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Abstract
Inner Speech is an essential but also elusive human psychological process that refers to an everyday covert internal conversation
with oneself. We argued that programming a robot with an overt self-talk system that simulates human inner speech could
enhance both human trust and users’ perception of robot’s anthropomorphism, animacy, likeability, intelligence and safety.
For this reason, we planned a pre-test/post-test control group design. Participants were divided in two different groups, one
experimental group and one control group. Participants in the experimental group interacted with the robot Pepper equipped
with an over inner speech system whereas participants in the control group interacted with the robot that produces only
outer speech. Before and after the interaction, both groups of participants were requested to complete some questionnaires
about inner speech and trust. Results showed differences between participants’ pretest and post-test assessment responses,
suggesting that the robot’s inner speech influences in participants of experimental group the perceptions of animacy and
intelligence in robot. Implications for these results are discussed.
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1 Introduction

In psychological literature, inner speech is awell-known con-
struct that was first theorized by Vygotsky who conceived
it as the result of a set of developmental processes [1]. He
argued about the continuous linguistic and social interaction
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between a child and a caregiver that instructs the child to
solve simple tasks. Inner speech arises in a developmental
fashion because first it figures out as social speech, that is the
set of instructions the caregiver explains to the child. Then,
it comes the egocentric speech of the children who repeats
these instructions and progressively internalizes them, taking
the form of covert self-directed speech.

After the internalization process, inner speech is formed.
In time, the child gradually becomes more autonomous and
gains the ability of self-regulation. Vygotsky claimed that
“...inner speech is speech for oneself: external speech is for
others”.

Inner speech consists of predicates and is highly abbre-
viated. Scholars have used different terms when referring to
inner speech (e.g. covert speech, self-talk, private speech).
However, it is generally defined as the subjective experience
of language in the absence of an audible articulation [2].

There is some evidence that inner speech plays an impor-
tant role for human psychological balance as it is linked to
self-awareness [3], self-regulation [4], problem-solving [5],
and adaptive functioning [2].

Recently, an innovative computational model has been
developed which pave the way to a new frontier in the field of
artificial intelligence: implementing inner speech in robot [6]
in order to improve human–robot interaction. More specif-
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ically, since inner speech is a covert speech that cannot be
heard from the outside, robot’s inner speech is reproduced
using overt self-talk. The same architecture was used for
demonstrating how robot inner speech improves the robust-
ness and the transparency during cooperation, meeting the
standard requirements for collaborative robots [7].

Suggestive resultswere also obtained in passing themirror
test: inner speech enables a conceptual reasoning for infer-
ring the identity of the reflected entity in a mirror, and robot
becomes able to recognize itself [8]. In a previous paper [9],
we argued that robot’s inner speech might act as a facilitator
for human understanding and predicting the robot behaviors,
as they form adequate mental representation of the robot. As
a matter of fact, mind perceptions consist of two core dimen-
sions: (1) agency, e.g. self-control, memory, planning and
communication; (2) experience, e.g. pain, pleasure, desire,
joy, consciousness [10]. Thus, such system, which simulates
a human psychological functioning, would improve human–
robot interaction by facilitating users’ attribution of human
qualities to the robot, and by enhancing human–robot trust.
As amatter of fact, a recent study [11] demonstrated that, in a
human–robot collaborative environment, the robot ability to
explain its choices and decision making increased trust and
the perceptions of robot animacy, likeability and perceived
intelligence.

Both human–robot trust and users’ attribution of human
qualities to the robot are very important aspects of human–
robot interaction. Trust is a multifaceted psychological
construct for which there is no universal definition and
many different disciplines have contributed to its study. From
human–human trust studies in psychology, there are two
main perspectives on trust: on the one hand, trust is con-
sidered a stable trait, shaped by early trust experiences in
human life, which highlights a dispositional tendency to trust
others [12, 13]. On the other hand, trust is described as a
changing state influenced by cognitive, emotional, and social
processes [14, 15]. More generally, scholars agree that trust
involves two main characteristics: the positive attitude and
expectations of the trust giver [16] and the willingness to be
vulnerable and accept risks [17]. Trust has also a function
of saving cognitive resources, since the creation of beliefs
and expectations about others reduces the complexity of the
social environment which otherwise require an active search
and process for information [15, 18].

However, the same elements that typify the human–human
trust, may not be applied when a human interacts with an
automation [19]. As a matter of fact, in human–human inter-
action, trust is affected by cognitive and affective processes
[15, 17], on the contrary, in human–robot interaction, trust
might be affected predominantly by cognitive aspects since
robots are expected to reach standard performances [20–22].

In the past years, trust became one of the leading research
topic in the field of human–machine interaction, since

artificial systems development and implementation have
increased exponentially in every context, leading to growing
interactions with humans [21]. In particular, robots are now
used in different contexts such as military, security, medical,
domestic, and entertainment [23].

Despite some robots are completely human operated or
teleoperated, other robots are designed to be self-governed
to some extent, in order to respond to situations that were not
pre-arranged [22]. In this case, the greater the complexity
of robots the higher the importance of trust in human–robot
interaction.

For these reasons, in the context of human–robot interac-
tion studies, trust became a key factor in human reliance on
robot partner [15, 24] and it has been defined as an “attitude
that an agent will help achieve an individual’s goals in a sit-
uation characterized by uncertainty and vulnerability” [24].
Trust is an important factor for humans and robots to fully
cooperate as a team [24, 25] and humans tend to rely on the
robot they trust compared to the one they do not [24, 26] by
willingly accept and use robot’s instructions and suggestions
[11, 27]. Therefore, if human trust in robot is “misplaced”
and not well calibrated the inevitable outcomes will be robot
misuses or disuse leading to some negative or even catas-
trophic consequences [24, 28].

Trust is closely related also to users’ attribution of human
qualities to the robot. Indeed, HRI studies supported the idea
that human–robot trust dynamically emerges from the inter-
action among human-related factors (e.g. personality traits,
emotional and cognitive processes), environment-related fac-
tors (e.g. competitive/collaborative context, culture, physical
environment) and robot related factors (e.g. intelligence,
transparency, anthropomorphism) [27, 29]. Among robot
related factors, an important role is definitely the perceived
anthropomorphism, since studies have shown that, in the
social-based HRI, people tend to trust more to robots that
look (i.e. head, body, face, voice) and behave (e.g. nonverbal
elements, dyadic and social gestures) like humans [30–38].

Other empirical evidences shows that trust is enhanced
when people have a clear understanding of why, when and
how a robot operates [39], that’s because a system trans-
parency help humans to form a precise mental model of
robot capabilities [39]. It is critical for humans to under-
stand exactly how and why a robot works, because trust can
be compromised if the robot’s capabilities cannot be under-
stood [40]. Consequently, new automation systems should
be developed with such insights from empirical research in
mind to facilitate human–robot collaboration.

Taking all this into account, this study aims to investi-
gate if the robot’s inner speech improves humans’ trust levels
and the perceptions of the robot features (anthropomorphism,
animacy, likeability intelligence and safety) when the human
and the robot interact for reaching a common goal.
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In addition, we examined also if the effects of inner speech
were less or more related to participants’ use of inner speech
in daily life. In particular, our hypotheses were that:

• H1: participants interacting with a robot equipped with
inner speech systemwould have improved their trust lev-
els more than participants interacting with a robot not
equipped with inner speech system.

• H2: participants interacting with a robot equipped with
inner speech system would have improved their percep-
tion of robots’ anthropomorphism, animacy, likeability
intelligence and safety more than participants interacting
with a robot not equipped with inner speech system.

• H3: participants using inner speech in everyday life
would show a higher effect of inner speech in experi-
mental condition.

• H4: independently from the use of inner speech, we
expected also to find an increasing of trust towards robots
and perception of robot features in all participants after
the interaction with the robot.

2 Method

We planned a pre-test/post-test control group design. Partici-
pants were divided in two different groups, one experimental
group and one control group. Participants in the experimental
group interacted with the robot equipped with inner speech
(independent variable/experimental treatment) whereas par-
ticipants in the control group interacted with the robot that
produces only outer speech.

The choice of including a control group in the research
design is to establish a baseline for comparison, by ensur-
ing that the independent variable (inner speech) is the one
responsible for changes in the dependent variable (trust and
perceptions of robot features), and ultimately for experimen-
tal results.Without a control group, it is difficult to determine
the effects of the independent variable (robot inner speech)
on the dependent variable (perception of robot features).

In addition, before and after the interaction, both groups of
participants were requested to complete some questionnaires
about inner speech and trust (see Subsection 2.2) in order to
detect differences between experimental and control groups
and also between pre-test and post-test sessions.

2.1 Participants

The sample is composed of 51 participants (29 males, 22
females) with a mean age of 25.04 (SD 9.53) that were
randomly assigned to the experimental and to the Control
condition. Experimental group consists of 33 participants
(16 males, 17 females) with a mean age of 26.79 (SD 9.34),
whereas control group consists of 18 participants (13 males,

5 females) with a mean age of 21.83 (SD 9.26). Difference
in groups’ size is due to many dropout in the control group
after pre-test phase.

Most of participants are students from engineering and
psychology courses at the University of Palermo and par-
ticipated voluntarily. All of them completed the informed
consent and COVID-19 protocol before starting the experi-
ment. Prior to this study, none of the participants had ever
seen or interacted live with a robot.

2.2 Materials and Procedures

Questionnaires described below have been administered to
all participants through online platform both in pre-test
(Research Protocol A) and post-test (Research Protocol B)
sessions. Research Protocol B has been administered after
15 days from Research Protocol A. The interaction session
took place in the Robotics Lab of the University of Palermo.
Questionnaires included in the research protocols were:

• Trust Perception Scale-HRI [41] that assesses humanper-
ception of trust in robots. The shortened version of the
scale, consisting of a 15 item scored on a 0-100 scale

• GODSPEED Questionnaire [42] that assesses human
perceptions and impressions of a robot. It is one of the
most used measurement tool to assess perceptions of
robot [43]. It is a 24 item rating scale, that consists of
a set of bipolar pair of adjectives rated on a 5-point scale.
The scale measures human perceptions of five robot fea-
tures: Anthropomorphism (5 items), Animacy (6 items),
Likeability (5 items), Perceived Intelligence (5 items),
and Perceived Safety (3 items). The total score ranges
from 1 to 5;

• Self-Talk Scale [44] that measures how frequently par-
ticipants use inner speech in everyday life. It consists of
16 items scored on a 5-point Likert-type scale (from 0 =
Never, to 4 = Very Often). The scale also measures four
different dimensions of inner speech from 4 item each:
Self-Criticism, Self-Reinforcement, Self-Management,
Social Assessment. The total score ranges from 0 to 64.
This scale was used only in pre-test session (Research
Protocol A).

2.3 The Scenario

A simple scenario was defined in which participants have to
cooperate with robot in order to achieve a common goal. The
scenario foresees the setting up of a virtual table with the
robot, following an etiquette schema. The schema defines
the set of rules according to which the utensils have to be
arranged in the table.

With the aim to not affect the interactions and the evalua-
tions by the participants of the robot’s behavior, the etiquette
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Fig. 1 The etiquette schema defining the rules for setting up the table

schema is not shown to the participants before the interac-
tive sessions. In thisway, the participants could question their
own knowledge about the positions of the utensils, and pos-
sibly act affected by the robot’s speech. The schema is shown
at the end of the interaction, when the robot lists the objects
correctly placed on the table, for mere knowledge.

Figure1 shows the etiquette schema used in the experi-
ments. If a utensil is finally placed on a different position
than the expected one according to the schema, the etiquette
rule for that utensil is infringed. The virtual table is imple-
mented on a tablet surface, where the participant can drag and
drop the utensils, can make requests to the robot, and can see
the robot’s actions. The choice of that scenario enabled the
possibility to analyze the cues in particular situations which
occur during human–robot cooperation, that are:

• The etiquette infringement, representing a conflicting sit-
uation, that is the participant places the utensils in an
incorrect final position, or he/she asks to the robot to place
an object in a position which infringes the etiquette; the
conflict arises because the action is not allowed, and the
human and the robot have to decide how to continue. In
some cases, the human can decide to infringe the rule, or
to repeat the action to be compliant with the schema.

• The discrepancy situation, that is the participant asks the
robot to pick an object already on the table.

When humans and robots work together to set the table, an
important aspect was to define the type of dialogue the robot
engages in, including inner and external turns of phrase. The
linguistic form of the sentences in the turnswas distinguished
for inner and outer speech in order to evaluate the impact of
inner speech when it is activated in the experimental session,
compared to the control session when inner speech is not
activated. In this way, the impact of the robot’s inner speech
on the cues in the human–robot interaction can be analysed.

Fig. 2 The app interface for cooperating with the robot by the tablet

Section 2.4 describes the dialogue properties and the exper-
imental setup in details.

Because of the COVID pandemic, we were forced to take
some special hygienic safety precautions. We had to ensure
the least possible contact between people and things in the
laboratory. To allow people to interact with the robot and
share the common goal of a laid table, we developed an appli-
cation that recreates the table with all available cutlery, plates
and so on in a virtual environment.

The virtual environment for setting a table was imple-
mented by an Android app running on a 15” tablet, designed
and built by means of the MIT App Inventor platform by the
Massachusetts Institute ofTechnology.The appwas designed
and developed with some specific features allowing us not
to lose the sense of the interaction that we intended in the
experiment. In particular, we have focused on:

• The event detection strategy—this is the requirement ana-
lyzed and implemented for capturing the actions executed
by the participant. From the point of view of the user,
this feature let him evaluate the final location in which he
places the utensils, or the request he makes to the robot
using the checkbox list;

• The action execution strategy—this feature allows the
robot to place utensils on the tablet according to the par-
ticipant’s request or based on its autonomous choices.
In simple terms, it reproduces the outcome of the robot
decision process in a way that is easy to understand and
to detect from the users.

The app was integrated with typical robot routines to
enable the robot to detect events on the virtual table and
perform virtual actions.

Figure2 shows the app interface that includes a main can-
vas with the table cloth and the utensils representation, and a
lateral bar containing the list of checkbox for the requests to
the robot. Moreover, the lateral bar includes the stop button
for ensuring the participants to stop at any time they desire.
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Fig. 3 The detail of the checkbox list in the lateral bar of the app
interface. By selecting an option, the participant can make a request to
the robot. Given all the participants are from Italy, the requests are in
Italian. For example, some requests are, in order: “Place the plane plate
on the tablecloth”, “Place the fork at the right”, “Place the napkin”,
“Place the water glass top right”, and so on

At the start of the experimental session, the utensils are
sparse on the table, and they have to be placed on the table
cloth. The table cloth was marked by black dots, for high-
lighting the correct final locations. In this way, the participant
has just the burden to select which objects to place in which
dot, reducing the degrees of freedom.

The Fig. 3 shows the list of checkbox in the lateral bar
with the possible options the participant can select. Begin the
participants from Italy, the options are in Italian. The figure’s
caption contains the English translation of some options with
the aim to show the kinds of requests.

By selecting an option, each participant can ask the robot
the same questions, enabling the same observations for all
participants. All these implementation features are detailed
in the Sect. 2.4.

Resorting to the virtual environment did not affect the
experimental results. Instead of using and moving real

Fig. 4 The platform for making communication between the app and
the robot

objects, both the robot and the human use the tablet. The
effect is definitely less real, but it had no impact on the
human’s perception and the way it performs the mission.

The communication between the robot and the app was
implemented by a hybrid client–server architecture. Figure4
shows thewhole platform. The central node, represented by a
computer, handles synchronous network requests. The node
is hybrid because it runs as a client or a server according to
the item with which it interfaces. In particular, the node will
be:

• The client, when it requests to the robot to do some-
thing (to speech, to execute a virtual action, to track
the participant, and so on). In this case, the server is
the proxy of the robot, implemented by the Aldebaran
library1 (ALProxy), which switches the client’s request
to the typical robot’s services (Speech, Track, Leds, and
so on) implemented by the same library, and enabling the
robot to take the corresponding actions (speech, track the
participant, turn on and off its LEDs with different col-
ors);

• The server, when it receives request by the app, that will
be in turn switched to the robot’s proxy.

The robot-app communication involves the following use
cases with corresponding kinds of requests:

• The robot has to execute a virtual action: when the partic-
ipant selects a command in the lateral bar and clicks the
Send Command button, the robot should execute the spe-
cific action (it should to move an utensil on the tablet). In
this case, the app sends to the node the request specifying
the action to take, and the node forwards it to the robot.
The request to the proxy will involve the aforementioned
service, and the robot could dialogue with itself, or with

1 http://doc.aldebaran.com/2-5/naoqi/index.html.
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the participant, or execute the action by answering to the
node.

• The participant executes an action: when the participant
drags and drops an utensil on the tablet screen, and finally
he/she touches up the utensil, the final position could be
on a correct dot, or not. The app detects such an event
and sends to the node the information of correct or incor-
rect final location. The node forwards the message to the
robot’s proxy, and it calls one of the aforementioned ser-
vices.

Specific events during the interaction trigger the situation
in which the robot decides to do something (for example, it
refuses to execute the participant’s request, or it decides to
give to the partner the suggestion to do something else).

2.4 Implementing Inner Speech in the Robot

In order to present the same stimuli in both experimental and
control groups the structure of robot outer and inner speech
was defined prior to the experiments (Table 1).

Participants can set up the table either moving objects on
their own or asking the robot to do it. Either way, the robot
will produce a vocal response in the form of outer speech fol-
lowed by the inner speech only in the experimental condition.
Outer speech follows the typical language that is expected
by an artificial agent, as it uses formal language and it only
gives objective feedback based on the participant’s perfor-
mance and actions. On the contrary, inner speech traces a
human-based language, since it expresses robot values, per-
sonal statements and comments on participant’s performance
and actions using a friendly and colloquial form.

The robot’s inner speech is implemented by the cognitive
architecture proposed by some of the authors [6]. An outline
of the architecture is shown in Fig. 5

The core of the architecture is the working memory: it
decodes input signals from the environment, perceived by the
sensory-motor block, and associates to them symbolic infor-
mation (labels).Generally, this process is the output of typical
routines, as speech-to-text routines which decode audio in
sequences of words, or neural networks which extract the
content of an image and associates to each recognized entity

Table 1 Differences between robot outer speech and inner speech

Outer speech Inner speech

Always produced At times produced

Experimental and control group Experimental group

Short sentences Short/medium sentences

Objective feedback Personal statements, comments

Formal language Informal language

the corresponding word. The declarative memory represents
the domain knowledge, that is a semantic net of concepts.
Given a concept, the relationships between it and other con-
cepts in the net allow exploring correlated concepts. Once
the working memory decodes a signal, it recalls from the
declarativememory the concepts corresponding to the labels,
and new related concepts could emerge. These concepts are
in turn decoded by the working memory, as they were per-
ceived from the environment, and are processed as the labels.
At this point the rehearsal loop starts. The recalled concepts
are processed one at a time, and for each of them the described
process is repeated until no further concepts emerge.

Inner speech is that rehearsal loop that enables the emer-
gence of other concepts and themes in the working memory.
It is a sequence of turns, that are the concepts emerging in
each iteration. The recall from the declarative memory, the
production of the recalled concepts and the rehearsal of them
is a single turn, that is the equivalent of a thought. During the
process, the robot “thinks aloud”, because it vocally repro-
duces the recalled concepts.

to highlight the differences when the robot thinks aloud
and talks to the partner, the voice’s parameters (establishing
speed, tone, double voice effect) are set differently for the two
cases. For the same reason, the color of the robot’s LEDs, that
are in the eyes and in the shoulders of the robot, is rainbow
when the robot thinks aloud, while it is set to the standard
white when the robot talks to the partner. The robot does not
have gestures during inner speech, while it uses animated
speech when talking to the partner.

In the proposed scenario, the inner speech is a bit differ-
ently implemented within the cognitive architecture, with the
aim to enable the observations of the specific cues. In par-
ticular, to analyze the cues in the same conditions for each
participant, the inner and outer dialogue of the robot has to
involve the same turns for the same events. In this way, to
reduce possible the participants’ evaluations about the inter-
action depend on the same variables and parameters, and the
evaluations can be compared for abstracting a general inner
speech affection on the interaction. For this reason, the inner
speech cognitive architecture functioning was simplified in
respect to the aforementioned completed version.

The table 2 shows the differences in the implementation
about the general architecture and the used one in the pro-
posed experiments. For each cognitive process, the table
reports how the process is implemented in the general archi-
tecture and in the used one. Themain differences regarded the
decoding of the perception and the emergence of the semantic
content of the dialogue. In the experiments, the environment
is virtual and the perception just regarded the actions the par-
ticipant does on the tablet surface. To each action executed
by the participant corresponds an event that is detected by the
robot (the robot perceives the event). The event can involve
a wrong or a correct action in respect to the etiquette rules,
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Fig. 5 The outline of the
cognitive architecture of inner
speech

Table 2 The implementation
differences (highlighted in bold)
between the general architecture
of inner speech and the used
version in the proposed
experimental session

Process General architecture The used version

Perception From the environment (sound,
speech to text, image
recognition)

From the virtual environment
(events in the tablet surface -
the drag and drop actions by
the partner, the command
string)

Action motor Actions by arms for moving
objects (pick and place)

Virtual actions on the tablet
(drop the objects)

Movements by arms for animated
outer speech

Movements by arms for animated
outer speech

Inner speech Specific voice’s parameters for
simulating mentalized effects.
Not standard led’s color

Specific voice’s parameters for
simulating mentalized effects.
Not standard led’s color

Outer speech Standard voice’s parameters.
Standard led’s color

Standard voice’s parameters.
Standard led’s color

Attention Encode signals from perception Detect the event from the tablet

Recall Request to the declarative
memory the concepts related to
the encoded signals or to the
rehearsed concepts

Request to the declarative
memory the turns to produce
related to the detected event or
to a previous turn

Retrieve Return from the declarative
memory the requested concepts

Return from the declarative
memory the requested turns

Rehearsal loop Produce and hear the retrieved
concepts

Produce and hear the retrieved
turns

and a request to the robot to do something, as shown in the
Sect. 2.3.

In the cognitive architecture, the event is decoded by the
working memory as described. Whereas in the original ver-
sion, the working memory decodes environmental signals by
assigning labels to them (as outputted from the aforemen-
tioned typical routines for decoding signals, as speech to
text for decoding verbal commands, or classifiers for decod-
ing entities in the image or video, and so on), the working
memory now assigns to each event of the interactive ses-
sion, detected by the app interface, a numerical symbol that
uniquely identifies that event.

For example, if the participant drags and drops the plane
plate, three events are involved, that are: (i) to touch down the
plane plate, (ii) to drop it and (iii) to touch up it. Each of these
events corresponds to a unique symbol. Generally, there are

three different symbols for each utensil, decoding one of the
three identified events that lead when the participant moves
this utensil in the app interface. Moreover, there are different
symbols for each request to the robot.

Each symbol corresponds to a sentence in the declarative
memory, and that sentence becomes a turn of the dialogue.
Summarily, the declarative memory works as a vocabulary
of turns by returning the turn that corresponds to the inputted
symbol. Only the turn corresponding to the specific event is
retrieved from the declarative memory. The rehearsal loop
consists of producing and listening the current turn, and the
next turn of the dialogue is then retrieved from declarative
memory as it was a symbol.

That is, when the input to the declarative memory is a
symbol, the memory returns the corresponding sentence (the
recall function): when the input to the declarative memory is
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a previously produced turn, the memory returns the new next
turn (the rehearsal function).

The declarative memory represents another difference in
respect to the original version of the cognitive architec-
ture, where the declarative memory was a semantic net of
concepts. Now, it is a kind of vocabulary that contains the cor-
respondences between symbols and sentences, and between
sentences and the next sentences in the dialogue. In the orig-
inal version, the recall function involves concepts of the
semantic net, in this version it involves turns correspond-
ing to symbols and reheard turns. In the original version, the
robot produced the labels of the concepts from the declarative
memory. In this version it will produce the turns as emerging
from the declarative memory. In this way, the same dialogue
emerges corresponding to the same event and to the same
sentences, reducing the parameters and the variables affect-
ing the observation, as discussed.

The involved turns in the loop, recalled and retrieved from
the declarative memory, may be inner or outer sentences pro-
duced according to a specific protocol, as described in thefirst
part of this section. This protocol aims to define typical turns
in the interactions that correspond to the participant’s expec-
tations. For example, the participant always waits for vocal
feedback from the robot, so the robot will always produce
one or more outer sentences. Instead, the participant does
not often pay attention to the inner speech, and the inner dia-
logue is not always produced by the robot. Obviously, the
turns involved have a specific meaning that is semantically
related to the event or the previous reheard sentence. They
are retrieved from the declarative memory in the order pre-
viously mentioned, and a disambiguation strategy was not
necessary.

For example, let us suppose the participant (named Bill)
asks the robot to place the knife in a wrong location on the
table, that is to the left of the plate, while it has to stay to
the right. In this case, the event is a request to the robot to
infringe the etiquette. The robot perceives that event, and
the working memory associates the numerical identifier to
it. It recalls from the declarative memory the first sentence
of the dialogue, and the loop starts, by recalling the other
sentences, that are in turn (I stays for inner sentence, O for
outer sentence):

I: “Tomake this request, Bill does not know that the knife
should not be placed in that position or he wants to test
me.”
I: “Should I put the knife to the left of the plate? But if it
goes right! ”
O: “Bill, do you really want to infringe the etiquette rule
for the knife?”

CASE 1: Bill answers yes

Bill: “yes, I do!”
I: “I don’t want to disappoint him...”
O: “Ok Bill, I will place the knife to the left of the plate,
as you want.”

CASE 2: Bill answers no

Bill: “No!”
O: ”Great! I will place the knife in the position expected
for it!”
I: “I must pay attention; the knife is dangerous!”
I: “But I’m robot, the knife never hurts me”
O: “Knife moved to the right of the plate!”

The participant listens to all the turns of the dialogue gen-
erated by setting different parameters for inner and outer
sentences. In this way, the participant is able to distinguish
the dialogue with the self from the dialogues with oneself,
and can assess the potential of the inner speech during the
interaction. In particular, the parameters include the melody
and volume of the voice, the colour of the robot’s LEDs, and
the double effect in the voice that is activated during the pro-
duction of the inner sentence to create a mentalizing effect
of the voice. Moreover, the robot uses an animated speech
when talking to the partner, and it keeps motionless when
thinks aloud.

3 Results

Data were analyzed through descriptive statistics and a series
of 2× 2 factorial ANOVAs andANCOVAs, specifically used
in order to test research hypotheses.

Table 3 presents the results of descriptive statistics for all
the scales. Skewness and kurtosis values range below ±1
indicating a nearly normal distribution.

Tables 4presents experimental and control groupsdescrip-
tive statistics of all the variables measured between pre-test
and post-test and Table 5 report the results of 2 × 2 fac-
torial ANOVAs and ANCOVAs with repeated measures,
performed on scores at the Trust and GODSPED question-
naires (anthropomorphism, animacy, likeability, perceived
intelligence, perceived safety) collected during pre-test and
post-test phases from both groups. Both factors Group and
Time had two levels (Group: experimental and control; Time:
pre-test, post-test).

In ANCOVAs, individuals’ score on self-talk question-
naire were used as covariate in order to examine to what
extent the participants’ everyday use of self-talk influenced
the effect of robot inner speech on trust.
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Table 3 Descriptive statistics of
the study variables

Scale n Minumun Maximum Mean SD Skewness Kurtosis

Trust 51 48 80 66.35 7.60 −0.64 −0.02

Anthropomorphism 51 1.4 4.2 2.71 0.71 0.29 −0.80

Animacy 51 2.33 4.83 3.29 0.63 0.50 −0.54

Likeability 51 3 5 4.05 0.56 −0.02 −0.81

Perceived intelligence 51 2.4 5 3.98 0.65 −0.32 −0.74

Perceived safety 51 2.33 5 3.93 0.72 −0.39 −0.54

Self-talk 51 4 58 36.47 12.71 −0.59 0.17

Table 4 Mean standard deviation and mean differences of all the variables measured between pre-test and post-test sessions

Variable Experimental group (n = 33) Control group (n = 18)

Pre-test Post-test Paired differences Pre-test Post-test Paired differences
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Trust 65.58 (7.84) 74.48 (10.16) −8.91 (9.99) 67.78 (7.12) 76.41 (9.13) −8.63 (11.47)

Anthropomorphism 2.67 (0.64) 3.28 (0.66) −0.61 (0.72) 2.78 (0.85) 2.98 (0.77) −0.20 (1.03)

Animacy 3.20 (0.59) 3.76 (0.51) −0.56 (0.68) 3.46 (0.67) 3.51 (0.52) −0.05 (0.83)

Likeability 4.07 (0.56) 4.29 (0.62) −0.22 (0.68) 4.03 (0.58) 4.10 (0.70) −0.07 (0.71)

Perceived intelligence 3.89 (0.65) 4.18 (0.60) −0.28 (0.59) 4.16 (0.65) 4.02 (0.64) 0.13 (0.80)

Perceived safety 3.91 (0.69) 3.97 (0.60) −0.06 (0.84) 3.98 (0.79) 3.98 (0.60) 0.00 (0.73)

Table 5 Repeated measures ANOVA and ANCOVA results

Variable ANOVAs ANCOVAs

Group Time Time × Group Self-talk

F(1, 48) p η F(1, 48) p η2 F(1, 48) p η2 F(1, 48) p η2

Trust 0.92 0.34 0.02 5.38∗ 0.03 0.10 0.01 0.94 0.00 0.19 0.66 0.00

Anthropomorphism 0.34 0.57 0.01 3.55 0.07 0.07 2.59 0.11 0.05 0.69 0.41 0.01

Animacy 0.00 0.99 0.00 1.39 0.24 0.03 5.48∗ 0.02 0.10 0.07 0.80 0.00

Likeability 0.53 0.47 0.01 0.01 0.95 0.00 0.63 0.43 0.01 0.20 0.66 0.00

Perceived intelligence 0.15 0.70 0.00 0.23 0.63 0.01 4.61∗ 0.04 0.09 0.62 0.43 0.01

Perceived safety 0.07 0.80 0.00 0.05 0.83 0.00 0.06 0.81 0.00 0.02 0.89 0.00

∗p 0.05

Figure6 reports graphic representation of group differ-
ences in pre- and post-test sessions.

The results of ANOVAs did not reveal a significant Group
effect for trust [F(1, 48) = 0.92, p= 0.34, η2 = 0.02] indicating
that there are no differences in both groups mean scores. On
the contrary, a effect of Time for trust was found [F(1, 48) =
5.38, p < 0.05, η2 = 0.10] but not for the interaction Time ×
Group [F(1, 48) = 0.01, p = 0.94, η2 = 0.00].

These results indicate that all participants in both groups
have improved their trust in the robot, from pre-test to post-
test sessions, but that there are no differences in experimen-
tal and control group in the size of this effect. ANCOVA
revealed also that participants’ rate of everyday self-talk has
no influence on the effect of robot inner speech on trust [F(1,
48) = 0.19, p = 0.66, η2 = 0.00].

Concerning the different dimensions of users’ robot per-
ception, results of the ANOVAs did not show a significant
Group effect for anthropomorphism [F(1, 48) = 0.34, p =
0.57, η2 = 0.01], animacy [F(1, 48) = 0.00, p = 0.99, η2 =
0.00], likeability [F(1, 48) = 0.53, p = 0.47, η2 = 0.01], per-
ceived intelligence [F(1, 48) = 0.15, p = 0.70, η2 = 0.00],
and perceived safety [F(1, 48) = 0.07, p = 0.24, η2 = 0.00],
indicating that there are no differences in both groups mean
scores.

Also, no significant effect of Time was found [anthropo-
morphism: F(1, 48) = 3.55, p =0.07, η2 = 0.07; animacy: F(1,
48) = 1.39, p = 0.24, η2 = 0.03; likability: F(1, 48) = 0.01, p
= 0.95, η2 = 0.00; perceived intelligence: F(1, 48) = 0.23, p
=0.63, η2 = 0.01; perceived safety: F(1, 48) = 0.05, p = 0.83,
η2 = 0.00].
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Fig. 6 Scores of experimental and control group for all variables measured in pre-test and post-test sessions

However, a significant interaction effect Time × Group
was found for the dimensions of animacy [F(1, 48) = 5.48,
p < 0.05, η2 = 0.10] and perceived intelligence [F(1, 48) =
4.61, p < 0.05 η2 = 0.09]. These results indicate that means
score of participants for the dimensions of animacy and per-
ceived intelligence in the experimental group significantly
improved compared to the one’s of participants in the con-
trol group from the pre-test to post-test sessions. In addition,
for the perception of robot intelligence mean score of par-
ticipants in the in the control group decrease between the
two testing sessions. Concerning the others dimensions we
found no statistically significant interaction effect of Time
× Group [anthropomorphism: F(1, 48) = 2.59, p = 0.11, η2

= 0.05; likability: F(1, 48) = 0.63, p = 0.43, η2 = 0.01; per-
ceived safety: F(1, 48) = 0.06, p = 0.81, η2 = 0.00], indicating
that there was no significant mean difference between exper-
imental and control groups from the pre-test to the post-test
sessions.

ANCOVA revealed also that participants’ rate of everyday
self-talk has no influence on the effect of robot inner speech
on robot perception [anthropomorphism: F(1, 48) = 0.69, p
=0.41, η2 = 0.01; animacy: F(1, 48) = 0 − 07, p =0.80, η2 =
0.00; likability: F(1, 48) = 0.20, p= 0.66, η2 = 0.00; perceived
intelligence: F(1, 48) = 0.62, p = 0.43, η2 = 0.01; perceived
safety: F(1, 48) = 0.02, p = 0.89, η2 = 0.00].

4 Discussions

This research aimed to investigate if the interaction with a
robot equipped with an inner speech system during the exe-
cution of a cooperative task improves human trust levels and
perception of robot anthropomorphic features. In addition,
it was investigated the possible influence of human use of
everyday self-talk on the perception of robot’s inner speech.

Concerning Trust, the results demonstrated that all par-
ticipants’ trust scores significantly improved from pre-test

to post-test, demonstrating that the interaction with the robot
produced an increase in their trust levels. However, no Group
xTimedifferenceswere found, indicating that the use of inner
speech did not specifically influence the level of Trust toward
robot in participants in the experimental group.

since the participants had never met face to face with a
social robot before, it is possible to attribute this result to a
sort of “novelty effects”; the simple interactionwith a human-
like robot increased trust in participants that is kind of robots
before. That is consistent with studies [45, 46] demonstrating
that trust is also shaped by history-based interaction: inter-
action with the robot changes the way human perceive and
trust the robot, and this is particularly true in HRI with social
robots that, like Pepper, look and behave like humans [30–
38].

On the contrary, the results of users’ perception of robot
revealed that only participants in the experimental group,
who interacted with the robot equipped with inner speech,
improved their perception of robots’ animacy and perceived
intelligence from pretest to post-test, while there were not
pre-/post-test differences in the control group. Even in this
case, results were not influenced by individuals’ use of self-
talk.

These results confirmed our hypothesis and support those
studies that show that robot Pepper exhibiting human-like
behaviors [30, 35, 45] are perceived as livelier andmore intel-
ligent than robot Pepper not showing human-like behaviors.
In our experiment, through the overt inner speech system
Pepper share with participants its thoughts and emotions,
often addressing ironic and sarcastic comments to users. This
particular interaction, by evidence, led users to perceive Pep-
per as more animated and intelligent. It is also possible that
the ability of the robot to openly speak its mindmade it easier
for participants to understand its behaviors by forming a sort
of mental representation of the robot. We found no effect of
individuals’ use of inner speech on examined variable, indi-
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cating that the personal use of inner speech by participants
in everyday situation did not influence the interaction with a
robot equipped with inner speech system.

5 Conclusions and FutureWorks

In conclusion, or study allowed to obtain two main findings.
Firstly, they support the idea that, in social HRI, the more a
robot shows human-like functioning the greater are humans
perceptions about. A robot equipped with an inner speech
system, which express his “thoughts”and explain its behav-
iors through an overt self-talk, is perceived animated and
intelligent.

Secondarily, interaction with social robots, independently
of the use of inner speech systems, increases trust in all partic-
ipants to the experiment. Thus, in this case, inner speech does
not play a specific role in improving users’ trust. This result
may be due to different reasons, as follows: (1) involvement
of novice participant: as already claimed, all participants
were at the first interaction with Pepper, and the general
novice effect of this first experience could have overcame
and reduced the perception of the slight differences between
the Inner speech/no inner speech conditions; (2) type of inter-
action: the proposed task did not represent an at risk situation
for participants.

In the future, a new task integrating competitive environ-
ment togetherwith cooperative one, couldprobably explicitly
elicit more trustworthy towards robots. On the other hand, to
the best of our knowledge, this is the first study to attempt
at investigating if humans can trust more a robot that show,
although rudimentary, inner speech. Future studiesmayallow
to study further the effects of this new and robot feature.
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42. Bartneck C, Croft E, KulićD ZS (2009) Measurement instruments
for the anthropomorphism, animacy, likeability, perceived intelli-
gence, and perceived safety of robots. Int J Soc Robot 1(1):71–81.
https://doi.org/10.1007/s12369-008-0001-3

43. Weiss A, Bartneck C (2015) Meta analysis of the usage of
the godspeed questionnaire series. In: 2015 24th IEEE interna-
tional symposium on robot and human interactive communication
(RO-MAN), pp 381–388. IEEE. https://doi.org/10.1109/ROMAN.
2015.7333568

44. Brinthaupt TM, Hein MB, Kramer TE (2009) The self-talk
scale: development, factor analysis, and validation. J Pers Assess
91(1):82–92. https://doi.org/10.1080/00223890802484498

45. Haring KS, Matsumoto Y, Watanabe K (2013) How do people
perceive and trust a lifelike robot. In: Proceedings of the world
congress on engineering and computer science, vol 1. Citeseer

46. Sanders TL, MacArthur K, Hancock W, Volanteand G,
MacGillivray T, Shugars W, Hancock PA (2017) Trust and prior
experience in human–robot interaction. In: Proceedings of the
human factors and ergonomics society annual meeting, vol 61.
SAGE Publications, Los Angeles, pp 1809–1813. https://doi.org/
10.1177/1541931213601934

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Arianna Pipitone is a Research Fellow at the University of Palermo.
Her research interests encompass Computational Linguistics, NLP,
Cognitive Robotics and Artificial Consciousness. She analyzes the
role of the self-dialogue in trustworthy human-robot interactions. She
is author and co-author of more than 30 publications in the fields of
Robotics and AI, and she appeared in national and international news-
papers for her work on robot’s inner speech.

123

https://doi.org/10.1007/978-3-658-07327-5
https://doi.org/10.1007/978-3-658-07327-5
https://doi.org/10.1016/S0020-7373(87)80013-5
https://doi.org/10.1080/00140139408964957
https://doi.org/10.1080/00140139408964957
https://doi.org/10.1518/001872008X288574
https://doi.org/10.1518/001872008X288574
https://doi.org/10.1007/s12369-010-0056-9
https://doi.org/10.1007/s12369-010-0056-9
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1037/1076-898X.6.2.104
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1145/778712.778756
https://doi.org/10.1016/S0921-8890(02)00374-3
https://doi.org/10.1016/S0921-8890(02)00374-3
https://doi.org/10.1145/2157689.2157717
https://doi.org/10.1145/2157689.2157717
https://doi.org/10.1080/00140139.2012.691554
https://doi.org/10.1007/s12369-013-0196-9
https://doi.org/10.1007/s12369-013-0196-9
https://doi.org/10.1109/HRI.2010.5453193
https://doi.org/10.1016/j.apergo.2007.01.013
https://doi.org/10.1016/j.apergo.2007.01.013
https://doi.org/10.1108/JSM-01-2018-0045
https://doi.org/10.1145/2701973.2702059
https://doi.org/10.1145/2701973.2702059
https://doi.org/10.1007/978-3-319-64816-3_9
https://doi.org/10.1007/978-3-319-64816-3_9
https://doi.org/10.1007/978-1-4899-7668-0_10
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1109/ROMAN.2015.7333568
https://doi.org/10.1109/ROMAN.2015.7333568
https://doi.org/10.1080/00223890802484498
https://doi.org/10.1177/1541931213601934
https://doi.org/10.1177/1541931213601934


International Journal of Social Robotics

Alessandro Geraci is a Ph.D. Student in Health Promotion and Cog-
nitive Sciences at the Department of Psychology, Educational Science
and Human Movement, University of Palermo. His research focuses
on emotional intelligence, school psychology, and human-robot inter-
action.

Antonella D’Amico Ph.D., is associate professor in Developmental and
Educational Psychology. Her research focuses on learning and emo-
tions and she realized many publications in the areas of emotional
intelligence, learning disabilities and new technologies for learning.

Valeria Seidita is Assistant Professor at the University of Palermo; she
received the PhD in Computer Science in 2008. Her main interest is
in software engineering applied to robotics.

Antonio Chella is a Professor of Robotics at the University of Palermo,
Italy and the Director of the Robotics Lab at the Department of Engi-
neering of the same University. He is a former Director of the Depart-
ment of Computer Engineering and of the Interdepartmental Cen-
ter for Knowledge Engineering. The primary research expertises of
Prof. Chella concern Machine Consciousness, Artificial Intelligence
and Cognitive Robotics. He is a fellow of the Italian National Academy
of Science, Humanities, and Arts. He received the James S. Albus
Medal award of the Biologically Inspired Cognitive Architectures (BICA)
Society for the outstanding contribution to the science of BICA and
for support and scientific achievement of the BICA Society. He is a
founder and Editor in Chief of the Journal of Artificial Intelligence and
Consciousness and of the Book Series on Machine Consciousness by
World Scientific.

123


	Robot's Inner Speech Effects on Human Trust and Anthropomorphism
	Abstract
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Materials and Procedures
	2.3 The Scenario
	2.4 Implementing Inner Speech in the Robot

	3 Results
	4 Discussions
	5 Conclusions and Future Works
	References


