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The concept of self-predictability plays a key role for the analysis of the self-
driven dynamics of physiological processes displaying richness of oscillatory
rhythms. While time domain measures of self-predictability, as well as time-
varying and local extensions, have already been proposed and largely applied in
different contexts, they still lack a clear spectral description, which would be
significantly useful for the interpretation of the frequency-specific content of the
investigated processes. Herein, we propose a novel approach to characterize the
linear self-predictability (LSP) of Gaussian processes in the frequency domain.
The LSP spectral functions are related to the peaks of the power spectral density
(PSD) of the investigated process, which is represented as the sum of different
oscillatory components with specific frequency through the method of spectral
decomposition. Remarkably, each of the LSP profiles is linked to a specific
oscillation of the process, and it returns frequency-specific measures when
integrated along spectral bands of physiological interest, as well as a time
domain self-predictability measure with a clear meaning in the field of
information theory, corresponding to the well-known information storage,
when integrated along the whole frequency axis. The proposed measure is
first illustrated in a theoretical simulation, showing that it clearly reflects the
degree and frequency-specific location of predictability patterns of the analyzed
process in both time and frequency domains. Then, it is applied to beat-to-beat
time series of arterial compliance obtained in young healthy subjects. The results
evidence that the spectral decomposition strategy applied to both the PSD and
the spectral LSP of compliance identifies physiological responses to postural
stress of low and high frequency oscillations of the process which cannot be
traced in the time domain only, highlighting the importance of computing
frequency-specific measures of self-predictability in any oscillatory
physiologic process.
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1 Introduction

In the past decades, zealous interdisciplinary research studies
have been focused on the spontaneous oscillations exhibited by
variables describing the temporal dynamic activity of several
physiologic systems. These oscillatory patterns can arise from the
combined action of multiple regulatory mechanisms, including
mechanical coupling effects and autonomic nervous system
control, often arranged in closed-loop interactions among
interconnected subsystems reacting to internal and external
stimuli (Glass, 2001). Since these interactions occur across a wide
range of time scales, e.g., spanning from 0.02 to 0.5 Hz in the case of
cardiovascular and respiratory systems, the time course of the
investigated physiologic variables is characterized by different
degrees of regularity (i.e., recurrence of specific patterns with
different dominant frequencies and shapes). A variety of
techniques has been proposed to quantify the richness of a
dynamic process, as well as to characterize the system state in
various physiological and pathological conditions (Pincus 1994;
Porta et al., 1998; Richman and Moorman 2000; Goldberger
et al., 2002; Porta et al., 2007; Porta et al., 2012; Faes et al.,
2015b; Valente et al., 2018). A commonly used approach is the
quantification of the degree of regularity, or self-predictability, of
patterns extracted from short-term recordings intended as
realizations of dynamic processes. To this aim, different
univariate measures have been proposed throughout the years,
either derived from nonlinear prediction (Porta et al., 2006; Erla
et al., 2011) or based on the concepts of conditional entropy and
information storage (Porta et al., 1998; Richman and Moorman,
2000; Lizier et al., 2012; Faes et al., 2013; Wibral et al., 2014).
Conditional entropy has been referred to as a measure of complexity
quantifying the rate of entropy generation of an individual system,
while the notion of information storage, representing information
from the past of a stochastic process to predict its future (Lizier et al.,
2012; Wibral et al., 2014), has allowed quantification of self-
dynamics. This has been achieved through the well-established
measure of self-entropy (Barnett et al., 2009; Faes et al. (2015b;
2016), serving as a gauge of self-predictability by quantifying the
information shared between the current and the past states of
the process.

A drawback of information-theoretic measures quantifying self-
predictability is that they represent global indexes which address the
entire temporal evolution of the analysed process, without obtaining
time-resolved information about its dynamics nor focusing on
specific frequency rhythms (Faes et al., 2015a). On the other
hand, physiological time series display a rich oscillatory content,
which is typically manifested within the low frequency (LF, 0.04 −
0.15 Hz) and high frequency (HF, 0.15 − 0.4 Hz) bands of the
spectrum in the case of cardiovascular and respiratory variables
(Cohen and Taylor, 2002; Shaffer et al., 2014). This limitation has
already been addressed through the definition of time-varying
(Valenza et al., 2017) and local (Faes et al., 2016; Barà et al.,
2023) measures of information storage, the latter defining how
information is stored at each moment in time in a stochastic
process (Lizier et al. (2008; 2012); Lizier (2014)). A different
approach has been proposed in (Donoghue et al., 2020), where
the periodic and aperiodic oscillations of a process have been
identified in the power spectrum, e.g., by exploiting the power

spectral density obtained via parametric or non parametric
methods. Despite this methodology owns a great potential in
accurately quantifying the frequency-specific content of
physiological variables, it does not take into account measures
from the field of information theory.

In this work, we aim to fill the gap by introducing a novel
methodology that combines the two frameworks, i.e., information-
theoretic and frequency domain approaches. We propose a new
approach for the linear spectral analysis of self-predictability in
physiological processes, which allows to obtain frequency-resolved
information about their dynamics (Sect. 2). A novel spectral measure
of linear self-predictability (LSP) is derived intuitively from the
transfer function (TF) of the autoregressive (AR) linear model
describing the relationship between the current and past states of
the process, and is defined in such a way to match the time domain
information storage if integrated alongside the whole frequency axis
(Geweke, 1982; Chicharro, 2011). The proposed measure is first
illustrated in a theoretical example, where its behaviour at varying
the radii of the poles of the AR TF is shown (Sect. 3). Moreover, we
demonstrate that the dominant peaks in the spectrum of the simulated
Gaussian process, which reflect regular (thus self-predictable)
oscillations in the same process, can be easily detected by our
method that indeed constitutes a bridge between the information-
theoretic and the frequency domain frameworks. Furthermore, in
order to display the physiological significance and potentiality of our
approach, the LSP measure is computed over short-term beat-to-beat
time series of arterial compliance (AC) measured in young healthy
subjects using a recently developed noninvasive methodology (Švec
et al., 2021) (Sect. 4). Being a cardiovascular variable characterizing
mechanical and structural properties of the arteries (Švec and Javorka,
2021), very little is known about the short-term-variability nature of
AC. Arterial compliance variability is expected to be affected by the
sympathetic and vagal activities, whose interaction reflects the typical
balance between fight-or-flight and rest-or-digest responses
(McCorry, 2007; Ondicova and Mravec, 2010; Gibbons, 2019).
Investigating the spectral content of AC, as well as understanding
how this parameter behaves in response to external perturbations, is
important to characterize its beat-to-beat dynamics for physiological
research and clinical purposes (Mackenzie et al., 2002; Sugawara et al.,
2012; Tan et al., 2016). Moreover, assessing the presence and extent of
LF oscillations in the beat-to-beat variability of arterial compliance
may be highly relevant for the exploration of sympathetic activity
changes, assumed as the dominant LF-driven responsible for the
dynamics of this parameter, except of mechanical effects (e.g., effects
of intrathoracic pressure or arterial blood pressure). Therefore, since
we are not aware of past studies performing a systematic spectral
characterization of this physiological variable, here we aimed to assess,
separately for LF andHF oscillations, its degree of self-predictability in
the resting state and in response to the alterations in the sympatho-
vagal balance induced by postural stress.We exploited the well-known
method of spectral decomposition (Baselli et al., 1997; Pernice et al.,
2021) to retrieve pole-specific LSP profiles, as well as the power
content associated to specific oscillations with central frequency in LF
and HF bands of the spectrum.

Overall, in spite of the complex mathematical framework mixing
together concepts from the fields of information theory and spectral
analysis of linear Gaussian processes, our results evidence (i) the
feasibility of our approach and its worthwhile generalization to a
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variety of physiological processes displaying oscillatory activity, as
well as (ii) the need of computing spectral measures of self-
predictability focusing on specific frequency bands with
physiological meaning, to reveal mechanisms which remain
otherwise hidden in a whole-band time domain analysis.

2 Linear autoregressive models of
physiologic processes

Let us consider the stochastic process Y, with Yn denoting the
random variable sampling the process at time n, where n is the
temporal counter, and Y−

n � [Yn−1, Yn−2, . . .] the random vector
describing its past states. Broadly speaking, separating the present
from the past states of a given process allows to consider the flow of
time and to investigate the causal interactions within the process
by looking at the statistical dependencies among the random
variables describing those states. Importantly, the Markov
property allows to investigate the state transitions relevant to
the considered process by restricting the analysis to the past p
states visited by the process itself, such that the present state
depends on the past states only through a finite number of time
steps, i.e., Yp

n � [Yn−1, Yn−2, . . . , Yn−p].
Assuming Y as a stationary Markov process, the following linear

AR model can be used to study the dynamic interactions between its
present and past states (Lütkepohl, 2005):

Yn � ∑p
k�1

akYn−k + Un, (1)

where p is the model order, describing the maximum lag used to
quantify interactions, Un is the present state of a scalar zero-mean
white process with variance σ2U, ak is the coefficient describing the
interaction from Yn−k to Yn at lag k.

2.1 Spectral decomposition of
oscillatory content

The AR model in Eq. (1) can be represented in the Z-domain
through its Z-transform yielding Y(z) = H(z)U(z), where H(z) �
[1 −∑p

k�1akz
−k]−1 � �A(z)−1 is the TF modelling the relationship

between the input U(z) and the output Y(z). Applying the residue
theorem, the latter can be expressed as (Baselli et al., 1997):

H z( ) � zp∏p
k�1 z − pk( ) � ∏p

k�1
H k( ) z( ), (2)

where pk, k = 1, . . ., p, are the p poles of the AR process, i.e., the roots
of �A(z), while the terms H(k)(z) � z

z−pk
· 1/z*
1/z*−pk

are pole-specific
factors associated each to a given pole pk, with * the Hermitian
transpose. Then, the power spectral density (PSD) of the process can
be written in the Z-domain as P(z) � H(z)σ2UH*( 1

z*), and expanded
exploiting the Heaviside decomposition with simple fractions
relevant to all the poles and weighted by the relevant residuals of
P(z), to get (Baselli et al., 1997; Pernice et al., 2021):

P z( ) � ∑Q
q�1

P q( ) z( ) � ∑Q
q�1

rqpq

z − pq
− rqp−1

q

z − p−1
q

⎡⎣ ⎤⎦, (3)

where rq � σ2U
z∏h≠q

(z−ph)·∏(z−1−ph)|z�pq
are the residuals of P(z), q = 1,

. . ., Q. Note that the number of components of the PSD is Q ≃ p/2
depending on the number of real poles; specifically, there is one
component for each real pole and for each pair of complex conjugate
poles. Then, by computing P(z) on the unit circle of the complex
plane, P(f) � P(z)|z�ej2πf/fs , where f ∈ [0, fs/2], with fs the sampling
frequency, it is possible to obtain the spectral profile of the process,
P(f), as well as of the qth component, P(q)(f). Crucially, each spectral
component P(q)(f) is described by a specific profile that is shaped by

the corresponding TF factor |H(q)(f)|2 � H(q)(z)H*(q)(z)|z�ej2πf/fs ,
and has an associated frequency (related to the pole frequency,

fq � arg{pq}
2π ) and power (related to the pole residual, σ2q � rq for real

poles and σ2q � 2 · R{rq} for complex conjugate poles). Note that the

sum of the pole variances σ2q, with q = 1, . . .,Q, equals the total power

of the process, which represents its variance σ2Y.
Importantly, in comparison to classical approaches based on

integrating the PSD profile within the spectral bands of interest to
get band-specific time domain powers (Krohova et al., 2020), the
proposed method of spectral decomposition allows to focus only on
the spectral components with frequencies within those bands, thus
avoiding spurious contributions due to broadband oscillations. This
peculiarity is exploited in the next subsection to define a pole-
specific measure of self-predictability in the frequency domain.

2.2 Spectral decomposition of self-
predictability

In the previous section we have seen how analysing the spectrum
of a physiologic process provides noteworthy information on the
frequency-specific location of the oscillations of that process, thus
allowing to identify and separate its different spectral components.
Here, we show how the characterization of the spectral dynamics of
a process can be also carried on by looking at its degree of linear self-
predictability, drawing a connection with information theory.

The most popular information-theoretic measure of self-
predictability is the information storage (IS), which quantifies, for
a random process Y, the amount of information contained in the
present state Yn that can be predicted by the knowledge of its past
states, Y−

n (Lizier et al., 2012). In the linear signal processing
framework, the IS has a straightforward formulation that involves
the variance of the process and the variance of the prediction error of
its AR representation (Barnett et al., 2009; Faes et al., 2015b):

SY � 1
2
ln

σ2Y
σ2U

( ), (4)

where σ2Y is the variance of Y and σ2U is the variance of the residual in
Eq. (1), i.e., the partial variance of Yn given its past Yp

n . The quantity
defined in Eq. (4) is a measure of LSP in the time domain. To expand
it in the frequency domain, we exploit the spectral representation of
the ARmodel in Eq. (1) and the spectral decomposition described in
the previous and represented by Eqs. (2, 3). We start noting that the
TF H(z) contains spectral information about the predictable
dynamics of Y, as it is directly derived from the Z-domain
representation of the AR model coefficients ak, k = 1, . . ., p,
which in turn describe these dynamics in the time domain. Then,
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we exploit the fact that such frequency-specific information can be
particularized to each oscillatory component considering the TF
factor |H(q)(f)|2, so as to retrieve information on the pole-specific
self-dynamics of the AR process. This factor is the squared TF
associated to a real pole or the squared product of the two TFs
associated to a pair of complex conjugated poles. We expect that
stronger self-dynamics of Y at the frequency fq are reflected by
higher values of |H(q)(f)|2, which indeed shows a positive peak at that
frequency. Therefore, we define the frequency-specific spectral LSP
measure as

s
q( )

Y f( ) � 1
2
ln

σ2Y|H q( ) f( )|2
σ2U

( ). (5)

The spectral in Eq. (5) can be written also as
s(q)Y (f) � 1

2 ln(σ
2
Y

σ2U
) + 1

2 ln(|H(q)(f)|2) � SY + �s(q)Y (f), and satisfies
the spectral integration property (Geweke, 1982), i.e., it is such
that its integral extended over all frequencies returns the time-
domain LSP measure:

SY � 1
2π

∫π

−π
s

q( )
Y f( )df. (6)

Note that Eq. (6) is satisfied because the full-frequency integral
of the term �s(q)Y (f) is null, i.e., ∫π

−π ln(|H(q)(f)|2)df � 0 (Rozanov
1967; Chicharro, 2011). Therefore, the spectral LSP consists of a
frequency-independent part equal to SY and a frequency-specific
part quantified by �s(q)Y (f), which takes negative values at some
frequencies, depending on where the informative content is located.

The spectral decomposition of the pole-specific LSP into terms
related to the Q oscillations of the AR process, depicted in Eq. (5),
allows to locate the self-dynamics of Y in specific spectral bands with
given frequency, as well as to compute their strength as the integral
of these profiles within the investigated bands. Remarkably, the
spectral LSP profiles display peaks as the PSD does, since both are
derived from adaptations of the TF of the AR model describing the
data. The difference between the two resides in the logarithmic
formulation of the LSP in the well-known framework of information
theory. Indeed, being a measure of information shared between the
present and past states of the investigated processes according to its
mathematical definition, it can be quantified in natural units (nats)
in the time domain, and in nats/Hz in the spectral domain, thus
acquiring a clear meaning in the context of information theory.

2.3 Statistical validation

This section presents the use of surrogate and bootstrap data
analyses to assess the statistical significance of the proposed
measures of time domain and spectral LSP.

As far as we know, the task of validating the presence of a
significant non-flat component within the spectrum of a process is
not straightforward. In the spirit of surrogate data analysis, one
should destroy the oscillation under scrutiny without altering the
remaining spectral patterns of the process. However, this is
undoubtedly challenging and requires in-depth analyses.
Therefore, in this work we propose an empirical approach based
on bootstrap data analysis (Politis, 2003) to assess the statistical
significance of pole-specific measures of self-predictability, while
time domain measures are validated through the well-known

method of surrogate data analysis (Theiler et al., 1992).
Validation is performed at the level of individual realizations of
the observed process Y, obtained in the form of the time series y =
{y(1), . . ., y(M)}, whereM is the length of the time series. Specifically,
a linear model as in Eq. (1) is first identified on the time series y
through the vector least square approach; then, estimates of the
spectral and the time domain LSP measures, denoted respectively as
s(q)y (f), with q = 1, . . ., Q, and Sy, are obtained from the estimated
model parameters using Eqs. (5, 6). The spectral profiles s(q)y (f) are
integrated within the spectral band of interest F to get estimates of
self-predictability in that band, indicated as s(F)y .

2.3.1 Surrogate data analysis
The method of surrogate data (Theiler et al., 1992) is

employed to obtain a threshold for zero self-predictability
setting a significance level for the time domain LSP measure.
Specifically, randomly shuffled surrogates (Palus, 1997), which
are realizations of independent and identically distributed (i.i.d.)
stochastic processes with the same mean, variance and
probability distribution as the original series, are generated by
randomly permuting in temporal order the samples of the
original series, according to the null hypothesis of absence of
autonomous dynamics within the investigated process. This
procedure is repeated Ns times to obtain the surrogate series
ys, s = 1, . . ., Ns. The time domain LSP is then estimated on each
surrogate, yielding the distribution Ssy , from which the
significance threshold Sαy is derived taking the 100(1 − α)th

percentile. Finally, the original time domain LSP value is
deemed as statistically significant if Sy > Sαy . In this work, Ns =
100 surrogate pairs were generated to assess the existence of
significant self-predictability in the time domain.

2.3.2 Bootstrap data analysis
The block bootstrap data generation procedure (Politis, 2003) is

followed to generate, starting from the time series y, Nb bootstrap
pseudo-series yb = {yb(1), . . ., yb(M)}, b = 1, . . ., Nb, which maintain
all the individual properties of the original time series, i.e., mean,
variance and probability distribution. The bootstrap pseudo-series
are generated by feeding the AR model identified on the original
time series y with bootstrap pseudo-residuals. The procedure creates
the bootstrap pseudo-residuals ub = {ub(1), . . ., ub(M)} by joining
together l � M

L non-overlapping blocks chosen randomly from the
set {B1, . . ., Bl}, where L is the size of each block, Bm = {u(m), . . .,
u(m + L − 1)} andm is chosen randomly from the set {1, . . .,M − L +
1}. After generation of the bootstrap time series yb from the original
AR model coefficients ak, k = 1, . . ., p, and the bootstrap pseudo-
residuals ub, the time domain and spectral LSP profiles are
recomputed from the new, full-size bootstrap series yb to get the
estimates Sby and s

(q)b
y (f), respectively, with q = 1, . . .,Q; the spectral

profiles are then integrated in the desired band F to get the estimates
s(F)

b

y . The procedure is iterated for b = 1, . . ., Nb to construct
bootstrap distributions. The significance threshold s(F)

α

y is derived
taking the αth percentile of the distribution. In order to assess the
existence of significant self-predictability in F, we exploit the fact
that the spectral profile s(F)

b

y (f) oscillates around the value Sy, which
does not vary with f. Then, the core of the procedure lies in
evaluating the degree of emergence of the peak of s(F)

b

y (f) in F
with respect to the mean value assumed by the same spectral profile
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if the oscillation is not present, i.e., Sy. To this purpose, the original
pole-specific spectral LSP value integrated in F, s(F)y , is deemed as
statistically significant if s(F)

α

y > 1
ΔF∫F

Sy(f)df, where ΔF is the
bandwidth and Sy(f) is the spectral profile of the original time
domain LSP, equal to Sy ∀f. In this work, Nb = 100 bootstrap
repetitions were generated to identify confidence intervals for the
investigated measures.

3 Validation on simulations

In this section, we study the behavior of the proposed self-
predictability measure using a simulated AR process, where the
exact profiles of the spectral LSP are computed (with sampling
frequency fs = 1 Hz) from the true values imposed for the AR
parameters. The process Y, exhibiting autonomous oscillations at
different frequencies, is defined as:

Yn � ∑4
k�1

akYn−k + Un (7)

where U is a Gaussian white noise process with zero mean and
unit variance. The autonomous oscillations of Y are obtained
placing pairs of complex-conjugate poles, with modulus ρ and
phase 2πf, in the complex plane representation of the process; the
AR coefficients resulting from this setting are a1 = 2ρ cos(2πf) and
a2 = −ρ2 (Faes et al., 2015b). Here, we imposed autonomous
oscillations for the process Y in the LF and HF bands of the
spectrum, setting ρHF = 0.9, fHF = 0.3 Hz, so that the dynamics of
Y in the HF band are determined by the fixed coefficients
a1 = −0.556, a2 = −− 0.81, and ρLF = b · 0.8, fLF = 0.1 Hz, so
that the strength of the dynamics of Y in the LF band, which are
determined by the coefficients a3, a4, depends on the parameter b
varying in the range [0, 1]. The theoretical values of the time
domain and the spectral LSP measures are computed for each
value of the parameter b.

Furthermore, Nb = 100 bootstrap realizations of the process Y,
each of length N = 1000 points, are then generated ∀b by feeding (7)
with Nb block bootstrap versions of a single realization of the white
noise processU, using the theoretical coefficients ak, k = 1, . . ., 4. The
time domain and spectral LSP measures are then estimated after
identifying the AR model fitting the bootstrap time series of Y; the
model order was set using the Akaike Information Criterion (AIC).
Statistical significance of the spectral LSP measures in a given
frequency band is then assessed exploiting the method described
in Sect. 2.3.2.

The spectral decompositions of the PSD and the TF of the
simulated AR process are reported in Figure 1. Figure 1A shows the
theoretical PSD profile (orange continuous line) of the process Y
when b = 1, decomposed into its two spectral components, LF (green
dashed line) and HF (purple dashed line). Figure 1B shows the
theoretical profiles of the TF of the AR process, H(f), at varying the
parameter b from 0 (blue) to 1 (red). The TF shows only a positive
peak in the HF band in absence of LF dynamics, i.e., when b = 0, and
a positive peak in LF with amplitude increasing with the parameter
b. This demonstrates that the TF is sensitive to the oscillatory
content of the AR process, and it peaks wherever its self-
dynamics are located in the frequency domain. Indeed, the
two TF contributions in HF (Figure 1C, above) and LF
(Figure 1C, below) display frequency-specific peaks with constant
or varying amplitude depending on how the corresponding
dynamics are modulated.

The theoretical spectral profiles of the LSP measures resulting
from the simulation are reported in Figure 2. The time domain LSP
SY exhibits a non-monotonic behavior at varying this parameter
from 0 to 1 (blue to red dots, Figure 2A). Specifically, the increase of
the parameter b determines an initial decrease of LSP, followed by a
slight increase when b = 1. Thus, high regularity is found whenever
the process has only one oscillation, while the presence of two
oscillations makes the process less predictable. Only when b
approaches 1 (Figure 2B, left, reddish profiles), the emergence of

FIGURE 1
Spectral decomposition of the power spectral density and the transfer function of the simulated AR process. (A) Linear spectral decomposition of the
process Y with b = 1. The PSD, P(f) (orange continuous line), is decomposed into components P(LF)(f) (green dashed line) and P(HF)(f) (purple dashed line)
with associated frequency fLF, fHF and power σ2LF, σ

2
HF. (B) Spectral profiles of the TF of the process, H(f). (C) Spectral profiles of the frequency-specific TFs

of the process, computed for the poles with frequency inside the HF ([0.15 − 0.4]Hz, H(HF)(f), above) and LF ([0.04 − 0.15]Hz, H(LF)(f), below) bands of
the spectrum. Profiles are computed at varying the parameter b from 0 (blue continuous line) to 1 (red continuous line).
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a clear LF oscillation determines a decrease of σ2U and thus an
increase of SY (Figure 2A, reddish dots). The frequency-specific
terms show positive peaks at the LF and HF frequencies (0.1 Hz and
0.3 Hz, respectively), confirming that the system owns self-dynamics
and is thus self-predictable at the frequencies of the PSD peaks
(s(q)Y (f), where q indicates the LF or HF band, Figure 2B).
Specifically, while the HF contribution (right) does not change
consistently with b and is always significant according to
bootstrap data analysis, the LF profile (left) is constant over
frequencies and equal to SY when b = 0, while a peak in the LF
band emerges gradually with increasing values of b. Only when b >
0.6, the bootstrap procedure provided significant results for the LF
oscillation, thus allowing to statistically assess the existence of
significant self-predictability in this band.

To sum up, in the proposed simulated example we showed
that the spectral LSP is able to quantify and localize the self-
dynamics of Y in the frequency domain, thus reflecting their
presence and strength and showing positive peaks at the
frequencies where they are located. Its time domain
counterpart rather provides an overall description of these
dynamics without focusing on specific oscillatory rhythms.
Remarkably, the utilization of surrogate and bootstrap data
analyses allows to assess the statistical significance of the
proposed measures in the time and frequency domain, thus
enabling to get more confidence in the significance of the
findings and draw meaningful conclusions.

4 Application to arterial compliance
short-term variability analysis

4.1 Study protocol, data acquisition and time
series extraction

This section reports the application of the described methods on
arterial compliance time series taken from a larger database recently

collected (Švec et al., 2021). The original study, approved by the
ethical committee of the Jessenius Faculty of Medicine, Comenius
University, included a total of 81 young and healthy Caucasians,
aged 18.56 ± 2.88 years.

Arterial blood pressure (ABP) signal from finger, obtained by
the photoplethysmographic volume-clamp method followed by
brachial ABP reconstruction (Finometer Pro, FMS Netherlands),
and electrocardiogram (ECG, CardioFax ECG-9620, NihonKohden
Japan) were recorded during two phases of the experimental
protocol: (i) the resting supine position (REST), started 8 min
after the beginning of the measurement, and (ii) the upright
position reached after passive head-up tilt (TILT), started 3 min
after the position change from supine to tilt. Heart period (HP)
intervals were extracted as the time distance between consecutive R
peaks of the ECG. Hemodynamics parameters including cardiac
output (CO) were derived on a beat-to-beat basis exploiting the
impedance cardiography (ICG, CardioScreen 2000; Medis,
Germany) and exerted a main role in the subsequent
determination of the AC time series. The value of AC was
quantified through a recently developed method, based on a
reliable estimation of the time constant τ, i.e., the rate of the
peripheral ABP decay during the diastolic phase, for each heart
beat separately, as well as on the exploitation of the relationship
between τ, AC and the total peripheral resistance (TPR) based on the
two-element Windkessel model (Švec and Javorka, 2021). Since the
measurement of hemodynamic parameters using ICG is very
sensitive to movement artifacts, skin condition and distribution
of fat, in some cases these parameters were then not determined for
each heart beat, and then only 39 subjects were selected for further
analysis. All the acquired signals were digitized at a sampling rate of
1 kHz. Transient changes in cardiovascular parameters between
consecutive phases of the study protocol were excluded from
analysis. Then, stationary segments of 300 consecutive beats were
extracted from the original recordings in the two phases of the
protocol. We refer the reader to (Švec et al., 2021) for further details
about data acquisition and time series extraction.

FIGURE 2
Spectral decomposition of the linear self-predictability of the simulated AR process. (A) Profile of SY at varying the parameter b from0 (blue dots) to 1
(red dots). (B) Spectral profiles of the frequency-specific terms in Eq. (5) computed for the poles with frequency inside the LF ([0.04 − 0.15]Hz, s(LF)Y (f), left)
and HF ([0.15 − 0.4]Hz, s(HF)Y (f), right) bands of the spectrum. Spectral profiles are computed at varying the parameter b from 0 (blue continuous line) to 1
(red continuous line).
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4.2 Data analysis and statistical validation

The time series extracted for each subject in the two
experimental conditions were regarded as realizations of the AC
discrete-time process (in the following, referred to as C), assumed as
uniformly sampled with a sampling frequency equal to the inverse of
the meanHP. First, classical time domainmarkers, i.e., the mean and
variance of AC (μC[ mL

mmHg] and σ2C[ mL2

mmHg2]) were computed. Then,
the series were pre-processed by removing the mean value. The AR
model (1) was fitted on each pre-processed series using vector least-
squares identification and setting the model order p according to the
Akaike Information Criterion (AIC) (maximum scanned model
order equal to 14). Since the use of the AIC sometimes led to
duplicate peaks or negative power as a result of spectral
decomposition (Pernice et al., 2021), the model order was
manually adjusted so as to detect spectral components with
positive power. After AR identification, the spectral profiles were
computed according to (3). Moreover, the LF and HF components,
i.e., P(LF)(f) and P(HF)(f) respectively, were computed from the poles
with central frequency located in the ranges [0.04 − 0.15] Hz and
[0.15 − 0.4] Hz, respectively, and the related variance was obtained
from the pole residuals (σ2LF and σ

2
HF). For some subjects, more than

one peak was found in these bands; in such cases, the poles with the
highest power were selected for further analysis. Finally, the spectral
profiles of the LSP measure in (5), computed for the LF and HF
oscillations, were integrated in these bands and marked as s(LF)C ,
s(HF)
C , respectively. The time domain LSP was obtained exploiting (6)
and marked as SC.

To test the statistical significance of the time and frequency
domain LSP measures, surrogate and bootstrap data analyses were
implemented as described in Sect. 2.3.1 and 2.3.2, respectively.

As regards statistical analysis, the distributions of the
computed measures were tested for normality using the
Anderson-Darling test. Since the hypothesis of normality was
rejected for most of the distributions, and given the small
sample size, non-parametric tests were employed. Specifically,
the statistical significance of the difference between REST and
TILT conditions, as well as between integrated PSD values in LF
and HF bands in a given experimental condition, was assessed
using theWilcoxon signed-rank test for paired data. In this work, a
significance level α = 0.05 was used to compute confidence
intervals of the surrogate and bootstrap distributions as well as
to conduct statistical tests.

4.3 Results and discussion

The results of the time domain analysis are reported in Table 1,
revealing that both the mean μC and the variance σ2C of the AC time
series decreased significantly with head-up tilt (p < 0.001). This is in
accordance with previous findings (Hasegawa and Rodbard, 1979;
Huijben et al., 2012; Švec et al., 2021) and suggests that, when higher
sympathetic activity is assumed, i.e., during the orthostatic
challenge, the well-known changes of heart rate and total
peripheral resistance occur rapidly through baroreflex
mechanisms (Cooper and Hainsworth, 2001; Sugawara et al.,
2012; Nardone et al., 2018), and are accompanied by a
simultaneous rise in arterial stiffness.

Figure 3 shows the boxplot distributions of the spectral power
of AC in the REST (Figure 3A) and TILT (Figure 3B) conditions
computed within the LF (σ2LF, green circles) and HF (σ2HF, purple
circles) bands, and depicted in a way such that subject-specific
information relevant to the frequency location of the LF and HF
spectral peaks is also provided (each circle has coordinates (fq, σ2q),
where q represents the LF or HF band). While the tendency of the
LF power is towards an increase moving from REST to TILT (p =
0.068), the HF power significantly decreases (p = 0.002).
Furthermore, the assessment of the significance of the
difference between power values integrated in LF and HF bands
in a given condition revealed that the latter ones are predominant
(p < 0.001) during the supine rest (Figure 3A, σ2LF vs. σ2HF). This
finding may reflect the fact that HF oscillations of AC can be
heavily affected by several respiration-related mechanisms,
including (i) the direct mechanical effect of intrathoracic
pressure oscillations on the arterial wall stretch, and (ii) the
effect of HF oscillations in AC modulators such as heart rate
and ABP, with former bringing information about the mechanisms
of respiratory sinus arrhythmia (RSA) (Elstad and Walløe, 2015;
Švec and Javorka, 2021; Wiszt and Javorka, 2022). The
predominance of HF withdraws with tilt due to a slight increase
of LF power (p = 0.068) and a significant decrease of HF power (p =
0.002), as depicted in Figure 3B. An increase of magnitude of LF
oscillations can reflect the sympathetically-driven vasomotion as a
result of its baroreflex-mediated activation associated with
orthostasis (Cooper and Hainsworth, 2001; Nardone et al.,
2018; Czippelova et al., 2019). Conversely, a decrease of
magnitude of HF oscillations could be attributed to the
parasympathetic inhibition during orthostasis reflected by
decreased RSA magnitude (Berntson et al., 1994; Javorka et al.,
2018). Quantifying the effects of potential drivers of AC
oscillations, such as changes of heart rate and TPR, could
improve our understanding of the observed changes in AC
variability (Czippelova et al., 2019; Švec et al., 2021).

In Figure 4, the spectral representation of the LSP is shown in
terms of boxplot distributions of the integrated measure over all
frequencies (SC, Figure 4A), as well as in the LF (s

(LF)
C , Figure 4B, left)

and HF (s(HF)
C , Figure 4B, right) bands, computed in the REST (left

boxplots, cyan circles) and TILT (right boxplots, magenta circles)
conditions. The significant increase of the time domain LSP moving
from REST to TILT (p = 0.002) is confirmed only in the HF band of
the spectrum (p = 0.007). This suggests that the overall increase of
regularity of the process cannot be generalized to the whole
frequency content of arterial compliance, but is rather confined
to the HF band of the spectrum and may have different origins.

One of them is related to the mathematical nature of the LSP
measure s(F)C (f) (F represents the LF or HF band), whose spectral

TABLE 1 Time domain indexes (mean μC and variance σ2C) of AC in the REST
and TILT experimental conditions. Values are computed over 39 subjects
and expressed as mean ± standard deviation. Wilcoxon signed rank test for
paired data:* p < 0.05 REST vs. TILT.

REST TILT

μC[ mL
mmHg] 1.76 ± 0.41 1.42 ± 0.28*

σ2C[ mL2

mmHg2] 0.022 ± 0.015 0.015 ± 0.008*
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profile is given by the sum of the frequency-independent term SC,
and the zero-mean term �s(F)C (f) showing a peak in band F. Potential
tilt-induced significant increases of SC are thus frequency-
independent and distributed uniformly along the whole
frequency axis. Then, the spectral LSP s(F)C (f) is influenced by
this increase even in the case when there is no significant change in
fluctuations of �s(F)C (f); this influence has major weight in the larger
spectral band due to the higher number of integrated frequency bins
(i.e., the HF band), and may be thus responsible for the observed
change of self-predictability in this band.

From a physiological point of view, the degree of complexity of
arterial compliance could be a result of the combined effects of
external influences modulating its dynamic activity and operating

over different temporal scales, such as direct mechanical or neural
influences arising from central oscillators (respiratory and
vasomotor oscillators), feedback loops (e.g., baroreceptive closed-
loop circuit), and complex physiologic mechanisms adjusting TPR,
ABP and heart rate.

At first sight, the unaltered regularity of AC in the LF band can
be attributed to a hidden tilt-induced sympathetic activation, due
to the high degree of co-ordination and synchronicity of several
simultaneous control mechanisms regulating AC in both the
resting state and tilt conditions (e.g., heart rate, blood pressure
and TPR). However, bootstrap data analysis yielded opposite
results, since we found that the significance of AC self-
predictability in the LF band increased with tilt (from 8/39,

FIGURE 3
Spectral decomposition of the beat-to-beat arterial compliance time series. Power of AC computed at rest (A) and during tilt (B); powers are
depicted as boxplot distributions and individual valueswith coordinates (fLF , σ2LF) (green circles) and (fHF , σ2HF) (purple circles). The total number of subjects
is 39, but only the subjects for those the algorithm detected at least one pole in the LF and HF bands are shown here. Statistically significant differences
assessed by the Wilcoxon signed-rank test for paired data (p, p < 0.05 REST vs. TILT; #, p < 0.05 LF vs. HF).

FIGURE 4
Assessment of arterial compliance self-predictability in the time and frequency domain. Measures of LSP integrated in time (SC, (A), LF (s

(LF)
C , (B), left)

and HF (s(HF)
C , (B), right) bands of the spectrum, in REST (left boxplots, cyan circles) and TILT (right boxplots, magenta circles) conditions. The total number

of subjects is 39. Numbers in each plot indicate statistically significant LSP values in REST (left) and TILT (right) according to surrogate and bootstrap data
analyses. Statistically significant differences assessed by the Wilcoxon signed-rank test for paired data: p, p < 0.05 REST vs. TILT.
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i.e., 20.51%, in the supine rest to 21/39, i.e., 53.85%, in tilt), as
depicted in Figure 4B (left). This finding is of great importance and
confirms the slight activation of sympathetic vasomotor control
observed for the power spectral density of compliance (Cooper and
Hainsworth, 2001; Nardone et al., 2018; Czippelova et al., 2019),
besides possibly reflecting an increased amplitude of LF
oscillations in external modulators such as ABP or TPR (Cooke
et al., 1999; Elstad et al., 2011). Noteworthy, the augmented
number of significant spectral measures in this band can be
explained by considering the subject-specific frequency profiles
of s(LF)C (f), which are likely to show more prominent peaks in LF
during tilt, in accordance with wider fluctuations of �s(LF)C (f) and in
spite of an overall frequency-independent increase of SC (as shown
in Figure 4A), i.e., the threshold for assessing significance in
bootstrap data analysis (Sect. 2.3.2).

The tilt-induced physiologic responses resulting in decreased
respiratory rates and increased tidal volumes (Brown et al., 1993;
Porta et al., 2000; Javorka et al., 2018), as well as in a slight
diminished complexity of the respiration signal (Valente et al.,
2017), may be responsible for the increase of regularity of AC in the
HF band. Indeed, the increased mechanical influences on arterial
vessels due to an augmented tidal volume are likely to produce an
augmented coupling between arterial stiffness and respiration,
reflected by an increase of AC self-predictability in the HF
band. Moreover, an increased HF-related regularity in AC could
be attributed also to the effect of increased magnitude of ABP
variability in this band (Cooke et al., 1999), probably resulting
from the tilt-induced suppression of buffering effect of RSA on
ABP variability at the respiratory frequency (Cooke et al., 1999;
Elstad et al., 2001). Noteworthy, the latter findings highlight one
important limitation of the LSP measure, which is its formulation
in absence of a multivariate context taking into account potential
oscillatory external drivers of AC variability, such as ABP and
respiration. A spectral measure of autonomous dynamics defined
as Granger Autonomy has been proposed recently, which is an
extension of the LSP to the bivariate case and takes into account
potential confounding mechanisms deriving from external sources
(Sparacino et al., 2023). It is worth noting that the significance of
HF self-predictability decreases from 30/39 (76.92%) in the supine
rest to 27/39 (69.23%) during tilt, as depicted in Figure 4B (right).
One more time, this result could be interpreted by looking at the
spectral profiles of s(HF)

C (f): while the increase of self-
predictability in HF may be associated to the frequency-
independent increase of the term SC, the tilt-induced
diminished significance of the spectral LSP in the same band
could be the result of less prominent peaks due to dampened
fluctuations of �s(HF)

C (f). Again, if combined with the increase of
significance of LF regularity, this result confirms a
parasympathetic withdrawal related to heart rate control and
suggests the importance of LF fluctuations when the process
has to cope with the physiological perturbations due to the
orthostatic challenge.

The application of the proposed approach to arterial
compliance data has demonstrated the significance of
computing frequency-specific self-predictability measures in
the case of physiological variables rich of oscillatory
components with different frequencies and shape, suggesting
that the overall changes of self-predictability in the time

domain may be confined to specific bands of the spectrum.
Moreover, investigating the spectral self dynamics of
physiological processes may have a great impact in
understanding their role in multivariate contexts.

5 Conclusion

In this study, we proposed a novel spectral measure to
characterize the self-predictability of linear Gaussian physiologic
processes in the frequency domain. The spectral function was
defined in such a way to be related to the peaks of the PSD,
which here was represented as the sum of different spectral
components with specific power and frequency through the well-
established method of spectral decomposition (Baselli et al., 1997;
Pernice et al., 2021). Yet, in spite of being a simple mathematical tool
derived from the TF of the process and reflecting its spectral
dynamics, the proposed spectral LSP has a clear meaning in the
field of information theory as it is related to the well-known concept
of information storage. Moreover, due to the logarithmic
transformation of the TF, the effect of outliers is minimized and
changes in the auto-dependencies are amplified vertically, thus
allowing to differentiate their behavior in practical computations
with respect to other non-logarithmic measures (e.g., the variance of
the poles of the power spectrum). Noteworthy, being particularly
useful for the analysis of dynamic processes which are rich of
oscillatory content, the proposed method has the potential to
infer physiological mechanisms which can be hidden in time
domain due to the mixing with other spectral effects, as well as
to more precisely quantify the spectral information content
associated to specific oscillations of the process. These capabilities
are demonstrated first in a theoretical example of a simulated AR
process, and then in the application to short-term beat-to-beat
variability of noninvasive estimates of arterial compliance
acquired in young healthy subjects in the supine resting position
and during head-up tilt (Švec et al., 2021; Švec and Javorka, 2021).
The observed shift of oscillatory content of compliance towards low
frequencies is associated to an increase of the significance of linear
self-predictability in LF, as confirmed by the spectral decomposition
of the LSP, and probably due to the tilt-induced augmented
sympathetic control and vagal withdrawal.

Remarkably, the proposed framework can be generalized to
any physiologic variable exhibiting oscillatory activity, e.g., to
cardiovascular, respiratory, cerebrovascular and neural data. We
remark indeed the generality of the linear parametric
representation of information-based measures such as the LSP,
that naturally lends itself to the frequency-specific analysis of
oscillatory processes.

The present study has two significant methodological
limitations. First, being based on univariate metrics, it does not
take into account that linear predictability of the investigated
process may change when the system is part of a network of
physiological interactions. Hence, the interpretation of SY as a
measure of self-predictability may be confounded by the fact that it
also includes dynamical influences which stem not only from the
investigated target system, but also from other potentially
interconnected source systems (Wibral et al., 2014). Therefore,
future studies should be focused on the use of bivariate or even

Frontiers in Network Physiology frontiersin.org09

Sparacino et al. 10.3389/fnetp.2024.1346424

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1346424


multivariate parametric models, analyzed in the time and/or
spectral domains, to investigate the role of other systemic
variables in the potential generation of the target oscillations.
As regards our application to arterial compliance, the influence of
putative drivers controlled by autonomic nervous system (blood
pressure, heart rate), together with the mechanical effects of
intrathoracic pressure changes during respiration and the role
of other factors that contribute to compliance beat-to-beat
variability (e.g., the time constant τ or TPR), should be
investigated to clarify their effects on AC variability. A
secondary but still considerable weakness of this study is
related to the methodology. Indeed, it is worth noting that the
proposed spectral LSP measure could probably be affected by the
broadband aperiodic 1

f component, previously investigated in
some very interesting works (Yamamoto and Hughson, 1991;
Wen and Liu, 2016; Donoghue et al., 2020). In the short-term
setting like the one considered in our analysis, this effect is likely
to determine information stored at very low frequencies,
meaning that it could result in spectral components identified
by poles of the TF which are very close to zero, describing trends
in the observed time series that look aperiodic. This is a very
interesting aspect which deserves specific thorough investigation
in further studies on the topic.
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