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Abstract
Objective. This study evaluates the effectiveness of four machine learning algorithms in classifying
physiological stress using heart rate variability (HRV) and pulse rate variability (PRV) time series,
comparing an automatic feature selection based on Akaike’s criterion to a physiologically-based
feature selection approach. Approach. Linear discriminant analysis, support vector machines,
K-nearest neighbors and random forest were applied on ten HRV and PRV indices from time,
frequency and information domains, selected with the two feature selection approaches. Data were
collected from 127 healthy individuals during different stress conditions (rest, postural and mental
stress).Main results. Our results highlight that, while specific stress classification is feasible,
distinguishing between postural and mental stress remains challenging. The used classifiers
exhibited similar performance, with automatic Akaike Information Criterion-based feature
selection proving overall better than the physiology-driven approach. Additionally, PRV-based
features performed comparably to HRV-based ones, indicating their potential in outpatient
monitoring using wearable devices. Significance. The obtained findings help to determine the most
relevant HRV/PRV features for stress classification, potentially useful to highlight different
physiological mechanisms involved during both challenges accompanied by a shift in the
sympathovagal balance. The proposed approach may have implications for advancing stress
assessment methodologies in clinical settings and real-world contexts for well-being evaluation.

1. Introduction

The American Psychological Association has defined stress as ‘the pattern of specific and non-specific
responses an organism makes to stimuli events that disturb its equilibrium’ (Gerrig and Zimbardo 2002).
Excess stress has been identified as one of the most powerful pathogenic elements of life (Umair et al 2021).
In simple terms, psychological stress is the feeling we experience when we are overwhelmed and struggling to
handle the demands placed upon us. Theoretically, stress can be beneficial as it serves as a motivator, aids
survival, and can alert us to potential dangers. However, when it becomes frequent, it can harm our mental
and physical health raising the risk of heart disease, accelerating ageing, and making us more susceptible to
mental health issues (Jiménez-Limas et al 2018). On the other hand, orthostatic stress is a physical stress
caused by the effects of gravity on the distribution of circulating blood volume in the body due to a position
change of the body (Benditt et al 2004). The body’s ability to react to a variety of stimuli (such as
environmental and psychological stressors) affects the sympathovagal balance (SVB) and thus the complexity
of cardiovascular regulation, due to the inhibition of the parasympathetic and activation of the sympathetic
branches of the autonomous nervous system during stress (Shaffer and Ginsberg 2017).
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A common approach for noninvasive stress assessment involves studying heart rate variability (HRV),
which is the beat-to-beat variation of the heart rate (HR). HRV is typically assessed by analysing time series
extracted from consecutive electrocardiographic signal (ECG) R peaks (R-R intervals). The most commonly
adopted HRV analysis for practical applications consists of taking into account short-term measurements
(i.e. 300 heartbeats,∼5 min recordings), and computing time-, frequency- and information-domain
measures (Shaffer and Ginsberg 2017, Pernice et al 2019). HRV indices are among the most dependable
indicators of mental and physical stress (Shaffer and Ginsberg 2017).

Recently, there has been a growing interest in investigating whether and to what extent HRV can also be
assessed through the photoplethysmographic signal (PPG), whose cardiovascular variability indices are
usually referred to as pulse rate variability (PRV) and are computed from pulse-to-pulse intervals (PPIs)
(Shaffer and Ginsberg 2017, Pernice et al 2019). PPG is an optical technique used in wearable devices that
can detect changes in finger microvascular blood volume. It is simple, low-cost, safe, and minimally invasive
(Mejía-Mejía et al 2020, Scardulla et al 2023). Although PPG and ECG are often considered interchangeable
for measuring HRV, several pieces of evidence suggest that the beat-to-beat variability recorded with PPG is
somewhat different from HRV (Pernice et al 2019, Mejía-Mejía et al 2020, Rinella et al 2022). PPG and blood
pressure recordings can be affected by physiological factors related to pulse wave transmission through the
vascular system and measurement errors due to motion-induced signal corruption and lower peak detection
accuracy, thus reducing the agreement between PRV and HRV.

In recent years, the application of machine learning (ML) to medical data analysis has surged in both
research and healthcare. ML algorithms are versatile in handling tasks such as prediction, classification, and
decision-making, and are designed to manage the large, complex datasets typical in healthcare (Ahmad et al
2022). ML has been particularly effective in categorizing autonomic nervous system states related to various
stress types (Awasthi et al 2020). Assessing HRV and PRV characteristics for stress level classification has
become a significant research focus, with numerous studies using HRV (Giannakakis et al 2019, Dalmeida
and Masala 2021) and PRV (Awasthi et al 2020, Panganiban and de Leon 2021) indices across time and
frequency domains.

In previous preliminary works (Iovino et al 2023a, 2023b), we evaluated the efficacy of several ML
algorithms for classifying postural and mental stress, employing either short-term or ultra-short-term HRV
and PRV indices. This work builds on those studies by including an initial feature selection phase.

The goals of this study are twofold. First, we aim to assess the feasibility of differentiating stress
conditions from a resting state, using physiologically meaningful indices derived from HRV. Second, we aim
to establish the feasibility of performing such differentiation using PRV-based indices for future automatic
stress classifiers based on wearable physiological monitoring. To this end, we extract a comprehensive set of
features in three domains (time, frequency, and information-theoretic) from HRV and PRV series measured
in a large group of healthy subjects monitored at rest and during postural and mental stress, evoked by
head-up tilt and mental arithmetic tasks, respectively. We then employ two feature selection methods to
identify the most relevant features for stress discrimination, one automatic based on the Akaike criterion and
one supervised by an expert physiologist. Finally, we use four widely used ML algorithms to compare the
classification performance of HRV-based and PRV-based classifications, both for the automatic and the
manual feature selection approaches.

2. Materials andmethods

2.1. Subjects and experimental protocol
Analyses were carried out on a dataset specifically acquired to assess cardiovascular variability during
different physiological states encompassing rest, orthostatic, and mental stress. Data were collected from 127
young healthy volunteers (75 females, 52 males; age: 18.63± 3.27 years), all normotensive and with body
mass index in a normal range (BMI: 21.42± 2.20 kg m−2). All the procedures were approved by the Ethics
Committee of the Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia. The participants
signed written informed consent, and when the subject was a minor (age< 18 years), parental or legal
guardian permission was gathered to allow the child to participate in the study. The analysed physiological
signals consisted of horizontal bipolar thoracic lead ECG recordings acquired through Cardiofax
ECG-9620 (Nihon Kohden, Japan) and arterial blood pressure obtained through the volume-clamp
photoplethysmographic method using the Finometer Pro device (FMS, Netherlands), which measures
beat-to-beat arterial pressure variability. In the Finometer device, the recorded continuous blood pressure
(CBP) is related to the PPG signal since a pulsation of the arterial diameter during a heartbeat produces a
pulsation in the photodetected signal, e.g. timings of the CBP signal are based on plethysmographic principle
(Pernice et al 2019). All signals were acquired synchronously with a sampling frequency of 1 kHz. The
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Figure 1. (a) Schematic illustration of the experimental protocol, including baseline resting (REST), orthostatic stress (HUT),
second resting (REST-2), mental arithmetic (MA) and the final third recovery phase (REST-3). (b) Representative RRI and PPI
time series, extracted respectively from ECG and blood pressure recordings. Colour boxes indicate the windows taken into
account for short-term (300 points) analysis.

experimental protocol encompasses five phases alternating physiological stress and recovery states
(schematically represented in figure 1):

• REST: subjects resting in the supine position on a motorized bed for 15 min (baseline);
• HUT: 8min-lasting head-up tilt test to evoke orthostatic stress;
• REST-2: resting phase in the supine position for 10 min for a full recovery of physiological parameters;
• MA: subjects lying in the supine position and undergoing a mental arithmetic test for 6 min to induce
cognitive load;

• REST-3: 10min resting phase in the supine position to let the physiological parameters recover again.

The passive head-up-tilt test was performed by tilting the motorized table on which the volunteers were
laying to a 45◦ upright position. The non-verbal mental test was carried out using the WQuick software with
the WIN 5 PMT test (Psycho Soft Software, s.r.o., Brno, Czech Republic) and consisted of a repetitive
visualization on the room ceiling of randomly generated 3-digit numbers. Each subject was asked to read the
number and mentally sum the digits as quickly as possible until a one-digit number was reached; then, the
subject had to decide whether the final resulting number was even or odd by using a computer mouse to click
the corresponding virtual button also projected on the ceiling.

2.2. Time series extraction and preprocessing
For each subject and condition, two time series of 300 heartbeats per the standard short-term analysis
protocol were extracted from the acquired ECG and blood pressure signals, respectively. To calculate the nth
RR interval (RRI), the time interval between the nth and (n+1)th QRS apexes was derived from the ECG
data. On the other hand, for the nth PPI, the time interval between the nth and (n+1)th blood pressure
maxima was measured. This approach ensured that both RRI and PPI time series were of the same length for
each subject and physiological condition. The 300-point windows were extracted from the recorded signals
starting approximately 8 min after the beginning of the REST phase, around 3 min after the start of the HUT
phase, around 3 min after the start of the REST-2 phase, approximately 2 min after the start of MA phase,
and around 2 min after the start of REST-3 phase (figure 1(b)). This choice has been made to allow the
recovery of the physiological parameters with regard to resting states, and to avoid considering the initial
transition between rest and stress states. The 300-point windows that were analysed did not contain any
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artefacts, including those related to the calibration of the Finometer device. It is worth noting that the
calibration process, which interrupts the continuous measurement of CBP, was only performed in the last
minute of REST and REST-2 phases, disregarded in the analyses. Each time series was corrected to remove
outliers beyond three standard deviations from the mean. These outliers were replaced using two different
interpolation algorithms, i.e. linear for isolated outliers and cubic spline for multiple successive ones. The
corrected time series were visually inspected for any issues following the interpolation procedure. Overall,
only 0.6% of the samples of each time series were adjusted, allowing a more reliable analysis. In this study,
only three out of the five different phases were considered, i.e. REST, HUT and MA phases. This choice has
been made since the other two recovery phases (REST-2 and REST-3) are very similar to each other (Pernice
et al 2019) and the baseline condition, and it would thus not be useful to carry out classification among them.

2.3. Feature extraction
Ten features, belonging to three domains (time, frequency and information-theoretic) were calculated on
RRI and PPI series, as detailed in previous works (Pernice et al 2019, Volpes et al 2022). Before conducting
frequency- and information-domain analyses, both time series underwent additional preprocessing steps,
encompassing first a zero-phase IIR high-pass filtering with a cutoff frequency of 0.015 Hz to remove the
mean and the slow trends (Pernice et al 2019). The sampling frequency was selected under the assumption
that the RRI and PPI time series are evenly sampled with a sampling period equivalent to the mean RRI,
according to a common practice in HR variability analysis (Faes et al 2013, Pernice et al 2021). Before
computing information-theoretic measures, the time series were also normalized to unit variance.

2.3.1. Time-domain
Conventional time-domain metrics for HRV and PRV were computed on RRI and PPI time series to extract
information about the beat-to-beat variability and the vagally mediated changes reflected in HRV.
Specifically, the following time-domain indices were calculated: the average value (MEAN), the standard
deviation (SDNN), and the root mean square of successive differences (RMSSD) in each time series (Shaffer
and Ginsberg 2017).

2.3.2. Frequency-domain
A parametric spectral analysis was employed for the frequency domain, fitting the preprocessed time series
with an autoregressive model. Here, model identification was carried out using the ordinary least squares
method. Instead of relying on standard model order selection criteria, a fixed model order of p= 10 was
chosen to ensure the representation of various oscillations (for further details we refer the reader to Pernice
et al 2019). The absolute spectral power was then computed within two frequency bands: the low frequency
(LF) band, ranging from 0.04 to 0.15 Hz, and the high frequency (HF) band, ranging from 0.15 to 0.4 Hz.
Additionally, the normalized power within the HF band (HFn) was calculated by dividing the absolute power
within the band by the sum of the absolute powers of both LF and HF bands (Shaffer and Ginsberg 2017).
The LF-to-HF power ratio, used in past studies as the SVB index, was also determined. Furthermore, the
respiratory peak frequency fHF was identified as the peak frequency within the HF band (Shaffer and
Ginsberg 2017).

2.3.3. Information-domain
Information-theoretic measures were computed on both the RRI and PPI time series to assess the amount of
information conveyed and to measure their complexity. This analysis quantifies the predictability of the
current sample of the time series, considering its past samples, and is thus associated with the regularity of
the time series. To achieve this, two entropy measures were calculated on each time series: the entropy that
can be derived from the history of the process (self entropy, SE) and the part that cannot be derived from it
(conditional entropy, CE) (Xiong et al 2017, Valente et al 2018). Both CE and SE features were estimated
using the model-free k-nearest neighbour approach (number of neighbours and embedding dimension set to
10 and 2 respectively), as in (Xiong et al 2017, Volpes et al 2022).

The analyses were entirely conducted on MATLAB 2022b (The MathWorks, Inc. Natick, MA, USA) and
the ‘Information Theory for the Analysis of Physiological Time Series—ITS Toolbox v 2.1’ http://www.
lucafaes.net/its.html was used to compute information-theoretic indices (Faes et al 2015, 2016).

2.4. Feature selection
Feature selection reduces computation, mitigates high dimensionality, and enhances predictor performance
by identifying a subset of variables that effectively describe the dataset while minimizing noise
(Chandrashekar and Sahin 2014, Ying 2019, Aggrawal and Pal 2020). This is crucial for our study as it helps
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highlight the most physiologically meaningful HRV and PRV features, improving the classification of stress
conditions and providing deeper insights into the underlying physiological mechanisms.

2.4.1. Akaike feature selection method
In this study, feature selection based on the Akaike information criterion (AIC) was performed (Vetrov et al
2009). AIC is a widely used metric for model selection that penalizes model complexity to prevent
overfitting, aiming to find a model that provides a good fit with the least number of predictors (Bishop and
Nasrabadi 2006, Vetrov et al 2009). For each combination of features, a multinomial logistic regression
model (Bishop and Nasrabadi 2006, Vetrov et al 2009) was trained using continuous features and categorical
target variables, computing the corresponding AIC value. The algorithm systematically evaluated all 1023
possible combinations of features to identify the subset that minimized the AIC, which was the primary
criterion for model selection. This exhaustive search, although time-consuming, was preferred because it
ensures an exact solution by avoiding local minima. This precision is crucial since feature selection is a key
goal of our analysis, providing a basis for interpreting the physiological significance of the selected features.
The combination of features yielding the minimum AIC value was used for the subsequent analysis of
physiological state classification.

2.4.2. Physiologically-based feature selection method
In addition to the automatic AIC-FS approach for feature selection, an alternative feature selection method
was employed. In this case, the focus was to exclusively select features according to the highest physiological
relevance in a medical context, based on current literature. This shift from conventional methods aimed to
prioritize features intrinsically linked to physiological mechanisms. The considered HRV/PRV features set
encompassed the MEAN as the basic cardiovascular measure expressing the overall balance between
parasympathetic and sympathetic control, the SDNN that describes the overall magnitude of HRV (Shaffer
and Ginsberg 2017), the information-theoretical CE as an independent measure of signal complexity related
to sympathetic activation (Porta et al 2016), and both frequency-domain indices, i.e. LF (containing
relatively independent information including vascular control reflecting sympathetic activity and baroreflex
influence) and HF (classical parasympathetic activity index) absolute spectral power in the respective bands,
being them mutually more independent and relatively easy to interpret from a physiological perspective.

2.5. Classification algorithms
Four classic ML classifiers (linear discriminant analysis (LDA), support vector machines (SVM), k-nearest
neighbors (kNN), random forest (RF)) (Lim et al 2016, Ahmad et al 2022, Rani et al 2022) were selected to
evaluate and compare their performance in discriminating between rest, orthostatic stress and mental stress.
The classifiers were chosen given their widespread use for various classification tasks, including those
involving ECG signals (Lim et al 2016). Each of the four classifiers was trained by inputting the HRV or PRV
features. The classes were balanced since each of the 127 subjects went through the three conditions (REST,
HUT, and MA). The integrated ‘Statistics and Machine Learning Toolbox’ of MATLAB 2022b was used to
apply the classifiers and the feature selection algorithm. All classifiers were evaluated by using a k-fold
cross-validation (CV), with a nested CV for optimal hyperparameter search (outlined in detail in section 2.6)
and leaving the remaining hyperparameters at their default MATLAB 2022b values.

In this work, the following hyparameters of the LDA classifier were optimized: gamma or the amount of
regularization to apply when estimating the covariance matrix of the predictors, and Delta or the linear
coefficient threshold. Delta was searched among positive values, by default log-scaled in the range [1× 10−6,
1× 103], while gamma was searched among real values in the range [0,1] (Bishop and Nasrabadi 2006).

For the SVM classifier, it was decided to optimize all the possible hyparameters, including the soft margin
penalty (i.e. the box constraint hyparameter in the used MATLAB function) [positive values log-scaled in the
range from 1× 10−3 to 1× 103], the kernel function [linear or polynomial kernel function of order 2]
used to compute the elements of the Gram matrix and the Kernel Scale (the appropriate kernel norm to
compute the Gram matrix) [positive values log-scaled in the range from 1× 10−3 to 1× 103] (Bishop and
Nasrabadi 2006).

The following hyparameters of the kNN classifier were optimized: the distance metric, such as the
city-block or the Chebychev, and the number of nearest neighbours to search, for classifying each point when
predicting, which the algorithm usually searches among positive integer values, by default log-scaled in the
range between 1 and the maximum number of observations depending on the CV approach (please refer to
section 2.6 for the details) (Bishop and Nasrabadi 2006).

For RF classifier, it was decided to optimize all the possible hyparameters including the maximum
number of decision splits (or trees), integers log-scaled in the range between 1 and the maximum number of
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Figure 2. Frequency of selected features using Akaike information criterion across 10-fold cross-validation. The bar plot
illustrates the number of times each feature was selected during the feature selection process. The coloured bars represent the
features that were selected more frequently (>70%) for the RRI and PPI time series.

observations, the minimum number of leaf node observations, integers log-scaled in the range between 1
and the maximum number of observations, and the split criteria (Gini’s diversity index) (Bishop and
Nasrabadi 2006).

2.6. Evaluation pipeline
Due to the relatively small amount of data, a 10-fold CV was applied splitting the dataset into training and
test sets. In each iteration of the outer CV, the training folds were subjected to the described FS methods and
to an additional inner 10-fold CV to determine the optimal model hyparameters. This process was carried
out before generating the final results on the outer CV test sets.

The performance of the various classifiers in discriminating among the various physiological states was
assessed employing conventional evaluation metrics (Shah et al 2018, Aggrawal and Pal 2020, Ahmad et al
2022). Specifically, in multi-class classification, accuracy, recall, precision, and F1 score were first computed
for each class, allowing to assess the classifier performance on each class, and are then averaged across the
classes.

The statistical significance of the obtained results was evaluated through statistical tests, to assess
differences among the classifiers and between the time series. In detail, the statistical tests were applied to the
distributions of accuracy, recall, precision, and F1 score values extracted across the initial 10-fold CV step. To
assess statistical significance between classifiers, the non-parametric Kruskal–Wallis test was applied to the
distributions of each metric, separately for the RRI and PPI time series, followed by a post-hoc unpaired
ranksum test with Bonferroni–Holm correction for multiple comparisons (n= 6, i.e. the number of pairwise
combinations between the classifiers). Additionally, the Wilcoxon paired signed-rank test was used to
compare the performance metrics between the RRI and PPI time series for each classifier, to highlight any
significant differences due to the time series characteristics. The same statistical tests were also employed to
assess any differences between the two feature selection methods.

3. Results

In the following subsections, the results will be presented, focusing on classification according to the AIC-FS
algorithm (section 3.1) or the physiologically-based feature selection method (section 3.2).

3.1. Akaike feature selectionmethod
The results in figure 2 show the frequency of selection for each feature across the 10 CV folds for (a) RRI and
(b) PPI time series using the AIC-FS algorithm. Regarding the RRI time series, features such as ‘CE’, ‘SE’,
‘HFn’, and ‘MEAN’ demonstrated higher selection frequencies, more than 70% over the 10-fold, while for the
PPI time series features like ‘SE’, ‘fHF’, ‘HFn’, ‘MEAN’, and ‘RMSSD’ were more commonly selected.

As shown in the confusion matrices of figure 3, the HUT class consistently ranks best, achieving higher
True Positive values than the other two classes. On the other hand, the high values shown in grey in the
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Figure 3. Confusion matrices, tables of the classification performance results (accuracy, recall, precision and F1 score [%]) for
each classifier (LDA, SVM, kNN, RF) and each time series (RRI and PPI). No statistically significant differences were observed in
the comparisons between RRI and PPI, or across the classifiers.

confusion matrix suggest that both MA and REST phases have been more often incorrectly classified. Across
the four classifiers (LDA, SVM, KNN, and RF) the RF generally achieves the highest results for both time
series (figure 3). In contrast, kNN showed the weakest performance across all computed metrics compared to
the other classifiers. However, the Wilcoxon signed-rank test for the four metrics (accuracy, recall, precision,
and F1 score) across the classifiers for each time series (RRI and PPI) indicated that the differences were not
statistically significant. Additionally, the Kruskal–Wallis test revealed no significant overall differences for
each measure between the RRI and PPI time series. These findings suggest that, despite the observed
differences in performance, the classifiers do not significantly differ in their performance when applied to the
RRI and PPI time series.

3.2. Physiologically-based feature selectionmethod
Figure 4 presents the classification values achieved by the four ML classifiers, taking into account the
proposed most informative features from a physiological perspective (CE, HF, LF, MEAN, SDNN). The
results of the confusion matrices show that the HUT class regularly gets the highest rating, as previously seen
in figure 3. It routinely earns higher True Positive values than the other two states. The latter appears to have
been more often wrongly categorised, as shown by the high values given in grey in the confusion matrix of
figure 4. The classifier achieving the best performance considering the most physiologically informative
features is the kNN classifier which outperforms the others. Nonetheless, the results of statistical tests
indicated once again no significant overall differences between classifiers, suggesting that, when considering
each metric individually across both time series, the classifiers do not significantly differ in their
performance. When comparing values obtained using RRI or PPI time series for each classifier and metric,
significant differences (p< 0.05) were found for precision when considering the LDA classifier (p= 0.031, ∗
in figure 4).

Comparing the results from the AIC feature selection method and the physiologically-based feature
selection method, overall it is possible to notice higher accuracy values and F1 scores when using the AIC-FS
method. Overall, AIC feature selection appears to enhance the performance of most classifiers on both time
series. Also in this case, the Wilcoxon signed-rank test was employed between distributions of values
computed using each approach to statistically validate the results and compare the performance of classifiers
using the two feature selection methods. When considering the RR time series, significant differences were
observed in accuracy for LDA (p= 0.027) and RF (p= 0.039) (highlighted in red in figure 4) with the
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Figure 4. Confusion matrices, tables of the classification performance results (accuracy, recall, precision and F1 score [%]) using
only the features with the most informative physiological meaning (CE, HF, LF, MEAN, SDNN), for each classifier (LDA, SVM,
kNN, RF) and each time series (RRI and PPI). Statistical test: ∗, p< 0.05, pairwise Wilcoxon test between the distribution of
metrics computed for RRI vs PPI across the 10-fold CV. Red values, p< 0.05, unpaired Wilcoxon test between distribution of
metrics computed using the AIC-FS vs physiological-based FS across the 10-fold CV.

physiological-based feature selection method showing lower values. Precision demonstrated significant
differences for LDA (p= 0.027) and RF (p= 0.004), again with lower values for the physiologically-based
approach, while recall showed no significant differences for any classifier. The F1 score indicated a significant
difference for LDA (p= 0.020), while no other classifiers showed significant differences in this metric. It is
worth noting that concerning the PPI time series, the performance of classifiers using the two feature
selection methods did not exhibit statistically significant differences in accuracy, recall, and F1 score.

4. Discussion

This study aimed to comprehensively compare the results of an automatic feature selection method using the
Akaike Information Criterion and a physiologically-based feature selection approach in classifying different
physiological states from cardiovascular variability time series. The objective was to gain insights into their
performance and to identify the most suitable HRV and PRV features (in time-, frequency- and
information-theoretic domain) for the best discrimination among physiological states, highlighting the
different physiological mechanisms involved during postural and mental stress accompanied by a shift in
the SVB.

The feature selection process using the AIC was repeated for each CV fold to ensure a selection
specifically tailored to each training set, thus minimizing potential overfitting and enhancing the model’s
performance. Our results shown in figure 2 indicate that certain features are consistently chosen more
frequently than others. Specifically, for the RRI time series features such as ‘CE’, ‘SE’, ‘HFn’ and ‘MEAN’
demonstrated higher selection frequencies, suggesting their greater relevance in predicting the categorical
target variable. Different features like ‘SE’, ‘fHF’, ‘HFn’, ‘MEAN’ and ‘RMSSD’ were more commonly selected
concerning PPI time series. It is interesting to underline that each set includes features belonging to all three
domains, i.e. time, frequency, and information, highlighting the diverse nature of the relevant features for
each time series. The different selection of the features suggests that RRI and PPI time series present specific
aspects that can be better explained from a peculiar features set.

In the time domain, the MEAN was always selected across the CV folds when considering both RRI and
PPI time series. These results are expected, given that the MEAN feature is widely recognized as the basic
cardiovascular measure expressing the overall balance between parasympathetic and sympathetic control, as
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the SE features of the information domain (Porta et al 2016). Moreover, the selection of RMSSD using the
PPI time series can be related to the fact that RMSSD is more responsive to the parasympathetic nervous
system activity being, in turn, less influenced by respiratory frequency than HF power (Penttilä et al 2001,
Quintana et al 2016). The frequency-domain analysis reveals differential behaviour of the various indices
across the two types of time series. For the PPI time series, the fHF and the HFn features are always selected
across the 10-folds, while only the HFn is always selected for the RRI time series. This different behaviour is
difficult to physiologically interpret, even if we can hypothesize that the selection of fHF for PPI is related to
the strong influence of respiration on pre-ejection period (PEP) that affects PPI time series (and not RRI
series). It is widely known that information-theoretic metrics reveal the complexity of physiological
processes and thus cardiovascular time series, varying across different physio-pathological conditions
(Goldberger et al 2002, Porta et al 2006, 2014). Entropy-based measures, i.e CE and SE, have been shown to
respond to different degrees of sympathetic activity during postural stress and can effectively describe
variations in the cardiac system activity linked to diverse physiological and clinical conditions (Xiong et al
2017, Pernice et al 2019). The CE is a measure of complexity that quantifies the dynamics of a time series by
assessing the information in the current data point that is not explained by previous points, while the SE is
the portion of information which can be derived from its past history (Javorka et al 2017). A rise in CE
reflects an increase in series complexity, while higher SE indicates a more regular and predictable series (Bari
et al 2015). Our results demonstrate that both CE and SE indices are consistently selected across all folds for
RRI time series, suggesting that complexity measures represent features that can effectively explain
differences among physiological states. The same remarks apply to the PPI time series, but with the difference
that only SE was consistently chosen.

The difference between HRV and PRV selected indices may be related to the distorting effect of the
non-constant PEP, depending mainly on left ventricular contractility and on pulse transit time (PTT), which
has also been shown to exhibit physiological variability (Chan et al 2007). Respiration may also affect
ventricular loading and thus PEP, as well as non-physiological factors like an inaccurate detection of blood
pressure maxima (Pernice et al 2019). The confounding effect of PEP and PTT may also have a role in the
complexity of the PPI time series, which in turn could be responsible for the non-selection of the SE index.

The results of the AIC-FS method are in quite good accordance with the proposed more
physiologically-related feature subset (figure 4) which includes the MEAN, the information-theoretical CE,
and both frequency-domain LF and HF, being the latter mutually more independent. This suggested
subset also contains the SDNN, which conversely did not appear to be a feature selected by the automatic
AIC-based method. Consistent feature combinations are identified in the studies of (McDuff et al 2014,
Tsunoda et al 2017, Huang et al 2018, Castaldo et al 2019, Posada-Quintero and Bolkhovsky 2019, Wang and
Guo 2019, Izzah et al 2022) which focus on stress and rest detection protocols similar to ours. Nevertheless,
they encompass additional features such as pNN50 (i.e. the percentage of differences between duration of
successive RRIs> 50 ms), providing avenues for further exploration in subsequent research of our study.

Our results evidence (cfr. figures 3 and 4) that the comparison across the four distinct classifiers reveals
no statistically significant differences in their performance. Moreover, the consistency between RRI and PPI
outcomes in all except for one metric, alongside the uniformity across various classifiers, underscores the
robustness and reliability of the analysis and demonstrates the viability of substituting features derived from
HRV by the ones from PRV, confirming previous findings obtained in other works with classical statistical
analyses (Schäfer and Vagedes 2013, Hernando et al 2018, Pernice et al 2019). Moreover, our results (both
regarding the AIC-based approach, figure 3 and the physiological-based selection, figure 4) show that when
considering all the classifiers and both time series, the class with the best classification performance is HUT,
followed by REST. This confirms previous findings evidencing that postural stress is easier to be
discriminated than mental workload and the different nature of the two stressors (Pernice et al 2019,
Pinto et al 2022).

Overall, our results suggest that SVM and kNN classifiers produce similar results either using the
automatic or the physiologically-based feature selection approaches, while RF and LDA are more
feature-dependent, with lower performance metrics when considering physiologically-based features
computed from RRI time series. This suggests that automatic feature selection enhances performance for
some metrics and classifiers, but not for the PPI-based analysis. Interestingly, while the automatically selected
features differ from the physiologically selected ones (except for the MEAN feature), they hold similar
meanings. For instance, both CE and SE indicate sympathetic tone, while SDNN and RMSSD reflect vagal
control. These findings suggest that incorporating physiological knowledge into ML approaches yields results
comparable to blind automatic classification, while also enhancing explainability. The importance of
employing a feature selection phase was also emphasized in a previous study (Iovino et al 2023a) considering
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a smaller version of the dataset and the backward-type Minimal Redundancy Maximal Relevance (mRMR)
feature selection algorithm (Ding and Peng 2005). The results are in agreement and evidence that the
inclusion of the feature selection phase (either AIC-FS or mRMR) leads to better classification accuracy.

4.1. Limitations
A limitation of our study consists in the fact that the differences between the suggested set of most
informative physiologically-based features and the automatic feature selection set could stem from distinctive
traits in the subjects, i.e. inter-subject variability of the features, and the relatively low amount of available
data. Subsequent research endeavours should involve the application of the identified feature set classification
to more ‘realistic’ datasets, i.e. recorded from real-life or within clinical settings, rather than within controlled
experimental environments as in this work, so as to validate the study’s potential for practical applications.
Moreover, the obtained results from the automatic feature selection could be improved by performing a more
sophisticated feature interaction analysis. Additionally, our study specifically evaluates the effects of postural
stress induced by head-up tilt and mental stress elicited by mental arithmetic tasks, while further studies
should take into account different types of stressors and stress levels to prove the generability of our findings.

5. Conclusions

This study demonstrates that specific stress classification is shown to be feasible, especially for postural stress
compared to the rest state, being however more difficult to distinguish between postural and mental stress
since both stressors evoke similar sympathetic activation. Our results highlight that the choice of the
classifier did not impact classification performances. The automatic AIC-based feature selection method
overall achieved slightly better classification than the physiology-driven approach for LDA and RF
algorithms. Notably, PPI-based classification, even if with a slightly different set of features, demonstrated
similar performance to RRI-based one for almost all metrics and classifiers. In perspective, these results
support the feasibility of implementing PPI-based algorithms on wearable devices for outpatient settings
monitoring. Additionally, our findings underscore the importance of incorporating physiological knowledge
into ML models, enhancing explainability while maintaining robust classification performance. The outcome
of our investigation holds potential implications for advancing stress assessment methodologies, not only
within clinical settings but also for broader contexts of health monitoring and well-being evaluation. Future
activities may envisage the use of feature explainability in larger real-world datasets, to understand the
importance of each selected feature. Furthermore, we will explore the application of alternative feature
selection algorithms, and consider different training strategies more suitable for lower data amounts, taking
into account features extracted from shorter cardiovascular time series, i.e. Ultra Short-Term analysis
(Castaldo et al 2019, Volpes et al 2022).
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Volpes G, Barà C, Busacca A, Stivala S, Javorka M, Faes L and Pernice R 2022 Feasibility of ultra-short-term analysis of heart rate and
systolic arterial pressure variability at rest and during stress via time-domain and entropy-based measures Sensors 22 9149

Wang C and Guo J 2019 A data-driven framework for learners’ cognitive load detection using ECG-PPG physiological feature fusion and
xgboost classification Proc. Comput. Sci. 147 338–48

Xiong W, Faes L and Ivanov P C 2017 Entropy measures, entropy estimators and their performance in quantifying complex dynamics:
effects of artifacts, nonstationarity and long-range correlations Phys. Rev. E 95 062114

Ying X 2019 An overview of overfitting and its solutions J. Phys.: Conf. Ser. 1168 022022

12

https://doi.org/10.1371/journal.pone.0089463
https://doi.org/10.1371/journal.pone.0089463
https://doi.org/10.1109/TBME.2016.2600160
https://doi.org/10.1109/TBME.2016.2600160
https://doi.org/10.1109/TBME.2006.883789
https://doi.org/10.1109/TBME.2006.883789
https://doi.org/10.3390/bs9040045
https://doi.org/10.3390/bs9040045
https://doi.org/10.1038/srep37212
https://doi.org/10.1038/srep37212
https://doi.org/10.3389/fnetp.2022.1036832
https://doi.org/10.3389/fnetp.2022.1036832
https://doi.org/10.3390/bios12100811
https://doi.org/10.3390/bios12100811
https://doi.org/10.1016/j.measurement.2023.113150
https://doi.org/10.1016/j.measurement.2023.113150
https://doi.org/10.1016/j.ijcard.2012.03.119
https://doi.org/10.1016/j.ijcard.2012.03.119
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.3390/app8040508
https://doi.org/10.3390/app8040508
https://doi.org/10.1587/transinf.2016OFP0002
https://doi.org/10.1587/transinf.2016OFP0002
https://doi.org/10.1109/ACCESS.2021.3052131
https://doi.org/10.1109/ACCESS.2021.3052131
https://doi.org/10.1088/1361-6579/aa9a91
https://doi.org/10.1088/1361-6579/aa9a91
https://doi.org/10.1134/S096554250911013X
https://doi.org/10.1134/S096554250911013X
https://doi.org/10.3390/s22239149
https://doi.org/10.3390/s22239149
https://doi.org/10.1016/j.procs.2019.01.234
https://doi.org/10.1016/j.procs.2019.01.234
https://doi.org/10.1103/PhysRevE.95.062114
https://doi.org/10.1103/PhysRevE.95.062114
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022

	Comparison of automatic and physiologically-based feature selection methods for classifying physiological stress using heart rate and pulse rate variability indices
	1. Introduction
	2. Materials and methods
	2.1. Subjects and experimental protocol
	2.2. Time series extraction and preprocessing
	2.3. Feature extraction
	2.3.1. Time-domain
	2.3.2. Frequency-domain
	2.3.3. Information-domain

	2.4. Feature selection
	2.4.1. Akaike feature selection method
	2.4.2. Physiologically-based feature selection method

	2.5. Classification algorithms
	2.6. Evaluation pipeline

	3. Results
	3.1. Akaike feature selection method
	3.2. Physiologically-based feature selection method

	4. Discussion
	4.1. Limitations

	5. Conclusions
	References


