the final state x/ occurs according to the algorithm

described as follows [12]:

(i) The “initial” x' and “final” x' steady states are calcu-
lated: these states are characterized by variations of
some parameters such as the variation in blood vol-
ume in the interval due to hemorrhage, transfusion
volume, or transcapillary refill

(ii) The control functions u; are calculated as follows.
We start by considering the linearized system
around state x/ with initial condition x(0) = x', with
the cost functional in equation (39). Then the con-
trol functions u; are determined by minimizing the
cost functional subject to the linearized system.
These control functions are defined by the feedback
gain matrix (found by solving the algebraic matrix
Riccati equation). In detail, u; are defined as “feed-
back control functions”

(iii) The nonlinear system (i.e., equation (20) to equation
(29)) is stabilized by means of this control. The latter
will be suboptimal, in the sense of Russell [109].
Throughout the bleed, since the blood volume keeps
decreasing, the control response changes as well

We carry out the stepwise process of derivation of the
control (previously described) over fixed time intervals: after
each step, the control is recalculated to take into account the
volume loss due to ongoing hemorrhage. The final state of
the system x; at the k,;, as the step is used as the initial state
for the simulation at the (k+ 1) step. The control at the
(ky, + 1) step is determined using the equilibrium calculated
by means of the volume at the end of the kg, step [12].

Now, we report the hemorrhage algorithm as described
by the Authors [12]:
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“The control u(t) attime t>0 is calculated as follows:

(Step 1) Change of V, as a consequence of hemorrhage,
infusion, and exchange processes with the inter-
stitium (capillary refill, loss of crystalloid, or
colloid  substitutes from plasma into the
interstitium).

(Step 2) Compute x,,=col (P, ---,H) from f(x,p)=
0 with P,;=P,, and p=p,.

(Step3) If H<H
set

then accept x,;, compute X,, and

e,max’

u(t) ==B'X,(x(t) ~ X,,). (40)

(Step4) If H>H
H

e,max

emaxs then calculate X,, with H=
and p=p, Compute X, and set

u(t) ==B'X, (x(t) = %,).” (41)

where [12] X, , represents the equilibrium reached by the sys-
tem, at time #, due to adaptive control; p, represents the
parameter vector at time t; A, = (0f/0x)(X,;, p,) is the system
matrix for the linearized system around X, ;, with

(1) =f(x(t),p,) + Bu(t),

(42)
y(t) = Cx(t),
B=col(0,:-+,0,1) and C=(1,0,-+,0) are the vectors that
model the cardiovascular system; X, represents the vector
which is Riccati’s solution of the equation ATX + XA, - XB
B'’X+C"C=0; and H,,,, maximal acceptable value of
heart rate at equilibrium ( ~ 130 beats/min).

4.5.2. Steady-State Calculations. In the calculation of the
steady state, there is one degree of freedom. After choos-
ing a value for either H or P,, the calculation of the
steady state is reduced to solving one equation with one
unknown variable [12]. Calculations for each case are
given, since the control algorithm requires that H be var-
ied to restore the system back to a normal P, level, pro-
vided that H<H, ... For H>H, .., the control is set
to H, .. and the normal level for P, derives, according
to the initial assumption [12].

The possibility of reducing all steady state relations to a
single equation, which can be subjected to numerical analy-
sis, indicates that there is a unique point of equilibrium in
the range of admissible physiological values [12]. Moreover,
this numerical calculation of the equilibrium point accrues
appreciable results, in contrast to the application of numeri-
cal solvers to the steady state relations using multiple equa-
tions, in which a solution is not easily achievable [12].
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The model devoid of autoregulation is considered in
more detail, hypothesizing 2 different situations, in [12] to
which the reader is referred for a more in-depth and compre-
hensive discussion of the topic.

4.6. Beard. Since the 1970s, there has been a lack of consensus
as to the actual etiology of hypertension [11]. Nonetheless, as far
as the role of the kidney is concerned, several Authors concur
that the organ is pivotal in regulating blood pressure. The piv-
otal observation underlying the theory is the close relationships
between arterial pressure and urine production. In fact, pertur-
bations in pressure and/or changes in the rate of salt and vol-
ume intake elicit prompt adaptive responses in renal
physiology [3].

Dominance of a renal function as a controller of arterial
pressure has found support in computerized cardiovascular
system models known as “Guyton-Coleman models” [3].
As yet, however, no such computerized model has provided
an unequivocal and complete characterization of the chronic
adaptations of renal function regards blood pressure control.

We will now try to briefly explain the various compo-
nents that define the whole model proposed by Beard et al.
[11]. The functions on which the mathematical architecture
that simulates the behavior of the cardiovascular system is
based will be illustrated as well.

4.6.1. Model

(1) Aorta/Large-Artery Mechanics. Considering the aorta a
simple elastic cylinder, the tension ¢ is computed as a func-
tion of volume V ,, [11]:

dA VA() 1/2
—_——_—= —_— > 4
s (V) #3)

where parameter V|, represents the unstressed volume and
d,/d, is the ratio between the diameter in stressed conditions
and that in unstressed conditions. By definition, ¢ is equal to
1 in the unstressed state when d, =d,. The assumed
pressure-volume relationship at the aorta is expressed by
the following [11]:

Pyy= > (44)

where C,, expresses acute compliance and V4, (¢) accounts
for creep mechanics of aortic wall, simulated as follows [11]:

stAO
cAO 7

o%) CA
SA0 = <1 - C—O> Va0 =YaoV a0

(o)

]

= V?XO - VSAO’
(45)

where 74, is the stress-relaxation time constant and C,,/C,
is the acute to chronic ratio of effective vessel compliances.
Notably, Equations (44) and (45) represent diverse albeit
equivalent formulations of the standard linear model of ves-
sel mechanics [11].
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TaBLE 4: Model parameters (adapted from Table 1 in Beard et al. [11], p. 5).

Description Unit
Aortallarge-artery mechanics
V,=0.6875 Unstressed volumes ml
dy =12 Unstressed diameter mm
Cy4, =0.007 Acute compliance ml- mmHg ™
Va0 = 0.40 Creep parameter of aortic wall #
Top0=0.12 Time constant of stress relaxation sec
Kinetics of baroreflex
7,=251.5 Adjustable parameter of baroreflex afferent model sec
a=0.0651 Baroreceptor activation rate sec”!
b=0.2004 Baroreceptor deactivation rate sec!
8, =0.4965 Baroreceptor saturation constant #
f0=299.8 Baroreceptor gain parameter sec”!
Cardiac and circulatory mechanics
E x=8 Maximum value of elastance mmHg-ml™
E in =025 Minimum value of elastance mmHg-ml™
Ty=03 Cardiac cycle timing parameter #
Tr=0.15 Cardiac cycle timing parameter #
H,=75 Heart rate parameter beat - min ™"
H, =100 Heart rate parameter beat - min™!
Ry, =1x10™* Aortic valve resistance mmHg min-ml™
Ry, =3x 10 Aortic resistance mmHg min-m] ™!
R, =0.01234 Large-artery resistance mmHg min-ml ™"
R, =3.359x107* Downstream venous resistance mmHg min-ml ™"
Cpp=0.8174 Large-artery compliance ml-mmHg™!
Cyp=329.45 Downstream venous resistance ml-mmHg ™!
Vo =625.1 Unstressed volume of cardiovascular system ml
yy =0.40 Venous creep parameter #
T,y =120 Venous creep time constant sec
a, =0.319 Arterial and venous compliance parameter sec
a,=12.77 Arterial resistance parameter sec
oy =1.027 Arterial and venous compliance parameter sec
a,=2.972 Arterial resistance parameter sec
F,=1125 Autoregulation parameter mlmm™!
F, =487.2 Autoregulation parameter ml-mm™!
Tap = 6.455 Autoregulation parameter min
Tp=15 Autoregulation parameter sec
Autonomic system
fon=2.76 Constant parameter of baroreflex arc sec”!
Renin-angiotensin system
Tp =12.59 Time constant for renin production min
Ty, =1.065 Time constant for angiotensin II production min
Tp=15 Time constant for mean pressure calculation sec
P, =19.18 Steady-state renin-angiotensin system tone mmHg




Computational and Mathematical Methods in Medicine 21
TaBLE 4: Continued.

Description Unit
P,=25.0 Steady-state renin-angiotensin system tone mmHg
g=1246.6 Steady-state renin-angiotensin system tone mmHg
Pressure-diuresis/natriuresis control
k, =0.125 Slope of acute pressure-diuresis relationship ml-sec”-mmHg™!
P oy =126.4 Maximum value for variable offset in the pressure-diuresis relationship mmHg
P in =9.779 Minimum value for variable offset in the pressure-diuresis relationship mmHg
¢, =0.1928 Long-term pressure-diuresis relationship #
¢, =0.4813 Long-term pressure-diuresis relationship #
7, =10 Time constant for long-term pressure diuresis min

The model parameters concerning the size of the arteries
come from pressure and aortic diameter measurements con-
ducted on dogs, as described by Coleridge et al. [178]. It can
be considered that the experiment carried out by Coleridge
et al. can be mathematically simulated through this system
of equations [11]:

av
Tca0 dstAO = Vo~ Vo
dav s dP,, dV
:C S s
dt a0 g T (46)
de 1 dv s

>

dt — 2(V,Vy)'? dt

where the measured aortic pressure waveform as a function
of time is used for numerical approximations of dP,(¢)/dt
in equation (46). The parameters y,,, C4,, T.4, and d, are
taken from the data in Table 4; the value of V|, was set arbi-
trarily by assuming a 30 mm cylindrical vessel length [11].
For the full list of parameter values, see Table 4.

(2) Kinetics of Baroreflex. Changes in vessel wall strain are
assumed to control baroreceptor kinetics via the rate of affer-
ent impulses. The model presupposes an average strain value
€(t), which can vary, computed as follows [11]:

de _
T, =ETE (47)
An adjustable parameter 7 serves as a time constant. By
way of the saturable relationship described below, the barore-

ceptor firing rate is assumed proportional to §, = max (¢ — €
,0) [11]:

Fun(t) = st 5 (48)

where s(#) is the neurosensory input determined by that por-
tion of afferent baroreceptors in the active/permissible state,
whereas § and f,, are parameters to be adjusted as needed.
A saturating response is enforced by equation (48), which is

a static nonlinearity [179]. Another assumption is that the
activity of individual baroreceptors alternates, from active
to inactive, at a rate proportional to the firing frequency, with
the transition rate remaining constant [11]:

ds d,

¥ =a(1—s)—bsm.

(49)

Via measurements produced by step-wise changes in
nonpulsatile carotid sinus pressure [180] as well as by
in vivo ramps in pulsatile aortic pressure [178], the adjustable
parameters (i.e., T, 0, f;, 4, and b) are identified in the baro-
reflex afferent model [11].

(3) Cardiac and Circulatory Mechanics. Schematically, a
closed-loop, lumped-parameter circuit is used to model cir-
culation. This model disregards pulmonary circulation and
instead equates the heart to the left ventricle represented by
a time-varying elastance. The pressure generated within the
left ventricle is described as follows [11]:

PLV(dt) = ELV<t) ) VLV(t)’ (50)

in which E;y () indicates the left-ventricular elastance and
Vv (#) represents the volume of blood occupying the ventri-
cle. Via a smooth function that increases and decreases,
respectively, during systole and diastole, elastance is simu-
lated as follows [11]:

0.75 o) Emax — E. 0
(075 b o) o (0] 1, 0301,
M
)

Epy(0) =9 ((0-75 + ¢sx) Emax ~ Emin) [cos (”(9‘ TM)) 4 1} +E. Ty <O<Ty+Ty
T 'min’> - = £ A >

2 M
Epme Tyt Tr<0<1,

‘min>

(51)

where 0 € (0,1) is the elapsed fraction of the total cardiac
contraction at any given moment. The factor (0.75+¢gy),
multiplied by E_,,, accounts for the impact of sympathetic
tone on cardiac contractility, where ¢gy (t) € (0, 1) is a vari-
able equating to sympathetic drive. Under baseline
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conditions, ¢g =0.25, whereas cardiac contractility
increases by approximately 175% at maximum sympathetic
stimulation.

The variable 0 is simulated by [11]:

do
i H, (52)
where H = Hy + H,(¢5y — 0.25) is the heart rate, with 6(¢)
cyclically returning to 0 after reaching a value of 1. The
parameters H, and H, are set such that the baseline heart fre-
quency is 75 beatssmin~!, increasing to 150 beats-min~!
under maximal sympathetic stimulation. The simulations of
the circuit model are based on equations for the state vari-
ables (1), Viy(t), Vao(t), Va(t), Viy(t), Vea(t), and Vi (1
). The equations using the six variables relative to volume
are as follows [11]:

aViy = max (0, Py -Py —max (0, Py —Py :
dt Ry Ryt
dv — max (0’ PLV_PAO) _ PAO_PA)
dt Rout RAo
dVA_PAO_PA P,—-Py
dt Ry, rarRy
avy, _P,-Py

Py — Py
7 — max <0, TV + Qinput - Qurine’

stAO — V?XO B VsAO

rarRy

dt TcA0 '
stV — V?\(; B VsV
dt Ty

(53)

where P;y(t) is determined via equation (50). The flows Q,,
(uptake/infusion rate) and Q.. (urine production rate)
are described below. The max (0, ) terms in equation (53)
account for the action of valves, underlying unidirectional
flow [11]. The R,, and R, resistances remain constant,
whereas other resistances and capacitances fluctuate in
response to sympathetic tone and angiotensin II levels.

C,(t), Cy(t), and R,(¢) are given by the following equa-
tions [11]:

) Cao
O T a1+ ()’
Cult) = o ’ -

(14 a;Pg (1) (1 + azdy, (1))
Ry (1) = Ryo(1 + aygn (1)) (1 + ay 5 (1))

where Cy,, Cy,, and Ry, are constants. Similarly, the con-
stants «y, «,, a3, and a, express the magnitude of the vaso-
constrictor effects of sympathetic tone and angiotensin II
levels. Instead, the plasmatic angiotensin II activity is
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expressed by the ¢,, variable [11]. Finally, R, resistance is
also subject to whole-body autoregulation, aptly incorpo-
rated into the Guyton-Coleman models [3, 181, 182].

The function 7,5 (¢) € (0, 1) represents the autoregulating
mechanism that acts on the global arterial conductivity and it
is described by the equations [11]:

r
AR _ oo
TAR o TAR ~ TAR>

1 F-F
r°A<i,\=§<l+tanh( 7 0)),
1

where the mean cardiac output, whose average is in turn var-
iable, is averaged by F(t), a variable defined by a first-order
process [11]:

(55)

dF P,-P, -
TFE: A V_F.

(56)
rarRy

The pressure values can be derived from the relationships
below [11]:

= (57)

VV B VsV B VVOI

P, =
\4 CV

>

in which venous compliance, similar to that used for the
aorta, is simulated using a linear formulation of stress relax-
ation. In particular, venous stress-relaxation kinetics are gov-
erned by 7, (V,/dt) = V) — V., where [11]:

o C
st - (1 - C_V> (Vv - VV01) = YV(VV - VVOl)' <58)

0

In equation (58), the constant V,, represents an
unstressed volume for the whole cardiovascular system. Alto-
gether, this component of the model comprises a total of 23
parameters [11].

(4) Autonomic System. In the model, the variable ¢\ € (0,1)
represents the whole-body sympathetic tone, in turn deter-
mined by the following baroreflex arc [11]:

d
RN — f oo (1~ fx) ~ Fanon (59)

Thus, in the absence of any baroreflex activation, sympa-
thetic tone remains below a value of 1. The parameter f¢ isa
constant, with ¢\ (¢) = 0.25 at baseline. Thus, in response to
abrupt and marked pressure drops, ¢qy(t) increases fourfold
at most [11].
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(5) Renin-Angiotensin System. The state of the renin-
angiotensin system is depicted by ¢, (t) € (0,1) and ¢,, € (0
,1), two variables which represent the activity of plasma
renin and angiotensin II, in turn under the control of the
combined actions of sympathetic tone and blood pressure
via renin release. The plasma renin variable ¢,(t) is deter-
mined by the following [11]:

d¢R 00
R g1 =Pr _¢R’
p _
Tpd— =P,-P, (60)
dt

o_ 1 (. P-gdsy - P
P = 3 <1 tanh (T R

where ¢ decreases as the time-averaged arterial pres-
sure value P increases. The underlying assumption is that
the relationship between steady-state ¢, and pressure P var-
ies with sympathetic tone. Given that plasma renin activity
and angiotensin II levels follow a perfectly linearly relation-
ship in vivo [183], the Authors characterized ¢ ,,(t) as fol-
lowing ¢, () according to [11]:

d
g

=Pr = Par- (61)

The five parameters (i.e., Ty, T4, & Py, and P,) were iden-
tified through comparative simulations of pressure, fre-
quency, and plasma renin activity in laboratory rabbits,
under conditions of experimental hemorrhage with the
parameter Tp arbitrarily set at 15 seconds [11].

(6) Pressure-Diuresis/Natriuresis Control. As an underlying
assumption, body-fluid volume regulation is characterized
by a linear pressure-diuresis relationship [11]:
0, P<P,
Qurine = _ _
| min (k- (P~ P),10ml-min"!), P>P,

(62)
where Q. is the rate of urine production and k, is the slope
of the Q;n./pressure ratio. In the model, P,(t) represents the

offset of the pressure-diuresis relationship. The latter is ulti-
mately under the control of sympathetic tone and angioten-
sin II [11]:

PSOOZPSmin+ Ps,max_Ps,min <1 +tanh <¢SN+¢A2 _(po)))
’ 2 ¢
dP
Tk7; :P?O—PS.

(63)

The parameters P, .., P, .., ¢, and ¢, are constants
that describe how the acute pressure-diuresis relationship
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shifts following fluctuations in the tone variables ¢, and
¢4, [11]. Thus, it is assumed that the impact on renal func-
tion by ¢¢ and ¢,, is equal as well as additive. Equation
(63) assumes that changes in sympathetic tone and the
renin-angiotensin system, expressed as P, occur with a time
constant 7, [11].

The time constant 7; was determined experimentally by
measuring urine production rates during blood infusions so
as to induce acute increases in pressure and decreases in
¢sn and ¢,, [11]. The remaining part of the parameters is
determined by comparing the results provided by the model
with the experimental data obtained from the control mech-
anisms that regulate renal excretion of water and sodium (i.e.,
pressure diuresis and natriuresis), with angiotensin II infu-
sion and with administration of an angiotensin-converting
enzyme (ACE) inhibitor [11].

Values listed in Table 4 were guided by several data sets
and prior computational models. The values of E, . and
E, .. were obtained from ventricular volumes appropriate
for canines, in turn adapting Beard’s model [184] so as to
provide plausible human pressures at baseline conditions.
Cardiac cycle timing parameters T,; and T were set to the
same values used by Beard [184]. The baseline compliances
(Cyp> Cyy)s resistances (R, > Ry,» Ryp» Ry), and Vi, were
chosen in such a way as to be under baseline conditions in
which the mean pressure is 100 mmHg, the diastolic and sys-
tolic pressures are 85 and 115 mmHg, respectively, and the
ejection fraction is 0.58 [11].

4.7. Zenker. The implemented Zenker model [13], devoid of
the pulmonary circulation block, was designed to reproduce
the behavior of the cardiovascular system, taking into
account baroreflex blood pressure control, as well as includ-
ing the interactions between intravascular volume, myocar-
dial contractility, and peripheral resistance [13]. It consists
in the univentricular heart that acts as a pump connected to
the systemic circulation with the large blood vessels repre-
sented by means of linear capacitors according to the Wind-
kessel model.

Physiological control of blood pressure is largely main-
tained by the baroreflex mechanism. Thus, acute blood pres-
sure changes trigger feedback loops that modulate heart rate
and contractility, as well as peripheral resistance (Figure 6).
Mathematically characterized as a simplified system of ordi-
nary differential equations, this model is capable of simulat-
ing both normal functioning of the cardiovascular system
and acute responses to fluid swings in intravascular volume,
providing quantitative and qualitative analyses. The rationale
and design of the Zenker cardiovascular system model are
aimed at achieving an acceptable trade-oft between complex-
ity, physiological fidelity, and alignment with the empirical
data [13].

Below, we will briefly illustrate the equations underlying
the model so as to provide a sufficiently detailed mathemati-
cal treatment without losing sight of the overall basic frame-
work. Our challenge is to provide a simple and intuitive, yet
mathematically rigorous, representation of the essential
elements.
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FIGURE 6: Schematic of model of the cardiovascular system (adapted from Fig. 2 in Zenker et al. [13], p. 2074).

4.7.1. Systole. The linear relationship between the works of
systolic ejection, i.e., stroke work (W) and end-diastolic vol-
ume (V ), is maintained in the model over a wide range of
volumes [185]. This relation can be described by the follow-
ing expression [13]:

W = Cprsw (VED - VEDO)’ (64)
in which the slope factor is the preload recruitable stroke
work (cpgsw)- The volume whose intraventricular pressure
equals 0 mmHg is referred to the volume axis intercept
(VEDO) of the curve [185]. Stroke work can be approximated
to the work required to go from Vy, to V¢ (end-diastolic to

end-systolic cardiac volumes) given arterial pressure P,
which is expressed by the following [13]:

Wj CP(V)AV = V(P - Py (65)

VED

where Py, represents the end-diastolic intraventricular pres-
sure, with the stroke volume [13]:

Vs=Vip — Vis. (66)

Given that ventricular volume must be greater than or

equal to Vi, , we can define Vigg as a function of Vg, accord-

ing to the equation below [13]:

max (VEDO’ VES(VED))’ it P, > Pyp,

VES(VED) = {

Vip,» otherwise.

(67)

By equating Equations (64) and (65) for W and solving
for Vg, we then substitute the resulting expression in equa-
tion (66) to obtain the following equation for Vg [13]:

CpRSW (VED - VEDO)
P, - Py '

a

VES(VED) =Vgp - (68)

Note that Vi is a continuous function of Vg, since, if
Vip > Vip,; the limit of Vis(Vip) as Py approaches P,
from below is smaller than Vgp [13].

4.7.2. Diastole. For each stroke cycle, we can express end-
diastolic volume as a function of end-systolic volume. Ven-
tricular filling is considered a passive occurrence, through
the linear inflow resistance R,},.. Influx is therefore driven
by the pressure differential between the central veins Pqyp
and ventricular pressure Py (Vy), through the ODE [13]:

dVLV — PCVP - PLV(VLV)
dt R

. (69)

valve

The dependence of ventricular pressure on ventricular
volume, in equation (69), is governed by the exponential rela-
tionship characterized experimentally by [185]:

PLV(VLV) = pOLV (ekELV(VLV_VED()) — 1), (70)

Assuming Pyp to remain constant, equation (69) takes
the general form [13]:

av
dt

=k, 2V + ks,

(71)
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with the following constants [13]:

P
_ Oy kg,
ki =———e " VED0
valve

kz = kELV’ (72)

_Peyp + Py,
= ——
Rvalve

By quadrature, it resolves to the following [13]:

1 1-— kzk (t+C)
V(t)=ky(t+C)= - In (%) (73)

We let ¢ = 0 at the onset of diastole, while eliminating the
unknown constant C, and then apply, as the initial condition,
end systolic volume V¢ to obtain the equation below [13]:
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pling. Thereby continuous representations of the physiologic
control loops and simulation with available ODE software
over lengthy time intervals were made possible. This was
accomplished by aligning their rates of change to the average
rates over an entire cardiac cycle, i.e., to values commensu-
rate to those of a single iteration of the discrete time interval
for the current Vi and Vp, values. Thus, they obtained [13]:

Both the discrete system and the continuous one share
identical sets of fixed points as shown in equations (77) and
(78), respectively. Consequently, fixed points of the discrete
system (equation (76)) are given by [13]:

Ven = Vep (Ves(Vep) ) 79
V(t) — k3t _ i In (& (1 _ ek2k3t) + eszES) — _i In (h (eszkSt _ 1) + eik2<vEs+k3t§ ] ED( ES( ED)) ( )
ky ks ky 3 L= ) )
(74) and by applying V¢ to equation (79), we obtain [13]:

Since it avoids floating point overflow in the exponential
terms, the resulting expression is advantageous, in numerical
terms. We assume a constant duration of systole T, given
that physiological variations in heart rate affect the duration
of diastole much more than systole [186]. At a given heart
rate fp, the end-diastolic volume will therefore be [13]:

VED = V(fl_—llR - TSys)’ (75)

with V(t) as expressed in equation (74). For passive filling to
occur, P-yp must exceed intraventricular pressure at the
onset of diastole. Equation (75) expresses Vy, as a function
of Vg through the Vig dependency of equation (74). The
overall expression for Vi as a function of Vg is therefore
[13]:

~ VED’ if Pcyp > Pry(Vis)s
VED(VES) = { (76)

Vi, otherwise.

Vip is a continuous function of Vyg. Moreover, as Py (
Vgs) approaches Pyp from below, the limit of Vi, is Vig.

4.7.3. Coupling Systole and Diastole. Zenker et al. thus define
a discrete dynamical system to describe Vyp, or Vi, on a
beat-to-beat basis. In particular, from the current end-
diastolic volume V%, we can apply equation (67) to compute
Vi =Ves(VEL) as well as equation (76) to obtain Vi, (V).
In aggregate, these yield the following [13]:

Vggl = VED(VES) = VED(VES(VED))' (77)
Thereafter, Vg and Vi, were converted to variables of

state within a continuous time system. This allowed them
to obtain a continuous dynamical system amenable to cou-

Vs = VES(VED) = VES(VED(VES(VED))) = VES(VED)’
(80)

thus dVyg/dt =dVyp/dt =0 at fixed points of the discrete
system. Analogously, we can observe that the fixed points
of equation (78) also satisfy equation (79) and are thus fixed
points of equation (77) [13].

4.7.4. The Systemic Circulation. In line with a simple Wind-
kessel model, the systemic circulation consists of linear com-
pliances that represent the large-vessel arteries of volume V,
and venous vessels of volume V', with their respective pres-
sures [13]:

p =_9 % (81)

in which a is interchangeable with a or v, whereas V, is the

corresponding unstressed volume, i.e., the nonzero volume at
which the pressure in the respective compartment equals
0mmHg. These pressures are expressed in the equation link-
ing the arterial and venous compartments via a linear resis-
tor. The latter, in turn, represents the total peripheral
resistance (Rppp) that regulates capillary blood flow I,
expressed as [13]:

[o= o Tv, (82)
RTPR

Cardiac output, that is the minute volume of venoarterial
blood flow (I ) generated by the heart, is thus the product of
heart rate f,;; and the ejected volume (V) per beat. By
applying equation (66), it assumes the following form [13]:

Ico =fur(Vep = Vis)- (83)
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TaBLE 5: Parameter values (adapted from Table 2 in Zenker et al.
[13], p. 2085).

Parameter Value/range

CPRSW, > CPRSW,,. .. 34.5-138 erg/ml £ 25.9-103.8 mmHg [185]

Ryave 0.0025 mmHg-s/ml [68]

f HR f HR,, 2/3-3Hz

Tsyq 4/15s [186]

Reypg,,» Rrer,,,, 0.5335-2.134 mmHg-s/ml [189]

Var Vi, >V, 700 ml; 2,700-3,100 ml [189]

C. C, 4 ml/mmHg, 111 ml/mmHg [189]
et 70 mmHg

Kyidtn 0.1838 mmHg [68]

TBaro 20s

Assuming conservation of volume at the nodes, varia-
tions in volume over time, in both arterial and venous com-
partments, can be described by the following differential
equations [13]:

av
dta =Ic—Ico
84
dv, __qu i (84)
dt - 7 external *

With reference to the venous compartment, I, ... rep-
resents either a loss of blood or an intravenous infusion,
whether blood, colloid, or crystalloid.

4.7.5. Baroreflex Control of Blood Pressure. As a key regula-
tory mechanism of cardiovascular homeostasis, baroreflex
control of blood pressure relies on the established repre-
sentation. In particular, the central processing component
of the baroreceptor sensory input is a combination of a
sigmoidal nonlinearity (in our case a logistic function)
and a linear system [187, 188]. For the sake of simplicity,
we equated baroreflex activity to a single activating (sym-
pathetic) output, as opposed to the more physiologically
accurate interplay of stimulatory (sympathetic) and inhib-
itory (parasympathetic) outputs [13]. Since the Zenker
model is geared for timescales well above the order of
the single cardiac cycle, the linear part of the baroreflex
feedback loop is simplified. As such, it displays first-
order low-pass characteristics whose time constant is in
the order of the slowest actuator response (unstressed
venous volume control) [13]. Delays due to neural trans-
mission of baroreflex signaling are neglected. Given the
above data, the temporal evolution of stimulatory output
from baroreflex central processing obeys the following dif-
ferential equation [13]:

ds 1 1
i 1- -S).  (85)
dt TBaro 1+ e*kwidth (P,;*Paset)
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Via feedback loops, baroreceptor output S(t) affects
heart rate f;;, total peripheral resistance Rypg, myocardial
contractility cprgy> and unstressed venous volume V.,
effectors/actuators. By these mechanisms, adjustments to
blood pressure occur according to its current deviation
from the set point, based on the linear transformations
below [13]:

(X(t) = S(t) (‘xmax - “min) + Omino> (86)

where &= f > Rrpr> OF Cprew> and [13]

VVO(t) = (1 - S(t))(vvo - VvO

‘max

) + Vi, . (87)

min min

The form of equation (87) arises from the fact that
venous capacitance vessels contract, thereby reducing their
unstressed volume, in response to decreases in blood
pressure.

By combining equations (78) and (81)-(87) as well as
explicitly writing out the dependencies relevant to the cou-
pling of the system, Zenker et al. obtained a system of five
ODEs [13]:

dv =
thS = (VES(VED’ Va’ S) - VES)fHR(S)’
av -
de = (VED(VES> V,) - VED)fHR(S)’
av, P,(V,)-P,V,S)
_ (Vi =V S), 88
dt Rypr(S) Ve = Vsl e(8) &
av, dv,
a7 = _7 + Iexternal(t)’

ds 1 1
o 1- s).
dt TBaro 1+ e_k"‘"d“‘(P”_P aset)

Of note, when I, .,,.1 = 0, conservation of total intravas-
cular volume allows elimination of one state variable (either
V, or V) thus obtaining a four-dimensional system [13].
However, we opted for the above form of the system so as
to maintain direct correspondence between anatomical enti-
ties and mathematical representation, albeit sacrificing some
computational efficiency. As to the coupling of equations,
one should consider that the sympathetic nervous system
activity S, which represents a central control mechanism nec-
essary for functional homeostasis of the cardiovascular sys-
tem, links all components together [13]. The cyclical nature
of both cardiac activity and circulation is, instead, reflected
in the coupling between the equations describing their
respective functions.

4.7.6. Parameter Selection. The parameters describing the
ventricular pressure-volume relationship, ie, P, , Vgp,

v 0
and ky, , were estimated from experimental data for the left
ventricle, as reported by [185]. The remaining parameter
values and the ranges for each model variable are shown in
Table 5. The latter are derived from via hemodynamic mea-
surements in experimental animal studies (see Table 6 for
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TABLE 6: Variables and parameters of the cardiovascular model (adapted from Tab. 1 in Zenker et al. [13], p. 2082).

Symbol Description

frr Heart rate

Ty Tia Duration of systole and diastole, respectively

W, Stroke work, work of heart in a cardiac cycle

Ico Cardiac output

V Stroke volume, volume of ejected blood in a cardiac cycle
Ve Vip End-systolic ventricular volume; end-diastolic ventricular volume

VEDo ’ POI.V ? kEI,v
R

valve

Constants describing passive empirical ventricular pressure/volume relationship

Hydraulic resistance to ventricular filling, with valve allowing unidirectional flow

Prp End-diastolic pressure at the end of ventricular filling

Py, P,, Py Left ventricular pressure; arterial pressure; venous pressure

VivwVao'V, Ventricular volume; arterial volume; venous volume

Vi Vv, Arterial and venous unstressed volume (at 0 mmHg of wall tension pressure), respectively

Ripr Total peripheral/systemic hydraulic vascular resistance

Ic Arterial to venous compartment flow through capillary vessels

Consw Preload recruitable stroke work, an index of how much cogtractility and stroke work increase with increasing diastolic
filling

C,C, Arterial and venous compartment compliances, respectively

TRaro Baroreflex response time constant

P, Baroreflex feedback loop set point

ki Constant describing shape and maximal slope of logistic baroreflex nonlinearity

the description of parameters). When no explicit source is
referenced, values are based on the Authors’ understanding
of physiological values for the simplified system, with no pre-
tence of rigorous accuracy [13].

5. Discussion

We have collected here several mathematical models that
describe the physiology of the cardiovascular system such
as may be of interest, in particular, to describe the compensa-
tion response to acute blood loss. Albeit a representative and
far from exhaustive sample, this collection may be neverthe-
less useful for investigators seeking a first approach to
approach cardio-circulatory modeling.

Each model has its own peculiarities and preferential
applications. The choice to adopt one model rather than
another is dictated by the specific needs of the user. A crucial
advantage of cardiocirculatory modelling is its potential to
integrate the understanding of physiology and pathophysiol-
ogy in an analytical framework so as to assist clinical deci-
sion-making.

Hence, the drive to advance from methodology and
model development towards experimentation in the clinical
context is perceived as becoming increasingly more impor-
tant for cardiocirculatory models.

Our goal in this work was to briefly review a number of
indicative and successful prototype models whose clinical
use appears relatively straightforward. We have also created
a web-based platform (available at http://biomatlab.iasi.cnr

.it/models/login.php) where we have implemented two of
the models included herein: the Guyton and the Zenker
models, respectively. These two implemented models pro-
vide time courses of the state variables after allowing the user
to set desired values of the physiological parameters as input.

Even though the Guyton model does offer benefits for
long term predictions, providing additional physiological
variables, as well as neurological and hormonal control of
blood pressure, it has the drawback of being more labor-
intensive to implement.

Therefore, in order to maximize clinical usefulness, phys-
iological detail may need to be pruned, so as to obtain more
practical, user-friendly models, while still providing clinically
relevant predictions.

In our view, Zenker’s model may respond to the require-
ment of keeping the number of significant variables to a min-
imum without sacrificing clinical plausibility.

6. Conclusion

The purpose of this paper is therefore to provide an overview
of the most relevant mathematical model of the cardiocircu-
latory system present in the literature, in their original for-
mulation. The models presented are those that, for different
reasons, we have considered to be particularly useful inas-
much as they reflect research relevant to our main focus on
cardiovascular dynamics, the compensatory response to the
hemorrhage, and certain aspects of pulmonary physiology.
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The models presented describe key aspects of the physiol-
ogy: each model is unique and may be considered indepen-
dently of the others, but taken globally, they indicate which
elements of cardiocirculatory compensation have been con-
sidered most important in a past research work.

The introduction discusses the different categories of
models presented in this review: some models are simple
real-time models that can be directly applied to clinical set-
tings, whereas others are more detailed reference models that
the reader can use to obtain a better understanding of the
interconnection of the underlying physiological mechanisms,
as well as to choose parameters for simpler models [190].

It is clear, however, that all models are tentatives. The
very complex and more complete models are not always
capable of offering pertinent explanations on every physio-
logical aspect of such a complex reality as the cardiovascular
system. The simplest models, on the other hand, identify the
essential variables, are easier to implement and faster, but
may suffer of naivete and produce unrealistic prediction
under certain circumstances.

In this inquiry, we note that not all of the models that we
studied are sufficiently investigated for qualitative behavior,
and furthermore, their validation against experimental data
is often rudimentary.

Some, even if well thought out and structured, have not
been used to produce continued simulations, but were lim-
ited only to a few minutes of forecasting, representing and
comparing only a few hemodynamic variables with the corre-
sponding experimental data.

Furthermore, almost none of these models specifically
deal with the balance of body fluids: we refer to the phenom-
enon of transcapillary refill, which is always present and
which plays a particularly relevant role in the case of major
bleeding. Transcapillary refill as homeostatic mechanism
deserves to be fully considered in a cardiocirculatory model
that takes into account the volume of state of the body.

Some models could be improved simply by considering
this physiological phenomenon as well, leading to more accu-
rate modelling, treatment regimens, and clinical prognosis.

Mathematical modeling of cardiocirculatory mechanisms
is developing considerably fast. The complexity of the phe-
nomena, the dependence of these phenomena on the subject,
and the variation over time of the subject’s conditions are all
circumstances that make the mathematical modeling compli-
cated and that lead to the continuous development of models
that describe particular situations or aspects. The very num-
ber of current available models hints to the possibility that a
satisfactory formulation has not yet been found, particularly
for what concerns the representation and forecasting of the
response to hemorrhage.
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