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Abstract. This paper proposes a hyperbolic heat transport model for a homogeneously perfused biological tissue irradiated by a 
laser beam. In particular, involving two local energy equations, one for the blood vessel and the other for the tissue, a non-
Fourier-like heat equation is introduced and solved analytically using the Laplace transform method. The generalized hyperbolic 
model obtained is reduced to Pennes' heat transport equation in case the thermal delay time is zero and the solution obtained is 
in accordance with the numerical and experimental data existing in the literature. In addition, the achieved results also show 
that the effects of thermal relaxation and blood perfusion on temperature distribution are similar; indeed the highest 
temperature is expected when the delay time R increases during tissue cooling. Finally, the consequences of the change in the 
values of the physical parameters characterizing the model are described and the effect of thermal relaxation on the temperature 
profile in the tissue during and after laser application is investigated. 
 
Keywords: Heat transport, Bioheat, Nonequilibrium thermodynamics, Blood perfusion, Relaxation time, Porosity. 

1. Introduction 

The study of mathematical models for heat transport in living tissues is an interesting topic for several researchers because 
heat transfer in biological systems is significant in many diagnostic and therapeutic techniques involving temperature changes. 
The scrupulous description of the thermal interaction between vasculature and tissues is very important also in relation to 
constant advances in medical technology.  
Currently, modern surgery has a wide range of different surgical techniques available for heating the biological tissue in a well-
defined region. All these techniques use specific tools, e.g. devices (cryosurgery), that remove or introduce heat, (laser, radio 
frequency current, microwave or ultrasound), [1, 2]. Cryosurgery, sometimes referred to as cryotherapy or cryoagulation, is a 
surgical technique in which freezing is applied to destroy unsuitable tissues. In addition, a different freezing process of 
cryosurgery, consists in freezing for preservation (cryopreservation), which means that the cells and tissues are stored in a frozen 
state for transplantation, [3]. Other therapeutic applications include non-invasive thermal therapy that is used for cancer 
treatment; this method of treatment is chosen according to the location of the tumor, the stage or whether it is resistant to 
continuous treatment, [4, 5]. Therefore, it is essential to select the extent of the heating of cancer cells in order to avoid damage to 
the surrounding tissue, thereby achieving an adequate distribution of temperature. The development of effective strategies for the 
treatment of the cancer has been an important task in the field of medical research.  

Mathematical models can play a key role in providing meaningful information for clinicians about possible outcomes and 
risks which may occur before the onset of thermotherapy treatment to treat cancer. In these medical problems, it is necessary to 
carry out an accurate analysis of both spatial and temporal transport of heat to biological tissues, [6, 7].  

In general, all living systems do not exhibit a uniform temperature in organs and blood. This non uniformity of the 
temperature induces an energy transfer among organs, tissues and the perfused blood. Heat transport in biological tissues, 
usually modeled with the bioheat equation, is not simple to analyze since it involves thermal conduction in tissues, convection 
and perfusion of blood, and metabolic heat generation. In fact, several authors have introduced various mathematical models of 
bioheat transfer generalizing the Pennes’s bioheat equation [8]. This equation describes the thermal behavior of tissue by taking 
into account several terms influencing the heat transfer at the tissue surface: the heat exchange between the tissue surface and 
the environment, the conduction through the tissue, the energy transfer due to blood circulation in the tissue, and the heat 
generation due to local metabolism. Pennes [8], investigating the thermal behavior in forearm skin, proposed the equation: 
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where , , ,t t bc kρ ρ  and bc  are the density, the specific heat, and the thermal conductivity of skin tissue, the density and specific 
heat of blood, respectively. Moreover, the quantities ,bw T  and aT  are the blood perfusion rate, the skin tissue and arterial blood 
temperatures, respectively, whereas metq  is the metabolic heat generated by the skin tissue. Since temperature variations in 
biological tissues depend on many phenomena, various generalizations of this equation have been proposed. Among these 
extensions, a relevant role is played by models of bioheat transfer where the living tissues are assumed to be deformable porous 
media [9-15]. This approach implies the necessity of introducing two energy equations for the tissue and the blood. In such a 
framework, important effects such as the vascular geometry and size, the blood flow and direction, the thermal diffusion and the 
local thermal nonequilibrium between the blood and peripheral tissues are included. 

In the modelization of transport phenomena in porous media, it is possible to describe the living structure composed by a 
fluid phase (the blood) and a solid matrix (the tissues). Because of the metabolism, a volumetric heat generation in the solid part 
occurs. Recently, Xuan and Roetzel [16, 17], applied this approach to human tissues, where the porous medium models the tissue 
cells and the interlinked voids where arterial or venous blood flows. By using the principle of local thermal nonequilibrium 
between the tissue and the blood, the thermal energy exchange between the tissue and the blood in a given volume element is 
formulated as follows [16]: 

(1 ) ((1 ) ) ( ) (1 ) ,

( ) ( ) ,

t
t t t t t metbt b

b
tb b b b bt b b b b
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c k T h T T q
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c k T h T T c T
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φ ρ φ φ

φρ φ φρ

∂
− =∇⋅ − ∇ + − + −

∂
∂

=∇⋅ ∇ − − + ⋅∇
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, , , , ,ttb bT T k kφ bv  and bth  being the porosity of the tissue, the local arterial blood averaged temperature, the local tissue averaged 
temperature, the tissue thermal conductivity tensor, the blood thermal conductivity tensor, the blood velocity vector and the 
interstitial convective heat transfer coefficient, respectively. Moreover, the energy equations for both phases are coupled by the 
interstitial convective heat transfer, representing the heat transfer to the tissue due to blood convection, i.e. the heat exchange 
rate through the boundary surface between the blood phase and the solid matrix because of local thermal nonequilibrium [14]. 

In several medical treatments, especially in dermatology, the laser heating of biological tissues is widely used; consequently 
the details of the heat transfer and of the related thermo-mechanical properties of tissues are essential from a medical viewpoint. 
Since the thermo-mechanical response of the skin to various therapeutic temperatures during laser irradiation is not completely 
known, it is important to investigate the thermal behavior of tissues during laser-tissue interaction to avoid thermal damage. 

Many mathematical models of heat conduction in biological tissues irradiated with laser are described in the literature [18-
22]. In most of these contributions, the temperature distribution in the tissues were obtained by using the heat transfer equation 
proposed by Pennes (parabolic model). However, although the bioheat equation can be valid is several situations, it has been 
hypothesized that for heat transfers on small time scales classical model will fail, and a thermal wave theory with finite thermal 
propagation speed could be more appropriate to describe such phenomena [7].  

In fact, a model that considers a finite speed of propagation of thermal energy is crucial in surgical or therapeutic procedures 
(such as radiofrequency heating, irradiation, …) where short heating times occur. In such cases, a non-Fourier type model should 
be considered by introducing a hyperbolic heat transfer equation with a thermal relaxation time Rτ  of the tissue. The 
hyperbolicity guarantees a finite speed of heat propagation, which is inversely proportional to Rτ . Thermal relaxation time 
represents a parameter for estimating the time required for heat to conduct away from a directly heated tissue region. When 
continuous wave lasers heat targets for longer than the thermal relaxation time, heat diffuses to adjacent tissues, where it can 
induce collateral damage.  

Likely, the internal structure of biological tissues could have a decisive impact on relaxation time. In addition, it could be 
modified, for example, by specific nanoparticles carried by the blood and addressed to certain regions of the tissue such as in a 
neoplastic region. Nanoparticles, as they possess a number of properties such as chemical reactivity, energy absorption, and 
biological mobility, have an important impact in the treatment of various types of cancer, as evidenced by the numerous 
nanoparticle-based drug and delivery systems that are in medical treatments [23]. Different nanoparticle-based drug delivery 
strategies can be utilized to modulate and improve the performance of a drug; also, metal nanoparticles could locally increase the 
absorption of the laser beam in the tumor region and thus modify the Rτ  value dependent on microscopic thermal inertia. So, it is 
reasonable to expect Rτ  play a fundamental role in the thermal destruction of the of cancer cells by targeted absorption of the 
laser beam.  

The current study focuses on the analysis of a non-Fourier bioheat transfer model describing the laser heating of skin tissue; 
the solutions will be obtained using the Laplace transform method. Therefore, the purpose of this paper is to propose a hyperbolic 
model of thermal conduction and to carry out an analysis on thermal relaxation of the tissue after laser heating in order to 
evaluate the time needed for temperature values, caused by the heat absorbed by the laser, decrease until are reached values 
close to those desired. In this assessment, it is very important to make the appropriate changes to the biological parameters of 
the model and the intensity of the laser beam so that the risk of tissue damage is reduced. 
   The structure of the paper is as follows. In Section 2, we introduce the model of heat transport of biological blood perfused 
tissue, and provide a mathematical formulation in a semi-infinite domain. Then, in Section 3, we present an analytical solution 
suitable for describing the distribution of the temperature. The results are discussed in Section 4. Finally, Section 5 contains some 
final comments as well as possible future developments. 

2. Mathematical Formulation of Heat Transport Model for Blood Perfused Tissues 

In this Section, we consider a semi-infinite fragment of homogenous isotropic biological tissue. Let us suppose that the whole 
tissue surface is influenced by the laser energy; thus, we will solve the heat transfer equation in a one- dimensional setting, 
where the unique spatial variable follows the direction of the laser beam. Furthermore, local thermal equilibrium is used to an 
acceptable approximation for the temperature field in some applications involving blood vessels of small sizes. Therefore, we 
limit ourselves to the case where the temperatures of the blood and tissues are equal in a certain volume element, i.e., 

t bT T T= = , Hence, the two equations (2) reduce to a single equation, say 
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Let us remark that the second term on the right hand side expresses the contribution to heat transfer due to blood perfusion. 
Thence, in the following, we suppose that the latter corresponds to the perfusion source term that in Penne’s equation (1) was 
taken equal to ( ),ab b bc w T Tρ − bw  being the flow rate of blood in the tissue per unit volume. This term is derived under the 
assumptions that in equilibrium conditions between the capillary tube and the tissue, the venous blood temperature locally 
is equal to the tissue temperature. Moreover, the arterial temperature is considered uniform throughout the tissue. Our 
mathematical model turns out to be hyperbolic since we introduce a relaxation time Rτ . 

In equation (3) we have assigned for the heat flux q  a constitutive equation that satisfies the Fourier equation, if we assume 
for heat flux a Maxwell-Cattaneo-Vernotte like evolution equation 
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and considering an additional term which is responsible for the effect of laser heat source on skin tissue, the resulting hyperbolic 

bioheat transfer equation (3), in a semi-infinite domain [0, )Ω= +∞  reads 
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 (6) 

Let us model the effect of laser as an internal heat source laserq , and assign the following adiabatic-like boundary and initial 

conditions: 

0(0, ) 0, lim ( , ) 0, ( ,0) ( ,0) 0.,   x x t
x

T t T x t T x T T x
→∞

= = = =  (7) 

 
where 0T  is the initial temperature, i.e., the tissue temperature before heating. Moreover, let us suppose that, for the small values 
of the absorption coefficient of tissue a 1([ ] )a m−= , the laser effect is described by the Beer- Lambert’s law [24] 

( )0 exp ( ),laser laserq aI ax H t t= − −  (8) 

 
representing the energy absorption of the laser irradiation. Here, 0I  is the constant irradiation intensity at the skin surface 

2([ ] )laserq Wm−= , ( )H t  is the Heaviside function, lasert  is the instant the laser is removed, and x  is the depth of the tissue. 

3. The Analytical Solution of the Bioheat Model 

In this Section, we determine the analytical solution of the hyperbolic bioheat model (6) by applying the Laplace transform. 
Before proceeding, it is convenient to write the system choosing the dimensionless variables 

, , ( , ) ( ),aAt Bx C T Tη ξ θ ξ η= = = −  (9) 

wherein, A , B , C  are suitably chosen. Hence, the dimensionless thermal wave-like bioheat transfer equation during laser 
irradiation becomes 
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with 2 1[ ] [ ]t b m sα α −= = . Moreover, without loss of generality, we can assume that the coefficients of the derivatives of the 
temperature are equal to 1, i.e., 
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along with the following expressions of the coefficients A , B , C : 
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Using the previous coefficients in the relations (11), leads us to the further positions: 
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Then equation (10) can be rewritten in terms of the dimensionless variables as follows: 
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whereas the dimensionless initial and boundary conditions are expressed by: 

0( ,0) , ( ,0) 0,

(0, ) 0, lim ( , ) 0,
ξ

θ
θ ξ θ ξ

η

θ θ
η ξ η

ξ ξ→∞

∂
= =

∂
∂ ∂

= =
∂ ∂

 (17) 
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By taking Laplace transform with respect to t [25], and defining 

ˆ ˆ( , ) : [ ( , )], ( ) : [ ( )],s g s gθ ξ θ ξ η η= =L L  (19) 

after multiplying the equation (16) by ( )exp sη−  and integrating in [0, )+∞ , one gets: 
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Moreover, the Laplace transform of the boundary conditions yields: 

ˆ
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ξ

θ
θ ξ

ξ →∞

∂
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Solving the homogeneous equation associated with equation (20), and testing with a particular solution ˆ
partθ , one gets the 

general solution: 
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having the following explicit form:  
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 (23) 

Substituting the boundary conditions (21) in the derivative respect to ξ  of the general solution, the expression of the 
coefficients 1c , 2c  are determined: 
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Moreover, by substituting the relations (24) into equation (23), the function ˆ( , )sθ ξ  on the Laplace domain becomes: 
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In order to get the wanted temperature, it is necessary to compute the inverse of the Laplace transform 

{ }1 ˆ( , ) ( , ) ;sθ ξ η θ ξ−= L  (26) 

this computation is not easy and involves different steps. For this reason, we split the calculation of each addend, and use the 
inverse Laplace tables [25]. The inverse Laplace transform of the first term of equation (25) is obtained by applying the convolution 
theorem of Laplace transform, 
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The inverse Laplace transform of the second term of Eq. (25) 
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Moreover, the inverse Laplace transform of the fourth term of Eq. (25) is: 
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(32) 

Finally, by introducing the inverse Laplace transform of all the addends in relation (25), the temperature ( , )θ ξ η  writes as 
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 (33) 

In conclusion, coming back to the original physical variables, the following solution for ( , )x yθ  is obtained: 
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+ +Λ

ɶ
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 (34) 

 

Table 1. Thermal and laser properties of the model. 

Parameters Value [2] Parameters Value [3] 

3/
t

Kg mmρ     1200 x 10-9 3/
b

Kg mmρ     1080 x 10-9 

1 1

t
c J Kg K− −⋅ ⋅    3222 [ ]/

b
c J Kg K⋅  3300 

[ ]/
t

k W mm K⋅  0.42 x 10-3 [ ]/
b

k W mm K⋅  0.508 x 10-3 

3/
met

q W mm    368 x 10-9 1

b
w s−    8.3 x 10-3 

[ ]
R

sτ  10 φ  0.3 

[ ]
a

T C°  36 [ ]
0

T C°  35.1 

2

0
/I W mm    122 x 10-3 [ ]

laser
t s  15 

1a mm−    70 x 10-3   
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Fig. 1. The skin surface temperature profile over time vs relaxation times τR, (a) tlaser =20s (b) tlaser =15s (c) tlaser =10s (d) tlaser =8s (e) tlaser =5s (f) tlaser =2s. 

4. Results and Discussion 

In the present section, we attempt to explain the influence of important parameters of the model on temperature profiles. A 
summary of all relevant parameters used is given in Table 1. The solution obtained in the previous section is here analyzed in 
order to discuss the distribution of the temperature in a biological tissue (808 nm laser, 122 kWm-2) as a function of the thermal 
relaxation time Rτ  also considering different values for blood perfusion bω  [26].  

Thus, the effects of laser irradiation time, laser intensity on the temperature distributions in the layered skin during the laser 
beam can be described. During the action of the laser it is necessary to control the growth of the temperature. In fact, too high 
temperatures could cause undesirable and often irreversible damages to the skin and surrounding tissues (full-thickness 
epidermal necrosis including hair follicles, dermal necrosis, dermal edema and hemorrhage, [26]).  

A rise in temperature during the laser session of course depends on the irradiation time, laser intensity and type of the 
exposed tissue. In Fig. 1, it is shown the non-Fourier-type temperature evolution equation as a function of relaxation time Rτ  and 
for different time exposure duration of the laser. Let us remark that Rτ  plays an important role in the temperature evolution, 
as expected, whereas the thermal delay time has a major influence on the temperature distribution, i.e., as Rτ  increases the 
tissue temperature decreases more slowly. In particular, increasing the value of the relaxation time, the action of laser 
provides higher values for the temperature, while once the laser action is stopped (for example after 20 seconds in Fig. 1(a)), 
it is observed a decrease of temperature fluctuations. The temperature profile, from a natural state around 0 35.1 ,oT C=  
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during the process of irradiation increases until a maximum acceptable value is attained. 
Figure 2(a) clearly shows the influence of porosity on the evolution of the skin surface temperature. Higher porosity 

values provide smaller variations in temperatures.  
In Fig. 2(b), the effects of the rate of blood perfusion bω  under bioheat model with a fixed relaxation time on the 

temperature variation is depicted. Higher values of the rate of blood perfusion have the effect of increasing the convective 
heat loss due to faster blood flow; this allows the skin to exhibit lower values of surface temperature. 

Finally, in Fig. 3, the trend of the temperature is represented varying the intensity of the laser. Comparison between our 
theoretical and the experimental results get by Zhou et al. [28] demonstrate that the behavior of the temperature results agreed 
with the experimental data. Some discrepancies are due to the presence of additional material parameters in the two models, 
such as porosity of the tissue and evaporation on skin surface. 

 
 

 
 

Fig. 2. Temperature profiles for different values of (a) ϕ, (b) wb , with I0=2.0 W mm-2 , τR=10s, tlaser =10s. 

 
 

 

 

Fig. 3. Temperature profile over time vs laser intensity I0, with (a) τR=10s, (b) τR=9s, (c) τR=8s, (d) τR=5s. 
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5. Conclusions 

The health and the treatment efficiency during laser surgeries and laser medical applications are very important. Thus, 
predicting tissue temperature during laser irradiation is one of the most significant topic in medical field. An attempt to get a 
more accurate description of heat transfer in nonhomogeneous materials leads to the application of the Maxwell-Cattaneo-
Vernotte equation.  

Progress in research on the phenomena of heat transfer to a finite propagation speeds have led to increased interest in 
solutions of the hyperbolic equation, [27]. The bioheat transfer equation, has also been used in a wide range of applications to 
describe heat transport in blood perfused tissues, [17] by a variety of generalized non-Fourier type models. 

Similar models can be used in many therapeutic treatments involving temperature changes. For example, in the development 
of cryosurgical techniques for the administration of maximum cell destruction within the tumor while preserving healthy tissue; 
in the treatment of hyperthermia, useful for tumors that are sensitive to heat, the body tissue is exposed to high temperatures. It 
is usually used with other forms of cancer therapy, such as radiation therapy and chemotherapy, because hyperthermia may 
make some cancer cells more sensible to radiation or hurt other cancer cells that radiation cannot damage, (Yuan, [17]). 
Furthermore, there is also a great interest in the thermal properties of the skin, in order to understand the conditions that lead to 
thermal damage that can occur when the skin is in contact with high temperature heat sources. Zhou et al., [28] have numerically 
studied the thermal damage to biological tissues caused by laser irradiation through a dual phase-lag bioheat transfer model.  

Due to long-thermal relaxation time of tissue, the non-Fourier model is more reliable for depicting the propagation thermal 
phenomenon and evaluating the temperature distribution than the classical Fourier one [29]. 

In the present paper, under suitable approximations, we have solved analytically in one-dimensional setting hyperbolic heat 
equation including a source term for blood perfusion and laser irradiation on the surface tissue considered as internal heat 
source.  

The exact solution found here can be used to study the evolution of temperature within tissues during thermal therapy. In 
particular, the effects of thermal relaxation time Rτ  on blood perfusion on tissue bw  and temperature T are discussed.  

It has been observed that increased perfusion induces a drop in local temperature. In addition, increased energy is 
concentrated in the skin surface due to large thermal relaxation time leading to a finite speed of heat conduction. Theoretical 
curve analysis is crucial to identify tissue parameters. The range of variability of these parameters can be investigated in order to 
determine the appropriate amount of irradiation to which the tissue should be subjected for therapy and such that it does not 
cause damage. This topic will be a subject of future studies. The results show that due to laser-induced heat, the hyperbolicity of 
the model provides temperatures higher than those obtained with a parabolic model. The thermal effect of the laser beam 
depends heavily on the absorption and scattering coefficients, the intensity and the wavelength of the laser. In a future work we 
will consider a more realistic situation, in order to develop a nonlinear theoretical model that includes in the generalized bioheat 
equation (6) a temperature-dependent relaxation time and blood perfusion.  
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Nomenclature 

Tt 
ρt 

ct 

kt 

qmet 

Ta 

T0 
I0 
vb 

Local tissue averaged temperature [K] 
Mass density of tissue [Kg/m3] 
Specific caloric of tissue [J/Kg K] 
Thermal conductivity of tissue [W/mm K]  
Metabolic source [W/mm3] 
Arteries temperature [K] 
Initial temperature [K] 
Irradiance [W/mm2] 
Blood velocity vector [mm/s] 

Tb 
ρb 
cb 

kb 
wb 
τR 
ϕ 
a 

hbt 

Local blood averaged temperature [K] 
Mass density of blood [Kg/m3] 
Specific caloric of blood [J/Kg K] 
Thermal conductivity of blood [W/mm K] 
Blood perfusion [1/s] 
Relaxation time [s] 
Porosity 
Absorption coefficient [1/mm] 
Convective heat transfer coefficient [W/mm K] 
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