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Abstract
Understanding the structure of precipitation and its separation into stratiform and convective components is still today one

of the important and interesting challenges for the scientific community. Despite this interest and the advances made in this

field, the classification of rainfall into convective and stratiform components is still today not trivial. This study applies a

novel criterion based on a clustering approach to analyze a high temporal resolution precipitation dataset collected for the

period 2002–2018 over the Sicily (Italy). Starting from the rainfall events obtained from this dataset, the developed

methodology makes it possible to classify the rainfall events into four different classes, which can be related to the

convective and stratiform components of the events on the basis of their hyetograph shapes and average intensities. The

results show that the occurrence of stratiform events is always much higher than the convective ones, especially in the

winter and spring seasons, while from the summer to the mid-autumn the rainfall depth due to convective events results to

be higher than that due to the stratiform events. Moreover, the comparison with a more widely accepted separation

methodology demonstrates the physical consistency of the proposed methodology.

Keywords Extreme rainfall � Convective and stratiform precipitation � Functional data analysis � PCA-based clustering

analysis

1 Introduction

Natural hazards, such as floods and landslides, have direct

impacts on planning and management of earth resources

and human health risks. Such events have gone up to

unprecedented levels in several parts of the globe during

the last decades (Andersson-Sköld and Nyberg 2016;

Gariano and Guzzetti 2016; Hoeppe 2016; Messeri et al.

2015). This increase has been often attributed to urban-

ization, forest management practices, and especially to the

increasing occurrence of climatic extremes (e.g., heavy

rainfall) (Arnone et al. 2018; Shukla et al. 2019; Pumo

et al. 2017).

Since most of the floods and landslides depend on pre-

cipitation characteristics, such as intensity and duration,

which depend, in turn, on the mechanisms that generate

precipitation, understanding the genesis of the precipitation

could be helpful to predict the occurrence of such natural

disasters. In this context, one of the most interesting

research topics focuses on understanding the genesis of

precipitation and its separation into stratiform and con-

vective components.

Convective and stratiform components are mainly rela-

ted to the physical mechanisms responsible for the gener-

ation of the precipitation. Convective precipitation, which

is usually characterized by rapid processes starting at the

base of the cloud, is characterized by high intensities and

short durations. On the contrary, the mechanisms that

generate a stratiform rainfall are usually slower and start at

the top of the cloud, where precipitation particles that fall

to the ground as raindrops have their early history as ice
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particles (Houze 1997). This type of precipitation is related

to horizontal growth conditions with greater areas of

influences, higher durations and lower rainfall intensities as

compared to the convective precipitation (Houze 2014).

Despite advances made in recent years, the distinction

between convective and stratiform precipitation is not

trivial and still today a challenge (Cipolla et al. 2020). The

first attempts to deal with such a separation began during

the 80’s and were mostly concerned with the spatial aspect

of the problem, i.e., to distinguish between convective and

stratiform regions. Based on a previous work by Houze

(1973), starting from the data registered on 10 December

1978 over the South China Sea from the Winter Monsoon

Experiment (WMONEX), Churchill and Houze (1984)

identified convective regions on the assumption of a couple

of rules. The first rule classified as the core of a convective

structure all those cells that had a peak rainfall rate at least

twice of the rainfall rate of the surrounding 400 km2 area.

For each core so identified, the surrounded 150 km2 of area

was considered convective. In addition, regardless of the

previous criterion, a second rule classified as convective

any area with a rainfall intensity higher than or equal to 20

mm/h. Garand (1986), before, and Adler and Negri (1988),

later, proposed the first methods based on the use of

infrared and/or visible data for distinguishing between

convective and stratiform precipitation. They developed a

technique capable to locate all local minima in an array of

infrared data, which are assumed to be the cores of a

convective structure. Chong and Hauser (1989) made a

distinction based on a comparison between water budget in

both convective and stratiform regions of a squall line.

Starting from the method developed by Churchill and

Houze (1984), during 90’s many other authors tried to

develop a methodology to distinguish between convective

and stratiform regions (Caniaux et al. 1995; Steiner et al.

1995; Tao et al. 1993, 2000; Xu 1995). Moving forwards to

the 2000s, some authors used weather radar imagery (Rigo

and Llasat 2004), or remote sensing techniques, which use

the brightness temperature (Anagnostou and Kummerow

1997; Hong et al. 1999), to address the spatial issue of

convective regions identification.

One of the most debated issues of all the previous

approaches is related to the appropriateness to separate

rainfall regions into only two classes (Houze 1997; Kyselỳ

et al. 2016). With this regard, as early as 90’s Mapes and

Houze (1993) classified one-third of the radar echoes

observed in their study as ‘‘intermediary’’ because their

structure appeared to be neither obviously convective nor

obviously stratiform. Looking at the radar observations in

the Tropics, Houze (1997) noticed many radar echoes

composed of convective rain alongside stratiform precipi-

tation. These observations, which seemed to be

paradoxical, were generated in the older convection

regions, where the humid air moved slower upwards than

in the younger convective regions.

At the start of the 2000s, as well as with the spatial

issue, many authors began to develop methods aimed to

distinguish between convective and stratiform rainfall

events based on the ground observations. Starting from the

rainfall collected in between 1927 and 1981 close to the

city of Barcelona, Spain, Llasat (2001) proposed a classi-

fication into convective and stratiform events on the base of

an event-based parameter b. The author proposed to clas-

sify as convective all of those rainfall events in which b
was greater than zero according to the following criteria:

b ¼ 0 non-convective, 0\b� 0:3 slightly convective,

0:3\b� 0:8 moderately convective, 0:8\b� 1:0 strongly

convective. Tremblay (2005), using a year of precipitation

collected over the entire world from the World Meteoro-

logical Organization (WMO), revealed that the relationship

between cumulative precipitation and rain intensity over

different periods (e.g., 6 h, 1 day, 1 week, and 1 year) can

be well described by a negative exponential law. The same

author identified a threshold equal to 20 mm/6 h for par-

titioning precipitation into convective and stratiform

components. In general, after the work of Tremblay (2005),

the practice of a critical intensity threshold to discriminate

between the two components has been widely adopted

(Cipolla et al. 2020; Feloni et al. 2019; Ruiz-Leo et al.

2013), since its simplicity and since it requires only time

series of precipitation.

Also in this case, the number of classes to correctly

separate rainfall events is one of the most important issues

to deal with. With this respect, Rulfová and Kyselỳ (2013)

introduced a class of mixed/unresolved events to take into

account all those events that, according to their algorithm,

could be classified as both convective and stratiform events

or do not have a sufficiently clear distinction between those

two classes. In order to overcome the potential drawbacks

due to the application of a fixed critical intensity threshold,

based on the use of a couple of reanalysis indexes, Cipolla

et al. (2020) developed a fuzzy framework to distinguish

between annual maxima precipitation mainly related to

convective and stratiform components. This framework

involved the use of a third class (mixed/unresolved) to

include all those annual maxima precipitation not belong-

ing to the convective or stratiform classes.

This study tries to address questions regarding the

clustering of precipitation on the base of its mechanism of

generation. Since one of the weaknesses of the above-

mentioned studies is the use of an arbitrary intensity

threshold to classify the precipitation, which makes their

results affected by a certain degree of subjectivity, one of

the most important question to be addressed is whether it is

possible to find a more objective method capable to classify
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precipitation based on its characteristics (e.g., intensity,

duration, total rainfall events, etc.).

In order to answer this question, a novel criterion based

on a PCA-based clustering approach (denoted FPCAC),

which is a variant of a k-means algorithm based on the

principal component rotation of data, has been here used.

The study area is the Sicily (Italy), which is the largest

island of Mediterranean Sea. With this regard, the precip-

itation dataset of the regional agency SIAS (Servizio

Informativo Agrometeorologico Siciliano—Agro-meteo-

rological Information Service of Sicily) has been used

because of its high temporal resolution, quality, and

availability of up-to-date data. Specifically, data from forty

rain gauge stations spread over the entire island have been

collected for the period 2002–2018 and with a temporal

resolution of 10 minutes.

The paper is organized as follows: Sect. 2 introduces the

case study (i.e., Sicily) together with the SIAS database,

while Sect. 3 describes the FPCAC algorithm. Section 4

shows the application of FPCAC algorithm to the case

study and its results. Finally, in Sect. 5, a conclusive dis-

cussion about the methodology developed and future

developments is provided.

2 Case study and dataset

Sicily (Italy) is the largest island of the Mediterranean Sea

and covers an area of about 25,000 km2 (Fig. 1). The

elevation varies a lot across the island, ranging from 0 m

a.s.l. (above sea level) along the coast to more than 3,000 m

a.s.l. at the volcano Etna. Sicily has always experimented a

high spatial and temporal variability of precipitation. With

regard to the spatial variability, Di Piazza et al. (2011)

obtained a spatial distribution of the mean annual precip-

itation (MAP) over Sicily with higher MAP recorded in the

northeast of the region, where it reaches about 1,900 mm,

and lower MAP in the southeastern part of the island (about

360 mm). The overall mean of the MAP over the island is

about 700 mm. With reference to the temporal variability,

instead, rainfall is mostly concentrated in winter, whilst the

summer season (i.e., June, July, and August) is usually

almost rainless. In regard to air temperature, Sicily is a

region with a temperate-mesothermal (Mediterranean) cli-

mate with an average temperature in the hottest months

greater than 22 �C. The highest values of mean annual

temperature (MAT) are around 18.5�19.5 �C along the

coast, while the lowest values (10.5�13.5 �C) characterize
higher elevations, with a minimum above the Etna volcano.

The warmest areas are the flat lands in the North West

nearby the city of Trapani and in the South East close to the

city of Catania, both with a relevant agricultural tradition.

In the last years, many areas of the island have been

experiencing some very intense rainfall events, usually

concentrated between the end of summer and the autumn,

that cause urban floods and flash floods with consequent

economic damages and, sometimes, human lives losses.

This is demonstrated by some extreme events that occurred

in Sicily in the last few years, some of which are reported

here. On 1 October 2015, the city of Catania was flooded

because of a heavy rainfall with an intensity peak of about

65 mm/h. In November 2016, 160 mm of rainfall fell in

three hours flooded the city of Licata, causing several

damages to people and some economic activities. On 8

Fig. 1 Digital elevation model

of Sicily (Italy) and location of

the SIAS rain gauge stations
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August 2018, in only twenty minutes, a precipitation of

about 75 mm/h intensity endangered the city of Palermo,

flooding most of the old city and several other districts of

the city. Between 1 and 3 November 2018, a series of some

heavy rainfalls in the east and south parts of the island

caused thirteen fatalities and more than two hundred and

thirty displaced people. The total rainfall reached in three

days about one third of the mean annual precipitation of

some of the affected areas. On 15 July 2020, the city of

Palermo was affected by the heavier rainfall event ever

recorded in Palermo during the last ninety years. The

precipitation, with a maximum hourly intensity of 87.8

mm/h and a cumulative rainfall of 134 mm fell in about

two hours, caused the flooding of the ring road of Palermo

and its underpasses with several damage to cars and

inconveniences to people. In one of the underpasses the

water level reached a depth of about 5 m. Moreover, the

precipitation caused some flash floods from some small

hilly and mountain catchments around the city that carried

out mud and debris from the slopes of hills and mountains

to the city.

Dataset from the regional agency SIAS (Servizio

Informativo Agrometeorologico Siciliano—Agro-meteo-

rological Information Service of Sicily) has been here used

because of its high temporal resolution, quality, and

availability of up-to-date data. The entire database includes

about one hundred rain gauge stations distributed over the

entire island that collect the data with a temporal resolution

of 10 min. Specifically, because of the internal policy of

SIAS and the long time required for acquiring the entire

dataset, only data from forty rain gauge stations homoge-

neously distributed over the entire island have been col-

lected for the period 2002–2018 (Fig. 1). The 10-min

rainfall data of these stations have been used to identify the

rainfall events to be analyzed with the proposed method.

The partition of the rainfall dataset into events has been

accomplished by fixing the duration of the minimum inter-

event time, which is the time that follows (or precedes) a

rainfall event, equal to 1 h and discarding all those events

with a total rainfall depth lower than 1 mm (Dunkerley

2008). The number of events extracted from the database is

equal to 65,829 with a duration ranging from a minimum of

10 minutes to a maximum of about 45 hours and a mean

intensity ranging between 0.25 and 85.2 mm/h. Empirical

cumulative distribution functions (ECDFs) of duration and

mean rainfall intensity, obtained as the ratio between the

event total rainfall depth and the event duration, are

reported in Fig. 2a, b, respectively. As it is possible to

observe, the 90% of the total events last less than about 5

minutes (Fig. 2a) and have a mean intensity of about 6

mm/h (Fig. 2b) with a median value of 1.67 h for the

duration (Fig. 2a) and 2 mm/h for the intensity (Fig. 2b).

3 Methodology: the functional PCA-based
clustering approach

When data are observed as functions of time we refer to as

functional data, referring to n pairs ðti; yiÞ where yi is the

value of an observable variable x at time ti, and focusing on

a set of functions defined on [0, T], such that:

fyi ¼ xiðtÞ; i ¼ 1; 2; � � � ; I; 0� t� Tg ð1Þ

Therefore, assuming that a functional for replication i can

be represented by a set of discrete measured values

yi1; yi2; � � � ; yin the first task is to convert these values to a

function xi with values xiðtÞ computable for any t, called

functional objects. In the functional context the counter-

parts of variable values are functional values xlðtÞ; l ¼
1; � � � ; p and the discrete index j in the multivariate context

is now replaced by the continuous index s, such that:

fl ¼
Z
Xs

bðsÞxlðsÞds ð2Þ

with bðsÞ weight functions and Xs a subset of R. In the

literature, the term harmonic is used to refer to principal

component of variation in curves analysis (see Ramsay

(2004) for more details). The clustering approach based on

a functional principal component analysis (FPCA), here-

after denoted as FPCAC algorithm, was proposed by

Adelfio et al. (2011). The FPCAC looks for clusters of

functions according to the direction of largest variance,

outlined by the FPCA scores, assigning events to the best

cluster based on a proper distance measure. It introduces a

variation of the trimmed k-means robust curve clustering

(RCC) algorithm (Garca-Escudero and Gordaliza 2005),

which is a kind of robust version of k-means methodology

through a trimming procedure. In few words, given a q-

dimensional data sample X1;X2; . . .;Xn with

Xi ¼ Xi1; . . .;Xiq, and fixed the number of clusters k, the

trimmed k-means clustering algorithm looks for the k

centers C1; :::;Ck that are solution of the minimization

problem:

OkðaÞ ¼ min
Y

min
C1;���;Ck

1

½nð1� aÞ�
X
Xi2Y

inf
1� j� k

jjXi � Cjjj2 ð3Þ

where a is the trimming size, Y is the set of subsets of

X1; � � � ;Xn containing ½nð1� aÞ� data points, and [x] is the

integer part of x. This method allocates each non-trimmed

observation to the cluster identified by its closest center, Cj,

dealing with possible outliers by the given proportion of

observations to be discarded, a. This curve clustering

procedure is based on a least-squares fit to cubic B-spline

q-dimensional functions bases, applying the trimmed k-

means clustering as Eq. (3) on the resulting coefficients,

taking the advantages of very fast computation and great
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flexibility of the B-splines. The starting point of the

FPCAC is to find a linear approximation of each curve

(named harmonic) obtained through a finite p-dimensional

vector of coefficients (i.e., the FPCA scores, denoted in

Sect. 4.1 by the vector H). Once fixed the number of

clusters k, a modified version of the trimmed k-means

algorithm, which considers the matrix of the FPCA scores

instead of the coefficients of a linear fitting to B-spline

bases, is used. As shown in Adelfio et al. (2011), the pro-

posed approach has the advantage of an immediate use of

PCA for functional data avoiding some objective choices

related to spline fitting as in RCC. Simulations and appli-

cations suggested also the well behavior of the FPCAC

algorithm, both in terms of stable and easily inter-

pretable results. The selection of the best number of clus-

ters k was performed with the silhouette method

Rousseeuw (1987), since it is a measure widely used and

accepted (by the scientific community) to establish the

goodness of a cluster choice. The method returns a value

ranging between � 1 and þ 1 that is a measure of how

similar an object is to its own cluster compared to other

clusters; the higher the silhouette value, the better the

match to the own cluster. For each observation, i, in the

cluster, Ci, the silhouette method defines a width, s(i), as:

sðiÞ ¼ ðbðiÞ � aðiÞÞ
max aðiÞ; bðiÞ if jCij[ 1

sðiÞ ¼ 0 if jCij ¼ 1

8<
: ð4Þ

where a(i) is the average dissimilarity between i and all the

other points of the cluster to which i belongs, b(i) is the

dissimilarity between i and its ‘‘neighbor’’ cluster, and jCij
is the cluster dimension. Finally, since the mean s(i) over

all the data of the entire dataset is a measure of how

appropriately the data have been clustered, averaging the

mean silhouette width of each cluster, the optimal number

of clusters was selected by choosing the k with the maxi-

mum value of the mean s(i) (Kaufman and Rousseeuw

1990). Recently, in Sottile and Adelfio (2019), the authors

applied the proposed methodology in different applied

context, e.g., they applied and compared the FPCAC

method to cluster several characteristics of earthquake

events recorded in Italy by the INGV (National Institute of

Geophysics and Volcanology) seismic network and to

group the estimated quantile regression coefficients of

some determinants of a measure of lung function in order

to highlight similiraties of effects.

4 Results

4.1 Clustering of rainfall data by FPCAC

This section presents an application of the FPCAC algo-

rithm to the rainfall data of the SIAS dataset. The main aim

of the analysis is to separate the observed rainfall into

stratiform and convective components, trying to charac-

terize the rainfall events using the hyetograph shape and its

mean intensity. The analysis has been carried out for each

station and is based on the rainfall event profile, which is

defined as the cumulative rainfall depth derived at the

event scale and normalized by the event duration. The

rainfall event profiles have been transformed into contin-

uous series using a third-degree B-spline interpolation. The

continuous rainfall profile extraction process is represented

in Fig. 3 with reference to the event #1398 extracted from

the rainfall dataset collected at the Palermo rain gauge.

Fig. 3a shows a subset of the Palermo rain gauge (i.e., from

12:00 of 30 November 2013 to 12:00 of 1 December 2013)

including the event #1398 (red bars in Fig. 3a, b) and

some events that precede and follow it. The event extends

from the 18:00 of 30 November 2013 to the 17:10 of 1

December 2013 (Fig. 3b) and is characterized by a duration

of 11 hours and 10 minutes, a total rainfall depth of 107.4

mm (cyan curve in Fig. 3b), and a mean rainfall intensity

(a) (b)Fig. 2 ECDFs of a event

duration and b event mean

rainfall intensity
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of 9.48 mm/h. Figure 3c shows the rainfall event profile

and its third-degree B-spline interpolation (i.e., the con-

tinuous rainfall profile). The FPCAC algorithm was applied

to the continuous rainfall profile to classify the rainfall

events for each station. The number of classes k that pro-

vides the best grouping of events, as already discussed in

Sect. 3, was obtained with the silhouette method; an initial

interval of possible values of k was fixed in the range 2–8.

For almost all the stations, the most suitable value of k

provided by the silhouette method resulted always equal to

4. Just 7 out of 40 stations showed similar silhouette values

for k ¼ 3 and k ¼ 4 making the choice irrelevant. There-

fore, in order to better compare results among the stations,

the number of optimal clusters was fixed at k ¼ 4. As an

example, Fig. 4 shows the results of the silhouette method

when applied to the rain gauges of Palermo and Catania,

since they are the two largest cities of the island and rep-

resentative of the climate in the western and eastern regions

of the island, respectively. Figure 5 summarizes the results

of the FPCAC algorithm when applied to the rain gauges of

Palermo (upper panels) and Catania (lower panels); panels

a) and c) show the scatterplot of the first two harmonic

scores (i.e., H1 and H2) for individual curves, while panels

b) and d) represent the average continuous rain profiles for

each cluster and the shaded areas are the confidence bands

based on 10th and 90th percentiles of all profiles within

each cluster. As it is possible to notice in Fig. 5, in both

cases, the four clusters are well distinguished both in terms

of scores and average continuous rain profiles. More in

details, looking at the scatterplots of scores, it is possible to

observe that the cluster C4 (blue diamonds) is character-

ized by negative values of the first component H1 (which

explain about 90% of the variance of all eigenfunctions),

while H1 score for the clusters C2 (red dots) and C3 (green

triangles) range between 0 and 10; cluster C1 (black

squares), finally, has higher scores (greater than 10) of H1.

Under the same duration, in panels b) and d) of Fig. 5 it is

possible to observe as the rainfall profile for the cluster C1

(black curve), on average, is always higher than that for the

cluster C2 (red curve), which is always higher than that for

the cluster C3 (green curve), which is always higher than

that for the cluster C4 (blue curve). Moreover, as the

duration increases, the rainfall depth grows faster moving

from C4 to C1. This mainly depends on the different

intensities that characterize the four clusters and can be

explained looking at the Fig. 6, which shows the boxplots

Fig. 3 Methodology to go from

the 10 min rainfall SIAS

database to the rain event

profile; a subset of rainfall

collected at the Palermo rain

gauge; b event #1398 extracted

from the dataset of the Palermo

rain gauge; c rainfall event

profile and third-degree

B-spline interpolation

(continuous rainfall profile)

(a) (b)Fig. 4 Average silhouette width

plot highlighting the selection of

the best number of clusters for

the FPCAC algorithm. Panels

a and b refer to Palermo and

Catania rain gauges,

respectively
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for the four clusters when the results for all the forty rain

gauges are considered; more in details, Fig. 6a, b, and c

show the overall mean rainfall intensity, rainfall depth, and

event duration, respectively. As it is possible to observe in

Fig. 6a, the intensities for the C1 (black boxplot) can be

much higher than those of the other clusters and especially

the C4 (blue boxplot). As expected, observing the Fig. 6, it

is possible to notice that the four clusters are well distin-

guished both in terms of rainfall intensity (Fig. 6a) and

rainfall depth (Fig. 6b) while, with regard to the event

(a) (b)

(c) (d)

Fig. 5 Results of FPCAC

algorithm, applied to the rain

gauges of Palermo (upper

panels) and Catania (lower

panels). Panels a and c show the

scatterplot of the first two

harmonic scores (H1 vs H2) for

individual curves, while panels

b and d represent the average

rain profiles for each cluster; the

shaded areas are the confidence

bands based on 10th and 90th

percentiles of all profiles within

each cluster

(a) (b) (c)Fig. 6 Boxplots of a rainfall

intensity, b rainfall depth, and

c event duration obtained

joining the results of the

FPCAC algorithm applied to all

the forty rain gauges
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duration (Fig. 6c), clusters C1 and C2 show similar median

values but different interquartile ranges (higher in C2).

More in details, moving from C1 to C4 both the rainfall

intensity and depth noticeable decrease, while the rainfall

duration slightly increases. Moreover, keeping in mind that

a rainfall event can be due to a mixture of both convective

and stratiform mechanisms (Houze 1997), as already dis-

cussed in the Introduction, it was possible to relate each

one of the four clusters to one of the precipitation gener-

ation mechanisms (i.e., convective and stratiform) follow-

ing an approach similar to that of Llasat (2001) that has

been discussed in the Introduction. More in details, the

cluster C4 (blue boxplots in Fig. 6), which is characterized

by the lowest average intensity, is related to the stratiform

precipitation, since they are usually characterized by lower

intensities (Feloni et al. 2019; Llasat 2001; Ruiz-Leo et al.

2013; Tremblay 2005). Conversely, the cluster C1 (black

boxplots in Fig. 6 is related to the definitely convective

precipitation, since it is characterized by higher average

intensities, which are usually associated to a convective

precipitation. Finally, the intermediate clusters (i.e., C2 and

C3—red and green boxplots in Fig. 6, respectively) are

associated to precipitations whose convective mechanism

becomes less and less important (Houze 1997); C2 and C3

are renamed as possibly convective and slightly convec-

tive, respectively.

In the light of these results, looking back at the con-

tinuous event rainfall profiles shown in the right panels of

Fig. 5, it is possible to notice that, as the duration increases,

the rainfall depth grows faster for the convective precipi-

tations than for the stratiform one; this is more and more

evident as greater is the convective character of the cluster

(i.e., definitely convective cluster).

Table 1 reports, for each station and for the four clus-

ters, the summary statistics (i.e., mean value, standard

deviation, minimum and maximum values) for the mean

rainfall intensity, total rainfall depth, and event duration.

From the observation of Table 1 and Fig. 6, it is possible to

find out that the convective events (i.e., slightly, possibly,

and definitely convective) are characterized by higher

intensities (Fig. 6a) and rainfall depths (Fig. 6b) than the

stratiform ones; also their variability (i.e., interquartile

ranges in Fig. 6a, b, respectively) is higher than that of the

stratiform events.

With the aim to highlight any differences of the mecha-

nisms that generate precipitation in different periods of the

year, a seasonal analysis has been carried out as well. Fig-

ure 7 shows the monthly occurrences of the four different

clusters (i.e., the percentages of events for a given class and a

given month over the total number of events in that month)

and the monthly percentage of total rainfall depth belonging

to the four clusters (stratiform in blue, slightly convective in

green, possibly convective in red, and definitely convective

in black) for the investigated period. As it is possible to

observe in Fig. 7a, the occurrence of stratiform events is

always much higher than the remaining ones, especially in

the winter and spring seasons (i.e., from December to May),

where a percentage between about the 70% (i.e., May) and

about the 80% (December to April) of events is due to the

stratiform component. If one looks at the aggregation of

slightly, possibly, and definitely convective clusters into a

unique class, it is possible to notice that during the summer

the number of convective events is higher than that of

stratiform events, especially from July to September, where

the convective component is between about the 55% and the

60% of the total events.

Looking at the percentages relative to the rainfall depth in

Fig. 7b, instead, the stratiform rainfalls are still the main

contributing factors during the winter period (i.e., from

December to May) with a percentage ranging between about

the 55% (i.e., May and December) and about the 65% (i.e.,

January toMarch) of the total rainfall depth. On the contrary,

from June to November, the rainfall depth due to convective

events is much higher than that due to stratiform events, with

a percentage ranging between about the 60% in November

and about the 85% inAugust of the total rainfall depth. In this

period, differently than the case of rainfall events shown in

Fig 7a, the contribute of stratiform events is lower than that

of each convective class (e.g., July andAugust) or of some of

them (e.g., September and October). Such a result matches

reality, since during the summer and the early autumn the air

masses moving over the hot water of the Mediterranean Sea

become warmer and humid thus generating local convection

processes that are the cause of very heavy rainfalls (Dayan

et al. 2015), usually referred to as convective precipitations,

over the island.

4.2 Comparison of results with the Llasat (2001)
methodology

The physical consistency of the proposed methodology is

evaluated by comparing its results with those obtained with

the methodology proposed by Llasat (2001). It is important

to underline that such a methodology, which is here used as

a benchmark, although is widely accepted in the literature,

is itself a model; consequently, the results of this com-

parison should be interpreted in a context of model versus

model analysis.

The Llasat (2001) methodology introduces an event-

based parameter b that takes into account the ratio between

the rainfall exceeding a fixed mean intensity threshold, T,

and the total rainfall depth of the event. This parameter can

be assessed as:

b ¼
PN

i¼1 IihðIi � TÞPN
i¼1 Ii

ð5Þ
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Table 1 Summary statistics, i.e., mean value, standard deviation (in round brackets), minimum and maximum values (in square brackets), for

each station and for the four clusters, for the mean rainfall intensity (a), total rainfall depth (b) and event duration (c)

a) Mean Rainfall Intensity [mm/h]

Rain Gauge Station C1 C2 C3 C4

Acate 25.1 (10.4) [17.0; 48.8] 11.4 (3.3) [6.6; 19.4] 4.9 (1.5) [2.7; 10.0] 1.7 (0.8) [0.3; 5.3]

Agira 25.8 (7.7) [17.1; 45.2] 14.7 (4.9) [8.8; 30.4] 5.6 (1.9) [3.0; 13.6] 1.8 (1.0) [0.3; 5.9]

Agrigento Scibica 20.0 (5.6) [13.2; 32.1] 9.2 (2.5) [5.3; 16.8] 4.3 (1.6) [2.4; 15.6] 1.6 (0.7) [0.3; 6.2]

Antillo 29.5 (6.9) [18.8; 37.9] 11.0 (3.1) [6.6; 21.5] 4.9 (1.6) [2.6; 10.2] 1.7 (0.9) [0.3; 7.1]

Aragona 29.4 (10.9) [19.1; 55.3] 12.8 (3.7) [7.5; 23.6] 5.0 (1.7) [2.7; 11.2] 1.7 (0.9) [0.4; 6.5]

Butera 26.3 (6.6) [17.1; 40.6] 10.3 (3.1) [6.4; 20.6] 4.5 (1.6) [2.5; 14.5] 1.7 (0.8) [0.4; 4.7]

Calascibetta 29.8 (12.6) [17.1; 61.2] 10.2 (3.0) [6.4; 19.7] 4.4 (1.4) [2.3; 10.6] 1.5 (0.7) [0.4; 4.5]

Caltagirone 24.2 (7.0) [15.5; 42.4] 10.1 (2.8) [6.0; 18.8] 4.6 (1.5) [2.5; 11.9] 1.7 (0.8) [0.3; 5.4]

Camporeale 26.0 (7.5) [15.8; 40.0] 10.3 (3.4) [6.0; 23.2] 4.5 (1.5) [2.4; 12.0] 1.6 (0.8) [0.3; 6.2]

Caronia Buzza 21.3 (10.5) [14.4; 68.8] 10.2 (2.6) [6.0; 20.0] 4.5 (1.4) [2.4; 12.9] 1.8 (0.9) [0.3; 6.7]

Castelbuono 33.1 (13.8) [22.4; 74.7] 13.2 (3.8) [8.2; 28.2] 5.2 (1.7) [2.9; 14.8] 1.8 (0.9) [0.3; 6.8]

Castellammare del Golfo 24.2 (5.7) [15.9; 37.3] 10.8 (2.8) [6.8; 20.8] 4.8 (1.6) [2.5; 14.4] 1.8 (0.8) [0.4; 6.4]

Catania 23.0 (5.5) [15.7; 35.5] 11.7 (3.4) [6.8; 24.3] 5.4 (1.6) [3.0; 11.9] 1.8 (0.9) [0.4; 7.8]

Contessa Entellina 25.6 (6.8) [15.5; 41.2] 11.3 (3.5) [6.8; 25.2] 5.0 (1.7) [2.6; 12.9] 1.7 (0.8) [0.3; 5.3]

Delia 18.7 (4.6) [12.9; 29.7] 9.6 (2.3) [6.2; 14.5] 4.0 (1.2) [2.2; 10.6] 1.5 (0.7) [0.3; 6.1]

Enna 38.7 (11.6) [27.2; 63.1] 18.8 (5.2) [11.4; 34.0] 7.1 (2.4) [3.9; 15.7] 1.8 (1.0) [0.3; 6.3]

Francofonte 38.5 (15.4) [21.6; 71.8] 14.7 (5.3) [8.4; 33.1] 5.6 (1.8) [3.0; 11.9] 1.7 (0.9) [0.3; 5.3]

Maletto 21.3 (6.7) [13.0; 39.7] 10.3 (3.3) [6.2; 24.4] 4.2 (1.4) [2.3; 13.9] 1.4 (0.7) [0.3; 7.4]

Mazara del Vallo 28.7 (15.2) [17.6; 83.5] 11.7 (3.8) [6.7; 27.1] 5.0 (1.7) [2.6; 14.0] 1.6 (0.8) [0.3; 5.6]

Messina 21.6 (6.7) [13.5; 47.6] 10.8 (3.0) [6.1; 20.1] 4.8 (1.6) [2.6; 13.5] 1.7 (0.8) [0.3; 5.0]

Mistretta 21.1 (5.8) [14.1; 32.4] 10.7 (3.3) [6.4; 22.9] 4.5 (1.4) [2.4; 12.5] 1.6 (0.7) [0.3; 4.3]

Modica 24.9 (6.7) [15.5; 43.6] 10.8 (2.8) [6.4; 19.2] 5.1 (1.8) [2.7; 13.4] 1.8 (0.9) [0.4; 6.2]

Monreale B. 14.8 (4.1) [10.0; 27.6] 6.4 (1.8) [4.0; 14.1] 3.0 (0.8) [1.7; 7.3] 1.3 (0.5) [0.3; 3.3]

Montalbano Elicona 16.3 (5.1) [11.0; 32.4] 6.3 (1.8) [4.0; 13.5] 2.8 (0.7) [1.6; 5.7] 1.2 (0.5) [0.3; 3.8]

Pachino 24.2 (8.4) [16.0; 50.0] 11.1 (3.4) [7.0; 26.2] 5.0 (1.7) [2.8; 16.0] 1.7 (0.9) [0.3; 5.5]

Palermo 26.2 (8.7) [16.1; 45.2] 11.2 (3.0) [6.4; 19.9] 4.6 (1.4) [2.5; 13.5] 1.7 (0.8) [0.4; 5.5]

Patti 30.6 (8.5) [20.0; 47.2] 12.6 (3.5) [7.3; 23.5] 5.3 (1.7) [2.9; 14.3] 1.8 (0.9) [0.3; 7.2]

Pedara 25.6 (6.8) [16.9; 42.4] 11.4 (3.2) [6.8; 21.6] 4.9 (1.4) [2.6; 11.7] 1.7 (0.8) [0.3; 5.3]

Piazza Armerina 18.8 (6.5) [12.1; 42.7] 8.5 (2.5) [5.1; 15.7] 4.0 (1.3) [2.2; 9.4] 1.5 (0.7) [0.3; 5.7]

Prizzi 26.1 (6.3) [15.8; 37.1] 12.2 (3.3) [7.7; 23.2] 4.9 (1.6) [2.6; 14.7] 1.4 (0.8) [0.2; 4.7]

Ragusa 36.1 (13.3) [22.9; 64.3] 14.3 (4.8) [8.1; 26.8] 5.5 (2.1) [2.9; 16.1] 1.7 (0.9) [0.3; 6.6]

Ramacca Giumarra 29.5 (9.1) [19.9; 48.1] 13.5 (4.3) [8.1; 25.8] 5.4 (1.7) [2.9; 11.8] 1.7 (0.9) [0.3; 7.5]

Salemi 28.7 (8.9) [18.1; 52.5] 14.2 (4.6) [8.7; 31.2] 6.0 (2.1) [3.1; 16.5] 1.8 (0.9) [0.3; 6.0]

San Pier Niceto 16.0 (5.0) [10.6; 27.4] 7.9 (2.1) [4.8; 16.6] 3.8 (1.2) [2.1; 11.8] 1.4 (0.6) [0.3; 6.1]

Sciacca 19.7 (6.3) [13.3; 46.6] 9.8 (3.1) [5.3; 22.4] 4.2 (1.4) [2.2; 12.9] 1.6 (0.7) [0.3; 5.6]

Scicli 24.9 (6.7) [17.0; 39.2] 10.3 (2.8) [6.5; 19.4] 4.9 (1.7) [2.6; 12.9] 1.8 (0.9) [0.4; 6.8]

Sclafani Bagni 32.8 (4.1) [25.5; 39.4] 12.0 (4.3) [6.9; 30.9] 4.4 (1.5) [2.3; 12.2] 1.5 (0.7) [0.3; 4.8]

Siracusa 32.2 (8.2) [21.6; 47.4] 13.6 (3.3) [8.1; 22.0] 6.3 (2.1) [3.3; 16.7] 1.9 (1.0) [0.3; 6.1]

Termini Imerese 28.5 (7.4) [16.9; 42.4] 11.3 (3.1) [6.7; 20.8] 4.7 (1.6) [2.6; 12.8] 1.7 (0.8) [0.3; 6.6]

Trapani Fontanasalsa 38.1 (7.1) [28.8; 47.4] 14.1 (4.3) [8.1; 29.9] 5.5 (1.9) [3.0; 14.7] 1.8 (1.0) [0.3; 6.0]

b) Total Rainfall depth [mm]

Rain Gauge Station C1 C2 C3 C4

Acate 32.37 (24.96) [6.00; 88.20] 12.31 (10.19) [1.60; 41.20] 9.07 (11.14) [1.00; 90.40] 4.34 (5.24) [1.00; 65.60]

Agira 27.52 (19.05) [10.60;

76.60]

15.67 (11.86) [2.40; 50.80] 10.14 (11.19) [1.00; 68.00] 4.86 (7.10) [1.00; 76.00]

Agrigento Scibica 19.61 (11.67) [3.20; 48.20] 9.48 (8.84) [1.40; 38.60] 7.81 (9.30) [1.00; 68.80] 4.16 (4.69) [1.00; 39.40]
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Table 1 (continued)

b) Total Rainfall depth [mm]

Rain Gauge Station C1 C2 C3 C4

Antillo 41.98 (37.18) [6.00;

132.40]

46.71 (59.28) [1.60;

262.80]

18.98 (27.81) [1.00;

141.40]

5.36 (7.71) [1.00; 97.00]

Aragona 25.18 (17.67) [9.40; 74.00] 14.72 (14.13) [1.80; 81.20] 8.71 (9.47) [1.00; 62.80] 4.86 (5.91) [1.00; 62.80]

Butera 27.79 (30.62) [5.40;

143.60]

14.42 (15.69) [1.60; 85.80] 8.23 (9.88) [1.00; 63.20] 4.33 (5.25) [1.00; 63.20]

Calascibetta 26.58 (13.68) [5.80; 54.00] 13.83 (11.66) [1.60; 55.00] 9.89 (14.28) [1.00; 107.60] 4.43 (6.10) [1.00; 82.20]

Caltagirone 23.33 (17.47) [6.00; 72.00] 12.51 (12.38) [1.60; 87.20] 10.15 (13.61) [1.00;

109.20]

5.10 (7.12) [1.00; 65.20]

Camporeale 23.88 (20.35) [4.00; 73.00] 11.91 (10.62) [1.60; 61.00] 6.70 (7.43) [1.00; 70.40] 4.27 (4.86) [1.00; 43.60]

Caronia Buzza 17.38 (20.90) [3.60; 98.60] 11.99 (12.08) [1.60; 71.60] 7.52 (8.93) [1.00; 76.40] 4.34 (5.39) [1.00; 61.20]

Castelbuono 29.86 (20.79) [7.60; 70.80] 14.08 (13.37) [1.80; 70.00] 8.82 (10.05) [1.00; 71.40] 4.48 (5.83) [1.00; 71.40]

Castellammare del

Golfo

21.71 (18.88) [4.00; 84.40] 12.80 (12.34) [1.60; 91.00] 7.05 (9.39) [1.00; 94.80] 4.73 (5.71) [1.00; 54.60]

Catania 21.22 (16.47) [3.80; 55.40] 18.00 (15.45) [2.40; 74.00] 12.18 (15.25) [1.00;

123.00]

5.10 (6.66) [1.00; 59.60]

Contessa Entellina 27.71 (21.49) [3.80; 97.40] 12.76 (9.72) [1.60; 43.20] 6.83 (7.79) [1.00; 80.00] 4.09 (4.76) [1.00; 43.00]

Delia 15.65 (9.53) [3.00; 34.80] 13.70 (15.68) [1.60; 94.20] 8.21 (10.42) [1.00; 71.00] 4.40 (5.41) [1.00; 52.20]

Enna 34.60 (11.57) [18.20;

53.00]

24.81 (19.53) [3.80; 82.20] 10.13 (12.79) [1.00;

100.40]

4.51 (5.86) [1.00; 65.00]

Francofonte 21.20 (13.23) [5.80; 43.20] 18.40 (17.83) [2.40;

100.60]

14.36 (25.56) [1.00;

188.40]

5.34 (8.52) [1.00; 84.00]

Maletto 22.18 (14.39) [3.20; 60.00] 10.70 (7.99) [1.40; 37.80] 9.59 (14.28) [1.00; 129.60] 4.46 (5.63) [1.00; 66.60]

Mazara del Vallo 19.56 (14.46) [3.80; 60.20] 13.56 (15.30) [1.60;

107.20]

8.26 (13.48) [1.00; 161.60] 3.97 (4.48) [1.00; 44.00]

Messina 24.56 (17.56) [4.80; 92.00] 13.49 (12.46) [1.60; 63.60] 9.93 (14.04) [1.00; 155.00] 4.53 (5.38) [1.00; 59.20]

Mistretta 23.99 (20.80) [7.20; 91.40] 13.80 (10.41) [1.60; 50.60] 12.09 (16.82) [1.00;

182.00]

4.71 (5.98) [1.00; 57.40]

Modica 22.97 (20.00) [4.80; 85.60] 14.19 (14.33) [1.80; 95.20] 13.74 (20.28) [1.00;

138.80]

4.95 (8.10) [1.00; 124.00]

Monreale B. 16.47 (12.19) [2.40; 61.40] 9.68 (9.01) [1.00; 44.80] 7.89 (9.18) [1.00; 71.60] 4.02 (4.43) [1.00; 41.20]

Montalbano Elicona 19.90 (12.93) [2.60; 45.60] 15.49 (23.81) [1.00;

166.00]

11.29 (18.59) [1.00;

182.20]

4.13 (4.51) [1.00; 46.60]

Pachino 19.43 (12.36) [6.80; 61.40] 11.20 (12.59) [1.60; 84.60] 10.27 (15.23) [1.00;

138.20]

4.62 (7.16) [1.00; 82.60]

Palermo 22.49 (14.57) [5.80; 56.20] 14.65 (15.28) [1.60;

107.40]

7.92 (9.60) [1.00; 91.60] 4.47 (5.54) [1.00; 60.00]

Patti 27.80 (23.21) [10.00;

78.80]

12.49 (15.56) [1.80;

119.60]

8.56 (13.12) [1.00; 164.40] 4.74 (6.73) [1.00; 118.20]

Pedara 36.07 (31.46) [4.80;

119.40]

23.58 (37.83) [1.60;

264.80]

20.60 (36.73) [1.00;

346.20]

5.58 (8.70) [1.00; 104.20]

Piazza Armerina 21.82 (18.50) [4.60; 76.00] 13.17 (13.36) [1.40; 77.40] 9.97 (14.14) [1.00; 104.00] 4.73 (6.52) [1.00; 71.80]

Prizzi 28.20 (14.35) [10.00;

55.60]

19.60 (21.90) [2.20;

116.20]

11.51 (14.01) [1.00;

120.00]

4.65 (6.18) [1.00; 69.60]

Ragusa 29.38 (20.68) [6.60; 72.60] 17.23 (13.56) [3.00; 57.00] 13.98 (20.39) [1.00;

134.80]

5.23 (7.50) [1.00; 82.80]

Ramacca Giumarra 25.28 (17.20) [9.60; 59.60] 14.49 (10.76) [2.00; 48.00] 9.46 (11.69) [1.00; 81.00] 4.77 (7.22) [1.00; 87.00]

Salemi 32.82 (26.66) [8.40;

112.40]

15.98 (12.47) [2.00; 52.40] 8.07 (12.65) [1.00; 130.20] 4.08 (5.10) [1.00; 71.00]

San Pier Niceto 20.58 (22.84) [3.40;

116.60]

11.28 (14.19) [1.20; 95.80] 8.96 (11.31) [1.00; 80.80] 4.14 (5.21) [1.00; 70.40]

Sciacca 23.25 (20.87) [4.60; 92.00] 11.95 (17.42) [1.40;

152.00]

7.10 (8.60) [1.00; 63.40] 3.79 (4.04) [1.00; 34.40]
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Table 1 (continued)

b) Total Rainfall depth [mm]

Rain Gauge Station C1 C2 C3 C4

Scicli 20.63 (13.51) [4.80; 55.00] 15.08 (17.60) [1.60; 82.80] 10.05 (14.80) [1.00;

116.80]

4.21 (5.55) [1.00; 64.20]

Sclafani Bagni 28.18 (19.57) [9.80; 77.40] 16.44 (15.58) [1.60; 71.20] 8.89 (10.94) [1.00; 87.40] 4.07 (4.87) [1.00; 50.00]

Siracusa 53.57 (96.79) [5.00;

462.00]

20.99 (20.68) [2.20;

116.40]

15.22 (21.61) [1.00;

174.80]

5.77 (8.93) [1.00; 71.00]

Termini Imerese 24.93 (17.43) [10.40;

67.60]

13.01 (14.31) [1.60; 66.40] 8.38 (11.37) [1.00; 108.80] 4.12 (4.90) [1.00; 48.60]

Trapani Fontanasalsa 25.40 (13.82) [9.80; 40.80] 16.44 (19.28) [2.00;

125.60]

7.23 (11.32) [1.00; 107.80] 4.12 (4.88) [1.00; 53.80]

c) Event Duration [h]

Rain Gauge Station C1 C2 C3 C4

Acate 1.3 (1.1) [0.3; 4.8] 1.2 (1.0) [0.2; 5.3] 1.9 (2.3) [0.2; 18.7] 2.5 (2.1) [0.3; 18.2]

Agira 1.2 (0.9) [0.3; 3.0] 1.1 (0.9) [0.2; 4.0] 1.9 (2.1) [0.2; 15.7] 2.8 (2.9) [0.3; 27.5]

Agrigento Scibica 1.0 (0.6) [0.2; 2.8] 1.1 (1.0) [0.2; 4.7] 1.9 (2.3) [0.2; 20.3] 2.7 (2.3) [0.3; 17.8]

Antillo 1.6 (1.5) [0.2; 4.8] 4.3 (5.1) [0.2; 23.5] 3.6 (4.7) [0.2; 26.0] 3.1 (3.3) [0.3; 37.5]

Aragona 0.9 (0.5) [0.2; 2.5] 1.2 (1.2) [0.2; 6.7] 1.8 (2.1) [0.2; 17.2] 2.8 (2.6) [0.3; 22.5]

Butera 1.1 (1.1) [0.2; 5.0] 1.4 (1.5) [0.2; 6.8] 1.9 (2.5) [0.2; 19.0] 2.6 (2.2) [0.3; 15.7]

Calascibetta 1.0 (0.6) [0.3; 2.2] 1.4 (1.3) [0.2; 6.8] 2.3 (2.9) [0.2; 17.8] 2.9 (2.8) [0.3; 27.3]

Caltagirone 1.0 (0.7) [0.3; 3.0] 1.4 (1.6) [0.2; 12.2] 2.4 (3.5) [0.2; 29.5] 2.9 (3.0) [0.3; 26.3]

Camporeale 1.0 (1.0) [0.2; 4.5] 1.2 (1.0) [0.2; 5.2] 1.6 (1.8) [0.2; 15.7] 2.7 (2.4) [0.3; 19.3]

Caronia Buzza 0.9 (1.1) [0.2; 5.2] 1.2 (1.3) [0.2; 8.7] 1.7 (2.0) [0.2; 16.8] 2.5 (2.5) [0.3; 22.0]

Castelbuono 1.0 (0.8) [0.3; 2.5] 1.1 (1.1) [0.2; 6.3] 1.8 (2.1) [0.2; 16.3] 2.6 (2.6) [0.3; 26.2]

Castellammare del Golfo 0.9 (0.9) [0.2; 4.3] 1.2 (1.1) [0.2; 6.3] 1.5 (1.9) [0.2; 17.8] 2.7 (2.5) [0.3; 19.8]

Catania 0.9 (0.7) [0.2; 2.7] 1.6 (1.4) [0.2; 6.7] 2.4 (2.9) [0.2; 26.2] 2.8 (2.7) [0.3; 24.7]

Contessa Entellina 1.1 (0.8) [0.2; 3.0] 1.2 (0.9) [0.2; 4.8] 1.4 (1.7) [0.2; 16.8] 2.5 (2.2) [0.3; 16.3]

Delia 0.8 (0.5) [0.2; 2.3] 1.5 (1.6) [0.2; 8.2] 2.1 (2.6) [0.2; 22.2] 2.9 (2.7) [0.3; 28.8]

Enna 0.9 (0.2) [0.7; 1.2] 1.3 (1.0) [0.2; 4.0] 1.5 (1.8) [0.2; 16.0] 2.6 (2.5) [0.3; 26.7]

Francofonte 0.7 (0.6) [0.2; 2.0] 1.3 (1.2) [0.2; 6.0] 2.5 (4.1) [0.2; 25.5] 3.0 (3.4) [0.3; 27.8]

Maletto 1.1 (0.8) [0.2; 2.8] 1.1 (0.9) [0.2; 5.0] 2.3 (3.5) [0.2; 30.8] 3.2 (3.0) [0.3; 24.0]

Mazara del Vallo 0.8 (0.6) [0.2; 2.2] 1.2 (1.6) [0.2; 12.8] 1.7 (2.3) [0.2; 17.7] 2.5 (2.2) [0.3; 18.8]

Messina 1.2 (0.9) [0.2; 3.8] 1.3 (1.3) [0.2; 7.3] 2.2 (3.1) [0.2; 30.8] 2.6 (2.3) [0.3; 22.3]

Mistretta 1.3 (1.4) [0.3; 5.8] 1.4 (1.1) [0.2; 5.3] 2.7 (3.2) [0.2; 26.3] 3.0 (2.9) [0.3; 30.8]

Modica 1.0 (0.8) [0.2; 3.7] 1.4 (1.4) [0.2; 8.7] 2.7 (3.7) [0.2; 24.2] 2.8 (3.1) [0.3; 38.3]

Monreale B. 1.2 (0.9) [0.2; 4.3] 1.5 (1.3) [0.2; 6.7] 2.7 (3.2) [0.3; 27.0] 3.1 (2.7) [0.3; 19.7]

Montalbano Elicona 1.3 (0.9) [0.2; 3.0] 2.6 (4.2) [0.2; 31.5] 3.9 (5.6) [0.3; 39.8] 3.5 (3.1) [0.5; 32.0]

Pachino 0.9 (0.7) [0.3; 3.2] 1.1 (1.1) [0.2; 6.8] 2.0 (2.5) [0.2; 20.0] 2.5 (2.6) [0.3; 32.2]

Palermo 1.0 (0.9) [0.3; 3.5] 1.3 (1.5) [0.2; 11.3] 1.7 (2.0) [0.2; 20.3] 2.6 (2.5) [0.3; 19.8]

Patti 0.9 (0.6) [0.3; 2.0] 1.1 (1.5) [0.2; 11.5] 1.7 (2.2) [0.2; 23.7] 2.7 (2.8) [0.3; 29.0]

Pedara 1.5 (1.3) [0.2; 5.3] 2.2 (3.5) [0.2; 22.5] 3.9 (5.8) [0.2; 39.2] 3.2 (3.7) [0.3; 44.7]

Piazza Armerina 1.1 (0.8) [0.2; 4.2] 1.6 (1.5) [0.2; 8.0] 2.7 (3.9) [0.2; 29.8] 3.2 (3.2) [0.3; 33.7]

Prizzi 1.1 (0.4) [0.5; 1.8] 1.6 (1.7) [0.2; 9.2] 2.5 (3.3) [0.2; 29.7] 3.4 (3.4) [0.3; 30.0]

Ragusa 0.9 (0.7) [0.2; 2.8] 1.3 (1.1) [0.2; 5.0] 2.7 (4.2) [0.2; 28.3] 2.9 (2.8) [0.3; 23.2]

Ramacca Giumarra 0.9 (0.8) [0.3; 3.0] 1.1 (0.9) [0.2; 3.5] 1.8 (2.1) [0.2; 16.0] 2.8 (3.0) [0.3; 28.8]

Salemi 1.2 (0.9) [0.3; 4.0] 1.2 (1.0) [0.2; 4.8] 1.4 (1.9) [0.2; 17.2] 2.4 (2.2) [0.3; 19.5]

San Pier Niceto 1.3 (1.2) [0.2; 5.8] 1.4 (1.8) [0.2; 10.8] 2.5 (3.2) [0.2; 30.0] 2.9 (2.7) [0.3; 33.2]

Sciacca 1.2 (1.1) [0.3; 5.8] 1.3 (1.9) [0.2; 15.7] 1.8 (2.0) [0.2; 16.0] 2.5 (2.1) [0.3; 15.0]

Scicli 0.8 (0.5) [0.2; 2.2] 1.5 (1.9) [0.2; 11.7] 2.1 (2.8) [0.2; 19.3] 2.4 (2.2) [0.3; 22.8]
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where N is the total number of integration time steps (here

equal to ten minutes) into which the rainfall event is sub-

divided, Ii is the rainfall intensity in the i-th time step

expressed in mm/h and hðIi � TÞ is the Heaviside function

equal to 1 when Ii [ T and 0 when Ii � T . As already made

explicit in the Introduction, the author proposed to use the

parameter b to characterize the rainfall events into four

classes according to their greater or lesser convective

character.

With regard to the choice of the threshold, T, here a

value of 20 mm/h has been set by extrapolating the values

used by Llasat (2001). Starting from this value, for each

station of the SIAS dataset, the percentage of events falling

within the four classes above-mentioned was evaluated.

Since the definition of the two intermediate classes pro-

vided by Llasat (2001) is rather subjective, it has been

decided to merge the three classes referred to the convec-

tive events (i.e., slightly, possibly, and definitely convec-

tive) into a single convective class and compare the two

methodologies considering only two classes, i.e., the con-

vective and the stratiform.

In order to assess the goodness of agreement between

the two methodologies, firstly the observed agreement

index (OA) between them, i.e., the number of all correct

predictions divided by the total number of the dataset, is

used. Figure 8a shows the ECDF of the OA between the

proposed and the Llasat (2001) methodologies. As it is

possible to notice in Fig. 8a, for all the stations, the OA

between the two methodologies in classifying events as

stratiform and convective is higher than 0.75, with about

the 60% of the stations characterized by an OA greater than

0.8 and a peak of about 0.91 for the station of Enna.

Secondly, in order to take into account the possibility of

an eventual agreement occurring by chance, a further

comparison between the results was made by means of the

Cohen’s kappa coefficient (Cohen 1960), which is a

statistic usually used to measure inter- and intra-rater

reliability for categorical variables. Since Cohen’s kappa

considers the possibility of the agreement occurring by

Table 1 (continued)

c) Event Duration [h]

Rain Gauge Station C1 C2 C3 C4

Sclafani Bagni 0.9 (0.6) [0.3; 2.3] 1.4 (1.3) [0.2; 5.2] 2.1 (2.6) [0.2; 19.7] 2.8 (2.6) [0.3; 27.2]

Siracusa 1.7 (3.0) [0.2; 14.0] 1.6 (1.7) [0.2; 7.0] 2.6 (3.5) [0.2; 25.3] 2.9 (3.2) [0.3; 28.0]

Termini Imerese 0.9 (0.6) [0.3; 2.2] 1.2 (1.2) [0.2; 5.2] 1.8 (2.3) [0.2; 21.2] 2.5 (2.4) [0.3; 22.5]

Trapani Fontanasalsa 0.6 (0.3) [0.3; 1.0] 1.2 (1.2) [0.2; 7.7] 1.3 (1.9) [0.2; 17.3] 2.4 (2.2) [0.3; 18.7]

Fig. 7 Distributions of a the

monthly percentages of the

number of events for a given

class and a given month over the

total number of events in that

month and b the total rainfall

depth regarding all the clusters

for the investigated period,

obtained joining the results of

the FPCAC algorithm applied to

all the forty rain gauges
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chance, it results more robust than the simple percent

agreement. The coefficient measures the agreement

between two raters as:

Cohen’s kappa ¼ 1� 1� po
1� pe

ð6Þ

where po is the relative observed agreement among raters

(i.e., accuracy), and pe is the hypothetical probability of

chance agreement.

Figure 8b shows the ECDF for the Cohen’s kappa

coefficient for the two-class classification. As it is possible

to notice from the Fig. 8b, all the values of Cohen’s kappa

are between 0.3 and 0.7, thus indicating an agreement

between the two methodologies. More than 60% of stations

have a Cohen’s kappa-index greater than 0.4, thus indi-

cating a moderate-substantial agreement between the two

methodologies, while about the 35% of stations fall in the

fair agreement class (0.21 \kappa\ 0.40) according to

Landis and Koch (1977) classification.

In order to verify that the agreement between the two

methods was not accidental, the p-value with a level of

significance, a ¼ 0:05, is calculated. For all the rain gauge

stations, the p-value is always smaller than a and, there-

fore, the null hypothesis that ‘‘observed agreement is

accidental’’ is always rejected.

It is worth pointing out here that, while the Llasat (2001)

methodology requires the definition of some a-priori clas-

ses, the methodology here proposed, being based on a

cluster analysis that exploits the shape of the hyetographs

(i.e., cumulative rainfall depth, mean intensity), does not

require any a-priori classes definition.

5 Conclusions

This study presents a new method to classify rainfall events

identifying the generation mechanisms and separating the

stratiform from the convective component. The method,

which is a statistical approach based on a PCA-based

clustering approach, was applied to a precipitation dataset

collected for the Sicily in between 2002 and 2018 by the

SIAS.

Despite advances made in recent years, the distinction

between convective and stratiform precipitation based on

ground observations is not trivial and still today a challenge

(Cipolla et al. 2020). Although many authors in the last

years have faced this issue, they always developed

methodologies based on the use of an arbitrary threshold to

separate the two components (Feloni et al. 2019; Llasat

2001; Ruiz-Leo et al. 2013; Tremblay 2005).

As compared to these methodologies, one of the main

novelties of this study is that the criterion presented does

not use a threshold to distinguish between convective and

stratiform components, since it uses a cluster analysis

based on the similarity of the shape of rainfall events and

their characteristics (e.g., total rainfall depth and mean

intensity), which makes it an approach more objective than

the previous ones.

Despite the different approach, the comparison with a

more conventional and widely accepted approach (Llasat

2001) showed the physical consistency of the proposed

approach. Starting from the same threshold proposed by

Llasat (2001) to classify precipitation into stratiform and

convective components, the results showed a good agree-

ment with those obtained with the Llasat (2001) approach.

As already said, the methodology here proposed has

been applied to only forty of the about one hundred rain

gauge stations distributed over the entire island. A further

investigation, then, will concern the application of the

methodology to the entire and updated SIAS database, in

(a) (b)Fig. 8 ECDFs of a OA and

b Cohen’s kappa coefficient

between the proposed

methodology and the Llasat

(2001) methodology. In panel

b shaded area highlights

moderate agreement between

the two methodologies
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order to find eventual regional patterns that show the

presence of a more marked convective component as

compared to the stratiform one or vice versa. Starting from

this result, a new further application will concern the

investigation of the effects due to some aspects, such as

morphology (e.g., interaction of steep orography on the

coasts with winds carrying humid air masses from the

Mediterranean Sea, especially in between the end of the

summer and the autumn, may be the cause convective

events), that could affect the characteristics of

precipitation.

Moreover, since the methodology of Llasat (2001) here

used as benchmark is still a model, as already highlighted,

in order to have a more physical-based comparison of

results, a future development will concern the use of

reanalysis data, which consider some meteorological vari-

ables that can be good descriptors of the occurrence of

stratiform/convective precipitations.
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