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Abstract

In this work, a hybrid formulation based on the conjoined use of the recently developed virtual

element method (VEM) and the boundary element method (BEM) is proposed for the effective

computational analysis of multi-region domains, representative of heterogeneous materials. VEM

has been recently developed as a generalisation of the finite element method (FEM) and it allows

the straightforward employment of elements of general polygonal shape, maintaining a high level of

accuracy. For its inherent features, it allows the use of meshes of general topology, including non-

convex elements. On the other hand, BEM is an effective technique for the numerical solution of sets

of boundary integral equations, employed as the original model of the represented physical problem.

For several classes of problems, BEM offers some advantages over more popular techniques, namely

the reduction of the dimensionality of the problem, with associated computational savings. In this

study, the inherent advantages of VEM and BEM are simultaneously employed for the study of

heterogeneous material microstructures.

The method has been applied to i) the elastic analysis and ii) computational homogenization of

fibre-reinforced composite materials and to iii) the analysis of composite unit cells exhibiting matrix

isotropic damage. The discussed results show how the hybrid technique inherits the generality of

VEM and the modelling simplification and accuracy of BEM, ensuring high accuracy and fast

convergence and providing a versatile tool for the analysis of multiphase materials, also including

non-linear behaviour such as material degradation. Further directions of research are identified and

discussed after commenting on the presented results.
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1. Introduction

In the last few decades, remarkable developments in experimental materials characterisation and

a broader availability of high performance computing have contributed to the development of the

materials by design paradigm [1], which aims at developing novel and sustainable materials with

desired optimal features by combining elementary constituents in a bottom-up approach using a5

variety of production techniques. A pillar of such a paradigm is provided by the capability of multi-

scale materials characterisation and modelling [2] that, by embodying deeper and richer layers of

information about the materials hierarchical organisation, often spanning several different scales,

contribute to the understanding of complex material/structural behaviours and to the design of

novel high-performance applications, with apparent technological benefits.10

In such a context, the possibility of modelling, with acceptable fidelity, the microstructure of a

considered material, and the complex interactions between its building blocks, plays a fundamental

role. The inclusion of deeper layers of fidelity, however, requires the ability of robustly addressing

several kinds of modelling complexities, included those arising, for example, from the need of

representing involved material morphological details, which may also present statistical variability.15

In this respect, the development of computational techniques able to deal with complex and evolving

geometries and meshes with accuracy, effectiveness and robustness attracts relevant interest.

In the present work, a hybrid computational technique based on the simultaneous use of the

Virtual Element Method (VEM) and the Boundary Element Method (BEM) is proposed for the

computational micro-mechanics and homogenization of heterogeneous materials with complex mi-20

crostructures, also exhibiting non-linear behaviour, in the form of damage initiation and evolution,

in some of the phases.

VEM [3, 4] is a recent and rapidly emerging generalisation of the Finite Element Method (FEM),

which allows the use of mesh elements of very general shape, including polygonal elements with an

arbitrary number of edges, elements with curved edges [5], non-convex and highly distorted elements,25

without penalties on the accuracy of the analysis. The method has been successfully applied to a

variety of mechanical problems [6, 7, 8, 9, 10, 11, 12, 13], including materials homogenization, see e.g.

Refs. [14, 15, 16]. The possibility of using virtual elements of general shape, also highly distorted,
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makes them particularly interesting for applications where the meshed domain may undergo large

deformations [17] or for problems where the occurrence of problematic morphological features,30

likely sources of mesh irregularities, may not be a priori excluded: a typical example is provided by

problems of statistical homogenization, where a relevant number of random unit cells is generated

and analysed with the aim of inferring the emerging material properties through volume averaging

techniques.

BEM [18, 19] is a numerical strategy based on the use of boundary integral equations for the re-35

formulation of the considered problems: its hallmark is the reduction of the problem dimensionality

as a direct consequence of the underlying integral formulation, with ensuing reduction in the number

of degrees of freedom required in the analysis, with respect to numerical techniques based on the

employment of partial differential equations, either in strong or weak form. The method is know

to offer high accuracy at a relatively reduced computational cost, especially in problems requiring40

accurate representation of the analysis domain boundary. Besides the computational cost savings,

the reduction of the model dimensionality generally induces a pre-processing simplification, thanks

to the need of discretising curves instead of surfaces, in the 2D case, or surfaces instead of volumes,

in the 3D case; such a feature may result particularly appealing when materials morphologies with

high statistical variability have to be automatically generated, meshed and analysed [20]. BEM has45

been successfully employed to the solution of several classes of problems in fluids [21] and solids

[19] mechanics and, more recently, in multi-scale materials modelling [22, 23, 24, 25, 26, 27, 28].

The idea put forward in this work is that the conjoined use of VEM and BEM might provide

some benefits in the modelling of heterogeneous materials with complex microstructures [29, 30].

While the coupling between FEM and BEM has been explored in the literature [31, 32, 33], to50

the best of the authors’ knowledge, no direct coupling between VEM and BEM has been previously

proposed; a FEM-BEM framework and a VEM-VEM framework have been used in Ref.[34], to

address the problem of fluid flow in discrete fracture networks, but no direct link between VEM

and BEM has been employed.

In the present work, which considers unit cells with stiff inclusions embedded within a more55

compliant matrix, representative e.g. of the transverse section fibre-reinforced composites, BEM

is employed to model the material inclusions, while VEM is used to represent the matrix. This

choice is motivated by the assumption that, under progressive loading, the stiffer inclusions remain

in the linear behaviour range, while the matrix may undergo complex non-linear phenomena, e.g.
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hardening, damaging or fracturing processes, which can be modelled within the framework of VEM,60

taking advantage of the generality inherited by FEM and its peculiar ability of dealing with elements

of very general shapes.

In this contribution, the capabilities of a coupled VEM-BEM approach for computational micro-

mechanics and homogenization of heterogeneous materials with complex microstructures are ex-

plored. An isotropic damage VEM model is implemented, to capture the degradation of the matrix65

in fibre-reinforced composites under progressive loading. The study is organised as follows. Sec-

tion 2 addresses the generation and meshing strategy for the analysed artificial morphologies. The

formulation of the hybrid virtual-boundary element method is described in Section 3, where the fea-

tures of the lowest-order VEM for elastic problems, Section 3.1, of a VEM formulation for domains

exhibiting isotropic damage, Section 3.2, and of BEM for two-dimensional linear elastic problems,70

Section 3.3, are recalled, before introducing the coupling procedure in Section 3.4. Eventually Sec-

tion 4 discusses the application of the hybrid procedure to: i) a case study represented by a matrix

with complex shaped inclusions, assessing the accuracy in terms of displacements and stresses; ii)

the computational homogenization of a two-phase material with elastic inclusions; iii) the analysis

of progressive degradation of a composite unit cell consisting of a fibre embedded in epoxy matrix75

with partial debonding between the two phases. Some concluding remarks are eventually given in

the Conclusions.

2. Generation and meshing of artificial microstructures

In this Section, the procedures adopted for generating and meshing the artificial representation of

the considered material microstructures are described. As it will be shown in Section 3, the present80

formulation is based on a multi–region approach, in which different phases are modelled using either

a virtual or a boundary element approach, depending on several considerations, including the phase

physics, as discussed in Section 5. An example is provided by the unit cell representative of a fibre–

reinforced polymer composite, for which a certain number of inclusions, modelled, e.g. with the

boundary element method, may represent the transverse section of the fibres, while the surrounding85

domain, modelled with the virtual element method, may represent the polymer matrix.

In general, the considered two-dimensional unit cell may contain NV regions modelled with the

virtual element method and NB domains modelled with the boundary element method, so that the
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overall domain Ω is given by

Ω =

(
NV⋃
k=1

ΩVk

)
∪

(
NB⋃
k=1

ΩBk

)
= ΩV ∪ ΩB , (1)

where the superscripts V and B refer to virtual and boundary element regions respectively. The90

overall domain is bounded by the contour Γ = ∂Ω, while the k–th subdomain ΩBk is bounded by

the contour ΓBk = ∂ΩBk and the k–th subdomain ΩVk is bounded by the contour ΓVk = ∂ΩVk .

The virtual element regions can be meshed with generic polygonal elements, which ensures

certain meshing flexibility, as discussed, e.g. in Ref.[15]. On the other hand, the boundary element

regions only require consistent meshes of their contours Sk and do not need any internal mesh, at95

least when they do not experience any non-linear material process (e.g. plasticity and/or damage).

The meshing procedure must then interface the polygonal virtual element mesh with the one–

dimensional boundary element mesh. Due to the inherent features of the virtual element method,

which allows the natural treatment of generic polygonal elements and hanging nodes, the meshing

can be implemented without resorting to complex pre–processing algorithms.100

To describe the implemented procedures, the simple example geometry shown in Fig.(1), con-

sisting of a square unit cell with an inclusion of arbitrary shape, is considered. In this case,

Ω = ΩV ∪ ΩB and ΓB = ∂ΩB is the interface between the two regions. Once the morphology of

the unit cell is geometrically reconstructed, the meshing procedure is based on the generation of a

Voronoi tessellation [35] of the overall domain and the subsequent clipping of the internal inclusions105

to be modelled with BEM.

The workflow of the overall procedure can be summarised as follows:

a) The micro–morphology is created as a two-dimensional geometric entity;

b) A conformal triangular mesh of the overall domain is generated;

c) A non-conformal polygonal mesh is generated as the Voronoi dual of the triangular discreti-110

sation;

d) The Voronoi cells falling within the inclusion domain are removed;

e) The Voronoi cells intersecting the contour ΓB are clipped using the nodes and edges of the

conformal triangular mesh, thus providing the sought conformal polygonal mesh.
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Fig. 1. A microstructure consisting of an arbitrary shaped inclusion within a surrounding matrix as an example two-

dimensional heterogeneous unit cell. Boundary conditions are enforced on the boundary Γ = ∂Ω of the microstructure;

ΓB is the interface between ΩV and ΩB .

The adjective conformal used above refers to the circumstance that the vertices of the initial115

triangular mesh and those of the target polygonal one lie on the interface S between the two

regions, thus identifying the interface mesh nodes, where suitable continuity conditions will be

enforced to retrieve the integrity of the domain.

The above procedure, schematically represented in Fig.(2), has been implemented in MATLAB.

The geometry is represented as a collection of points and curves identifying each subdomain, which120

forms the input for generating the first conformal triangular mesh of the overall domain. This task

has been performed using an unstructured mesh-generator for two-dimensional geometries [36]. The

target polygonal mesh is generated from the triangular mesh output using an in–house developed

code that performs the following sequence of operations: a) retrieves the triangular mesh data

structure; b) constructs a two-dimensional Voronoi diagram from the given triangulation; c) clips125

the polygonal mesh elements intersecting the interface ΓB , providing the target conformal polygonal

mesh of the domain.
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(a) (b) (c)

Fig. 2. Generation of the polygonal mesh of the artificial multi–region morphologies: a) initial conformal triangular

mesh of the overall domain; b) two-dimensional Voronoi diagram associated with the previous triangulation; c) target

conformal polygonal mesh obtained by removing the Voronoi cells within the inclusion domain and clipping those

intersecting the sub–domains interface.

3. The virtual–boundary element formulation

In this work, two–dimensional multi-region morphologies are considered, as described in the

previous section. In general, the considered microstructure lyes within the domain Ω and x =130

{x1, x2}ᵀ ∈ Ω denotes the coordinates of a generic point within it.

The strong formulation of the small strains elastic problem is based on the use of the strain-

displacement equations

εij(u) =
1

2
(ui,j + uj,i) , (2)

of the linear elastic constitutive laws

σij = Cijkl εkl, (3)

and of the indefinite equilibrium equations135

σij,j + fi = 0. (4)

where u = {u1, u2}ᵀ represents the displacement vector field, εij are the components of the the

strain tensor, σij are the components of the stress tensor, Cijkl are the stiffness tensor components

and fi are the components of volume distributes loads. Eventually, suitable boundary conditions
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are enforced on the boundary Γ ≡ ∂Ω of the the considered body, so that

∀i = 1, 2

ui = ūi on Γui

ti = t̄i on Γti

(5)

and Γui
∩ Γtj ≡ ∅ if i = j and Γui

∪ Γti ≡ Γ for i = 1, 2.

It may sometimes be convenient, for the sake of expressivity and compactness, to employ

the Voigt notation and express the above sets of equations in matrix form, so that the strain-

displacements relationships, the constitutive equations and the equilibrium equations read respec-

tively140

ε = Du, σ = Cε, Dᵀσ + f = 0, (6)

with the associated boundary conditionsu = ū on Γu

t = Dᵀ
nσ = t̄ on Γt

(7)

where

D =


∂x 0

0 ∂y

∂y ∂x

 , Dn =


nx 0

0 ny

ny nx

 (8)

where D denotes the small-strains linear differential matrix operator, ∂x = ∂(·)/∂x and ∂y =

∂(·)/∂y, nx and ny are the components of the boundary unit normal n, σ = {σ1 = σ11, σ2 =

σ22, σ6 = σ12}ᵀ and ε = {ε1 = ε11, ε2 = ε22, ε6 = 2ε12}ᵀ.145

In this Section the features of both the virtual element and boundary element methods will be

described with reference to the above two-dimensional elastic problem. The interface between the

two methods will be then formulated and the VE–BE method will eventually be established.

3.1. The virtual element method for elastic domains

The Virtual Element Method may be considered as a generalisation of the Finite Element150

Method to the treatment of general polygonal or polyhedral mesh elements showing, in this respect,

some similarities with other polygonal/polyhedral finite element methods [37].

In VEM, the trial and test functions over a generic polygonal mesh element are selected as the

set of all polynomials up to a certain order k plus a set of additional functions constituting the
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solution of a suitably defined boundary value problem over the considered element. In such an155

approximation, k identifies the order of the virtual element scheme while the auxiliary functions,

used in the theoretical derivation of the method, are required to be known only over the element

edges; within the element they are neither explicitly known nor computed, thus justifying the label

virtual attached to the method. Once a weak form of the elastic problem is established, the discrete

counterpart of the continuous operators appearing in the variational formulation can be computed160

by expressing the virtual trial and test functions through their polynomial projections that, through

appropriate choice of the element degrees of freedom, can be exactly computed without actually

solving the local boundary value problem.

3.1.1. Weak form for 2D linear elasticity

The weak form for the boundary value problem given in Section 3 is provided by the principle165

of virtual displacements, which states that the solution field is given by the displacements u(x) ∈ V

satisfying the equality ∫
Ω

ε(v)ᵀC ε(u) dΩ =

∫
Ω

vᵀf dΩ ∀v(x) ∈ V, (9)

where V :=
[
H1

0 (Ω)
]2

is the space of kinematically admissible displacements and H1
0 (Ω) denotes

the first order Sobolev space on Ω, consisting of functions vanishing on Γ and square integrable

over Ω together with their first order derivatives. With the sole aim of simplifying the formal170

introduction of the method, in Eq.(9) it has been assumed that the displacements u vanish along

the boundary Γ of the analysed domain. As it will be recalled in Section 3.1.7, the assumption does

not affect the generality of the formulation: indeed, due to the choice of the element-wise virtual

space of admissible displacements, see Section 3.1.3, either non-homogeneous Dirichlet or Neumann

boundary conditions can be implemented following the same procedure as in the standard finite175

element method[38].

Defining integral operators

L (u,v) :=

∫
Ω

ε(v)ᵀC ε(u) dΩ, G (v) :=

∫
Ω

vᵀf dΩ, (10)

which identify the virtual strain energy symmetric bilinear form and the loads virtual work linear

functional, Eq.(9) can be written in the compact form

L (u,v) = G (v) ∀v ∈ V, (11)
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useful in subsequent developments.180

3.1.2. Domain partition and element description

The weak form in Eq.(11) is employed to build an approximate solution to the elastic boundary-

value problem. For this purpose, the domain Ω is sub-divided into a set Ωh of finite non-overlapping

elements E ∈ Ωh, mutually interconnected at the nodal points lying on their edges. Once the

discretisation Ωh is identified, a function space Vh ⊂ V constituting a finite-dimensional approx-185

imation of V can be associated to it. The Galerkin approximation of the problem is provided by

uh ∈ Vh such that

L (uh,vh) = G (vh) ∀vh ∈ Vh, (12)

where the integral operators can be split into elemental contributions LE(·, ·) and GE(·) as

L (uh,vh) =
∑
E∈Ωh

LE(uh,vh) =
∑
E∈Ωh

∫
E

ε(vh)ᵀC ε(uh) dE (13)

and

G (vh) =
∑
E∈Ωh

GE (vh) =
∑
E∈Ωh

∫
E

vᵀhf dE. (14)

One of the most appealing features of VEM is the possibility of treating polygonal elements190

with very general shapes: in particular polygons with an arbitrary number of edges are allowed and

even the requirement of convexity may be waived. For a generic element E, xE = {xE , yE} will

denote its centroid, hE its diameter and |E| its area. The counter-clockwise ordered vertices vi,

i = 1, 2...,m, have coordinates xi = {xi, yi} and their local scaled coordinates are defined by

ξi =
xi − xE
hE

, ηi =
yi − yE
hE

. (15)

The symbol ei, i = 1, 2...,m, will refer to the edge having vi as its first vertex – see Fig.(3); the195

element overall boundary will be denoted by ∂E and n is the unit normal vector to ∂E.

3.1.3. Virtual displacements field

In this work the lowest order virtual element method is employed to model some regions of the

considered microstructures. In the case of the lowest order formulation, i.e. when k = 1, the local

discrete virtual space of admissible displacements for the generic element E is defined as in Ref.[39],200

i.e.

Vh(E) :=
{
vh ∈

[
H1(E) ∩ C0(E)

]2
: vh|∂E ∈

[
C0(∂E)

]2
;

vh|e ∈ [P1(E)]
2 ∀e ⊂ ∂E; DᵀC ε(vh) = 0 in E

}
,

(16)
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Fig. 3. Example of a non-convex VEM element with hanging nodes.

where the notation Pk(E) indicates the space of polynomials of degree k on E. The global discrete

virtual space is thus obtained by

Vh :=
{
vh ∈ V : vh|E ∈ Vh(E) ∀E ∈ Ωh

}
. (17)

Differently from classical FEM, vh ∈ Vh(E) are explicitly known only on ∂E and their explicit

knowledge is not required over the whole element domain, thus justifying, as mentioned, the label205

virtual. For the case k = 1:

• The degrees of freedom associated with E are the point-wise values of vh at its vertices vi;

• The functional components of vh are linear polynomials along each edge ei ⊂ ∂E and they

are globally continuous on ∂E.

The choice of the lowest order formulation is motivated, besides its simplicity and ease of imple-210

mentation, by the fact it ensures a straightforward coupling with the boundary element equations

employed for modelling the microstructural inclusions, see Section 3.4, which are based on a linear

approximation of the displacements and traction fields along each boundary element. However,

higher order virtual element formulations have been proposed in the literature. Their possible use

within the present framework is briefly discussed in Section 5, but their in-depth treatment go215

beyond the scope of the present contribution. The interested readers are referred to Refs.[40, 39, 4]

for further details.
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3.1.4. Elemental projector operator

Being the components of vh not explicitly available, the local discrete bilinear form LE(·, ·)

cannot be computed by standard numerical integration, as classically done in FEM. For this purpose,220

VEM employs a projector operator Π, defined on E by the orthogonality condition∫
E

pᵀ [Π(vh)− ε(vh)] dE = 0 ∀p ∈ [P0(E)]
3
, (18)

which identifies Π(vh) as an approximation of the strains field associated to the unknown displace-

ments vh, so that the error with respect to the approximated field has no components along the

space of polynomial of order k − 1 over E. Having p constant components when k = 1, Eq.(18)

yields225

Π(vh) =
1

|E|

∫
E

ε(vh) dE. (19)

The projector operator and its discrete counterpart have a key role in VEM.

3.1.5. Projector operator matrix

To be effectively employed, the projector operator must be computed in a discrete form. To do

so, each function vh ∈ Vh(E), whose explicit expression is unknown, can be thought as

vh = N (ξ, η) ṽ (20)

where ṽ = [ṽx1, ṽy1, . . . , ṽxm, ṽym]
ᵀ

collects the point-wise values of vh associated with the ele-230

ment vertices and N (ξ, η) ∈ R2×2m collects the virtual shape functions Ni(ξ, η), never explicitly

represented within the element domain, associated with each vertex i of the element E, analogously

to what is done in the standard FEM. It is important to realise that the functional entries of the

matrix N (ξ, η) are never analytically known at the interior points of the generic element; only their

restriction to the element edges is explicitly known, due to the features of the space Vh(E) defined235

in Section 3.1.3. Here, along the lines of Ref.[38], the expression in Eq.(20) is introduced to allow

a formal presentation of the method more suited to readers with an engineering background, thus

familiar with the concept of shape functions.

Employing Eq.(20) in Eq.(19), and considering the strain-displacement relationship in Eq.(6),

yields240

Π(vh) =
1

|E|

∫
E

D (Nṽ) dE =
1

|E|

(∫
∂E

Dn ·N d∂E

)
ṽ = Π ṽ, (21)
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where the boundary integral appearing in the third term has been obtained applying the Green’s

theorem to the domain integral and the operator Dn has been defined in Eq.(8).

Eq.(21) defines the discrete projector operator Π ∈ R3×2m as

Π =
1

|E|

∫
∂E

Dn ·N d∂E =
1

|E|

m∑
k=1

∫
ek

Dn ·N ds, (22)

which can now be explicitly computed, as the restriction of the shape functions Ni (ξ, η) to the

element edges ek are known piece-wise linear polynomials.245

On each virtual element, the (constant) approximated strain field εΠ can be computed using

the local projector matrix Π and the nodal values of the displacement components ṽ

εΠ = Π ṽ (23)

3.1.6. Virtual element stiffness matrix

Once the local projector has been defined, the local symmetric bilinear form LE(·, ·) appearing

in Eq.(13) can be expressed as250

LE,h (uh,vh) =

∫
E

Π(vh)ᵀC Π(uh) dE + sE (uh,vh) , (24)

where the terms on the right hand side identify the so-called consistency and stability terms [40],

respectively. As it will be shown, upon discretisation

LE,h (uh,vh) = ṽᵀ KE ũ, (25)

which defines is the element virtual stiffness matrix

KE = Kc
E + Ks

E , (26)

stemming as the sum of the consistency and stability terms Kc
E , Ks

E ∈ R2m×2m.

The consistency term ensures that, if the solution of the original problem is globally a linear255

polynomial, then the discrete solution and the exact solution coincide. Using the virtual element

approximation in Eq.(21), such a term can be approximated as∫
E

Π(vh)ᵀC Π(uh) dE = ṽᵀ
(∫

E

Πᵀ C Π dE

)
ũ = ṽᵀ Kc

E ũ (27)

which, being the integrand constant over E, readily gives

Kc
E = |E|ΠᵀC Π. (28)
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The stability term, on the other hand, is a symmetric bilinear form that ensures proper rank to

KE and it may be written as260

sE (uh,vh) = ṽᵀ Ks
E ũ. (29)

Following Ref.[38], the matrix stability contribution can be computed as

Ks
E = (I−Πs)

ᵀ
µ (I−Πs) , (30)

where I ∈ R2m×2m is the identity matrix, Πs is the matrix projector operator

Πs = D (DᵀD)
−1

Dᵀ (31)

with

D =



1 0 ξ1 0 η1 0

0 1 0 ξ1 0 η1

...
...

...
...

...
...

1 0 ξm 0 ηm 0

0 1 0 ξm 0 ηm


(32)

and ξi and ηi are the local scaled coordinates of the element vertices defined in Eq.(15). Eventually,

as discussed in Ref.[39], µ = τ tr (Kc
E) is a constant parameter used to ensure the correct scaling of265

the stability term with respect to the element size and material constants and, for linear elasticity

problems, the value τ = 0.5 can be selected.

3.1.7. Loading vectors

Eventually, for the lowest order VEM, following Ref.[40] the local contribution GE(·) to the

virtual work of the volume load f appearing at the right-hand side of Eq.(12), if existing, can be270

approximated as

GE (vh) ≈ Gh,E (vh) =

∫
E

v̄ᵀhfh dE (33)

where

v̄h =
1

m

m∑
i=1

vh(x̃i) =
1

m

m∑
i=1

N(x̃i)ṽ (34)

denotes the average value of vh at the vertices of E and

fh = Π0 (f) :=
1

|E|

∫
E

f dE. (35)
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is the L2(E) projection onto constants of the load f .

On the other hand, in the case of distributed tractions t (x), acting along the edge ek of the275

generic virtual element E, i.e. ∀x ∈ ek ⊂ ∂E, the knowledge of the explicit expression of the restric-

tions of the shape functions Ni to the element edges allows the computation of the virtual work of

tractions and the convenient definition of nodal forces in terms of nodal values of tractions, which

makes the coupling between contiguous virtual element and boundary element domains straight-

forward, as it will be shown in Section 3.4. Eventually, it is worth noting that, since the shape280

functions Ni are explicitly known on the element edges, non-homogeneous boundary conditions over

the virtual elements can be enforced exactly as in standard FEM.

Denoting with f̃ the nodal forces, which in general include volume end edge contributions, and

considering the definition of stiffness matrix given in Eq.(26), it is possible to write the elemental

equilibrium equations of elasticity within the framework of the lowest-order VEM as285

KE ũ = f̃ . (36)

Once the elemental matrices are computed, the overall structural problem can be addressed em-

ploying standard FE numbering, assembly and solution procedures, which motivates the appeal

of VEM as a versatile method requiring minimum re-coding in existing software packages. The

discrete equations for the overall VE domain can be written

KVUV = FV (37)

where the superscript V is employed to identify terms stemming from the virtual element model290

and differentiate them from those associated with the boundary element model of the inclusions.

3.2. The virtual element method for domains exhibiting isotropic damage

In this section, a VEM formulation for modelling regions exhibiting isotropic damage is de-

scribed. The formulation is based on the employment of the concepts of continuum damage me-

chanics[41, 42, 43], which offers the tools to describe the progressive loss of material integrity295

due to the propagation and coalescence of microscopic defects, which lead to irreversible material

degradation and loss of stiffness observed at the macroscopic scale.

Different approaches have been used to model the growth and effects of distributed microscopic

defects at the macroscopic scale. The isotropic damage model [44, 45, 46, 47] adopted herein is based
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on the simplifying assumption that the loss of material integrity is caused by an equal degradation300

of the bulk and shear moduli and it is governed by a single internal scalar damage variable ω,

which is used to track and measure the loss of stiffness of the material. The damage value grows

monotonically within its admissible range 0 ≤ ω ≤ 1, where 0 represents the pristine material and

1 a fully degraded material. Under such assumptions, the constitutive equations for an isotropic

damage model are defined by [48]305

σ = (1− ω) C0 ε = (1− ω)σ̃, (38)

where, in Voigt notation, σ and ε collect, respectively, the stress and strain components, C0 is

the elasticity matrix for the pristine elastic material, and σ̃ represents the stress components that

would be associated to the strains ε in the undamaged material.

The evolution of damage is triggered upon fulfilment of the activation threshold condition

F (ε) = τ (ε)− r = 0, r = max
λ∈H
{τ(λ)} (39)

where τ (ε) is a suitably chosen norm of the strains, used to determine if the considered stress310

state belongs to the elastic domain, when F (ε) < 0, or if it induces damage initiation or evolution,

F (ε) = 0, and the monotonically increasing internal variable r represents the damage threshold

at the current loading step λ and it is a function of the loading history H. Different choices for

the threshold function τ (ε) are available in the literature, defining different shapes of the elastic

domain in the strains space. An expression proposed by Mazars [49] and frequently used in the315

modelling of quasi-brittle materials, e.g. concrete, defines τ (ε) as

τ (ε) =

√√√√ 3∑
i

〈εi〉2, (40)

where εi are the principal strains and 〈·〉 are the Macaulay brackets such that 〈εi〉 = (εi + |εi|) /2.

To model the onset and evolution of damage in epoxy resins, often used as matrix in fibre-reinforced

composite materials, which exhibit different behaviour in tension and compression, Melro et al.[50]

proposed the following law320

τ (ε) =
3J̃2

Xc
mX

t
m

+
Ĩ1(Xc

m −Xt
m)

Xc
mX

t
m

, (41)

where Xt
m and Xc

m are, respectively, the tensile and compressive strengths of the epoxy resin and

Ĩ1 and J̃2 are, respectively, the first stress invariant and the second deviatoric stress invariant;
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both quantities are defined using the effective stress components σ̃ that would be active in the

undamaged material.

The evolution of damage is governed by the Kuhn-Tucker flow rules, which read325

F ≤ 0, ṙ ≥ 0, ṙ F = 0, (42)

and allow to distinguish between loading and unloading conditions. Unloading occurs when τ̇ ≤ 0;

otherwise, damage evolves and the following consistency condition must be satisfied

Ḟ = τ̇ − ṙ = 0. (43)

The damage evolution law defines the evolution of the damage ω after its onset. An exponential

softening can be modelled by adopting a damage law defined as in Ref.[51] as

ω(r) =

[
1− r0

r
exp

(
− r − r0

rf − r0

)]
·H (r − r0) , r = max

λ∈H
{τ(λ)} (44)

where H (·) denotes the Heaviside step function, the parameter r0 identifies the damage initiation330

condition and rf specifies the softening response behaviour.

The VEM formulation described in Section 3 can be readily extended to problems involving

nonlinear material behaviours such as degradation and damage evolution, as described in Refs.[52,

53]. As in nonlinear finite element formulations, the nonlinear constitutive laws appearing in Eq.(38)

can be treated using standard incremental-iterative algorithms. The stress at a generic point x and335

at a generic loading step λ is given by the expression

σ = σ(λ,x, εΠ,H), (45)

where εΠ is the approximated virtual strain computed as in Eq.(23), using the matrix projector op-

erator Π. The tangent material stiffness matrix Ctan is consistently computed from the constitutive

law in Eq.(45) as

Ctan(t,x, εΠ,H) =
∂σ

∂εΠ
. (46)

A pure lowest-order VE formulation has already been applied for modelling the strain-softening340

response of concrete-like materials [11]. In the present work, the non-linear VE formulation will

be employed to model the degradation and damage evolution of the matrix phase of unidirectional

fibre-reinforced composite materials, while the fibres will be modelled resorting to BEM, in the

proposed hybrid framework.
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3.2.1. Integral-type non-local regularisation345

In the previous Section, the essential features of isotropic damage modelling have been re-

called. Although the formulation is straightforward to implement, the direct application of the

above damage model may lead to pathological mesh dependency, due to the occurrence of damage

localisation. To avoid such issues and restore mesh objectivity, continuum damage models require

suitable regularisation techniques. Integral-type non-local formulations are effective and frequently350

used regularisation techniques based on the assumption that damage at a point x depends on me-

chanical quantities suitably averaged over a region surrounding the point x itself [54, 55, 56, 57, 58].

Different non-local models have been proposed, see e.g. Ref.[55], differing for the selected averaged

variable.

The non-local approach employed here consists in replacing the local value of the equivalent355

strain τ(x) with its weighted average τ̄(x) defined as

τ̄(x) =

∫
Ω

α(x,y)τ(y) dΩ (y) , (47)

where Ω is the analysis domain. Eq.(47) embodies the assumption that strains (and stresses) at a

certain point depend, not only on the state variables at that point, but also on the distribution of

the state variables over the whole body, or at least over a finite neighbourhood of the point under

consideration. The non-local weight function α must satisfy the normalisation condition360 ∫
Ω

α(x,y) dΩ (y) = 1 ∀x ∈ Ω. (48)

This may be achieved by adopting the following scaled expression

α(x,y) =
α0 (x,y)∫

Ω
α0 (x,y) dΩ (y)

, (49)

where α0 (x,y) = α0 (d) is a non-negative weight function usually expressed in terms of the distance

d = ||x − y|| between two considered material points, monotonically decreasing for d ≥ 0. The

weight function α0 is often chosen as the truncated quadratic polynomial function

α0 (d) =

〈
1− d2

R2

〉2

, (50)

where R is known as the interaction radius and it is a parameter related to the internal or charac-365

teristic length lc of the non-local continuum, which depend on the heterogenous material features

[55].
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It is worth noting that for the non-local model to be effective, the size of the mesh elements

within the zone where the damage process occurs must be smaller than the interaction radius R.

In the lowest-order VEM formulation, the computed strain field is constant over a generic mesh370

element, and no integration weight actually exist. The approach adopted here consist in considering

the centroid of each element as the evaluation point and the corresponding weight is taken as the

area of the considered element.

3.3. The boundary element method

Differently from finite element methods, the starting point for any boundary element formula-375

tion of a physical or engineering problem, is the expression of its governing laws in terms of integral

equations. For linear problems, such integral formulations can be built by exploiting the superpo-

sition principle and the knowledge of the problem’s Green’s functions, see e.g. Refs.[59, 60, 19].

For linear elastic problems, considering a generic BEM subdomain ΩB with boundary ΓB , in

absence of body forces, the displacements boundary integral equation [59] can be written380

cij (x0) uj (x0) +

∫
ΓB

Hij (x0,x) uj (x) dΓ =

∫
ΓB

Gij (x0,x) tj (x) dΓ (51)

where i, j = 1, 2, x0 ∈ ΓB is a generic boundary collocation point, x ∈ ΓB is a generic boundary

integration point, ui(x) and ti(x) are displacement and traction components at the point x ∈ ΓB , cij

are free terms depending on the geometry of the boundary at the point x0. The kernels Hij(x0,x)

and Gij(x0,x) are the known components of the fundamental solutions whose analytic expression

for 2D elastic problems may be found e.g. in Refs.[60, 19]. It is worth noting that Eq.(51) holds385

also for anisotropic inclusions, as long as anisotropic fundamental solutions are employed.

The numerical solution of Eq.(51) is based on the discretisation of ΓB and the subsequent

approximation of the boundary displacement and traction components in terms of shape functions

and nodal values. More specifically, ΓB is subdivided into m straight segments sk and two nodes are

associated with the ends of each segment. In plane problems, each node carries two components of390

displacements and two components of tractions. Assuming ΓB as smooth, it follows that a tangent

can be associated to any x ∈ ΓB , so that the existence of a unique value of traction at the node

is ensured; corner points are not considered in the present formulation, although these could be

treated resorting to known boundary element techniques [19].

Displacement and traction components are here assumed to be globally continuous over ΓB and395
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to vary linearly over each boundary element sk according to

u (ζ) = N (ζ) ũk, t (ζ) = N (ζ) t̃k (52)

where the vectors u (ζ) and t (ζ) collect the components of displacements and points belonging to

the segment sk, the matrix N (ζ) ∈ R2×4 collects the 1D linear shape functions for the boundary

segment sk, expressed as function of the natural coordinate ζ and ũk, t̃k ∈ R4×1 collect the nodal

components of displacements and tractions associated with the two ends of the boundary element400

sk. It is worth noting that the shape functions N (ζ), used for the boundary element modelling of

the inclusions, could be seen as restrictions over the element edges of the shape functions N (ξ, η)

appearing in Eq.(20), used in the approximation of the virtual elements fields. Indeed, in the case

of the lowest order VEM, the restriction of the shape functions over the edges of a polygonal virtual

element is linear, which ensures consistency at the interface between matrix (VEM) and inclusions405

(BEM).

Writing Eq.(51) for the generic boundary node p and i = 1, 2 in matrix form gives

c ũp +

m∑
q=1

[∫
sq

Hpq(ζ) N(ζ)J(ζ) dζ

]
ũq =

m∑
q=1

[∫
sq

Gpq(ζ) N(ζ)J(ζ) dζ

]
t̃q (53)

where c ∈ R2×2 depends on the geometry of the boundary at the considered collocation point

p, smooth in this case, ũp ∈ R2×1 collects the components of displacements at the node p,

Hpq(ζ),Gpq(ζ) collect the components of the fundamental solution, when the integral equations410

are collocated at the node p and integrated over the element q, ũq, t̃q ∈ R4×1 collect the nodal

displacements and tractions associated with the ends of the generic boundary element sq, accord-

ing to Eq.(52), and J(ζ) is the Jacobian of the transformation between segment local and natural

coordinates. After numerical integration, Eq.(53) may be rewritten in compact form as

HpU
B = GpT

B (54)

where Hp,Gp ∈ R2×2m denote the rectangular matrices obtained by collocating at the node p415

and integrating over the whole boundary ΓB , while UB,TB ∈ R2m×1 collect the components of

displacements and tractions for all the nodes identified on ΓB , with the superscript B introduced to

highlight that such quantities are associated with the BEM domain. Writing Eq.(54) ∀p ∈ [1, ...,m]

produces the set of linear algebraic equations

H UB = G TB, (55)
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where H,G ∈ R2m×2m collect matrix blocks of the form appearing in Eq.(54). It is worth noting420

that, when the BEM domain identifies an inclusion in the analysed domain, both UB and TB are

unknown quantities that must be determined by interfacing Eq.(55) with the equations produced

by the model employed for the matrix domain.

3.3.1. Computation of displacements and stresses within BEM domains

Once the displacements and tractions at the boundary of the inclusions modelled with BEM425

are known, e.g. from the solution of the coupled VE-BE scheme, the value of displacements and

stresses at points within the inclusions may be computed in post-processing.

Interior points displacements may be computed employing the boundary integral representation

uj (x0) +

∫
ΓB

Hij (x0,x) uj (x) dΓ =

∫
ΓB

Gij (x0,x) tj (x) dΓ, (56)

which differs from Eq.(51) for the absence of the coefficients cij (x0), arising from the limiting430

boundary collocation process.

Internal stresses, on the other hand, may be computed from the boundary integral representation

σij (x0) +

∫
ΓB

Sijk (x0,x) uk (x) dΓ =

∫
ΓB

Dijk (x0,x) tk (x) dΓ, (57)

obtained by differentiating Eq.(56), to obtain the integral representation of strains at the considered

interior point, and then using the constitutive equations, see e.g. Refs.[60, 19].435

Eqs.(56-57) express displacements and stresses at internal points as a function of known dis-

placements and tractions at points along the boundary of the inclusion. The numerical integration

of such equations is generally straightforward, except for internal points whose distance from the

boundary is less than the size of the employed boundary elements. In such cases, the integrals

appearing in Eqs.(56-57) become nearly singular, as the distance r (x0,x) between the collocation440

and integration points appears at the denominator of the kernels Hij , Gij , Sijk, Dijk. In such cases,

specific integration schemes may be employed to enhance the accuracy of the integration, see e.g.

Refs.[61, 62]. In the present work, a simple technique has been implemented: i) internal points are

selected so that their distance from the boundary is no less than half the boundary element length;

ii) the order of the Gauss quadrature over the elements closer to the selected point is increased445

with respect to the order of integration employed for the far elements. The accuracy of the method

has been assessed in simple benchmark tests and the absence of artefacts has been verified in the
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analysed test cases. However, the technique is not general and the use of specific schemes for nearly

singular integrals should be considered in general implementations [19, 61, 62].

For further details about the use of Eqs.(56-57) and their numerical treatments, the interested450

readers are referred to Refs.[60, 19].

3.4. Continuity conditions at the interface between VE and BE domains

The coupling between boundary and finite elements has been achieved in the literature using

various approaches [31, 63, 64, 32, 33]. In this work, to couple the virtual and the boundary

element equations, the BEM subdomains are treated as a macro-finite elements and the traction-455

displacement equations associated with them are transformed into force-displacement equations and

assembled with the VE equations, already expressed in terms of nodal forces and displacements.

The vectors UV and FV appearing in Eq.(37) collect the nodal components of displacements

and forces of all the VEM nodes in the considered domain. Since only some of such nodes belong

to the interface ΓB between boundary and virtual elements, it is possible to partition the vectors460

as

UV =

 UΓ

UΩ

V

, FV =

 FΓ

FΩ

V

, (58)

where UV
Γ and FV

Γ identify components related to nodes belonging to ΓB . Along such interfaces,

the nodal displacements and forces must satisfy the compatibility and equilibrium conditions

UB = UV
Γ , FB + FV

Γ = 0, (59)

which have been written considering that no external nodal forces act on the nodes belonging to

ΓB . The displacement continuity equations can be readily written, as the displacement components465

appearing in the VEM system (37) and in the BEM system (55) carry the same physical mean-

ing. On the contrary, while nodal forces appear in Eq.(37), related to the VEM domain, nodal

components of tractions appear in Eq.(55), related to the BEM domain, so that it is necessary to

retrieve a consistent expression of the nodal forces associated to the BEM tractions, before writing

the equilibrium equations appearing in Eq.(59).470

For a generic boundary element node this can be accomplished by resorting to appropriate energy

considerations. In the scheme adopted in this work, since two-node piecewise linear continuous

boundary elements are used, a generic node always lies at the conjunction between two contiguous
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boundary elements. It is here recalled that, in the considered 2D background, boundary elements

are 1D segments, which are interfaced with the edges of the 2D virtual elements. If the generic node475

i lies between the boundary elements sk and sk+1, then, for a virtual displacement δũ (xi) ≡ δũi

of the node i, the unknown nodal force F̃B
i will perform some work that has to be equivalent to

the work performed by the tractions acting on the two contiguous boundary elements. Thus, the

following equivalence holds

δuᵀ
i F̃

B
i =

k+1∑
j=k

∫
sj

δuᵀ(ζ) t(ζ) J(ζ) dζ, (60)

which, recalling the interpolation expressed in Eq.(52), may be written as480

δuᵀ
i F̃

B
i =

k+1∑
j=k

δũjᵀ

[∫
sj

N(ζ)ᵀ N(ζ) J(ζ) dζ

]
t̃j =

k+1∑
j=k

δũjᵀMj t̃j , (61)

where the matrices Mj ∈ R4×4 stem from the integration over the considered elements of the shape

functions matrices, while the vectors δũj , t̃j ∈ R4×1 collect the components of displacements at the

two end nodes belonging to the element j, so that

δũk =

 δũi−1

δũi

 =

 0

δũi

 , δũk+1 =

 δũi

δũi+1

 =

 δũi

0

 . (62)

Taking into account Eqs.(62), Eq.(61) may be rewritten

δũᵀ
i F̃

B
i = δũᵀ

i

k+1∑
j=k

Mj
i t̃
j ⇒ F̃B

i =

k+1∑
j=k

Mj
i t̃
j (63)

where Mj
i ∈ R2×4 is the sub-matrix extracted from Mj selecting the appropriate rows corresponding485

to the displacements associated with the node i. It is important to realise that Eq.(63) allows

expressing F̃B
i in terms of the traction components associated with the two elements containing the

node i; for two-node linear boundary elements such expression could be written as

F̃B
i =

i+1∑
k=i−1

Mk t̃k (64)

where t̃k collects the components of tractions associated with the node k and Mi ∈ R2×2. Once

Eq.(64) is written for all the boundary element nodes belonging to ΓB , the nodal forces FB appearing490

in Eq.(59) can be expressed in terms of the boundary tractions TB appearing in Eq.(55) as

FB = M TB, (65)
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where FB,TB ∈ R2m×1 and M ∈ R2m×2m, with m expressing the total number of boundary

nodes/elements. Exploiting Eq.(65), Eq.(55) can be written in a form to be used in conjunction

with the VE equations. In particular, remembering that TB = G−1 H UB, it is possible to write

FB = MTB =
(
MG−1 H

)
UB = KB UB. (66)

The above BEM equations can now be combined with the VEM equations, which can be rearranged495

as  KΓΓ KΓΩ

KΩΓ KΩΩ

V  UΓ

UΩ

V

=

 FΓ

FΩ

V

, (67)

with the interface conditions in Eq.(59) and with suitable external boundary conditions to obtain

the problem solution.

4. Numerical tests

In this Section, the formulation developed above is assessed and four different applications are500

considered. In the first case study, the accuracy and robustness of the methodology is assessed by

solving the elastic problem of a unit cell with some inclusions of involved shape. Then, after assessing

the reliability of the developed method in reconstructing the local elastic fields, its application to

the computational homogenization of fibre-reinforced composite materials is investigated in the

second set of tests. In the third application, a three-point bending test involving a quasi-brittle505

concrete notched beam has been considered, to assess the accuracy of the implemented non-linear

VE formulation for isotropic damage against cases available in the literature. The last application

considers a unit cell consisting of a circular elastic fibre in epoxy matrix where partial debonding

between fibre and matrix triggers damage onset and evolution.

All the numerical experiments have been performed using a computational code developed in510

house and written in MATLAB; the developed software addresses all the stages of the computations,

starting from morphology generation and meshing, handles FEM, VEM and BEM elements in the

processing stage as well as all the interface and post-processing subroutines.

4.1. Elastic analysis of a microstructure with multiple inclusions

In order to asses the accuracy and robustness of the proposed methodology, a test microstructure515

is analysed, under the plane strain assumption. The geometry of the microstructure, shown in
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Fig.(4), is a two-dimensional square box with four inclusions of involved shape. The external edges

of the square box are aligned with the global Cartesian reference system x− y.

The purpose of this numerical test is to compare the displacement and stress fields obtained

with the developed technique with a benchmark finite element solution, obtained employing an un-520

structured mesh of linear triangular elements. The analysis of the microstructure is performed with

three different set of homogeneous displacement boundary conditions corresponding to prescribed

macro-strains ε̄ij : two uniaxial macro-strains acting along the x and y directions (BCx, BCy) and

a pure shear macro-strain acting to modify the angle between the axes x − y (BCxy). The values

of the displacement components, enforced over all the nodes belonging to the external boundary Γ525

of the computational domain, is given by

ui = ε̄ij xj ∀x ∈ Γ. (68)

Additionally, a parametric analysis is also performed by varying the contrast of material properties

between matrix and inclusions. Both phases are assumed to be linear elastic and isotropic in the

plane of the analysis and their relevant mechanical properties are given in Table 1 in terms of

Poisson’s ratio ν and of the ratio
Ef

Em
, between the Young’s modulus of the inclusions Ef and the530

matrix Em.

Table 1: Mechanical properties for the matrix and the inclusions.

Material Code Ef/Em ν

M10 10 0.3

M100 100 0.3

M1000 1000 0.3

4.1.1. Benchmark finite element solutions

Before assessing the convergence of the proposed hybrid VE-BE scheme, some benchmark finite

element solutions are selected by performing a h-convergence analysis on triangular meshes. The

elastic problem is solved for each set of boundary conditions and for each material. When passing535

from a coarser to a finer mesh with a smaller average element size, and then a higher number of

associated degrees of freedom Ndof , the distance between the two related FE solutions is assessed
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Fig. 4. Morphology of the considered unit cell.

employing a relative error measure for the displacement field eu defined as

eu =

[∑Np

p=1 ||ua(xp)− ub(xp)||2∑Np

p=1 ||ub(xp)||2

] 1
2

, (69)

computed with reference to a fixed set of Np sampling points p. In Eq.(69), ua(xp) and ub(xp)

are the point-wise interpolated displacement vectors, computed at points having coordinates xp,540

for two different meshes a and b, where ha > hb and Ndof,a < Ndof,b. Fig.(5) shows an example

of triangular FE mesh and highlights the Np fixed grid points selected for the computation of the

measure given in Eq.(69). It is important to realise that such evaluation points are selected so

to suitably sample the considered morphology and that they remain fixed as different meshes are

considered; they will also be used to assess the accuracy of the hybrid virtual element - boundary545

element scheme with respect to the benchmark solution. An analogous relative error measure can

be introduced for the stress field as

eσ =

[∑Np

p=1 ||σa(xp)− σb(xp)||2∑Np

p=1 ||σb(xp)||2

] 1
2

, (70)

Table 2 reports information about the size and corresponding number of degrees of freedom for

the considered FE meshes.550

Table 3 reports the convergence data obtained by using the considered FE meshes. The generic

column eufi reports, for the boundary condition and materials combination identified by the con-
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(a) (b)

Fig. 5. a) Example of a FE triangular mesh for the considered unit cell; b) Sampling points selected for the

convergence analysis; their position remains fixed as the FE mesh is refined and the same sampling points will be

employed to assess the performance of the VE-BE scheme.

Table 2: Features of the finite element meshes considered in the convergence analysis.

F1 F2 F3 F4 F5 F6 F7 F8

Ndof 3574 10712 23612 36520 93104 144034 256142 575836

Nel 3483 10442 23210 36018 92302 143032 254804 573834

sidered rows, the relative error defined in Eq.(69) obtained by considering the coarser mesh Fi and

the finer mesh Fi+1. Such results are graphically shown in Fig.(6). It is possible to note that, for

all the considered Young’s modulus ratios and for all the sets of boundary conditions, convergence555

may be considered achieved with the mesh F5. The results obtained for this mesh are taken as

benchmark for any further comparison.

The artificial linear sample shown in Fig.(4) has also been analysed by employing a pure bound-

ary element approach for both the matrix and the inclusions. The adopted boundary element mesh

is built starting from the nodes lying over the external boundary and the matrix/inclusion inter-560

faces in the benchmark finite element mesh and consists of discontinuous linear elements for a total

of 2788 nodes. The relative displacement error eub with respect to the benchmark FEM solutions

(mesh F5) for the three set of boundary conditions and for each material considered is reported in
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Table 3: Convergence analysis for the considered FE solutions: eufi represents the relative error between the

displacement field computed with the mesh i+ 1 (finer) and that computed with the mesh i (coarser) at the selected

sampling points.

euf1 euf2 euf3 euf4 euf5 euf6 euf7

M10 9.94e−4 4.01e−4 1.63e−4 8.75e−5 4.03e−5 3.27e−5 2.17e−5

BCx M100 1.34e−3 5.67e−4 2.24e−4 2.06e−4 5.58e−5 4.63e−5 3.10e−5

M1000 1.38e−3 5.89e−4 2.32e−4 2.13e−4 5.79e−5 4.80e−5 3.21e−5

M10 1.15e−3 4.82e−4 1.82e−4 1.64e−4 4.77e−5 3.96e−5 2.63e−5

BCy M100 1.61e−3 7.17e−4 2.61e−4 2.44e−4 6.99e−5 5.74e−5 3.84e−5

M1000 1.68e−3 7.47e−4 2.71e−4 2.53e−4 7.29e−5 5.95e−5 3.97e−5

M10 6.95e−4 3.07e−4 1.24e−4 1.07e−4 2.94e−5 2.45e−5 1.83e−5

BCxy M100 9.05e−4 4.32e−4 1.72e−4 1.50e−4 4.03e−5 3.40e−5 2.55e−5

M1000 9.32e−4 4.46e−4 1.79e−4 1.54e−4 4.17e−5 3.51e−5 2.63e−5

Table 4.

Table 4: Relative displacement error eub of the BE solutions with respect to the benchmark FEM solutions.

BCx BCy BCxy

M10 9.30e−5 1.23e−4 7.12e−5

M100 1.34e−4 1.81e−4 1.02e−4

M1000 1.39e−4 1.87e−4 1.05e−4

4.1.2. Virtual element solutions565

In this Section, the morphology shown in Fig.(4) is analysed by employing a pure virtual element

approach. Fig.(7a) shows an example polygonal mesh of the considered morphology, built by using

the meshing strategy described in Section 2. Table 5 summarises the features of the five polygonal

mesh refinements used to assess the convergence of the virtual element scheme with respect to the

benchmark finite element solution. In particular euvi represents the relative error for displacements,570

with respect to the reference FE solution, of the virtual element solution obtained by the i-th virtual

element mesh Vi, computed using Eq.(69). Analogously, Table 7 reports a global measure of relative

error for the stress vector computed by the virtual element method, with respect to the stresses
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Fig. 6. Convergence of the FE solutions: displacements relative error eu for (a) BCx, (b) BCy , (c) BCxy .

provided by the reference FE solution.

Table 5: Features of the polygonal mesh refinements used for the virtual element analysis of the considered morphol-

ogy.

V1 V2 V3 V4 V5

Ndof 16516 30616 60388 98140 132844

Nel 4128 7653 15096 24534 33210

4.1.3. Hybrid virtual-boundary element solutions575

In this section, the developed hybrid virtual-boundary element scheme is employed to analyse

the reference morphology in Fig.(4). Fig.(7b) shows an example discretisation of the considered

morphology employed for the hybrid analysis, built by using the strategy described in Section 2.

Table 8 reports some features of the mesh employed for the hybrid analysis, highlighting the number
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(a) (b)

Fig. 7. a) Example polygonal mesh for the virtual element analysis; b) Example mesh for the hybrid virtual element

- boundary element analysis.

Table 6: Relative displacement error eu with respect to the benchmark FEM solutions of the VE solutions obtained

by using the considered progressive polygonal mesh refinements.

euv1 euv2 euv3 euv4 euv5

M10 6.30e−4 3.70e−4 1.63e−4 8.58e−5 6.57e−5

BCx M100 9.19e−4 5.41e−4 2.37e−4 1.28e−4 9.45e−5

M1000 9.58e−4 5.63e−4 2.48e−4 1.35e−4 9.98e−5

M10 8.89e−4 4.92e−4 2.06e−4 1.11e−4 8.21e−5

BCy M100 1.37e−3 7.55e−4 3.21e−4 1.78e−4 1.25e−4

M1000 1.43e−3 7.91e−4 3.39e−4 1.90e−4 1.34e−4

M10 5.14e−4 2.67e−4 1.22e−4 6.43e−5 4.50e−5

BCxy M100 7.02e−4 3.72e−4 1.76e−4 9.17e−5 6.33e−5

M1000 7.46e−4 3.86e−4 1.85e−4 9.60e−5 6.65e−5

of both 2D polygonal virtual elements and 1D linear continuous boundary elements employed in the580

analyses. Table 9 show the error, computed using Eq.(69), of the displacements field reconstructed

using the hybrid strategy with respect to the FE benchmark solution, while Table 10 reports data

about the measure of the relative error in the stress field computed using Eq.(70).
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Table 7: Relative stress error eσ with respect to the benchmark FEM solutions of the VE solutions obtained by using

the considered progressive polygonal mesh refinements.

eσv1 eσv2 eσv3 eσv4 eσv5

M10 2.74e−2 2.65e−2 2.09e−2 1.98e−2 1.94e−2

BCx M100 4.15e−2 4.13e−2 3.18e−2 3.16e−2 3.05e−2

M1000 4.40e−2 4.41e−2 3.38e−2 3.39e−2 3.27e−2

M10 2.96e−2 2.98e−2 2.34e−2 2.30e−2 2.19e−2

BCy M100 4.61e−2 4.82e−2 3.69e−2 3.79e−2 3.61e−2

M1000 4.90e−2 5.16e−2 3.93e−2 4.07e−2 3.88e−2

M10 6.71e−2 5.89e−2 5.12e−2 4.21e−2 3.92e−2

BCxy M100 9.28e−2 7.77e−2 7.29e−2 5.69e−2 5.41e−2

M1000 9.68e−2 8.05e−2 7.64e−2 5.92e−2 5.63e−2

Table 8: Features of the hybrid virtual-boundary element mesh refinements employed in the comparative analysis.

The total number of degrees of freedom Ndof , the number of virtual elements NVEs and the number of boundary

elements NBEs are reported.

H1 H2 H3 H4 H5 H6

Ndof 11060 20496 39960 64656 87424 124248

NVEs 2614 4903 9703 15841 21459 30561

NBEs 584 864 1128 1272 1568 1984

Figs.(8-9) compare graphically the convergence of the hybrid virtual-boundary element solution

with that of the pure virtual element solution. For both techniques the accuracy of the solution is585

measured with respect to the assumed benchmark solution, for all the investigated combinations

of boundary conditions and materials. Specifically, the plots report the relative error measures of

displacement and stress versus the number of degrees of freedom per unit area employed in the

analysis. It is observed that, in this sense, the convergence of the hybrid solution is quicker with

respect to the convergence of the pure virtual element scheme, both for the displacement and the590

stress fields. However, while for the displacement field the two techniques show closer convergence

rates, it emerges that, for the stress field, the hybrid VE-BE technique approaches convergence

noticeably more rapidly that the pure virtual element scheme, at least when measured with respect
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Table 9: Relative displacement error eu with respect to the benchmark FEM solutions of the hybrid VE-BE solutions

obtained by using the considered progressive mesh refinements.

euh1 euh2 euh3 euh4 euh5 euh6

M10 5.93e−4 3.33e−4 1.51e−4 8.39e−5 6.97e−5 6.35e−5

BCx M100 8.99e−4 5.23e−4 2.31e−4 1.23e−4 9.19e−5 7.29e−5

M1000 9.55e−4 5.61e−4 2.47e−4 1.34e−4 9.92e−5 7.50e−5

M10 8.08e−4 4.29e−4 1.91e−4 1.09e−4 9.01e−5 8.43e−5

BCy M100 1.32e−3 7.21e−4 3.09e−4 1.69e−4 1.21e−4 9.79e−5

M1000 1.43e−3 7.86e−4 3.37e−4 1.88e−4 1.33e−4 1.01e−4

M10 4.61e−4 2.40e−4 1.08e−4 6.13e−5 4.99e−5 4.76e−5

BCxy M100 6.97e−4 3.61e−4 1.69e−4 8.73e−5 6.20e−5 5.38e−5

M1000 7.44e−4 3.85e−4 1.84e−4 9.55e−5 6.63e−5 5.52e−5

Table 10: Relative stress error eσ with respect to the benchmark FEM solutions of the hybrid VE-BE solutions

obtained by using the considered progressive mesh refinements.

eσh1 eσh2 eσh3 eσh4 eσh5 eσh6

M10 2.06e−2 1.87e−2 1.69e−2 1.58e−2 1.59e−2 1.54e−2

BCx M100 2.92e−2 2.69e−2 2.47e−2 2.36e−2 2.37e−2 2.33e−2

M1000 3.09e−2 2.85e−2 2.62e−2 2.52e−2 2.52e−2 2.48e−2

M10 2.29e−2 2.09e−2 1.89e−2 1.78e−2 1.73e−2 1.76e−2

BCy M100 3.37e−2 3.13e−2 2.88e−2 2.77e−2 2.73e−2 2.74e−2

M1000 3.58e−2 3.33e−2 3.07e−2 2.96e−2 2.92e−2 2.93e−2

M10 4.59e−2 4.15e−2 3.47e−2 3.33e−2 3.20e−2 3.21e−2

BCxy M100 5.68e−2 5.19e−2 4.57e−2 4.42e−2 4.31e−2 4.32e−2

M1000 5.86e−2 5.36e−2 4.75e−2 4.60e−2 4.49e−2 4.50e−2

to the number of DOFs per unit area. The reason of such behaviour is twofold: i) in the hybrid

technique, the nodes within the inclusions are removed, due to the employment of the boundary595

integral formulation, which contributes to the reduction in the number of DOFs per unit area, this

explaining the convergence patterns observed for the displacement field; i) in the hybrid scheme,

the stresses within the inclusion are computed by employing, in post-processing, the boundary
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integral representation given in Eq.(57), which generally ensures higher accuracy, with respect to

standard FE methods, in the reconstruction of the internal stresses. The interplay between the600

reduction in the number of DOFs associated to nodes within the inclusions and better rendering of

the stresses due to the employment of the boundary integral representation of stresses explains the

convergence patterns shown in Fig.(9). Eventually Fig.(10) shows the plot of stress components

σxx, σyy and σxy, corresponding to an enforced uniaxial strain ε̄xx = 0.05, computed with the

finite element benchmark scheme, the virtual element implementation and the hybrid strategy,605

highlighting satisfying agreement among the three schemes.

4.2. Computational homogenization of fibre-reinforced composites

This section describes the application of the proposed method to the computational homoge-

nization of unidirectional fibre-reinforced composites. In computational homogenization, the macro-

scopic material properties are computed by simulating the micro-scale response of properly selected610

material domains, referred to as unit cells, and then averaging, over such domains, the fields of

interest, with the aim of identifying macroscopic links between such averaged quantities. Unit cells

become representative volume elements (RVEs) when they can be considered representative of the

mechanical behaviour of the material at the macro-scale. Interested readers are referred to Ref.[65]

for an in-depth treatment of materials homogenization.615

This test case is presented in this study for the following reason. One of the strategies employed

for the computational homogenization of heterogeneous materials is based on the generation of a

certain number of artificial digital samples of the considered material, with random features, and on

the computation of the ensemble averages, over the set of considered specimens, of suitably volume

averaged quantities, either stresses of strains, see e.g. Refs.[66, 67, 20]. In this procedure, it is620

important to ensure a suitable mesh quality for all the generated random microstructures, which

may result in a particularly challenging task. It is believed that the inherent features of VEM may

benefit the meshing procedures in this kind of problems, i.e. when a certain number of morphologies

with statistical features need to be considered.

The unit cells for the present test lie in the plane x2 − x3, normal to the axes of the fibres,625

which are parallel to the axis x1. They are generated by randomly scattering a given number of

arbitrarily shaped inclusions in a rectangular domain, through an algorithm avoiding pathological

superposition of the inclusions. The inclusions considered here present the transversal section shown
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in Fig.(11), are all of the same size and have and random orientation θ with respect to the x2 axis.

The average number of inclusions is determined by the parameter δ = L/r, where L is the unit cell’s630

side length and r is the radius of the circle that circumscribes the fibre inclusion. Fig.(12) shows

two example geometries for a random microstructure and the subsequent VE-BE discretisations for

δ = 20 and δ = 45.

The material constants of the composite constituents, isotropic in the x2−x3 plane, are given in

Table 11, in terms of transverse Young modulus E22 and transverse shear modulus G23. Assuming635

a Poisson random distribution of fibres within the unit cell, and considering the in-plane isotropy

of the constituents, the composite will be isotropic in the plane (x2 − x3) at the macroscopic level.

Its transverse behaviour is then completely defined by two elastic modula. In this study the plain

strain bulk modulus K̄23 and the transverse shear modulus Ḡ23 are considered.

Table 11: Material properties for epoxy matrix and carbon fibres in transverse direction, as taken from Ref.[68].

Mechanical Properties E22 [GPa] G23 [GPa]

AS4 carbon fibres 15 7

3501-6 epoxy matrix 4.2 1.567

The problem of determining the appropriate size of the unit cell, or the appropriate number640

of inclusions within it, so to identify a RVE has been extensively investigated in the literature

[69, 66, 70, 71, 72, 73, 74]. In general, given a random microstructural sample subjected to a

suitable set of boundary conditions, see e.g. [66], the link between homogenised stresses and strains

is provided by apparent properties, which may not be representative of the macro-material if the

microstructural sample, or unit cell, is too small. As the unit cell size or the number of inclusions645

within it increase, the unit cell becomes more representative of the macro-material and the apparent

properties approach the effective properties. Besides considering the behaviour of the averaged

properties versus the size or number of inclusions of the unit cell, the homogenization procedure

can be enriched by considering ensemble averages of the volume homogenized properties over a set

of unit cells with the same size and number of inclusions, but different spatial distribution of the650

inclusions themselves. The procedure generally produces an estimate of the effective properties with

unit cells smaller with respect to the case in which only individual microstructures are considered,

see e.g. Ref.[66] for a detailed discussion. In the present study this homogenization procedure is
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used. The interested readers are referred to Refs.[67, 20] for further examples about the application

of the methodology .655

For the considered composite, sets of unit cells at varying values of the parameter δ are consid-

ered, while the fibre volume fraction is kept constant at Vf = 0.25. For each value of δ, Ns = 50

different random sample micro-morphologies have been generated and analysed using the proposed

hybrid approach. Each unit cell Um, comprising a number of randomly located and orientated

inclusions as in Fig.(12), has been discretised using arbitrary polygonal virtual elements for the660

matrix and a single boundary element domain for each inclusion. Each Um is the subjected to

three linearly independent sets of displacement boundary conditions, corresponding to three sets

of enforced macro-strains expressed in Voigt notation as ε̄ = {ε̄22, ε̄33, 2 · ε̄23}. More specifically,

the unit cells are loaded through displacements given by Eq.(68), where the following three sets of

macro-strains665

ε̄ a = {1, 0, 0} , ε̄ b = {0, 1, 0} , ε̄ c = {0, 0, 1} (71)

are considered. Once a prescribed boundary condition is enforced, the microstructural problem is

solved employing the proposed hybrid scheme, thus providing the micro-displacement, strain and

stress fields within the microstructure. The averaged stresses σ̄ = {σ̄22, σ̄33, σ̄23} are then computed

as volume averages of the local micro-stress tensor over the domain of the unit cells, as

σ̄ij =
1

Ω

∫
Ω

σij (x) dΩ =
1

Ω

(∫
ΩV

σij (x) dΩ +

∫
ΩB

σij (x) dΩ

)
, (72)

where the domain integral is subdivided into contributions coming separately from the VE and BE670

regions. The integral over the BE regions can be further expressed as a sum of integrals over each

BE modelled inclusion ΩBk , and it may be demonstrated that∫
ΩB

σij (x) dΩ =
∑
i

∫
ΩB

k

σij (x) dΩ =
∑
i

∫
Γk

ti nj dΓ, (73)

which implies that the integration of stresses over the BE inclusions only require the computation

of integrals along the boundary ΓBk of the inclusion of the traction components ti, which are readily

available from the BE solution, thus avoiding the more expensive use of Eq.(57). The use of Eq.(73)675

into Eq.(72) allows remarkable computational savings in computational homogenization problems

and constitutes a benefit of the presented technique.

For a given unit cell Um , the computation of the averaged stresses corresponding to the three

considered sets of boundary conditions given in Eq.(71) allows populating the columns of the ap-
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parent elastic matrix C̄m, which links averaged stresses and strains according to680

σ̄ = C̄m ε̄. (74)

For each value of the parameter δ, once the components of C̄m are computed for all the Ns = 50

generated random unit cells, a macroscopic apparent constitutive matrix 〈C̄〉 is computed from the

ensemble average of the components of C̄m over the Ns samples, i.e.

〈C̄〉 =
1

Ns

Ns∑
m=1

C̄m. (75)

The apparent transverse elastic properties K̄23 and Ḡ23 associated to the considered value of δ are

eventually obtained from the ensemble averaged matrix 〈C̄〉.685

Fig.(13) shows the values of K̄23 and Ḡ23 versus δ in plain strains, reporting both the values

corresponding to individual samples Um and the ensemble averaged values. In general, the scatter

of the individual values decreases as δ increases, as the unit cells approach the RVE by including

a higher number of fibres. In the literature, several theoretical models have been introduced to

provide rigorous bounds for the effective macroscopic properties of heterogeneous materials. In690

the present study, the computed effective material properties are compared with the Hashin-Hill

bounds [75, 76], identified in Fig.(13) by the boundaries of the grey region: it is observed that the

values computed through the developed technique fall within such bounds, confirming its usefulness

in computational homogenization applications.

4.3. Three-point bending test with damage695

In this section, the implemented VEM for isotropic damage modelling is validated. A the

three-point bending (TPB) test is considered as benchmark: it investigates damage initiation and

evolution up to failure of a notched concrete beam, where the damage growth is dominated by mode

I loading.

Geometry and boundary conditions for this problem are shown in Fig.(14). The beam has square700

cross-section of side H = 100 mm and spans W = 450 mm. The notch is A = 5 mm wide and extends

up to one half of the beam height. These dimensions correspond to the experiments performed in

Ref.[77]. The material’s Young’s modulus is E = 20 000 MPa and the Poisson’s ratio is ν = 0.2.

The law with exponential softening defined in Eq.(44) is adopted to model damage evolution. The

damage parameters are chosen as in Ref.[51] as ε0 = 9.0e−5 and εf = 7.0e−3. The equivalent705
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strains τ are computed following the definition of Mazars in Eq.(40) and the nonlocal interaction

radius is set to R = 4 mm. The tests have been performed, under plane strain assumptions, using

three different meshes of polygonal elements to determine convergence with mesh refinement. The

two coarser meshes, referred to as V1 and V2, contains 6072 and 8493 elements and are shown

in Fig.15. A further finer mesh, referred to as V3, is considered an over-kill discretisation and it710

contains 18546 polygonal elements .

The simulations are performed in displacement control using a Newton-Raphson scheme. Re-

sults are observed in terms of force versus displacement at the point where the vertical displacement

is applied and compared with experimental results from Ref.[77] and with numerical results from

Ref.[51]. The computed force-displacement curves, the reference numerical solution from Ref.[51]715

and the experimental bounds from Ref.[77] are depicted in Fig.(16). For all the considered dis-

cretisations, they reveal good agreement with the experimental bounds for the most part of the

force-displacement diagram. Comparison with the reference numerical solution obtained with full

integrated 4-node bilinear isoparametric elements and mesh size of 1.67 mm, shows a better repro-

duction of the experimental data in the first part of the softening branch. A slight underestimation720

of the computed load can be noticed in the last part of the curve’s softening branch. This difference,

already noted in Ref.[11], where a similar numerical test with polygonal virtual elements has been

performed, is likely due to the unstructured character of the virtual element mesh with respect to

the finite element reference mesh. The evolution of the damage profile is shown in Fig.(17): damage

originates at the bottom of the notch and grows in a limited zone along the structure vertical axis725

of symmetry.

The presented results validate the implemented VE isotropic damage model, which will be used

in the next computational test.

4.4. Transverse failure of a composite fibre-reinforced unit cell

In the present Section, the hybrid virtual-boundary element formulation, combined with an730

isotropic damage model for the regions modelled with virtual elements, is used in the computational

simulation of the damage evolution under transverse tensile loading of a unit cell comprising a

single fibre embedded in an epoxy matrix, with initial partial debonding between fibre and matrix.

The study of such fibre-matrix system has been the subject of a considerable number of studies

[78, 79, 80, 81, 82, 83].735

37



The test case is shown in Fig.(18). In the initial configuration, it is assumed that the circular

fibre is debonded from the matrix in the interface region identified by |θd| =≤ 70◦, see Ref.[80].

Outside the debonded region, the inclusion is perfectly bonded to the matrix. This test aims to

simulate the progression into the matrix of the two kinked cracks that start from both ends of the

debonded zone and this initial condition is assumed as no cohesive interfaces have been included so740

far in the model, which identifies a direction of further development.

The fibre diameter is D = 0.025 mm, and the side length of the unit cell is L = 0.2 mm, giving

a corresponding volume fraction Vf = 0.0123. The center of the circle coincides with the center of

the square. The tensile loading is applied by prescribing uniform displacements ū at the sample left

and right edges. Plane strain conditions are assumed. The fibre material is assumed linear elastic745

and it does not develop damage. The matrix materials is treated as linear elastic until the damage

onset, which is governed by the loading function in Eq.(41). The exponential damage evolution law

in Eq.(44) is assumed, with r0 = 1, rf = 234, according to strength and fracture toughness data

about epoxy, and R = D/3. The transverse elastic material parameters are EF = 201 GPa and

νF = 0.22 for the fibre and EM = 2.8 GPa and νM = 0.33 for the matrix. The fracture toughness750

of the epoxy matrix is Gfr = 0.09 N/mm.

To make the mesh consistent with the parameter assumed in the non-local continuum damage

model, the matrix region is discretised with 8047 2D lowest-order virtual polygon elements, which

induce 256 1D linear boundary elements on the fibre-matrix interface, where conformal meshes are

employed. The overall mesh is shown in Fig.(19). The simulations are performed under displacement755

control using a Newton-Raphson with adaptive load step, to track the steep softening branch. The

simulation is arrested at a nominal macro-strain εx = 0.05. For each load increment, the plotted

reaction force is computed as the sum of the nodal reaction forces on the right edge.

Fig.(20) shows the load-displacement diagram; the identified labes correspond to the damage

profiles shown in Fig.(21). Linear elastic behaviour is exhibited up to slightly before the point (a)760

in the curve, which marks the initiation of damage at the ends of the debonded interface, where

stress concentration is expected. Once damage is activated, the two symmetric damaged/failed

region progress within the matrix, following a kinked path consistent with the behaviour reported

in Refs.[84, 80]. As the loading increases, the material failure evolves affecting regions oriented

perpendicularly with respect to the load direction, up to the unit cell boundary, which causes a765

progressive decrease of the load-carrying capability identified by the softening branch of the load-
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displacement diagram.

5. Discussion

In this contribution a hybrid computational technique has been developed for the analysis of770

multi-region two-dimensional problems for applications in computational micro-mechanics and ho-

mogenization. The method suggests the simultaneous use of the recently emerged virtual element

method and of the highly accurate boundary element method. Each of the two techniques offers

some definite advantages.

The virtual element method can be seen as an effective generalisation of the finite element775

method to meshes including elements of very general shape, including general polygonal elements,

non-convex elements, highly distorted elements and elements with curved edges. The use of VEM

in addressing complex mesh morphologies and problems inducing high mesh distortion has been

demonstrated in the literature, as discussed in the Introduction. In the present framework, mostly

addressed at materials micro-mechanics, the advantages offered by VEM are twofold: i) in general,780

the method offers a powerful tool for meshing morphologically complex domains, as those often

encountered in statistical homogenization procedures, see e.g. Fig.(12), in which the regularity of

the regions related to the different phases cannot be a-priori assumed; ii) thanks to the possibility

of extending to VEM the features of FEM, in particular its generality in dealing with non-linear

constitutive behaviours, in the proposed framework the method can be employed for meshing phases785

likely to exhibit, in the loading process, non-linear behaviours such as plasticity, viscosity or damage

[30]. This is the case of composite materials subjected to loading able to initiate visco-plastic flows

and/or damage in the matrix.

On the other hand, the boundary element method has proven effective in the accurate recon-

struction of the elastic fields through a discretization procedure involving only the boundary of the790

analysed domains, thanks to the underlying integral formulation, alternative to methods based on

the weak formulation of the considered boundary value problems. In particular, BEM is known

for being able to provide accurate solutions at reduced computational costs [19]. The method can

be used for analysing non linear problems, although its employment in linear problems is more

widespread and straightforward. In the proposed framework, the use of BEM is suggested for mod-795

elling microstructural phases not expected to develop non-linear constitutive behaviour. This use
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is beneficial for two reasons, as already mentioned in the previous section: i) it allows to reduce

the number of DOFs needed for modelling the inclusions, thus reducing the computational bur-

den of the analysis; ii) it generally provides a more accurate representation of stresses within the

inclusions, thus inducing a faster convergence in the stress fields, as shown in Figs.(8-9).800

Several directions of further investigation may be identified for the proposed framework.

As mentioned in Section 3.1.3, in this contribution the lowest order VEM, k = 1, has been

employed as it allows a straightforward coupling with the BE model of the inclusions. However,

higher order virtual element formulations have been proposed in the literature [40, 39, 4]. Higher

order formulations are based on: i) the definition of a local virtual element space, for trial and805

test functions, which contains the set of all polynomial functions up to the selected degree k plus

a set of additional functions, whose explicit knowledge is never required for the construction of

the method; ii) the selection of a suitable set of degrees of freedom, grouped into a set boundary

degrees of freedom, associated to the element vertices and to points lying on their edges, which

maintain the physical meaning of displacements, plus a set of internal degrees of freedom, which810

represents suitably defined integrals, or moments, over the elements, of the functions belonging to

the local virtual element space. If the virtual element space and the degrees of freedom are properly

chosen, the entries of the local stiffness matrix can be computed without the explicit knowledge of

the unknown additional functions. As an example, a VEM of order k = 2 would imply a quadratic

approximation of the displacements over the edges of the virtual elements, expressed in terms of815

nodal displacements associated to the vertices and to the mid points of the edges, which could

be readily coupled with a quadratic formulation of the boundary element model of the inclusions.

The coupling between higher order virtual elements and higher order boundary elements could be

a direction of further research and could lead to remarkable benefits in terms of solution accuracy.

An important caveat about the use of BEM is related to the fact that the method induces820

non-symmetric and non-definite fully populated solving matrices, see e.g. Ref.[60]. As long as the

number of elements used for modelling each inclusion is limited, this does not require additional

consideration and the potential of BEM in reducing the computational burden is preserved. How-

ever, should an inclusion need several hundreds boundary elements, the presence of fully populated

blocks in the solving systems could reduce the effectiveness of the computation and increase the825

computational costs. These aspects could be mitigated and effectively addressed by using fast

iterative solvers in conjunction with special matrix representations, e.g. fast multipoles [85] or
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hierarchical matrices [86, 87, 88, 89].

Another aspect to be addressed in the framework of BEM and its coupling with VEM, is the

consideration of inclusions with sharp corners. The consideration of such geometrical entities is830

generally known to be problematic in BEM, due to the non unique definition of the normal at the

corners. Some strategies to address such an issue have been proposed in the literature [19, 90],

consisting in the employment of semi-discontinuous elements or hyper-singular traction boundary

integral equations, and their inclusion in the present framework could be investigated in future

studies.835

Eventually, it is worth noting that the present technique has been hitherto developed only for

two-dimensional problems. Although the considered test cases allow highlighting the potential ben-

efits of the proposed method, 2D models generally present strong limitations in the computation of

the effective properties of real materials, as they often neglect important inherent three-dimensional

morphological or physical material features. In fact, while in this work the scheme has been suc-840

cessfully employed to compute the transverse elastic constants of composite laminae reinforced by

unidirectional fibers, it would not be possible to employ it to compute the in-plane properties,

or even the transverse properties, of laminates with general lay-ups, due to the impossibility of

rendering in a 2D scheme the inherent 3D morphological features related to mutual orientation

of the fibers belonging to different contiguous laminae. For such reasons, an interesting direction845

of further research could be related to the extension of the proposed scheme to three-dimensional

problems. In the literature, three-dimensional formulations have been developed both for VEM and

BEM, see e.g. Refs.[7, 19]. The coupling between the two techniques in the 3D case could be readily

applied, for example, to the computational homogenisation of polycrystalline materials, which has

been successfully addressed separately both with VEM [14] and BEM [20, 91, 23, 25], both in the850

case of linear and non-linear material behaviour. Polycrystals represent another class of materials

for which three-dimensional effects, related to mutual orientation of the crystallographic lattices of

different grains in the 3D space, play an important role in the determination of the macroscopic

effective properties.

The extension of the framework to the analysis of multi-phase microstructures exhibiting general855

non-linear behaviours, along the lines discussed above, and to the analysis of three-dimensional

micro-morphologies, as well as a comprehensive investigation about the computational advantages

offered by the framework, will form the object of further investigations.
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6. Conclusions

A hybrid computational method based on the conjoined use of the recently emerged virtual860

element method and the boundary element method has been formulated, developed and imple-

mented for the analysis of two-dimensional multi-region problems for applications in computational

micro-mechanics. The method has been applied to the elastic analysis and computational homog-

enization of fibre reinforced composite materials and, by implementing an isotropic damage VEM,

for the analysis of matrix degradation in a composite unit cell under progressive loading. The865

analysed case studies show how the method offers accurate and reliable numerical results and how

the inherent properties of the virtual element and boundary element methods can be exploited in

the analysis of complex materials micro-morphologies. It is found that the hybrid technique, due

to the features of the boundary integral formulation underlying the boundary element method,

offers faster convergence with respect to a purely virtual element approach. The employment of870

the VEM, on the other hand, allows the straightforward inclusion of non-linear phenomena, such as

material degradation, in the framework. The results appear promising and further research could

be directed at the development of a framework addressing multiphase materials exhibiting both

linear and general non-linear phases, for which the respective benefits of the boundary and virtual

element approaches could be optimally tailored.875
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Fig. 8. Comparison between the convergence of the VE solutions and that of the hybrid VE-BE solution in terms

of displacements. The rows of the plots grid correspond to the different considered boundary conditions, namely

BCx (a,b,c), BCy (d,e,f ), BCxy (g,h,i). The columns correspond to the different materials, i.e. M10 (a,d,g), M100

(b,e,h), M1000 (c,f,i).
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Fig. 9. Comparison between the convergence of the VE solutions and that of the hybrid VE-BE solution in terms of

stresses. The rows of the plots grid correspond to the different considered boundary conditions, namely BCx (a,b,c),

BCy (d,e,f ), BCxy (g,h,i). The columns correspond to the different materials, i.e. M10 (a,d,g), M100 (b,e,h), M1000

(c,f,i).
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Fig. 10. From left to right, plot of stress components σxx, σyy and σxy [GPa] corresponding to an enforced uniaxial

strain ε̄xx = 0.05 computed by using (a,b,c) the FEM, (d,e,f ) the VEM and (g,h,i) the hybrid VEM-BEM scheme.

The comparison highlights remarkable agreement among the three different solutions.
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Fig. 11. Geometry of the transversal section of the inclusions randomly placed within the analysed unit cells.
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(a) (b)

(c) (d)

Fig. 12. Examples of unit cells employed in the computational homogenization tests: random geometries obtained

by setting Vf = 0.25 and a) δ = 20 c) δ = 45; b,d) meshes employed for the VE-BE analyses.
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(a) (b)

Fig. 13. Apparent transverse elastic properties K̄23 and Ḡ23 as a function of δ for Vf = 0.25 as computed using

the hybrid virtual-boundary element technique. The Hashin-Hill bounds for the considered composite are identified

by the grey area.

Fig. 14. Geometry and boundary conditions of the three-point bending test.
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(a)

(b)

Fig. 15. Polygonal meshes used in the numerical simulation of the three-point bending test: (a) mesh V1, (b) mesh

V2.
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Fig. 16. Force-displacement diagram for the three-point bending test. Comparison between the virtual element

discretisations, the reference FEM solution in Ref.[51] and experimental data in Ref.[77].
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(a)

(b)

(c)

Fig. 17. Damage profile evolution for the three-point bending test (mesh V3).
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Fig. 18. Geometry and boundary conditions of the composite unit cell containing a circular fibre partially debonded

from the matrix.

Fig. 19. The mesh adopted to simulate the transverse failure behaviour of a composite unit cell with partial

debonding.
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Fig. 20. Force-displacement diagram for the composite unit cell test under tensile loading.

(a) (b) (c) (d)

Fig. 21. Damage profile evolution for the composite unit cell under tensile loading.
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