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Abstract

In this thesis I address the release of magnetic energy into heating in the million degrees
solar corona, through detailed MHD modelling of single or interacting closed magnetic
flux tubes. According to a commonly accepted scenario, these tubes are stressed by
progressive twisting at their footpoints driven by slow photospheric motions. Particular
attention is devoted to the observational implications and therefore to the plasma response
to the energy release in a realistic solar atmosphere.

As a detailed mechanism to convert the magnetic energy into heat I explore the
reconnection events triggered by the kink instability of continuously twisted flux tubes.
I performed time-dependent 2.5D and 3D MHD simulations to model the evolution of
closed magnetic tubes, the coronal loops, subjected to footpoint motions and eventually
MHD instabilities. Our model includes a stratified, magnetised atmosphere extending
from the chromosphere to the corona, and accounts for key physical processes such
as thermal conduction, optically thin radiation, and transitions from high- to low-beta
regions, including magnetic field expansion from the footpoints. I use the stat-of-art
MHD numerical code PLUTO, tailored to describe solar coronal conditions. As a
preliminary step, which allowed me to tune up the numerical tool, I explored the effect
of asymmetric heating release in coronal loop, and found that the high Alfvén speed
in the corona levels out possible asymmetries and explain the observed symmetry of
coronal loops, even under prolonged asymmetric footpoint motions.

Most of the work is devoted to study twisted interacting flux tubes subject to kink
instability. The study confirms that kink instabilities can lead to MHD avalanches, even
in a realistic solar atmosphere, driving significant heating up to microflare temperatures
(∼ 10 MK) and inducing chromospheric evaporation. As a next step, spectral data in
extreme-ultraviolet (EUV) lines are synthesized for comparison with the anticipated
observational capabilities of the forthcoming MUltislit Solar Explorer (MUSE) NASA



mission. Footpoints EUV emission in the MUSE Fe ix 1 MK channel will mark early
plasma responses to heating, while Fe xv 2.5 MK will track denser plasma at intermediate
heights, and Fe xix 10 MK will reveal hot plasma within current sheets. Further effort
was devoted to possible signatures of magnetic reconnection. A nanojet — a small,
high-velocity reconnection outflow — was identified as key observable signature of this
impulsive energy release, with temperature reaching 8 MK, outflow velocity of several
hundred km s−1, and duration of less than one minute. The simulations suggest that
MUSE will be able to detect these features, providing crucial insights into the heating
mechanisms of the solar corona.

As a final step, which is an initial step for future developments, we addressed the
effects of prolonged footpoints rotation, until a statistical energy balance is achieved,
to investigate DC coronal heating in multi-stranded coronal loops. A machine-learning
based algorithm for automatic detection of nanojets is presented as promising tool to
investigate the nanoflare phenomenon and its observational signatures, based on physical
assumptions.
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1
Introduction

1.1 Units and constants
In this work, most physical quantities are written in the Centimetre-Gram-Second (CGS)
system of units. The exceptions are typical coronal length and velocities, more conve-
niently described in Mm = 108 cm (Megameters), and km s−1 = 105 cm s−1, respectively.
The following constants are also used:

𝑅⊙ = 6.96 × 1010 cm (solar radius)
𝑀⊙ = 1.99 × 1033 g (solar mass)
𝐿⊙ = 3.83 × 1033 g cm2 s−3 (solar luminosity)
𝑚𝑝 = 1.67 × 10−24 g (proton mass)
𝑚𝑒 = 9.11 × 10−28 g (electron mass)
𝑐 = 3.00 × 1010 cm s−1 (speed of light)
𝑒 = 4.80 × 10−10 cm3/2 g1/2 s−1 (electron charge)
𝐺 = 6.67 × 10−8 g−1 cm3 s−2 (constant of gravitation)
𝑘𝐵 = 1.38 × 10−16 g cm2 s−2 K−1 (Boltzmann constant)

1.2 The solar atmosphere
The magnetic field has an important role in the solar atmosphere. Convective plasma
motions power the dynamics of the outermost layers of the solar interior, where the
plasma beta (i.e. the ratio of gas and magnetic pressures) is high (𝛽 ≫ 1), as shown in
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Figure 1.13: Plasma beta above an active region, depending on the height. The
convective motion of plasma still dominates the dynamic of the innermost layers of
the solar atmosphere, so that � & 1 in al the photosphere. It rapidly decreases in
the chromosphere and in the transition region, reaching a minimum in the corona,
where the magnetic field lead plasma motion.
Adapted from Gary (2001), © Springer Nature.

The two types of magnetic waves, called Alfvén waves (or torsional Alfvén waves) and
compressional Alfvén waves, are depicted in figure 1.14. When both the magnetic
force and the thermal pressure gradient are important in a plasma, one can find
magnetoacoustic waves, which also depend on the angle between the direction of
propagation k and the magnetic fieldB. Magnetoacoustic waves come in two modes,
the fast mode and the slow mode, with speeds respecitively higher and slower than
the Alfvén speed.

Expanding the material derivative (1.7) and using the expression of the Lorentz
force in terms of magnetic pressure and tension in the equation of motion (1.8),

⇢
dv

dt
= ⇢


@v

@t
+ (v · r)v

�

=
@

@t
(⇢v) + r · (⇢vv)

with vv being the stress tensor, and considering the identity

(B · r)B = r · (BB)

with BB being the Maxwell stress tensor, the equation of motion can be also written
in conservative form. The same can be done for the equation of continuity. Thus, the

23

Figure 1.1: Plasma beta stratification as function of height. Credit Gary (2001).

Fig. 1.1. This underlying, at first glance smooth, medium propels and hosts the electric
currents upholding the magnetic, multi-scale phenomena observed readily above the
solar surface. There, plasma 𝛽 rapidly decreases and reaches a minimum up in the solar
atmosphere, where the magnetic field forces drive plasma motion. Therefore, in the
solar atmosphere there is a transition from a gas dominated by hydrodynamic forces
(𝛽 ≪ 1) to a magnetised plasma (𝛽 ≫ 1). Plasma physics, and specifically ‘magnetohy-
drodynamics’ (MHD, Alfvén 1942 and Sec. 1.3), is necessary to exhaustively describe
it.

1.2.1 The VAL model
The solar atmosphere (Priest 2014) can be generally divided into three parts with different
physical and optical properties. In the lower shell of the solar atmosphere, the ‘photo-
sphere’, extending for some hundreds of kilometres, the plasma is dense (∼ 1018cm−3),
cold (𝑇 ∼ 6 × 103 K) and opaque (𝜏 ≲ 1 from near infrared, NIR, to near ultraviolet,
NUV, 𝜏 ≫ 1 in most spectral lines). Above the photosphere, in the ‘chromosphere’ the
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plasma crosses the temperature minimum to get hotter (𝑇 ∼ 104 K) and more tenuous
(𝑛 ≲ 1015 cm−3), and becomes optically thin in the NIR to NUV continuum (but still
optically thick in strong lines). Across a very thin layer (just ≲ 100 km average) called
‘transition region’ the temperature rises by about two orders of magnitude while the den-
sity decreases proportionally to ∼ 109 cm−3. The outermost layer of the solar (stellar)
atmosphere is the ‘corona’, extending from few thousands of kilometres above the pho-
tosphere to few tens of solar radii (virtually unlimited), where it fills the ‘heliosphere’.
It is optically thin in the whole electromagnetic spectrum with very few exceptions.

The approximate standard model shown in Fig. 1.3, also known as ‘VAL model’
(Vernazza et al. 1981; Avrett & Loeser 2008), assumes average plasma properties, such as
temperature and density, only as a function of height. Nevertheless, the solar atmosphere
is made by non-homogeneous and dynamic plasma out of equilibrium, and to address
its complexity a multi-dimensional and time-dependent description is needed.

8 A Description of the Sun

Table 1.1. Order-of-magnitude energy-loss fluxes in W m−2

Coronal hole Quiet Sun Active region

Corona
Conduction 60 (15) 200 103–104

Radiation 10 (15) 100 5000
Solar wind 700 (100) < 50 < 100

TOTAL 800 300 10,000

Chromosphere
Low 2000 2000 10,000
Middle 2000 2000 10,000
Upper 300 300 2000

TOTAL 4000 4000 20,000

Height (km)

3,0002,000

Density

Density

Temperature

Temperature

Tmin

1,0000
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Figure 1.2. A schematic of the mean variation of temperature and density with height in the solar atmosphere
according to the VAL (Vernazza-Avrett-Loeset) model (courtesy Eugene Avrett, see Sec. 1.4.3), although in practice
the atmosphere is highly inhomogeneous, dynamic and time-varying.

wavelengths it is absorbed by particles in the overlying atmosphere, due to an increased opacity, which

gives rise to the absorption lines. For example, the H Balmer line (Hα) is due to absorption of a photon

making an H atom jump from its second to its third quantum level. Such lines give us much information on
temperature and density (from intensity), magnetic field strength (from Zeeman splitting or Hanle effect)

and local line-of-sight plasma motion (from Doppler shifts).

Most spectral lines are formed in the lower photosphere, but some (such as Hα) come from the chromo-

sphere, and most lines in the transition region and corona are emission lines. The transition region emits
mainly in UV wavelengths below 2,000 Å, which are strongly absorbed by the Earth’s atmosphere. Due to

its high temperature, the corona has increased UV, EUV and X-ray emission, but it also emits a pair of

visible continua (the K and F coronae), as well as lines such as the green line (5,303 Å) and the red line

(6,374 Å), which are due to forbidden transitions in highly ionised iron (Fe xiv and Fe xv, respectively).

Figure 1.3: The VAL model (Vernazza et al. 1981). The plot shows the variation of
averaged plasma temperature (solid line) and density (dashed line) as function of height,
from the photosphere to the corona. Credit: Lang (2001).

1.2.2 Sub-corona atmospheric layers
The photosphere (Rutten 2012, top-right panel of Fig. 1.2) is approximately uniform on
a large scale (except for sunspots), but on small scales it is entirely covered by ∼ 1 Mm
convective cells called ‘granules’, where plasma flows at a speed of ∼ 1 km s−1. In the
photosphere, the strength of the emerging magnetic field (top-left panel of Fig. 1.2)
varies from few kG to 5 − 10 G for ambient/quiet Sun magnetic fields. In particular,
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Figure 1.2: Top-left: full disk magnetogram of the Sun observed by SDO/HMI on 30th
june 2023. Top-right: photospheric SDO/HMI continuum. Down-left: chromospheric
emission with 304 𝐴̊ SDO/AIA channel. Down-right: coronal emission with 171 𝐴̊
SDO/AIA channel. Images extracted from Helioviewer (Garcia Briseno & Ireland
2023).

the strong magnetic field emerges from elemental flux tubes 100 km wide, expanding
upward and with typical field strength of 200-500 G at the temperature minimum. In the
photosphere, the plasma 𝛽 is high (≫ 1). As a consequence, the magnetic field is most
of the time passively advected by photospheric motions.
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Chromosphere (bottom-left panel of Fig. 1.2, Vernazza et al. 1981) and transition
region (TR, Gabriel 1976a) are very inhomogeneous and dynamically evolving with
time. Multi-scale flows, waves, shocks, and heating phenomena in those layers are the
response to photospheric convection in the underling atmosphere.

Across the TR, temperature suddenly increases from few thousands to millions
K. Such a steep increase with height is formally constrained by the radiative losses
and thermal conduction mutual relationship. Indeed, in steady-state conditions, the
energy lost by (optically thin) radiative processes (whose efficiency peaks across the
TR) must be supplied by the thermal conduction from above. In particular, the steep
temperature dependence of the thermal conduction (conductive flux: 𝐹 (𝑧) ∝ 𝑇

5
2 𝑑𝑇
𝑑𝑧

)
determines the abrupt temperature inflation across the transition region, i.e. between
104 and 106 K, where the radiative losses temperature-spectrum peaks (see Fig. 1.4).
The energy drained from the corona by thermal conduction and radiated away in the
TR must be in turn supplied by coronal heating process(es) maintaining this external
layer in the million K regime and preventing the tenuous plasma from cooling down to
photospheric/chromospheric temperatures.

Figure 1.4: Frequency integrated optically thin radiative losses rate peaking at transition
region temperatures (around 105 K). Credit: Rosner et al. (1978b)

1.2.3 The corona: active regions
The solar corona (Golub & Pasachoff 2010, bottom-right panel of Fig. 1.2) is the
outermost layer of the Sun, extending from a few thousands of km above the photosphere
to several solar radii and beyond. It is visible in the optical band as a faint white crown
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Figure 1.5: Left: image of the solar corona during the total solar eclipse on Monday,
August 21, 2017 above Madras, Oregon. Credit: NASA/Aubrey Gemignani. Right: an
X-Ray image of the Sun corona emphasizing the highly inhomogeneous nature of the
coronal plasma. Credit: Vaiana et al. (1973b)

surrounding the moon disk during total solar eclipses (left-hand side of Fig. 1.5). It
is made of almost fully ionized gas, heated to millions K. The highly-ionized coronal
plasma strongly interacts with the magnetic field which confines and funnels it along the
field lines.

Looking at the Sun in the X-ray band (Testa & Reale 2024), it is possible to recognise a
complex scenario of closed structures linking regions of opposite magnetic field polarity
(right-hand side of Fig. 1.5). These ‘coronal loops’ (Reale 2014) are arch-like magnetic
tubes filled with relatively dense (𝑛 ∼ 109 cm−3), hot (𝑇 ∼ 106 K) and bright plasma,
as shown on the right-hand side of in Fig. 1.6. They are acknowledged as the “building
blocks” of the bright corona where the emergent magnetic field is typically organised
into a network of topologically closed structures.

In active regions (van Driel-Gesztelyi & Green 2015) a large-scale and coherent
magnetic flux (in contrast with the mixed-polarity quiet corona magnetic field) breaks
through the solar surface and organises into photospheric ‘sunspots’ (Borrero & Ichimoto
2011), chromospheric ‘plages’, ‘filaments’/‘prominences’ (Parenti 2014), and a forest
of coronal loops (Reale 2014), bright in the EUV/X-ray, 10 Mm to 100 Mm long (see
the e.g., in the left panel of Fig. 1.6). Generally, active regions span over and between
bipolar magnetic fields. Density and temperature are higher than in the quiet Sun, with
hot cores reaching 𝑛 ∼ 1010 cm−3 and 𝑇 ∼ 3 − 5 MK.
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SDO/AIA 171  

2019 13th April

Å TRACE 171 
Å

Figure 1.6: Left: AIA observation of an active region in the 171 𝐴̊ channel on April
13th 2019. Right: TRACE observation of a coronal loop in the 171 𝐴̊ line.

1.2.4 Historical keynotes of coronal observations

The solar corona is made by optically thin plasma with temperatures exceeding 1 MK.
Emission from this region primarily arises from highly ionized atoms (such as iron),
which radiate in the X-ray (5–50 Å), soft X-ray (50–150 Å), extreme ultraviolet (EUV,
150–900 Å), and far ultraviolet (FUV, 900–2000 Å) regions of the electromagnetic
spectrum (Fawcett et al. 1968). Since radiation in these wavelengths does not penetrate
Earth’s atmosphere, most observational data and spectral diagnostics have been acquired
through space-based XUV (5–2000 Å) observations.

X-ray and ultraviolet (UV) spectroscopy of the solar corona has been employed
for decades to derive key plasma parameters, including electron densities, electron
temperatures, differential emission measure (DEM), and relative elemental abundances.
Remote-sensing XUV spectroscopy enables precise measurement of plasma conditions,
providing insights into parameters such as electron temperature, density, DEM, chemical
abundances, Doppler shifts, and non-thermal motion characteristics (Del Zanna & Mason
2018).

In the following paragraph, some of the principal XUV solar missions of the past 70
years are synthetically covered, as also schematically shown in the time-line representa-
tion of Fig. 1.7.
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Rocket missions

In the late 1960s, grazing incidence optics on board of rockets observed for the first
time the X-ray solar corona with arc-min angular resolution (Giacconi et al. 1965).
This allowed for temperature diagnostics, the study of magnetic confinement (Reidy
et al. 1968), observation of flares (Vaiana et al. 1968), and the first morphological
classification of coronal structures (Vaiana & Rosner 1978; Peres & Vaiana 1990).

First orbiting X-ray telescopes

In the 70s, X-ray telescopes on board orbiting missions, such as the Orbiting Solar
Observatory-IV (OSO-IV) mission (Krieger et al. 1972) or Skylab (Compton & Benson
1983), monitored the evolution of active regions, thus investigating the lifetime and
shape of bright coronal loops with arcsec angular resolution.

X-ray spectroscopy

Between 80s and the early 90s, time-resolved diagnostics of flaring coronal loops was
addressed by means of X-ray spectroscopy with the Solar Maximum Mission (SMM,
Bohlin et al. 1980; Acton et al. 1980), Hinotory (Tanaka 1983), and Yohkoh (Ogawara
et al. 1991). The soft X-ray telescope on board of Yohkoh (SXT, Tsuneta et al. 1991)
captured 5 − 6 MK plasma in active regions.

Normal incident optics and EUV observations

With the development of normal incidence optics in coronal instruments (e.g., NIXT,
Golub & Herant 1989) 90s solar missions focused on the EUV coronal plasma below
2 MK. In particular, the Solar and Heliospheric Observatory (SoHO, Domingo et al.
1995) and the Transition Region and Coronal Explorer (TRACE, Handy et al. 1999),
allowed for wide-band diagnostics at subarcsec angular resolution and sub-minute tem-
poral resolution.

State of the art

Gen-Z, still operating, solar corona telescopes include:

• Hinode (Kosugi et al. 2008): by combining its optical instrument, EUV imaging
spectrometer (EIS), and X-ray/EUV telescope (XRT), its main goal is to measure
strength and direction of the photospheric magnetic field and to understand the
causes of solar eruptions.

• Solar TErrestrial Relations Observatory (STEREO, e.g., Kaiser et al. 2008): con-
sisting of two twin spacecraft, it studied in particular the 3D structure and evolution
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of solar storms, but also allowed for the first 3D reconstruction of coronal loops
(Aschwanden et al. 2009; Kramar et al. 2009). One spacecraft is still operating.

• The Atmospheric Imaging Assembly (AIA, Lemen et al. 2012; Boerner et al.
2012) on board of the Solar Dynamics Observatory (SDO, Pesnell et al. 2012)
provides a continuous monitoring of the full solar disk in seven EUV channels,
from the 20 kK chromosphere to the flaring 20 MK hot corona, with 12 s cadence
and 1 arcsec angular resolution.

• The Interface Region Imaging Spectrograph (IRIS, De Pontieu et al. 2014) obtains
UV spectra and images of the solar chromosphere and transition region with high
resolution in space (0.33 arcsec) and time (1 s).

• Solar Orbiter (Müller et al. 2020) is a space mission developed by the European
Space Agency (ESA) in collaboration with NASA. It consists of a spacecraft
equipped with ten instruments designed to observe the Sun up close. The mission’s
main goal is to study the Sun’s outer layers, by capturing high-resolution images
and in situ measurements from unique vantage points, including its first-ever
close-up views of the Sun’s poles during the mission extension.

Forthcoming missions

• The MUltislit Solar Explorer, (MUSE, De Pontieu et al. 2020; De Pontieu et al.
2022; Cheung et al. 2022), is an upcoming NASA MIDEX mission, featuring a
multislit EUV spectrometer and an EUV context imager, with planned launch in
2027. MUSE is designed to offer high spatial and temporal resolution for spectral
and imaging observations of the solar corona. Its primary goal is to advance our
understanding of the heating mechanisms in the corona of both the quiet Sun and
active regions, and of the physical processes governing dynamic phenomena like
flares and eruptions. MUSE will provide fine spatiotemporal coverage of coronal
dynamics, as well as wide field-of-view observations, offering valuable insights
into the physics of the solar atmosphere. In particular, it will obtain high resolution
spectra (≈ 0.38”), with wide angular coverage (≈ 156” × 170”; resembling the
typical size of an active region), and 12 s cadence. With its 35-slit spectrometer,
MUSE will provide spectral observations, with an unprecedented combination of
cadence and spatial coverage, in different EUV passbands dominated by strong
lines formed over a wide temperature range.

• The EUV High-throughput Spectroscopic Telescope (Shimizu et al. 2019, EUVST
- Solar C), developed by JAXA, is a solar observation mission designed to study
the Sun’s atmosphere in extreme ultraviolet wavelengths. The mission aims to
capture high-resolution spectroscopic data to understand the dynamics of solar
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Figure 1.7: Time line of past, current and forthcoming solar missions, including grazing-
incidence X-ray telescopes on board of rockets (60s) and spacecraft (70s), X-ray spec-
trometers (80s), normal incidence UV-EUV images/spectrometers (>90s).

phenomena, by observing the interactions between different layers of the Sun’s
atmosphere, from the surface to the corona.

1.3 The MHD framework
A ‘plasma’ is a ionized fluid characterized by long-range collective motions. Plas-
mas can host strong electric currents inducing and interacting with magnetic fields.
Magnetohydrodynamics (Alfvén 1942) describes magnetized matter behavior, under
the conditions of (1) fluid-approximation (the collisions time scale are shorter than the
system characteristic times: the particle distribution is close to Maxwellian); (2) charge
macroscopic neutrality; (3) non-relativistic velocities. The plasma in the solar corona
strongly interacts with the solar magnetic field. Under certain assumptions, it is possi-
ble to describe it as a single, electrically neutral, and nearly perfectly conducting fluid.
Magnetohydrodynamics accurately describes its evolution (Chiuderi & Velli 2012; Priest
2014).
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1.3.1 Basics
The Maxwell’s equation in c.g.s. units are:

𝑐 ∇ × E = −𝜕𝐵
𝜕𝑡
, (1.1)

∇ · B = 0, (1.2)
∇ · E = 4𝜋𝑞, (1.3)

𝑐 ∇ × B = 4𝜋j + 𝜕E
𝜕𝑡
, (1.4)

where E and B are the electric and magnetic fields, 𝑞 and j are the charge and current
densities, and 𝑐 is the speed of light. Combined with the Lorentz force:

F𝐿 = 𝑞 E + 1
𝑐

j × B, (1.5)

they form the basis for classical electromagnetic phenomena (Jackson 2021).
According to Lorentz transformations, electric field and the current density in a

co-moving, conducting medium (primed) frame, have strength:

𝐸′
∥ = 𝐸∥ E′

⊥ = 𝛾(E⊥ + 𝛽 × B), (1.6)
j′∥ = j∥ j′∥ = 𝛾(j∥ − 𝑞𝑐v), (1.7)

where 𝛽 is the fluid velocity in the laboratory (unprimed) frame in units of 𝑐 and
𝛾 = (1 − 𝛽2)− 1

2 is the Lorentz factor. If the fluid has finite electric conductivity 𝜎′, then
the Ohm’s law for a neutral (𝑞 = 0), conductive fluid, in the laboratory frame is:

E =
j
𝜎

+ 𝛽 × B. (1.8)

Charge neutrality in a ionized plasma is guaranteed when the number of particles in a
sphere of Debye radius:

𝜆𝐷 =

√︂
𝑘𝐵𝑇

4𝜋𝑛𝑒2 , (1.9)

is very large (𝑛𝜆3
𝐷
≫ 1, Braus 2019).

By neglecting second-order terms in 𝛽, Eq. 1.4 reduces to:

j =
𝑐

4𝜋
∇ × B, (1.10)

The current density in Eq. 1.10 is divergence-free (∇ · j = 0): in non-relativistic MHD,
currents have no sources nor sinks. From source term in vacuum electrodynamics, the
current density is now denoted as a secondary variable whose values depend on B, by
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the Ampere’s law (Eq. 1.10). By combining Eq. 1.3 with the divergence of Eq. 1.4, we
obtain the charge conservation law:

𝜕𝑞

𝜕𝑡
+ ∇ · j = 0, (1.11)

that reduces to:
𝜕𝑞

𝜕𝑡
= 0, (1.12)

in non-relativitic MHD. If the plasma is initially neutral, no charge displacement will
further develop, consistently with the assumption of a charge-neutral plasma.

We can combine Eqs. 1.8, 1.1 and the divergence of Eq. 1.10 to infer the magnetic
induction equation:

𝜕B
𝜕𝑡

= ∇ × (v × B) + 𝜂∇2B, (1.13)

where 𝜂 = 𝑐2

4𝜋𝜎 is the electric diffusivity. According to equation 1.13, the rate of change
of the magnetic field depends on both the fluid motion (∇× (v×B)) and some diffusion
processes (𝜂∇2B). The second term on the right-hand side of Eq. 1.13 has the same
form as, e.g., diffusion of heat (by thermal conductivity) and momentum (by viscosity)
in parabolic equations. Moreover, it can be proved that

∇ · 𝜕B
𝜕𝑡

=
𝜕

𝜕𝑡
∇ · B = 0, (1.14)

namely, provided ∇ · B = 0 at 𝑡 = 0, then, the soleinodal condition holds at any time.
The first term on the right-hand side of Eq. 1.13 can be expanded using the standard
vector identities to:

𝜕B
𝜕𝑡

= −B∇ · v − (v · ∇) B + (B · ∇) v, (1.15)

where the first term on the right hand side describes the effect of the fluid expansion or
compression. The second term instead describes the effects of advection.

If we integrate Eq. 1.13 on a surface S(𝑡) whose points are passively advected with
the plasma elements (𝑑S = 𝑑l × v 𝛿𝑡), we obtain:

𝑑

𝑑𝑡

∫
𝑆(𝑡)

B(𝑡) · 𝑑S =

∫
𝑆(𝑡)

𝜂 ∇2B · 𝑑S. (1.16)

If the plasma is a perfect conductor (𝜂 = 0), then the magnetic flux is always conserved
(Alfvén theorem Alfvén 1942).

The Lorentz force is shown in Eq. 1.5 and can be expanded into:

F𝐿 =
1

4𝜋
(∇ × B) × B = − 1

8𝜋
∇𝐵2 + 1

4𝜋
(B · ∇) B = − 1

8𝜋
∇⊥𝐵

2 + 𝐵
2

4𝜋
∇∥ 𝑏̂ (1.17)
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where ∇∥ = 𝑏̂ · ∇ and ∇⊥ = ∇ − ∇∥ are the parallel and perpendicular projection of
gradient operator to 𝑏̂, the B orientation. Both terms are oriented perpendicular to the
field lines. The first term is the force exerted by the gradient of the magnetic pressure
𝑝𝐵 = 𝐵2/8𝜋. The second term, called magnetic tension, contains the effects of field line
curvature:

𝑅𝑐 =
1

|∇∥ · 𝑏̂ |
(1.18)

and acts as a restoring force straightening bent magnetic field lines.

1.3.2 Conservation equations
The equations of conservation of mass and momentum in their conservative (eulerian)
form are, respectively (Chiuderi & Velli 2012; Priest 2014):

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌V) = 0, (1.19)

𝜕𝜌v
𝜕𝑡

+ ∇ · (𝜌vv) = −∇𝑝 + 1
𝑐

j × B + Fext. (1.20)

The momentum equation (Eq. 1.20) accounts for pressure force (−∇𝑝), Lorentz force
(1
𝑐
j × B), and external (e.g., gravity) forces (Fext).

The temporal evolution of magnetic, kinetic, internal, and gravitational energies
is driven by energy sources and sinks (e.g., external heating and radiative losses, re-
spectively) and several energy fluxes at the boundaries of the domain (such as thermal
conduction, Poynting flux, enthalpy flux, and kinetic and gravitational energy fluxes).
In addition, energy transfer terms may link two different forms of energy. This is the
case for Ohmic heating, which converts magnetic energy into heat, and work done per
unit time by the Lorentz force, the pressure gradient, and gravity, which respectively
convert kinetic energy into magnetic, thermal, and gravitational energy. The respective
equations governing the evolution of magnetic, kinetic, internal, and gravitational energy
are as follows in their conservative form:

𝜕

𝜕𝑡

𝐵2

8𝜋
+ ∇ ·

[
− 1

4𝜋
B (v · B) + 𝐵

2

4𝜋
v + 𝜂

𝑐
j × B

]
= − 𝑗

2

𝜎
− v
𝑐
· (j × B) , (1.21)

𝜕

𝜕𝑡

(
1
2
𝜌𝑣2

)
+ ∇ ·

(
1
2
𝜌𝑣2 v

)
= −v · ∇𝑃 + v

𝑐
(j × B) + 𝜌 v · g, (1.22)

𝜕 (𝜌𝜖)
𝜕𝑡

+ ∇ ·
[
𝛾

𝛾 − 1
𝑃 v + ∇ · F𝑐

]
= v · ∇𝑃 + 𝑗2

𝜎
, (1.23)

𝜕 (𝜌𝑔ℎ)
𝜕𝑡

+ ∇ · (𝜌𝑔ℎ v) = −𝜌 v · g. (1.24)
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The sum of the four equations gives the equation of conservation of the total energy.
Terms on the left-hand sides include rates of change in energy (the derivatives with
respect to time) and energy fluxes (i.e. surface terms, which appear here as divergences).
External sources, and sinks may be added on the right-hand sides.

𝜕

𝜕𝑡

(
𝐵2

8𝜋
+ 1

2
𝜌𝑣2 + 𝜌𝜖 + 𝜌𝑔ℎ

)
+ ∇ ·

[
− 1

4𝜋
B(v · B) + 𝐵

2

4𝜋
v + 𝜂

𝑐
j × B+

+ 1
2
𝜌𝑣2v + 𝛾

𝛾 − 1
𝑃v + F𝑐 + 𝜌𝑔ℎv

]
=

= 𝐻ext. (1.25)

1.3.3 Dimensionless parameters
Consider the momentum equation (Eq. 1.20) and the induction equation (1.13):

𝜌
𝑑v
𝑑𝑡

= −∇𝑝 + 1
4𝜋

(∇ × B) × B (1.26)

𝜕B
𝜕𝑡

= ∇ × (v × B) + 𝜂∇2B. (1.27)

The first equation returns the rate of change of the velocity field as a consequence of
magnetic (and pressure) forces; the second equation, complementary, gives the rate of
change of the magnetic field due to the velocity field (and diffusion).

We define the Mach number 𝑀 , the plasma beta 𝛽, and the magnetic Reynolds
number 𝑅𝑚, the following dimensionless parameters:

𝑀 =
𝑣0
𝑐𝑖
, 𝛽 =

𝑝

𝐵2
0/8𝜋

, 𝑅𝑚 = 𝑙0𝑣0/𝜂 (1.28)

where, 𝑙0 (𝑡0) is the typical length (time) scale of the system, 𝑣0 = 𝑙0/𝑡0 and 𝑐𝑖 =
√︁
𝛾 𝑝/𝜌

are the fluid and the isothermal sound speed, respectively, and 𝐵2
0/8𝜋 is the magnetic

field pressure. The plasma beta can be also defined as the ratio between the (squared)
sound speed and the (squared) Alfvén speed.

𝛽 =
𝑐2
𝑖

𝑣2
𝐴

(1.29)

where 𝑣𝐴 = 𝐵√
4𝜋𝜌

, is the typical velocity of propagation of a magnetic signal along a file
line.
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Newton’s and induction equations can be written in terms of these adimensional
parameters, as follows:

𝑀2 𝑑ṽ
𝑑𝑡

= −∇̃ ln 𝜌 + 2
𝛽
(∇̃ × B̃) × B̃ (1.30)

𝜕B̃
𝜕𝑡

= ∇̃ × (ṽ × B̃) + 1
𝑅𝑚

∇2B̃ (1.31)

where the tilde signs on the top of v and B denote the dimensionless quantities B/𝐵0
and v/𝑣0, respectively.

These three parameters determine the several regimes that can rule the evolution of
an MHD plasma. 𝑀 separates highly-subsonic flows (𝑀 ≪ 1) vs. strongly supersonic
flows (𝑀 ≫ 1) . 𝛽 discriminates over gas-pressure-dominated (𝛽 ≫ 1) v.s. magnetic-
field-dominated (𝛽 ≪ 1) plasmas. Finally, 𝑅𝑚 determines the efficiency of magnetic
dissipation and diffusion (𝑅𝑚 ≪ 1) as compared with the ideal, field lines dragging of
frozen-in magnetic fluxes (𝑅𝑚 ≫ 1).

1.3.4 Force-free fields
𝑀 = 0 and 𝛽 ≪ 1 defines a regime of MHD equilibrium that can be guaranteed by
neglecting the Lorentz force term in Eq. 1.20:

(∇ × B) × B = 0 (1.32)

This can be achieved in two independent ways, providing two different classes of ‘force
free fields’:

• Potential fields: if ∇ × B = 0, then the vector field B can be written in therms of
the divergence of a scalar field 𝜙 i.e. the magnetic field potential;

• (non-potential) Force free fields: when the term ∇ × B ≠ 0 but its everywhere
parallel to B, then the vector product in Eq. 1.32 is zero. We call “linear” the
force-free fields when B = 𝛼∇×B, with 𝛼 a constant parameter. In a “non-linear”
force-free field, 𝛼 is a function of space but is always constant along each field
line (B · ∇𝛼 = 0).

It can be easily demonstrated that, in a volume with fixed boundaries, a force-free
magnetic field is a relative minimum-energy state, while the absolute minimum is a
potential field.
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1.3.5 Helicity
Being A the vector potential of B:

B = ∇ × A, (1.33)

the magnetic helicity 𝐻 is defined as the volume integral:

𝐻 =

∫
𝑉

A · B 𝑑𝑉. (1.34)

Such a quantity measures the global degree of twisting and kinking of a single flux
tube (self- helicity), as well as the linkage between different flux tubes (mutual helicity).
Since the vector potential, A, is gauge dependent, the (gauge independent) helicity, 𝐻,
must depend not only on the local field lines twisting, but also on their global ‘linking’
within the overall magnetic configuration i.e. it is a topological quantity.

In perfectly conducting and isolated plasmas, the helicity is a global topological
invariant, i.e. is a conserved quantity, as no changes in field line topology are allowed
without breaking of magnetic field lines i.e. without reconnection. On the other hand,
in a resistive medium, it decays over the global magnetic diffusion time:

𝑑𝐻

𝑑𝑡
= −

∫
𝑉

2𝜂 (∇ × B) · B 𝑑𝑉. (1.35)

Therefore, the rate of change in magnetic helicity scales as j · B. In dissipative plasmas,
relaxation of a magnetic configuration can quickly induce the development of small-scale
current sheets, where reconnection takes place, dissipating energy though not necessarily
causing the decrease of helicity.

A potential magnetic field (∇ × B = 0 → B = ∇𝜙) i.e. a field with zero energy in
excess, has also zero magnetic helicity. Therefore, an out-of-equilibrium, ideal, magnetic
field with nonzero helicity cannot decay to a potential field. In general, the minimum
energy state of an isolated system corresponds to a linear force-free field.

1.3.6 Reconnection
An ideal plasma (magnetic Reynols number 𝑅𝑚 ≫ 1) preserves the magnetic linkage
between the plasma elements. On the other hand, in localised regions where 𝑅𝑚 ≳ 1,
non-ideal effects of magnetic diffusion can be significant. “Magnetic reconnection”
(Pontin & Priest 2022), in particular, comes into play with a change of connectivity
between plasma elements. Generally, it involves several physical effects:

• Change of magnetic topology;

• Strong electric currents and electric fields;
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• Shock waves and particles acceleration;

• Ohmic dissipation of magnetic energy into heat;

• Release of magnetic tension accelerating plasma (by Lorentz force).

In an ideal plasma (E + v × B = 0) both magnetic flux and field lines are conserved. If
the plasma is not ideal (E + v × B = N ≠ 0), flux conservation (∇ × 𝑁 = 0) implies field
lines conservation (B × (∇ × N) = 0), but the reverse is not true. The form of N also
determines whether reconnection occurs in a 2D plane or in 3D. In particular, if it can
be written as N = u × B +Φ, where u is the “slippage velocity” of the field lines and Φ

a potential, then, 2D reconnection occurs only where u is singular. Otherwise, it is 3D
reconnection (Priest 2014; Pontin & Priest 2022).

Giovanelli (1947) suggested that electric fields in magnetic neutral points could
accelerate particles and produce heating during solar flares. Cowling (1958) investigated
the collapse of a X-type neutral point forming a narrow current sheet and Dungey
(1961) applied the same mechanism to the Earth’s magnetosphere. Sweet (1958) and
(Parker 1957) independently modelled steady-state reconnection in a thin current sheet.
According to Furth et al. (1963), the instability of the tearing mode instability in current
sheet may trigger resistive reconnection. A reconnection regime fast enough to propel
flares on the Sun was first proposed by Petschek (1964), then extended to a family of
“Almost-Uniform models” for fast reconnection by Priest & Forbes (1986).

Magnetic reconnection in the Sun (Zweibel & Yamada 2009; Pontin & Priest 2022)
is supposed to commonly occur in localized regions with strong, ideally infinitely sharp,
magnetic field gradients, where magnetic field lines converge and then break apart,
releasing energy. These regions are typically found, e.g., at the boundaries of active
regions, where intense magnetic activity can create complex magnetic field structures.
Key areas of interest include ‘null points’, ‘separatrices’, and ‘quasi-separatrix layers’.
A linear 2D or 3D null point locates the place where the magnetic field vanishes and
further increases linearly with distance, creating a topological configuration that can
facilitate reconnection. In a planar magnetic field, a separatrix curve is a field line
that divides the plane into two topologically, magnetically unlinked regions. In 3D,
separatrix surfaces track discontinuities in the field lines mapping as well. Specifically,
separatrices are surfaces that divide regions of differing magnetic connectivity, acting
as potential sites for reconnection due to the sharp contrast in field lines. For example,
they can spread out from the fans of null points. These boundaries are generated by
the highly fragmented photospheric magnetic flux, concentrated in the lower, high-𝛽
atmosphere within kilogauss flux tubes. As such tubes, separated in the photosphere,
expand in the low-𝛽 corona, they become space filling and develop contact boundaries
known as quasi-separatrix layers (Klimchuk & Antiochos 2021).
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2D reconnection

In 2D reconnection, the following basic features are present:

• An X neutral point -namely a point where field lines are locally hyperbolic-
surrounded by a localised non-ideal diffusion region;

• Pairs of field lines joining, breaking, and changing their connectivity at the X-point;

• A non-null electric field perpendicular to the plane.

The Sweet-Parker model for slow, steady-state, 2D reconnection (Sweet 1958; Parker
1957, see also left hand side of Fig. 1.8) involves a nonideal region localised in a current
sheet (where reconnection occurs), 2𝐿 long and 2𝑙 wide, approached by two parallel
though oppositely directed magnetic fields. The plasma mass inflow must be equal to
mass outflow driven by reconnected field lines:

𝐿𝑣𝑖 = 𝑙𝑣𝑜 (1.36)

where 𝑣𝑖 = 𝜂/𝑙 is the diffusion speed and 𝑣𝑜 = 𝐵/
√︁
(4𝜋𝜌) the Alfvén inflow speed (the

plasma is accelerated along the current sheet by the Lorentz force). The reconnection
rate estimated with the Alfvén Mach number 𝑀 = 𝑣𝑖/𝑣𝑜 therefore is:

𝑀 = 𝑅
− 1

2
𝑚 (1.37)

where the magnetic Reynolds number (𝑅𝑚 =
𝐿𝑣𝑜
𝜂

) is typically of the order of 108-1012,
leading to an outflow velocity 104-106 times smaller than the Alfvén velocity. Petschek
(1964) demonstrated that faster recollection rates (tens of the Alfvén speed) can be
achieved if the diffusion region is small compared to 𝐿 (right side of Fig. 1.8). However,
the existence of a stable, stationary Petschek reconnection was disputed (Biskamp 1986;
Forbes & Priest 1987). According to numerical simulations (e.g., Biskamp 1982, 1994),
long current sheets undergo resistive magnetic reconnection in a time-variable fashion,
with quasi-periodic development and coalescence of magnetic islands (‘second tearing
reconnection’, Priest 1985). Fast reconnection regimes are also produced by plasmoids-
mediated tearing instabilities, creating coherent flux ropes (Shibata & Tanuma 2001)
as well as in turbulent reconnection, where field lines in turbulent plasmas are rapidly
dispersed, thus increasing the aspect ratio of the reconnection layer (Lazarian et al.
2015).

3D reconnection

3D magnetic reconnection occurs within intense electric current concentrations. They
can lay within null points separators but also in quasi-separators and braids where the
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Petschek mechanism (Sect. 7.2) and by other types of fast reconnection (such as the
Almost-Uniform family) that depend on the initial and boundary conditions
(Sect. 7.3).

Fast reconnection is now the standard explanation for rapid energy release in the
corona, but three possibilities arise, as mentioned in Sect. 1.1, namely, steady
Petschek or Almost-Uniform reconnection, collisionless reconnection modified by
the Hall effect, and impulsive bursty reconnection due to secondary tearing.
However, in each of these three cases roughly the same maximum mean rate of
reconnection is reached. See Sect. 9 for details of these three types of fast
reconnection, both collisional and collisionless.

7.1 Sweet–Parker mechanism

The aim of early reconnection theory was to find the steady rate of reconnection,
namely, the speed with which field lines may enter the reconnection site and have
their connections to plasma elements changed. The first model by Sweet (1958a, b)
and Parker (1957, 1963) modelled a diffusion layer of length (2L) stretching along
the whole interface between opposing magnetic fields.

Equating the first and third terms in Ohm’s law (54) gives the magnetic diffusion
time

sd ¼
L20
g

¼ 10"9 L20 T
3=2;

with L0 in metres and T in degrees K. This is huge in practice: for instance, a typical

coronal length-scale (L ¼ 107 m) and temperature (T ¼ 106 K) yields a diffusion

time of sd ¼ 1014 sec. Releasing magnetic energy in a solar flare or coronal heating
event therefore needs the creation of intense current sheets with enormous magnetic
gradients and a tiny sheet thickness.

7.1.1 The basic Sweet–Parker model (1958)

Sweet and Parker gave an order-of-magnitude treatment for a current sheet or
diffusion region of length 2L and width 2l (Fig. 36), for which oppositely directed
magnetic fields #Bi are carried in from both sides at a speed vi. In a steady state, this
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Fig. 36 The notation for Sweet–
Parker reconnection, with
magnetic field lines (black)
transported into a diffusion
region (shaded grey) by a
plasma flow (blue arrows)
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Petschek mechanism (Sect. 7.2) and by other types of fast reconnection (such as the
Almost-Uniform family) that depend on the initial and boundary conditions
(Sect. 7.3).

Fast reconnection is now the standard explanation for rapid energy release in the
corona, but three possibilities arise, as mentioned in Sect. 1.1, namely, steady
Petschek or Almost-Uniform reconnection, collisionless reconnection modified by
the Hall effect, and impulsive bursty reconnection due to secondary tearing.
However, in each of these three cases roughly the same maximum mean rate of
reconnection is reached. See Sect. 9 for details of these three types of fast
reconnection, both collisional and collisionless.
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included, the reconnection rate (66) is modified to

Mi ¼
21=4 1þ 1

2 bið1$ po=piÞ
! "1=4

p
Rmi

;

where bi ¼ 2lpi=B2
i . Thus, when the outflow pressure exceeds the neutral point

pressure ðpo [ pNÞ; the outflow slows ðvo\viÞ and the reconnection rate falls
ðMi\1=

p
RmiÞ: The third aspect concerns the effect of compressibility, which is to

increase the reconnection rate (Mi) by a factor ðqo=qiÞ
1=2 when qo [ qi.

7.2 Petschek mechanism

Petschek (1964) realised that reconnection could be much faster (in terms of the rate
at which magnetic flux is brought into the diffusion region) if the Sweet–Parker
diffusion region were much smaller and occupied only a small part (of length
L & Le) of the boundary (of length Le) between opposing fields. He also analysed
the external flow outside the diffusion region (Fig. 37a) and suggested that most of

the energy conversion takes place at four slow-mode MHD shock waves; indeed, 2
5

of the inflowing magnetic energy is converted to heat and 3
5 to kinetic energy.

Petschek’s maximum reconnection rate is typically a tenth or a hundredth of the
Alfvén speed.

At the inflow to the diffusion region, values such as vi and Bi are denoted by a
subscript i and their relationship to external values (such as ve and Be) at large
distances Le can be determined. Reconnection models then depend on the external
reconnection rate ðMe ¼ ve=vAeÞ and the external magnetic Reynolds number
ðRme ¼ LevAe=gÞ: Fast reconnection here refers to reconnection whose rate ðMeÞ is
much larger than the Sweet–Parker value (1=

ffiffiffiffiffiffiffiffi
Rme

p
).

The external region around the diffusion region is then analysed in order to
determine how Mi depends on Me. First of all, conservation of magnetic flux for a
steady state ðviBi ¼ veBeÞ may be written in dimensionless terms as

(a) (b)

Fig. 37 a For any fast reconnection regime, including Petschek’s mechanism: the magnetic field (Be) at
large distances Le is brought in by a flow ve towards a diffusion region (shaded) of dimensions 2l and 2L,
where the inflow field and flow are Bi and vi, respectively. The plasma is heated and accelerated by four
shock waves (red) and then expelled into two regions to left and right. b Notation for the analysis of the
upper inflow region
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Figure 1.8: A schematic picture of the Sweet–Parker (left hand side) and the Petschek’s
(right hand side) mechanisms of reconnection. The plasma flow (blue arrows, 𝑣𝑖)
squeezes magnetic field lines (black curves, 𝐵𝑖) into the diffusion region (grey rectangle)
of dimensions 2𝐿 × 2𝑙, where they reconnect (𝐵0) and accelerate outflows (𝑣𝑜). In
regimes of fast reconnection (Petschek’s included), plasma inflows 𝑣𝑒 at larger distances
𝐿𝑒 transport the external magnetic field (𝐵𝑒) towards the diffusion region. After recon-
nection four shock waves (red, dashed lines) form as the heated plasma is expelled (to
the left and right, on the diagram). Credit Pontin & Priest (2022)

magnetic field does not vanish completely: the occurrence of magnetic reconnection in
3D is not generally restricted to the cases where the magnetic field vanishes somewhere
in a non-ideal diffusion region. In 3D magnetic configurations, the formation of localised
current sheets is the precondition for reconnection to occur. Indeed, nulls, separators,
quasi-separators, and braids are the natural locations where strong currents can develop:
at these locations, the field-line mapping can be either discontinuous (null points and
separatrices) or exhibits steep gradients (quasi-separatrices or braids), where stress
naturally accumulate driving the growth of intense electric currents.

Figure 1.9 schematically shows the different regimes of 3D magnetic reconnection,
as also outlined by Schindler et al. (1988). In particular, if the magnetic field vanishes
where the plasma is not ideal, namely at the dissipation region 𝐷𝑅, then, “0-B” mag-
netic reconnection occurs. On the other hand, “finite-B” reconnection evolves within
a non-vanishing guide field. Hesse & Schindler (1988) showed that in finite-B, global
reconnection (i.e. where the breakdown of magnetic connection occurs for plasma ele-
ments that lies beyond the non-ideal region), the electric field component parallel to the
magnetic field (𝐸∥) plays a crucial role. In particular they demonstrated that, defined

𝑈fl = −
∫

fl
𝐸∥𝑑𝑠, (1.38)

with 𝑠 denoting the arc length of the field line (fl), a finite-B reconnection process is
global if and only if𝑈fl is different than zero on a measurable set of field lines inside the
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Figure 1.9: General classification of the regimes of 3D magnetic reconnection. “0-B”
reconnection occurs when the magnetic field vanishes at the dissipation region 𝐷𝑅.
Otherwise, “finite-B” reconnection occurs. A finite-B reconnection is defined “global”
if𝑈fl in Eq. 1.38 is zero, otherwise the process is “local”. Adapted from Schindler et al.
(1988).

diffusion region 𝐷𝑅, defined as the region where the following condition holds:{
R = E + v × B,
B × (∇ × R) ≠ 0.

(1.39)

In other words, three-dimensional reconnection occurs when the parallel electric field is
non-zero (E · B ≠ 0) within the diffusion region 𝐷𝑅. Outside of this region, the electric
field is perpendicular to the magnetic field (E · B = 0). Although general reconnection
includes cases of magnetic diffusion by field lines slippage, it is possible to restrict the
definition to a “X-type singular reconnection”, where the magnetic field projected onto
the plane perpendicular to the field lines forms an X-point, likewise 2D reconnection



1 Introduction 29

(Priest & Forbes 1989; Hornig & Rastätter 1998).
The occurrence of magnetic reconnection is associated with a change in magnetic

helicity (𝐻) over time. The rate of change of magnetic helicity can be expressed (from
Eq.s 1.35, and 1.8) as:

𝑑𝐻

𝑑𝑡
= −2

∫
𝐷𝑅

E × B𝑑𝑉 = −2
∫
𝐷𝑅

𝐸∥𝐵𝑑𝑉 ∼ −2𝐸∥𝐵0𝑉𝑅 (1.40)

where 𝑉𝑅 is the volume of the diffusion region. Since magnetic reconnection and
diffusion only occur within the limited volume of 𝐷𝑅, which in turn is small because
at high 𝑅𝑚 the current layers are very thin, the total magnetic helicity is approximately
conserved. However, the process of three-dimensional reconnection is directly tied to
the small but significant changes in magnetic helicity that occur in this region.

1.4 Energisation and heating of the solar corona
Activity in the solar (and stellar, Testa et al. 2015) atmosphere, and especially in the
solar corona, is the response to the evolution of the underlying magnetic field. On global
scale, the emerging magnetic flux is modulated by an 11-year cycle (Hathaway 2015),
during which many characteristics of the solar activity, such as the sunspot number,
variate. The solar cycle is regulated by a solar dynamo mechanism (Charbonneau 2020),
sustained in turn by convective motions, differential rotation, and magnetic buoyancy.
Besides MHD theory is not needed to describe the solar interior (indeed hydrodynamics
together with radiative transfer rules plasma behaviour in the convective zone), is there
that plasma flows sustain currents, bring and generate magnetic flux and drive it to the
solar surface, resulting into a periodic change in magnetic field polarity and topology,
on a global scale, and on flux emergence, Sunspots formation, etc. on smaller scales
(Hudson 2010).

1.4.1 Flares, microflares, and nanoflares
In solar physics, the term ‘flare’ is generally ascribed to a “syndrome” of observed
phenomena, supposedly related by the same underlying mechanism of impulsive energy
release by magnetic reconnection (Hudson 2010). However, this definition is based
on a specific, although widely accepted, interpretation of the observations. The flare
phenomenon is defined as a brightening on the solar (stellar) atmosphere across the
electromagnetic spectrum that evolves over time scales of minutes to hours (Benz 2017),
and in particular in the chromospheric H𝛼 line and X-rays. The strength of a flare can be
determined by both the extent of the H𝛼 area and its X-ray brightness (Svestka & Cliver
1992). In the last case, the energy flux in the 1-8 𝐴̊ range is measured at the brightening
peak (Tanaka et al. 1983; Ohki et al. 1983; Tsuneta et al. 1984) using, e.g., GOES data
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(Warmuth & Mann 2016). The weakest flare (A class) must exceed 10−8 W m−2, while
the strongest flare (X class) can reach 10−4 W m−2.

From a physical perspective, flares are the most outstanding aftermath of magnetic
energy released in coronal loops guaranteed by the existence of multiple force-free states
as equilibrium solutions of the MHD equations in response to photospheric motions. The
evolution of a flare involves the reorganization of the loop’s magnetic field, acceleration
of non-thermal particles, chromospheric plasma ablation, and coronal flows (Hudson
2010).

In a commonly accepted scenario, coronal loops act as magnetic energy reservoirs.
They gain and store the energy injected as Poynting flux by photospheric motions at the
footpoints. The magnetic structure on the corona passively readjusts to slow photospheric
motions exploring a series of force-free equilibrium states on time scales much longer
than the loop’s Alfvén travel-time. As they reach the physical conditions prior to a flare,
coronal loops can store a highly twisted or sheared magnetic field with energy in excess
of the potential energy. The release of this excess can be accomplished by magnetic
reconnection. For instance, MHD catastrophes and instabilities (e.g., torus, kink),
reconnection breakout between sheared or oppositely directed collection of field lines,
and flux emergence can trigger a flare. Growing magnetic stresses lead to the breakdown
of field lines and, consequently, plasma and particle acceleration and, ultimately, heating,
at the expense of the magnetic energy (Priest 2014).

The evolution of a flare can be modelled by different phases (Jakimiec et al. 1992;
Reale 2007; Hudson 2011). The initial phase of a flare denotes the duration of impulsive
energy release, accompanied by intense non-thermal outcomes. Indeed, energy released
in the reconnection site initially propels high-energy particles and directly heats the
plasma by Ohmic dissipation. Heat conduction and non-thermal particles rapidly transfer
the released energy down to the lower atmosphere and transition region, brightening
HXR footpoints and, for example, H𝛼 ribbons. As soon as the magnetic energy is
released into heat, the gas pressure in the corona increases, as well as its hydrostatic
scale height: 𝜆𝑝 = 2𝑘𝐵𝑇/𝜇𝑔⊙ (where 𝑘𝐵 is the Boltzmann constant,𝑇 the temperature, 𝜇
the mean molecular weight, and 𝑔⊙ gravity acceleration). At typical flaring temperatures
(> 107 MK), 𝜆𝑝 is much larger than loop the structures by factors. As a consequence,
the corona drains mass from the chromosphere, which acts as a mass reservoir.

The manifestations of a flare as coronal loop brightening in the EUV band lag behind
the chromospheric gleaming. This is due to the delay in time between the swift energy
release and the time requested to increase the coronal density by chromospheric evapo-
ration. In this gradual phase, thermal emission (bound–bound transitions from plasma
with Maxwellian distribution) from the now dense (∼ 1012 cm−3) and hot coronal plasma
dominates. In the meantime, strong chromospheric and transition-region emission drives
cooling, as thermal conduction leads to an excess of radiation at transition-region and
chromospheric temperatures (Hudson 2010).
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Figure 1.10: Peak rate distribution function for hard X-ray bursts, based upon the
complete HXRBS dataset of events detected from the Solar Maximum Mission launch
to February 1985. The straight line corresponds to the power-law with a spectral index
of ∼ 1.8. Credit: Dennis (1985).

Solar flares show similar properties (such as the peak flux of the burst) scaling
systematically with the energy released (big flare syndrome, Kahler 1982). In particular,
flare frequency scales with energy as a power-law distribution:

𝑑𝑁

𝑑𝐸
= 𝐴 × 𝐸𝛼 (1.41)

in terms of the flare energy (𝐸), the power-law index (𝛼), and a normalization factor
(𝐴), dependent of the level cof activity of the sun (star). The power-law index 𝛼 ∼ 1.7,
(Drake 1971; Dennis 1985; Crosby et al. 1993), extends over several orders of energy
magnitude, as shown in Fig. 1.10. This is in line with the scale invariance expected
from self-organized criticality models.

The total energy of the strongest flares exceed 1032 ergs, while the weakest observed
feature-like flares, called ‘microflares’, are around 1026 ergs (Lin et al. 1984). Small
impulsive events, ascribed to microflares, have also been observed in the EUV band
since the 70s (e.g., Kahler 1982; Lites & Hansen 1977; Brueckner & Bartoe 1983).
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The observed spectrum has been hypothesised to scale down to nano-flare energies
∼ 1024 ergs. Those ‘nanoflares’ could arise from impulsive and localised bursts of
magnetic energy release via magnetic reconnection (Parker 1988), as a result of the
continuous shuffling of coronal loop strand footpoints (Parker 1983).

The relative contribution to the total energy power between small and large flares
critically depends on the power-law index 𝛼. In particular, the flatness (𝛼 < 2) of the
energy distribution radiated during a flare implies that the less energetic events, such
as micro- and nanoflares, contribute negligibly to the overall energy power, dominated
instead by the most energetic ones. Indeed, the total energy released over a given energy
range (from 𝐸min to 𝐸max) is (by integration of Eq. 1.41):

𝑊 (𝐸min, 𝐸max) =
∫ 𝐸max

𝐸min

𝑑𝑁

𝑑𝐸
𝐸 𝑑𝐸 =

𝐴

2 − 𝐴 [𝐸
−𝛼+2
max − 𝐸−𝛼+2

min ] . (1.42)

Enough energy to steadily power chormospheric and coronal heating, as well as the
acceleration of the solar wind, can be attained by nanoflare activity only with the power
law-index 𝛼 > 2 (Hudson 1991). Recent studies based on SDO/AIA data have found
a value of 𝛼 > 2 (e.g., Ulyanov et al. 2019; Purkhart & Veronig 2022; Bogachev &
Erkhova 2023), although the total energy released by nanoflares was estimated to be less
than the requirements for coronal heating.

Statistical analysis of decayless transverse oscillations (Nakariakov et al. 2021) ob-
served by SDO/AIA and SolO/EUI, as documented, e.g., in Lim et al. (2023), were
conducted. These oscillations were found to generate energies ranging from approxi-
mately 1020 to 1025 erg. Lim et al. (2023) demonstrated that high-frequency oscillations,
which produce significant energy flux and total energy, dominate the overall heating
contribution from oscillations. This result, grounded in the nanoflare heating theory,
emphasizes the vital role of high-frequency oscillations. Specifically, it was shown that
high-frequency transverse oscillations could play a key role in coronal heating compared
to their low-frequency counterparts. Moreover, the total energy flux generated by decay-
less oscillations was sufficient to heat the quiet Sun and was comparable to the heating
requirements of active regions.

1.4.2 The coronal heating problem
The coronal heating problem emerged after Grotian (1939) and Edlén (1943) found that
the emission lines observed during the 1869 total solar eclipse were not caused by a
newly proposed element, the ‘coronium’, but by highly ionized iron, thus demonstrating
that corona has a temperature of one or more millions K as compared with the under-
lying, 6000 K hot, photosphere. It is now widely accepted that the solar atmosphere
experiences a soft temperature rising across the chromosphere and a dramatic tempera-
ture enhancement across the transition region. Afterwards, Vaiana (1981) showed that
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most of the stars share the same soft X-ray coronal emission (Testa et al. 2015, for a
review).

Combining the energy loss rates by radiation and thermal conduction, the heat flux
required to power the corona is about 1-3× 105 erg cm−2 s−1 for the quiet Sun and a factor
of 100 more in active regions, scaling up by an order of magnitude in the chromosphere
(Withbroe & Noyes 1977; Katsukawa & Tsuneta 2002). As hotter active regions often
involve stronger magnetic fields, it is widely accepted that the magnetic field is the
dominant storage of energy heating the solar corona. The energy originates from the
convective turbulence of plasma occurring at and beneath the photosphere. These
motions constantly displace the footpoints of the pervasive magnetic fields.

In ideal-MHD (E = −v × B, where E is the electric field, B is the magnetic field and
v is the plasma velocity), the Poynting flux:

𝚽𝐵 =
𝑐

4𝜋
E × B, (1.43)

can be written in terms of the horizontal and vertical magnetic field components (𝐵ℎ
and 𝐵𝑣, respectively), the driver velocity 𝑣ℎ and the up/down-flows velocity 𝑣𝑣, oriented
horizontally and vertically, respectively (Parnell & De Moortel 2012):

Φ𝐵 = − 𝑐

4𝜋
𝑣ℎ𝐵ℎ𝐵𝑣 +

𝑐

4𝜋
𝑣𝑣𝐵

2
ℎ (1.44)

The strength of Φ𝐵 crucially depends on the combination of these four factors.
According to a possible scenario, magnetic fields are hypothesised to be confined

within intense kilo-G flux tubes, which are transported at a characteristic local velocity
on the order of kilometres per second. Assuming the magnetic field is inclined at an
angle of 20 degrees and the filling factor in the quiet Sun is 1% (yielding an average
field strength of 10 G), the resulting Poynting flux per unit area is approximately 2.5 ×
107 erg cm−2 s−1 (Parnell & De Moortel 2012). In both scenarios, the energy generated
by the displacement of magnetic footpoints appears to be more than sufficient to heat
both the chromosphere and the corona. The Poynting flux associated with the emergence
of a single kilo-G flux tube is estimated to be 2 × 1012 erg cm−2 s−1, assuming an
upflow velocity of 2 km s−1 and a filling factor of 6 × 10−7 (Thornton & Parnell 2011).
Consequently, in the quiet Sun, the Poynting flux due to the emergence of new magnetic
flux is approximately 106 erg cm−2 s−1, which is 25 times lower than the flux generated
by the horizontal motion of magnetic footpoints, indicating that footpoint motions serve
as the dominant energy source. Furthermore, by comparing the calculated magnitude
of Φ𝐵 with radiative losses and thermal conduction rates, we conclude that the Poynting
flux generated by horizontal photospheric motions at the magnetic footpoints supplies
sufficient energy to power the solar corona (Abbett & Fisher 2012).

Suppose a pure horizontal velocity v = 𝑣ℎ ℎ̂, the sign of the product in the first term
on the right-hand side of Eq. 1.44 determines the route of the travel of the energy
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flux, which can a priori, be positive or negative. Magnetic field lines are frozen into
the photospheric plasma and randomly move within convective cells. Field lines are
dragged by photospheric motions and tilt in the direction opposite to the plasma velocity
at the footpoints. This bending of field lines backward away from the footpoint trail
implies that the Poynting flux points always upward, directed to the corona, as shown
schematically in Fig. 1.11.

Bv

Bhvh

⃗B

Photosphere

θ

Figure 1.11: Schematic representation of a field line (𝐵ℎ, 𝐵𝑣) bending in the sense
opposite to the velocity driver 𝑣ℎ: the resulting Poynting flux product is positive. Adapted
from Priest (2014)

In general, all the tree elements listed above (𝐵𝑣, 𝑣ℎ, 𝐵ℎ) are determinant for the
heating efficiency in the corona, as they all contribute to the Poynting flux product.
Specifically, as discussed previously, the strength of the magnetic field in active regions
(𝐵𝑣) generally correlates well with the intensity of the heating itself. However, the
convective freedom at the photospheric footpoints of an active region coronal loop
appears to be the primary determinant of its brightness (Tiwari et al. 2017). Indeed,
braiding of field lines, powering heating by magnetic reconnection, can be quenched
if for instance strong umbra fields suppress magnetoconvection at footpoints, while a
combination of a strong umbra magnetic field at one footpoint and an intense penumbra
convective churning at the other footpoint determines sensibly hotter coronal active
regions loops (Tiwari et al. 2021; Venkataramanasastry et al. 2023).

Although typical vertical magnetic fields (𝐵𝑣 ∼ 10 G in quiet Sun, 𝐵𝑣 ∼ 300 G in
active regions) as well as speeds (about 1 km s−1) on the solar surface are well constrained
by observations, the value of 𝐵ℎ is difficult to determine, as it depends on the nature of
the heating mechanism itself. A time-averaged tilting angle of about 10 degrees was
predicted by Parker, despite that it may vary depending on the efficiency and frequency
of, e.g., magnetic reconnection in the corona. In fact, understanding the nature, location,
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and timing of magnetic energy release events is crucial because they can influence the
system by affecting the amount of injected Poynting flux and, ultimately, significantly
impacting the resulting plasma behaviour and observational results (Klimchuk 2015).

In the resistive-MHD framework (E = 𝜎j−v×B, where𝜎 is the electric conductivity),
the Poynting flux across a surface 𝑑𝑆 can be expressed as volumetric energy source as
follows:

𝑐

4𝜋
E × B · 𝑑S =

[
𝑗2

𝜎
+ v
𝑐
· j × B + 𝜕

𝜕𝑡

(
𝐵2

8𝜋

)]
𝑑𝑉. (1.45)

This expression (Priest 2014) suggests that the magnetic energy flux can contribute to
Ohmic heating (first term on the right-hand side), acceleration of plasma (second term),
and flux emergence (third term).

On the other hand, it is still highly debated on the nature of the mechanisms that
might lead the magnetic field to supply energy to the corona in the form of heating.
Although several processes have been proposed in the last decades, it is still unclear how
they cooperate to arrange the wild, complex behaviour of the solar atmosphere. Today’s
challenge is indeed to estimate quantitatively the relative importance of current models.
In this context, coronal loops appear as fundamental elements of the investigation to
grasp important physical aspects of several magnetic-stress-based heating mechanisms.

It is now clear that the coronal heating problem cannot be addressed without treating
the whole solar atmosphere as a highly coupled system (Parnell & De Moortel 2012).
Indeed, compared with chromospheric heating, coronal heating represents only a small
fraction of the energy that powers the solar atmosphere. For this reason, production,
transfer, and damping of energy should be treated comprehensively throughout the solar
atmosphere. To do that, the perpetual exchange of energy and mass between the various
layers and the dynamic plasma heating and cooling across the transition region should
be considered systematically.

Slow (long-timescale) motions result in a quasistatic stressing of the field, whilst fast
(short-timescale) motions generate waves. Therefore, the solar corona may be heated
both by dissipation of stored magnetic stresses (DC heating), resulting from quasi-static
stressing of the field by long time-scale motions, and by the damping of waves (AC
heating), generated, in turn, by short time-scale movements (Parnell & De Moortel
2012; Zirker 1993). The ultimate cause of heating is the same, i.e. Ohmic or viscous
dissipation in narrow regions. Indeed, the actual dissipation is expected to occur on
kinetic scales, since the Lundquist number is found to be very large (> 1010). It can be
generated in different ways, depending on which mechanism is more efficient, according
to, for instance, the morphology of the coronal magnetic structure.

1.4.3 AC heating
AC heating is based on the early suggestion of Biermann (1946) and Schwarzschild
(1948) that turbulence in the convection zone could produce (sound) waves, steepening
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into shocks as they propagate upward to the corona. As the magnetic field is the dominant
supply of energy, these waves must have an MHD nature. (Alfvén & Lindblad 1947).
In a uniform plasma of infinite extent, three fundamental MHD wave types, fast, slow,
and Alfvén waves, play key roles in energy transport and plasma heating (Arregui 2015;
Roberts 2000; Nakariakov & Verwichte 2005, for some reviewes). Fast waves (Cooper
et al. 2003; Nakariakov et al. 2004; Verwichte et al. 2006a,b) facilitate energy transfer
across magnetic surfaces and can resonantly couple with Alfvén and slow waves in
nonuniform plasmas, enabling the transfer of energy to smaller spatial scales. Slow
magneto-acoustic modes (Wang et al. 2021; Ofman et al. 1999) are essential in the lower
solar atmosphere for driving wave dynamics and are critical in nonlinear processes such
as shock formation and dissipation. However, slow waves are easily damp because they
rapidly turn into shocks, while fast modes are efficiently reflected at the transition region.
Alfvén oscillations of coronal loops (Kudoh & Shibata 1999; McIntosh et al. 2011) are
closely observed and analysed because they offer a unique method for probing the
internal structure of coronal loops through MHD seismology. Observational evidence
suggests that transverse MHD waves may carry sufficient energy to sustain the thermal
structure of the solar corona. Alfvén waves are therefore likely to be the relevant wave
modes carrying energy up to the corona. These waves are capable of transmitting energy
over large distances along magnetic field lines, with dissipation occurring primarily
through enhanced viscous and resistive effects in nonuniform plasmas. In particular,
Alfvén waves can steep into magnetic shocks, generating propagating current sheets,
or transverse wave modes can be converted to localised Alfvén modes, that resonate
in a loop within narrow frequency bands, (resonant absorption, Okamoto et al. 2015;
Antolin et al. 2015a). Phase mixing of Alfvén waves (Heyvaerts & Priest 1983) within
the solar corona is considered a viable mechanism for coronal heating, as it generates
transverse gradients where magnetic energy can be efficiently converted into thermal
energy. This process is highly dependent on the amplitude and period of the transverse
oscillations. Only recently has a complete measurement of the power spectrum for
transverse oscillations in the corona been obtained (Morton et al. 2016). AC heating
may be the dominant heating mechanism for outer corona and coronal holes, although
addressing this heating mechanism in nonuniform mediums remains challenging.

1.4.4 DC heating
Considering the remarkable complexity of the chromospheric and coronal magnetic
fields, along with the fragmentation and perpetual motion of countless photospheric
footpoints, coronal structures are in a state of restless change and interaction. This
dynamic environment makes reconnection in nanoflares (namely DC heating) a nat-
ural mechanism for heating the solar corona. DC heating must involve both storage
and impulsive release of magnetic energy. In solar active regions, the energy is pre-
sumably stored over timescales longer than end-to-end Alfvén travel time of closed
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magnetic structures. A reasonable general assumption is that the magnetic field evolves
quasi-statically through a sequence of equilibria, slowly changing because the coronal
footpoints are rigidly line-tied to the low-beta photospheric plasma. As the coronal field
moves through these equilibria, energy is injected by the motions and is then stored.
Observations and numerical experiments provide evidence that the evolution of coronal
loops is strongly influenced by photospheric motions (Chen et al. 2021). For instance,
photospheric magnetic field exhibit remarkably complex patterns with clumpy morphol-
ogy, organized into clusters of elemental flux tubes. It influences the coronal field
structuring into several and distinct magnetic strands, bright in the EUV band, reflecting
the underlying granular pattern.

The coronal magnetic field must be driven towards a stressed state, which will be a
non-potential configuration and then converted into heat by formation and subsequent
dissipation of current sheets. Currents sheets may be formed at separatrices, after
interaction of topologically distinct magnetic flux tubes (generated, e.g., by magnetic
field dragging at footpoints or by flux emergence, Priest et al. 2002). For instance,
flux emerging into the photosphere may form new coronal loops linking the new flux
footpoint to former ones. The global restructuring of the pre-existing magnetic field is
allowed by magnetic reconnection. Flux cancellation on the photosphere also concern
magnetic reconnection as antecedently disconnected magnetic filaments must reconnect
to cancel. Flux emergence and cancellation can, e.g., explain some flares (Heyvaerts
et al. 1977), X-ray bright points (Priest et al. 1994), and jets (Shibata et al. 1992).

Current sheets have key-role during the non linear evolution of MHD instabilities
(such as kink instability) in out of equilibrium magnetic systems, as will be widely
discussed in the following section. Indeed, since the coronal plasma is a nearly per-
fect conductor, magnetic reconnection can only occur within narrow sheets of current,
allowing for field lines connectivity change and release of magnetic energy.

Currents sheets might also be the inevitable result of braiding of field lines (Parker
1972, 1988, 1994). Parker proposed that the corona must generate infinitely sharp
current sheets (tangential discontinuities), even when both the magnetic flux and flow
in the photosphere remain continuous. Indeed, footpoints motion can anyway force
field lines to reconnect. In simple words, tangling and twisting of the coronal magnetic
strands can not be avoided, according to photospheric observations. The field must
therefore reconnect in order to prevent an infinite build-up of stress. This produces
unavoidable plasma heating (Klimchuk 2015). For example, Close et al. (2004) applied
a magnetic feature tracking algorithm to monitor magnetic features observed in high-
resolution MDI magnetograms of the quiet Sun. Their findings indicated that all the
coronal magnetic flux in the corona is recycled approximately every 1.4 hours, i.e.,
magnetic field connectivity is continually changed by breaking and reconnection of field
lines.

Similarly, current-sheets production can be efficiently enhanced by the presence of
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countless, small magnetic sources on the photosphere, contributing to the complexity
of the “magnetic carpet” topology in the solar corona. These current sheets, although
uniformly spreading over the loops cross-section, fill a small fraction of its volume
and evolve over short time scales. Indeed, equating the order-of-magnitude estimate
of Ohmic dissipation in a 𝐿3 active region box (left-hand side of Eq. 1.46) with the
Poynting flux energy input across the surface 𝐿2 (right-hand side of Eq. 1.46):

𝑗2

𝜎
𝐿3 =

𝑐

4𝜋
𝑣𝐵2 𝐿2, (1.46)

gives current densities as strong as 107 Fr s−1 cm−2, implying concentration of magnetic
field gradients in a remarkably tiny region of space.

Reconnection can directly heat the plasma by Ohmic heating or induce the generation
of shocks, that indirectly release heat by viscous damping. Some reconnection models
(e.g., Petschek 1964) predict that most of the heating is produced after shocks, while in
other reconnection scenarios Ohmic heating might dominate (e.g., Fuentes-Fernández
et al. 2012). The specific ongoing reconnection regime as well as the plasma properties
are believed to determine the specific mechanism of energy conversion.

Active regions with strong magnetic field experience a state of restless micro-flaring
(1027 erg) or nanoflaring (1024 erg) activity where small-scale current sheets are con-
tinually generated and dissipated into heat. Reconnecting current sheets as well as
propagation/dissipation of waves in the complex coronal environment can also be de-
scribed in terms of MHD turbulence (Zhdankin et al. 2014; De Moortel & Nakariakov
2012; McIntosh 2012; Rappazzo et al. 2007), as suggested by observations of coronal
nonthermal line broadening, indicating the presence of unresolved, turbulent flows of
about 30 km s−1 (Brooks & Warren 2009). On the other hand, as pointed by Klimchuk
& Antiochos (2021), current sheets formation in the corona do not generally involve
a traditional turbulent cascade (Kolmogorov 1941). Therefore, the anyway complex
structure of the solar coronal do not straightforwardly bears a direct relationship with
turbulence.

Polito et al. (2019) investigated high-resolution observations of the Fe XXI line using
the Interface Region Imaging Spectrograph (IRIS, De Pontieu et al. 2014). The spec-
tral characteristics of this high-temperature line are critical for distinguishing between
different mechanisms responsible for its significant broadening (thereby providing new
insights into energy transport processes in solar flares). To explore these mechanisms,
they tested various scenarios—such as the superposition of flows from different loop
strands—by forward-modeling the FeXXI line profile using hydrodynamic simulations
of multithreaded flare loops with the one-dimensional RADYN code Carlsson & Stein
(1992, 1997). Their findings indicate that reproducing both broad and symmetric line
profiles is challenging when considering only the superposition of flows (Antonucci et al.
1986). This suggests that additional processes may be necessary to explain the observed
excess line broadening during solar flares, including the superposition of unresolved
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flows with various Doppler-shifted components, acceleration of ions perpendicular to
the magnetic field due to Alfvén wave propagation, departures from ionization equilib-
rium resulting from high temperatures, and isotropic turbulence (McKevitt et al. 2024).

1.5 Physics of coronal loops

1.5.1 General properties

As anticipated in the section 1.2, coronal loops are relatively dense, arc-like magnetic
structures that stand out in the EUV and X-ray images of the Sun for their brightness,
as compared, e.g., to the quiet-Sun background. They fill the magnetic skeleton of
the lower solar corona with a tenuous (𝑛 ∼ 109 cm−3) and hot (𝑇 ∼ 106 K) plasma.
They are also acknowledged as “building blocks” of this layer where the emergent
magnetic field is typically organised in a network of topologically closed structures
(Reale 2014). Indeed, their semicircular morphology, running aground the photosphere
by their footpoints, evoke the typical, topologically close, structuring of magnetic field
lines produced by underlying, opposite-polarity, magnetic sources. Moreover, because
of the high magnetic field thermal insulation, the fully ionized coronal plasma moves
and transports thermal energy mostly along the magnetic field lines. That, in turn, makes
these magnetic flux tubes isolated from the surroundings.

Coronal loops are observed in the corona over a wide range of dimensions (from
1-10 Mm bright points to 100 Mm giant arches). The typical, active-region coronal loop
length ranges from 10 to 100 Mm. In addition, the density varies from ≲ 108 cm−3

(difficult to detect) to 1012 cm−3 in flaring coronal loops. Bright active region coronal
loops have a density around 1010 cm−3 (Reale 2014).

Coronal loops are anchored to the underlying chromosphere and, further down, to
the photospheric layer where the plasma beta parameter is high (𝛽 ≫ 1). For this reason,
the loops footpoints are dragged by photospheric plasma motion, which in turn might be
highly structured. The typical strength of the magnetic field in the photosphere is found
to be a few hundred G in active regions (Ishikawa et al. 2021). By ascending toward the
corona, the pressure decreases, the magnetic field lines progressively expand, and the
field intensity decreases, keeping the magnetic flux conserved. The greater expansion
rate is expected just below the thin transition region dividing the chromosphere to the
upperlying corona (Gabriel 1976b). There, the typical coronal magnetic field strength
is about 10 G (Long et al. 2017). Nevertheless, in active regions the magnetic field can
exceed 30 G (e.g., Van Doorsselaere et al. 2008; Jess et al. 2016; Brooks et al. 2021) .
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Classification

The first X-ray observations of coronal loops suggested an early classification based on
their morphology (bright points, active-region loops, and large-scale structures, Vaiana
et al. 1973b). Observation of coronal loops in different EUV and X-ray spectral bands
showed evidence of three classes of loops (Reale 2014), branched according to the
temperature regimes, that might be governed by different physical processes:

• “Cool loops” are primarily observed in UV spectral lines, corresponding to tem-
peratures between 0.1 and 1 MK;

• “Warm loops” are most effectively detected by EUV imagers, confining plasma at
temperatures approximately between 1 and 1.5 MK; Their temperature is found to
be distributed uniformly along the length while density appears to be higher than
expected from hydrostatic equilibrium.

• “Hot loops” are typically identified in the X-ray spectrum and in high-temperature
EUV lines, with temperatures reaching or exceeding 2 MK.

Global morphology

Inferring the shape of a corona loop is not a trivial task. Indeed, the reconstruction
of their magnetic field skeleton can be done rigorously under a very restrictive set of
conditions, such as strong local fields (White et al. 1991). Assuming a semicircular
shape can be a useful approach to approximately estimating the length of the loop. By
deprojecting the distance between the loop footpoints, the diameter of the arc can be
straightforwardly determined. Deviations from circularity have negligible impact on the
evolution of the confined plasma as it is channelled along the magnetic field regardless
of the shape of the field lines.

Coronal loops cross-section is found to be fairly constant along their length on the
corona (while it tapers across the TR, Gabriel 1976a). Indeed, loops typically exhibit
only a slight increase in width at their midpoints compared to their footpoints, whereas a
bipolar field configuration would predict a more significant expansion factor. This could
be explained, e.g., by the presence of significant twisting (or braiding of a bundle of
unresolved thin loops) of the magnetic field lines or by certain temperature distributions
across the loop, making the loop cross section appear constant in EUV band (Peter
& Bingert 2012). Moreover, Klimchuk et al. (1992) found evidence of modest width
variations along coronal loops, suggesting an approximately circularly shaped cross
section. In particular, TRACE (Aschwanden & Nightingale 2005) and Hi-C (Fuentes
et al. 2006; Brooks et al. 2013; Morton & McLaughlin 2013) warm loops, as well as hot
loops (Reale et al. 2011) observations suggest a preferred spatial scale near 1500 km.

In general, the presence of distinct loops, rather than homogeneous and fuzzy X-
ray/EUV emission, indicates a type of collective behaviour that differs from what is
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observed in the diffuse corona. It raises the question: Are all events initiated by a single
source, or do they follow an avalanche-like process where one event triggers another,
leading to a chain reaction? (Klimchuk 2015).

Fine structuring

Coronal loops are observed to be organised into clusters of numerous strands (Gomez
et al. 1993), following a collective behaviour and hosting the elementary processes
for loop ignition. The term ‘strand’ is closely associated with the fragmentation of
magnetic flux in the photosphere, but reconnection in the corona can lead to much
greater fragmentation of the field. Moreover, the temperature and density (and thus the
brightness) of a magnetic strand, which is created through reconnection, are determined
by the heating itself. Such strands can also efficiently mix as a consequence of turbulence,
generated, e.g., in the presence of Kelvin-Helmholtz instabilities around oscillating
coronal loops (Magyar & Van Doorsselaere 2016).

As coronal loops commonly exhibit strong magnetic fields of the order of 10 G
or more (Yang et al. 2020; Long et al. 2017; Brooks et al. 2021), and the coronal
plasma is nearly ideal, transport of matter across the field is strongly inhibited. In other
words, the magnetic field confines the plasma within the flux tubes. For this reason,
the plasma that fills each thin fibril may evolve independently from the surrounding
environment because of the strong insulation provided by the magnetic field. The
plasma is thus strongly funnelled along the field lines and is also thermally isolated from
the surroundings (Rosner et al. 1978b; Vesecky et al. 1979). Moreover, since magnetic
forces are much stronger than gravity in the corona, the latter will effectively act only
along the field lines.

Direct and indirect evidence for loop fine structuring has been inferred over the years.
For instance, the different loops fuzziness inferred at different coronal temperatures
(Tripathi et al. 2009); optical limb observations of dense and cool, 500 km wide, “coronal
rain” (Antolin et al. 2015b) down-falling along field lines (Antolin & van Der Voort
2012); high resolution observations with normal-incidence telescopes (Brooks et al.
2012) as well as the Hi-C sounding rocket (Brooks et al. 2013); the determination of
line-of-sight emission measure distributions compatible with loops thermal structuring
extending over a broad temperature range of temperatures (Del Zanna 2013), are all
signatures of coronal loops fine structuring into many strands.

Coronal loops strands exhibit a range of sizes and magnetic-field strengths, although
the exact distribution shapes are not well established. Several studies (Solanki 1993, for
a review) indicate a clustering of values around a characteristic size of approximately
150 km or below (Beveridge et al. 2003; Cargill & Klimchuk 2004; Vekstein 2009) and
a characteristic strength of about 1500 G (“kilogauss flux tubes”) in the photosphere.
This component accounts for only about 10% of the coronal magnetic field, since most
of the turbulent field closes off in the photosphere or chromosphere. Elemental kG flux



1 Introduction 42

tubes are confined by the dense photospheric plasma but expand rapidly with height,
becoming volume-filling in the low-beta corona.

From the modelling side, the magnetic carpet scenario naturally conceives loops
substructuring into small-scale flux tubes (“flux tube tectonics model”, Priest et al. 2002).
Earlier models of monolithic loops in hydrostatic equilibrium failed in reproducing the
uniform filter ratio of TRACE warm loops (Lenz et al. 1999). Reale & Peres (1999)
tackled the issue superimposing several, static, thin strands at different temperatures,
still occurring in inconsistencies with observation, such as larger loop cross sections. As
commonly invoked in the framework of coronal heating by nanoflares (Parker 1988), the
convolution of hydrodynamic, independent, and impulsively heated coronal loop strands
approached TRACE observations, reproducing both the spatial and temporal properties
of the observed loops (e.g., Guarrasi et al. 2010).

1.5.2 Loop Scaling Laws
The Skylab mission (e.g., Vaiana et al. 1973a; Tousey et al. 1973), along with subsequent
missions, observed that many X-ray-emitting coronal loops remain largely unchanged
for duration, significantly exceeding their cooling times by radiation or thermal conduc-
tion. This suggests that, for the majority of their lifetimes, these loops can be globally
characterised as systems in metastable equilibrium (Rosner et al. 1978b).

In 1D descriptions of monolithic coronal loops in thermal equilibrium, the temper-
ature gradient dramatically increases in the transition region (the temperature suddenly
increases from a few thousands to millions of Kelvin degrees), subsequently vanishing
at the apex. Thermal equilibrium holds as soon as balance between coronal heating
(𝐻 > 0), radiative losses (𝑅 < 0), and thermal conduction (𝐶 < 0) is preserved over the
whole coronal loops length:

𝐻 + 𝑅 = 𝐶. (1.47)

In the chromosphere, both 𝑅 and 𝐻 are large, but their differences are small, resulting
in a gentle change in temperature over space.

Optically thin radiative energy losses are very high in the transition region. Infact,
their temperature-spectrum peaks between 104 and 106 K. Moreover, the relatively high
density, as compared with the coronal plasma, makes radiative losses even more efficient.
The energy lost in the TR is supplied by thermal conduction. The steep temperature
dependence of the Spitzer thermal conduction (conductive flux: 𝐹 (𝑧) ∝ 𝑇 5

2 𝑑𝑇
𝑑𝑧

) therefore
determines the abrupt temperature inflation throughout the transition region.

Up in the corona, thermal conduction efficiently transports heat downward from the
temperature maximum, with a small temperature gradient.

Rosner et al. (1978b) developed a model for coronal loops in hydrostatic equilibrium.
They considered the steady-state energetics of a coronal loop structure as described by
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Figure 1.12: Schematic temperature variation with height of a monolithic loop through-
out chromosphere, TR, and corona; as also reproduced by Priest (2014). The relative
relevance of thermodynamic processes, including thermal conduction (C), radiative
losses (R), and heating (Q), changes across the three different layers.

a local energy balance equation of the form:

𝐻 + 𝑅 = 𝐶 + ∇ [(𝐸𝑘 + 𝐸ℎ) · 𝑣 + 𝜌 · 𝑣] − 𝐹𝑔 · 𝑣, (1.48)

where the second and last terms on the left hand side indicate the enthalpy flux and the
work done by gravity, respectively. Assuming several practical simplifying assumptions,
such as, symmetry about the apex, a constant cross section, a length much shorter than
the pressure scale height, uniform heat distribution along the loop, and minimal thermal
flux at the base of the transition region, they integrated the equation over the loop volume
and obtained the energy balance relation for the loop as a whole and further derived the
following scaling laws (in c.g.s. units):

𝑇6 = 1.4(𝑝𝐿9)1/3, (1.49)

𝐻−3 = 3𝑝7/6𝐿
−5/6
9 . (1.50)

Although failing in describing, e.g., hot, unstable loops (Wragg & Priest 1981), scaling
laws still remain a simple starting reference to interpret equilibrium coronal loop features.
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1.5.3 Monolithic loops brightening and dynamics
A key result of 1D hydrodynamic models is the simple description of the plasma be-
haviour in a magnetic flux tube during an impulsive coronal heating event, starting from
an initially cool, low-density, equilibrium state with no EUV or X-ray emission (Cargill
& Klimchuk 2004; Klimchuk et al. 2006; Reale 2007). In particular, the evolution of an
impulsively heated loop (or strand) can be divided into simple phases (Jakimiec et al.
1992; Reale 2007), listed below, and schematically shown in figure 1.13.

I. Heating

During this phase, the heat from the impulsive event is rapidly conducted along the
magnetic field with thermal conduction timescales, raising the temperature of the entire
strand to a peak level. Density and emission show instead minimal changes: the strand
remains underdense compared to static equilibrium predictions. The plasma in this phase
can be hotter than 4 MK (Cargill & Klimchuk 1997). Due to the low plasma density in
the loop during this period, the emission is very weak, making the detection of such a
hot plasma challenging. Reale et al. (2011) identified thin, high-temperature strands of
around 10 MK in coronal active regions using SDO/AIA. Bradshaw & Klimchuk (2011)
argued that nonequilibrium ionisation effects may suppress the emission lines from this
hot plasma, potentially rendering them invisible.

II. Evaporation

As the impulsive event continues to heat, the temperature remains relatively stable, but
the chromosphere becomes overheated and expands, leading to the evaporation of plasma
with timescales comparable with the isothermal sound crossing time (𝜏𝐼 𝐼 , Eq. 1.51).

𝜏𝐼 𝐼 =
𝐿√︁

2𝑘𝐵𝑇/𝑚
. (1.51)

This evaporated plasma rises and fills the strand. During this phase, the emission
increases rapidly, and the strand becomes denser, although it still remains underdense.

III. Conductive cooling

Once the impulsive event concludes, the plasma begins to cool down by conduction with
the time scale 𝜏𝐼 𝐼 𝐼 , shown in Eq. 1.52 (Cargill & Klimchuk 2004).

𝜏𝐼 𝐼 𝐼 =
3𝑛𝑘𝐵𝑇𝐿2

2
.
7𝑘𝑇 7

2
(1.52)
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Coronal emission initially peaks but then starts to decline, while the density continues
to rise. Radiative cooling effects become more significant until radiative and conductive
cooling are balanced. Observations indicate that hot loops (with temperatures greater
than 2 MK) are typically underdense (Porter & Klimchuk 1995), which aligns with the
model of loops composed of multiple impulsively heated strands in Phases I, II, and III.

IV. Radiative cooling

The loop eventually appears overdense as radiative cooling becomes dominant, causing
the density to decrease gradually at first (with a typical timescale 𝜏𝐼𝑉 , see Eq. 1.53) until
the temperature drops enough to trigger catastrophic cooling.

𝜏𝐼𝑉 =
1019𝑘𝐵𝑇

1
2

𝑛
. (1.53)

Warm EUV loops (with temperatures around 1-2 MK) are observed to be overdense
relative to equilibrium models and exhibit a narrow temperature range (Warren et al.
2008). These loops are believed to cool from a hotter state (Warren et al. 2002), and
remain overdense (in Phase IV) for an extended period (Klimchuk 2006).
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Figure 1.13: Left plot: schematic temperature (T, solid line), X-ray emission (i.e. the
light curve, LC, dashed line) and density (n, dotted line) evolution of a loop strand
ignited by impulsive heating, as also shown by Reale (2007). The strand evolution is
divided into four phases (I, II, III, IV), also described in the diagram on the right-hand
side in therms of temperature vs. density variations (Jakimiec et al. 1992), including the
case of a long-heated loop (dashed line, Reale 2007).



1 Introduction 46

1.5.4 Coronal loops heating
Observations and numerical experiments provide evidence that the evolution of coronal
loops is deeply influenced by photospheric motion. The coronal magnetic field must be
driven toward a stressed state, which must correspond to a non-potential configuration.
For instance, footpoint rotation may lead the magnetic structure to twist and gain mag-
netic energy in excess. While magnetic energy is stored, the flux tube could potentially
be subject to strong stresses that may eventually trigger fast magnetohydrodynamic in-
stabilities, such as the kink instability (Hood et al. 2009) or the tearing mode instability
(Del Zanna et al. 2016), or lead to long-lasting Ohmic heating (Klimchuk 2006).

Heating and brightening of coronal loops may be driven by ‘storms’ of impulsive
events (Klimchuk 2009; Viall & Klimchuk 2011), multiple localised instances of the
magnetic field relaxation. The irregular photospheric motions, as well as a wide range
of magnetohydrodynamic instabilities, may lead the magnetic structure to develop fast
reconnection and to produce heat. A very compelling body of evidence now supports
magnetic reconnection as the key element to start the process of large-scale energy
release (Hood et al. 2009).

The energy released by several localised reconnection events can be predicted by
Taylor’s dissipation theory (Taylor 1974), which was first applied to reverse-field pinch
devices in plasma laboratories (Taylor 1986) and then extended to the coronal environ-
ment (Browning & Priest 1986). According to Taylor’s theory, a turbulent, resistive
plasma can rapidly reach a minimum-energy state. During the process, the topology of
the magnetic field changes via reconnection, but magnetic helicity is conserved.

Magnetic field lines may become braided around each other, creating current sheets
whose dissipation leads to nanoflare heating at numerous small locations. If the pat-
tern of small-scale variations is not uniform along a large-scale field, then a force-free
equilibrium field must contain current sheets. In simpler terms, a smooth equilibrium is
possible only when field variations involve a straightforward twist from one footpoint to
the other. However, more complex configurations, like braided tubes, inevitably result
in the formation of current sheets, according to (Parker 1972). A broader interpreta-
tion of Parker’s hypothesis is that when the normal component of the magnetic field
is imposed on the boundary, along with the mapping of field lines from one boundary
to another, the resulting force-free field generally contains current sheets. (Klimchuk
et al. 2023) suggested that such fields, subjected to continuous driving at the bound-
aries, will initially develop current sheets of finite thickness: only when they reach a
critical shear, they spontaneously collapse and reconnect, consistently with the heating
requirements estimated for active regions. The subsequent evolution involves resistive
relaxation, characterised by decaying turbulence and the formation of a complex array
of current sheets dispersed throughout the domain. As the magnetic Reynolds number
increases, the global reconnection rate across all diffusion regions continues to grow due
to fragmentation, involving multiple or recursive reconnections. Ultimately, this process
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linear—it can be shown that the j! B force never takes the form of a gradient, and
therefore cannot be balanced locally by a pressure gradient (Parnell et al. 1997).

5.5 Line-tied magnetic fields without null points

5.5.1 Topological dissipation

As described in Sect. 5.1–5.3, when a magnetic field contains topologically distinct
flux systems, partitioned by separatrices, an ideal evolution from one smooth
equilibrium to another is not always possible and instead—in the absence of
reconnection—current sheets form at null points and along separatrices. However,
Parker (1972, 1979, 1989, 1994) went a step further by arguing that current sheets
might also form during the evolution of magnetic fields without any separatrices,
but with a complex winding of their magnetic field lines—and may therefore
possibly contribute to coronal heating (Fig. 29).

He suggested that such a configuration cannot, in general, adjust to a new smooth
force-free equilibrium in response to finite-amplitude footpoint motions, but should
instead evolve towards a configuration containing tangential discontinuities of B, or
current sheets. The formation of these current sheets and subsequent rapid
reconnection he called topological dissipation, since it is the field line topology
(winding or ‘‘braiding’’) that is responsible for the formation of the current sheets.
Relentless motions of the photospheric footpoints of coronal field lines implies that
the field is continually responding by reconnecting and converting magnetic energy
into heat, which offers a way to heat the solar corona, especially active regions.
Since it was proposed, this idea has stimulated substantial debate, with many
different approaches used to attempt to prove or disprove the hypothesis. This
became known as the ‘‘Parker problem’’. Here we briefly summarise relevant
results, and direct the reader to the review by Pontin and Hornig (2020) for more
details.

Fig. 29 The effect on a an initial field of b twisting and c braiding motions
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Figure 1.14: Schematic view of the magnetic field evolution, from a uniform, potential
state (left picture), by photospheric motions, resulting in twisting (center) or more
complicate braiding (right) of field lines. Credit Pontin & Priest (2022)

untangles the field lines, leaving behind two weakly twisted flux tubes with opposite
twists.

1.5.5 The nanoflares scenario
In the corona, the magnetic field might become unstable under resistive modes as it is
slowly forced by photospheric motions to explore a series of non-linear force-free states.
In conditions of high magnetic stress, the field must reconnect and relax towards a linear
force-free state, ∇×B = 𝛼B, with uniform 𝛼 (Woltjer 1958; Heyvaerts & Priest 1983). In
particular, magnetic energy is found to be released in the corona throughout a widespread
range of events that occur from large (flares, ∼ 1030 erg) down to medium (microflares,
∼ 1027 erg) scales (e.g., shown by Priest 2014). It has been suggested that the same
mechanism, operating on even smaller scales, could be responsible for maintaining
the one-million K diffuse corona, through so-called ‘nanoflare’ activity (Parker 1988).
Parker originally conceived nanoflares as bursts of magnetic reconnection, coining the
term based on observations of localised brightenings that were estimated to contain
approximately 1024 erg. Today, the term ‘nanoflare’ is generally understood to refer to
an impulsive energy release on a small cross-field spatial scale without regard to the
physical mechanism (Klimchuk 2015).

In the original paper, Parker (1972) considered infinitesimal departures from a uni-
form field between parallel, perfectly conducting plates. He argued that, if the pattern of
small-scale variations is not uniform along the large-scale field, then the field cannot be in
magnetostatic equilibrium. In other words, equilibrium exists only if the field variations
consist of a simple twist extending from one footpoint to another. Counter-arguments
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have been presented demonstrating that tangential discontinuities cannot form as a re-
sult of smooth boundary motions. For example, Van Ballegooijen (1985) argued that a
smooth equilibrium should always be attainable after an infinitesimal perturbation to a
uniform magnetic field and demonstrated that discontinuities in the magnetic field, such
as current sheets, can only arise if the velocity field at the photospheric boundary itself
exhibits discontinuities in space. Similarly, Bineau (1972) proved that smooth force-free
fields exist in the vicinity of the potential field. Despite computational studies of the
Parker problem not conclusively show the formation of tangential discontinuities, they
indicate that as boundary perturbations are progressively increased, the corresponding
equilibrium in the domain develops current layers that become increasingly thinner and
more intense (Rappazzo & Parker 2013). As noted in Pontin & Hornig (2015), in a force-
free field, the parameter 𝛼 remains constant along the magnetic field lines (B · ∇𝛼 = 0).
Therefore, if the field line mapping between two line-tied boundaries contains small
perpendicular length scales, so must 𝛼. Since 𝛼 =

j·B
𝐵2 , it follows that 𝑗∥ = 𝛼𝐵, meaning

that 𝑗∥ must exhibit the same perpendicular length scales as 𝛼 and the field line mapping.

Heating varies significantly over time when viewed from the perspective of individual
magnetic field lines. A key aspect of nanoflares is how often they recur on a given strand.
This repetition rate greatly impacts both the immediate and the time-averaged properties
of the plasma. The crucial factor is the relationship between the heating frequency and
the plasma’s cooling time. Many coronal loops observations can be interpreted by a
“storm” of low-frequency nanoflares. In this scenario, each strand within the loop bundle
is heated only once during the loop’s lifetime, but the heating occurs at different times
for different strands (Schmelz & Winebarger 2015). This low-frequency heating may
be responsible for the brightening of distinct coronal loops. Indeed, if the frequency of
reconnection events rises sharply, highly energetic nanoflares and a significant increase in
temperature occur. As these events extract a high amount of magnetic energy, footpoint
driving requires more time to rebuild the stress, resulting in a longer “recharging” time.
This allows the plasma to cool completely before the next nanoflare storm occurs. In
particular, the shorter storm duration the more nearly isothermal are coronal loops,
i.e. they exhibit a narrower temperature distribution compared to those produced by
longer-duration storms.

The mechanism of magnetic energy release must remain inactive until significant
magnetic stresses have built up. This principle applies not only to coronal heating but
also to flares, coronal mass ejections, jets, spicules, and other similar phenomena. This
scenario implies that there are critical conditions necessary for energy release. One
possibility is that significant energy release does not occur until the magnetic fields are
sufficiently misaligned, reaching a critical misalignment angle between adjacent strands.
Another possibility involves a critical twist related to the kink instability (Mikic et al.
1990; Galsgaard & Nordlund 1997; Bareford et al. 2011). This could happen at the
level of an individual strand or a whole loop. When a twisted loop experiences resistive
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Figure 7. A unifying picture that explains both the di(use component of the corona and distinct loops.

Figure 7 suggests a unifying picture that attempts to explain both the diffuse component
of the corona and observationally distinct coronal loops. Over much of the corona, nanoflares
occur at intermediate to high frequency, and temperature variations are small. Footpoint driving
replenishes the magnetic energy extracted by each modest event in near real time, producing
a statistical steady state. This is the diffuse corona. (The diffuse cores of some active regions
may be better explained by low-frequency nanoflares, as discussed in §7.) At certain places, the
occurrence of reconnection events increases dramatically. They cluster to form highly energetic
nanoflares, and temperatures increase tremendously. Because much more energy has been
extracted from the field, it takes more time for footpoint driving to rebuild the stress, i.e. the
‘recharging’ time is longer. The plasma is able to cool fully before subsequent nanoflares return.
This is the low-frequency heating that produces distinct loops. Note that some authors use
the term ‘unresolved corona’ instead of diffuse component. We avoid this because the diffuse
component and distinct loops are both composed of spatially unresolved strands.

This scenario suggests the existence of critical conditions for energy release, such as a critical
misalignment angle between adjacent strands. Lopez Fuentes & Klimchuk [33,38] have studied
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Figure 1.15: Two possible scenarios of solar plasma heated by nanoflares. First row: a
diffuse corona heated by high frequency nanoflares (first and second columns). Small
and rapid temperature variations (third column) generates a narrow differential emission
measure (fourth column, DEM). Second row: a coronal loop heated by a serendipitous
nanoflare storm. The strong temperature variation produces a broad DEM spectrum.
Credit. Klimchuk (2015, 2017)

internal kinking, the initially smooth distribution of currents rapidly transforms into
numerous current sheets scattered throughout the loop volume (Hood et al. 2009). This
illustrates a situation where the individual events in a nanoflare storm are triggered by
a single source rather than by an avalanche process. Additionally, kinking one loop or
strand can potentially trigger the kinking of another nearby, as will be discussed later.

The spatial extent of nanoflares is too small to be clearly observed. Moreover, because
of their nature, they must overlap, making them challenging to detect as individual
events. Despite that, although undetectable when first proposed (Parker 1988; Antolin
et al. 2021), observational evidence of such small events has been growing (Mondal
2021; Vadawale et al. 2021). Although small bursts attributed to nanoflares have been
observed at various wavelengths within the upper transition region or lower corona (e.g.,
Testa et al. 2013, 2014; Tian et al. 2014), and high temperatures of 10 MK have been
indirectly deduced from X-ray observations (e.g., Reale et al. 2011; Testa & Reale 2012;
Ishikawa et al. 2017), there has been no definitive evidence of the widespread nanoflare
activity as hypothesised by Parker. Evidence from EUV and X-ray observations suggests
their existence (Reale 2014; Cargill et al. 2015). RHESSI (Lin et al. 2003) hard X-ray
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observations observed many thousands of microflares (e.g. Christe et al. 2008; Hannah
et al. 2008), with further information provided by instruments with higher sensitivity
(e.g., Krucker et al. 2014; Glesener et al. 2017).

1.5.6 Why is coronal heating problem a problem?
Coronal plasma is extremely tenuous as compared to the underlying (chromospheric and
photospheric) layers of the solar atmosphere. The low density causes the plasma to be an
efficient heating conductor at high temperatures. This leads localised heating events to
rapidly spread along the flux tubes, and the plasma to swiftly become almost isothermal
inside each magnetic fibril. “Smoking guns” of possible impulsive heating events are
therefore difficult to detect.

Direct heating in a tenuous plasma is anyway hard to detect because the coronal EUV
emission scales as the square of the density. Density enhancements along loops field lines
are driven by chromospheric evaporation, in response to coronal heating. They therefore
occur only after thermal energy has been locally deposited and conducted toward loops
footpoints. The further longer (sound) time scales involved in the plasma ablation from
the chromosphere make the swift reconnection features vanish in post-nanoflare phase.

For the same reason, also the conditions prior to the energy release are poorly
observationally constrained, as hidden in a tenuous and faint coronal plasma. For
instance, clear evidence of field line braiding is not commonly observed in filamentary
coronal loops. Indeed, as ordinarily observed in the 171 𝐴̊ iron line, coronal loops strands
show up to be smoothly wandering along a common, overall magnetic field structure,
with no obvious indication of twisting, tangling, or more complicate interweaving. This
does not cast out the hypothesis of heating by magnetic braiding, as what we observe can
be interpreted as the result of the unbraiding process of reconnection, rendered visible
in the late stages of the strands evolution. On the top of that, braiding is also believed to
occur at relatively small spatial scales that are not yet possible or difficult to resolve by
state-of-the-art instruments.

Even if visible, coronal plasma anyway shows up ambiguously, as its optically
thin nature makes integrated emission along the line of sight difficult to decompose
into elemental sources, presumably heated independently. For instance, a fundamental
challenge in the statistical analysis of coronal loops is the difficulty in establishing an
objective criterion for loop identification. Loops are seldom isolated; they typically
coexist with other loops that may intersect or overlap along the line of sight.

On the modelling side, plasma heating by magnetic reconnection in coronal loop
strands, namely the fundamental magnetic process for energy release, has reveled it-
self as an intrinsically three-dimensional process, making self-consistent coronal loop
modelling a computationally demanding task, only recently rendered achieved by state
of the art parallel calculus on High Performace Computing (HPC) facilities. In the big
picture of ab initio modelling of the solar atmosphere, recent numerical experiments
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A.

Tenuous, braided flux tubes

B.

Reconnection: nanoflare

C.

Chromospheric evaporation

Faint EUV emission High EUV emission

Figure 1.16: Two magnetic flux tubes reconnecting at the mid point. Initially (left
picture) the tubes are filled by tenuous plasma, therefore are faint in the EUV. During the
reconnection (mid panel) the heat is efficiently conducted towards the footpoints. Only
in the post-reconnection phase (right picture), the (untilted) flux tubes becomes EUV
bright, as consequence of the chromospheric evaporation.

have highlighted the importance of the interplay between the corona and the underlying
layers, for instance, in terms of chromospheric and transition region response to coronal
heating; Poynting flux generation by photospheric (down to convection zone) motions;
and the reconnection rate feedback on the Poynting flux itself, which makes the overall
estimate of the magnetic energy budget a nontrivial, highly nonlinear problem.

1.5.7 Nanojets
The high spatial and temporal resolution observations of the solar atmosphere with
IRIS (De Pontieu et al. 2014) and SDO/AIA (Pesnell et al. 2012; Lemen et al. 2012)
enabled the discovery of fast and bursty ‘nanojets’ (Antolin et al. 2021), which have been
interpreted as a direct evidence of coronal heating by magnetic reconnection in braided
magnetic structures, and in particular as outflow jets accelerated by the slingshot effect of
magnetic field lines during small-angle reconnection. Such episodic phenomena provide
novel and important diagnostics of nanoflare activity, overcoming the general difficulties
in directly observing nanoflares.

High resolution observations of active regions (Antolin et al. 2021, Sukarmadji
et al. 2022, Patel & Pant 2022, Sukarmadji & Antolin 2024) have revealed a variety of
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1 Introduction

Figure 1: Right: an extreme ultraviolet image of an active region probed by NASA’s Solar Dynamics Observatory
spacecraft (SDO) (credit: NASA/SDO). Middle: a large-scale tangled coronal loop configuration probed by the
Transition Region and Coronal Explore (TRACE) (credit: Wilmot-Smith et al. [2010]). Right: observation of
a nanojet event in a cold coronal loop (credit: Antolin et al. [2021]).

The solar corona consists of plasma confined by, and interacting with, the coronal magnetic field. It fills up
dense, bright, filamentary structures, supported by an arc-like magnetic field, known as coronal loops [Vaiana
et al., 1973, Reale, 2014] (see figure 1). They display starkly high temperatures (above one million kelvin) whose
explanation still persists as a long standing problem [Peter and Dwivedi, 2014, Grotrian, 1939, Edlén, 1943].
In the contemporary understanding, there is widespread acknowledgment of the magnetic field’s predominant
role as the primary source of heating energy [Brooks et al., 2021]. In particular, to address the coronal heat-
ing problem, two mechanisms have been envisaged: one involves the dissipation of stored magnetic stresses,
referred to as DC heating, and the other involves the damping of MHD waves, known as AC heating [Parnell
and De Moortel, 2012, Zirker, 1993]. DC heating involves magnetic energy storage and impulsive, widespread
release. In fact, as the magnetic field builds up in the solar corona, it continuously departs from its poten-
tial state and provides free-energy storage to be converted into internal plasma energy [Klimchuk, 2015]. In
particular, turbulent photospheric motions induce coronal magnetic field lines to twist and tangle with each
other, ultimately providing inevitable growth of magnetic stresses. As a consequence of the ongoing stirring
of plasma in the photosphere caused by magnetoconvection, the magnetic field lines forming coronal loops are
induced to exhibit intricate braiding patterns at extremely fine resolutions, smaller than an arcsecond [Klim-
chuk, 2009, Viall and Klimchuk, 2011]. Parker [1988] envisaged that this ongoing process would ultimately
give rise to widespread formation of tangential discontinuities in magnetic field and minuscule current sheets
within the solar corona. These discontinuities would serve as sites for magnetic reconnection events, leading to
the release of small amounts of energy on a nanoflare scale. Although photospheric plasma induces slow and
local dragging of magnetic field lines at loop footpoints, according to Parker’s theory, magnetic energy release
in the large scale coronal environment is expected to occur through impulsive and widespread heating events.
One potential heating mechanism that can effectively blend a slow, enduring influence at the boundary with
rapid, unpredictable surges of energy release is the ‘MHD avalanche model’. In this model, a localized MHD
instability within a single strand of a coronal loop triggers a global MHD instability as neighboring loop fila-
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and is then subtracted from the original spectral pro!le. More single Gaussian !ts 
are performed on the residuals on the blue and red parts of the spectra to detect 
higher Doppler shi"ed components with high enough SNRs that are not captured 
by the !rst !ts. In this way, a maximum of 4 possible components are allowed 
for each spectral pro!le. #e !tting routine was checked by an extensive visual 
inspection on random locations in time and space. A total of roughly 120,000 !ts 
were obtained for the Mg ii line, with 60% found to be best represented by a single 
Gaussian with no other component. #e rest was best represented with either a 
double Gaussian and/or a single Gaussian with additional Doppler components 
on the blue or red side of the spectrum. #e Si iv spectra generally present a 
much lower SNR, leading to far fewer detections (11,000). A further check on the 
consistency of the results was then performed by spatially binning along the slit by 
three pixels and rerunning the analysis.

Statistical evolution of the nanojets’ spectral properties. The Doppler and 
non-thermal velocities show a substantial variation during the expansion 
(t = 84–97 min) in both the Mg ii k and Si iv 1,402.77 Å lines (Supplementary Fig. 
13), with an increase in the Doppler velocities mainly towards the blue reaching 
speeds of 150 km s−1, and a corresponding increase in the non-thermal velocities up 
to 80 km s−1. The peak and integrated intensities increase by more than two orders 
of magnitude above the background noise in Si iv profiles, whereas the Mg ii 
profiles have increased integrated intensities and reduced peaks, indicating heating 
of the initially cool material.

The observed properties of the jets indicate that we can define them on the 
basis of their dynamics and Si iv intensities. We define a jet as an event satisfying 

both a large enough integrated intensity in the Si iv line (set to 200 DN ≈ 1.4 times 
the average rain emission during the period before the loop expansion) and large 
enough summed Doppler and non-thermal velocities (where the sum occurs also 
over all spectral components, and we set this velocity threshold to 100 km s−1). 
This choice is based on the distribution in total intensity and velocity of the IRIS 
spectra, shown in Extended Data Fig. 7. This nanojet definition is also supported 
by our numerical simulation results. We find 445 spectra (slit pixels) that satisfy 
these conditions, all during the last 4 min of observation (Extended Data Fig. 7 and 
Table 1). The nanojets appear as highly localized features along the slit (marked 
with arrows in Extended Data Fig. 7), first towards the apex and then expanding 
rapidly along and down the loop leg. Despite the countable nature observed in 
Figs. 2, 3 and 4 (and in Extended Data Figs. 1 and 2 and Supplementary Figs. 2–9, 
16 and 17), determining the precise number of detected nanojets in this dataset 
is not straightforward, due to their tight clustering and very fast nature. Taking 
an average width of a nanojet of ∼ 500 km and an average lifetime of 15 s (about 
ten measurements per nanojet with the IRIS slit, see Extended Data Fig. 7c), we 
estimate that 44 nanojets could have been captured by the IRIS slit. Assuming a 
constant occurrence rate over the time interval where they manifest, we estimate 
the total number of nanojets to be above 150. However, this is very likely a lower 
threshold given their clustering, avalanche-like occurrence and the limits of 
current detectability.

DEM analysis. The thermal evolution of the coronal plasma can be constrained by 
the AIA observations. Here we derive the DEM by applying the inversion method 
of ref. 36 to the time series of the coronal AIA passbands (see Supplementary 
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Fig. 5 | A nanojet in our numerical model. Magnetic field lines representative of the two loops (magenta and green) are displayed in all panels, as 
described in the Methods. a, Magnetic field lines in the 3D numerical box at the moment of the nanojet occurrence (t!=!420!s). Magnetic reconnection 
is localized around z!=!0. The magnetic tension from the reconnected magnetic field lines produces a high-velocity (up to 200!km!s−1), bidirectional jet 
collimated along the y axis. The widths of the region with high velocities (>100!km!s−1) along the x and z axes are less than 1!Mm and 3!Mm, respectively. 
Note also that the z velocities are only on the order of 20!km!s−1. The red–blue colour bar indicates the distribution of magnitude of the velocity vectors 
(in km!s−1), with grey indicating velocities around 0 km!s−1. b,c, The central region at t!=!380!s, just before the nanojet, showing the isocontours of the 
electric current where ∣J∣!=!J0 (b, x-type green shaded region) and the isocontours of the y component of the velocity where vy!=!±190!km!s−1 (c, blue and 
red shaded regions). Note how the regions of highest magnetic tension of the reconnected magnetic field lines (black) match the high-velocity region, 
resulting in the nanojet. See Supplementary Video 4.
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Figure 1.17: Left picture: FOV of IRIS/SJI 1400 Å channel observed on the on 3rd
April 2014. A loop-like structure connects the bright prominence on the left to the solar
surface. The snapshot captures a small (≲ 10 acrsec) jet accelerated inwardly respect
to loop curvature. Right picture: Credit: 3D MHD simulation of two reconnecting
magnetic strands. After reconnection a bidirectional outflow jet (arrows) is accelerated
by the released magnetic field tension. Credit: Antolin et al. (2021).

small (500 − 1500 km), and transient (< 30 s) nanoflare-like EUV bursts followed by
collimated nanojets, 100 to 300 km s−1 fast, presumably driven by dynamic instabilities
such as MHD avalanches (Antolin et al. 2021), Kelvin Helmholtz, and Rayleigh–Taylor
instabilities (Sukarmadji et al. 2022) or during catastrophic cooling of coronal loops
strands (Sukarmadji & Antolin 2024), often accompanied by the formation of coronal
rain (Antolin et al. 2015b). Observation of nanojets at different temperatures supports
the hypothesis of multithermal structuring (e.g., Sukarmadji et al. 2022; Patel & Pant
2022). Although bidirectional jets are expected from reconnection, observed nanojets
are often strongly asymmetric (e.g., Patel & Pant 2022), possibly due to loop curvature
(Pagano et al. 2021) or braiding.

In particular, Antolin et al. (2021) reports on the observation of a multitude of
nanojets in a loop structure monitored at the limb of the Sun on April 2014. Such
observations were carried out with the Atmospheric Imaging Assembly (AIA, Lemen
et al. 2012) on board of the Solar Dynamics Observatory (SDO, Pesnell et al. 2012),
the Interface Region Imaging Spectrograph (IRIS, De Pontieu et al. 2014) and the
Hinode/Solar Optical Telescope (SOT, Suematsu et al. 2008; Tsuneta et al. 2008). The
detected sequence of events ultimately resulted in the creation of a highly heated coronal
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loop. The way in which these heating events evolved in space and time, along with
the dynamics of the interwoven loop structure, exhibited features that align with the
characteristics typically associated with an MHD avalanche. Specifically, the observed
nanojets exhibit specific characteristics, including confinement with dimensions typically
around 500 km in width and lengths ranging from 1000 to 2000 km. They are short-lived,
lasting approximately 15 s or less, and are characterised by rapid plasma flows of 100 to
200 km s−1 that move perpendicular to the magnetic field guiding the coronal loop.

Sukarmadji et al. (2022) present IRIS and SDO observations of nanojets found in
a blowout jet with ongoing Kelvin–Helmholtz instability, identified as the reconnection
driver, and in two coronal loops with coronal rain, whose dynamics is likely driven by
Rayleigh–Taylor or Kelvin–Helmholtz instabilities. The nanojets, observed to be accel-
erated transversely to field line of origin, arise from nanoflare-like intensity UV/EUV
bursts and reach velocities between 150 and 250 kms−1. In a subsequent study, Sukar-
madji & Antolin (2024) identify, from IRIS and SDO observations of clustered nanojets,
transverse coronal loop MHD waves powered by braiding-induced reconnection. In
particular, the estimated nanojets kinetic and thermal energy was high enough to induce
transverse waves and power the observed coronal loop heating. Observations results
supports the small-angle reconnection scenario in braided coronal structures, predicting
that reconnected magnetic field lines, driven sideways by the released magnetic tension,
can generate small-amplitude transverse MHD waves.

Patel & Pant (2022) report on the observations of 10 nanojets from the High-
resolution Coronal Imager 2.1 (Hi-C 2.1 Rachmeler et al. 2019) and AIA. They found
both outward and inward directed jets on curved active-region loop filaments, with
the former ones having higher averaged speed and longer length and duration than the
latter ones. They also argue about the multithermal nature of nanojets, as they can be
simultaneously identified in multiple temperature (TR and coronal) passbands.

The properties of such reconnecting plasma outflows were investigated via MHD
numerical simulations (e.g., Antolin et al. 2021; Pagano et al. 2021; De Pontieu et al.
2022). Antolin et al. (2021) show a nonideal MHD simulation of two interacting,
gravitationally stratified coronal loops, the footpoints of which are slowly moved in
opposite directions to create an increasing angle between the loops. As the x-type
misalignment increases, the electric current between the loops increases as well, thus
leading to reconnection of magnetic field lines at the midplane. The enhanced magnetic
tension in the reconnection region drives a transverse displacement of the plasma.
A high-velocity (up to 200 km s−1), collimated (widths of the order of a few Mm),
bidirectional nanojet also results from the reconnection process.



1 Introduction 54

1.6 HD coronal loop modelling

The field line perspective is crucial because the plasma’s response to heating is primarily
influenced by processes that align with the magnetic field. Due to the frozen-in flux
condition, low plasma beta, and the efficiency of thermal conduction in moving energy
along the field rather than across it, flux strands behave like nearly rigid, thermally
insulated flow pipes. In particular, the minimal energy transport across field lines allows
for the use of 1D hydrodynamic models (e.g., Peres et al. 1982; MacNeice 1986), which
can include essential physical processes like thermal conduction, radiation, radiative
transfer, and non-equilibrium of ionisation effects. These models can effectively simulate
the plasma response within a single strand or a monolithic loop, i.e., a loop composed
by a single “fat” strand. Although the evolution of the magnetic field can be important,
a one-dimensional hydrodynamic model describes the distribution and evolution of the
plasma along the field lines under the effect of an empirical heating function (Klimchuk
2015). One can combine several single-strand simulations to obtain the description of a
multi-stranded coronal loop (Klimchuk 2006; Reale 2014).

Monolithic or single-strand coronal loops can be described by the numerical in-
tegration of the time-dependent, coupled equations of mass, momentum, and energy
conservation in a one-dimensional grid (Peres et al. 1982). In order to adequately de-
scribe the brightening of the loop after the heating event, a chromospheric mass reservoir
must be included. It can be treated as simply as possible, neglecting heating and cooling
below a certain threshold temperature (e.g., 104 K), or with detailed radiative transfer
(Carlsson & Stein 1992, 1994, 1997, 2002), or energy models (Peres et al. 1982; Reale
et al. 2000a). Realistic mechanisms, e.g., for the heating input (that can be either steady,
slowly changing, or impulsive, uniform or localised e.g., at footpoints or at the loop apex,
Priest et al. 1998), momentum deposition, the time-dependent ionisation, and thermal
conduction saturation (Orlando et al. 2008) can be also included at the expense of the
numerical simulation complexity.

The steep transition from the cold (∼ 104 K) chromosphere to the ≳ 106 K hot
corona must be carefully addressed, as an appropriate numerical description of the steep
transition region (only a few tens of kilometres thick, or even narrower during flares)
requires very large (eventually adaptively refining, Betta et al. e.g., 1997) spatial and
temporal resolutions. In fact, very large temperature gradients are needed to balance the
Spitzer thermal conduction (Spitzer Jr & Härm 1953) and the radiative losses, peaking
between 105 and 106 MK (Serio et al. 1981). Insufficient resolution of the transition
region leads to an inaccurate reproduction of the mass transfer after heating (Linker et al.
2001; Lionello et al. 2009; Mikić et al. 2013; Bradshaw & Cargill 2013; Johnston et al.
2020). Relatively small errors in density evolution can turn out to produce large errors
in the emission response, as it scales with the density square.

One significant outcome of 1D hydrodynamic models is their ability to clearly illus-
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Figure 6. Loop bundle emission in different (labeled) spectral lines. In the images (left column), we show the upper 90% of the loop. The gray scale is logarithmic and
covers a factor of 10 of the intensity; black corresponds to the maximum of the emission and white to the minimum. The plots in the right column are the emission
profiles along the lines marked in the images of the left column, in the same logarithmic scale.

measure at a temperature around 3 MK, much less time when the
plasma is hotter, and a long time (but with much less emission
measure) when the plasma is cooler.

So the loop systems appear more uniform around 3 MK, and
this higher filling factor gives the impression of “fuzziness,” as
described in Tripathi et al. (2009). In cooler lines, we are able
to better resolve the loops, which appear more contrasted and
with better defined boundaries.

This “fuzziness” is different from the one intended in
Sakamoto et al. (2009): we address the question why the same

loops appear different in different lines, as reported in Tripathi
et al. (2009), whereas Sakamoto et al. (2009) address the evi-
dence that hot loops appear fuzzier than cooler, not co-spatial,
and therefore different, loops.

There are several limitations in our approach. Small dura-
tion heat pulses are a necessary ingredient to have a multi-
temperature loop system. Here, we assume that the heat pulses
are the same in all strands, only their timing is different, and
that they occur with a constant time average. We expect some
broadness in the distribution of the heat pulses, in duration,
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Figure 6. Loop bundle emission in different (labeled) spectral lines. In the images (left column), we show the upper 90% of the loop. The gray scale is logarithmic and
covers a factor of 10 of the intensity; black corresponds to the maximum of the emission and white to the minimum. The plots in the right column are the emission
profiles along the lines marked in the images of the left column, in the same logarithmic scale.

measure at a temperature around 3 MK, much less time when the
plasma is hotter, and a long time (but with much less emission
measure) when the plasma is cooler.

So the loop systems appear more uniform around 3 MK, and
this higher filling factor gives the impression of “fuzziness,” as
described in Tripathi et al. (2009). In cooler lines, we are able
to better resolve the loops, which appear more contrasted and
with better defined boundaries.

This “fuzziness” is different from the one intended in
Sakamoto et al. (2009): we address the question why the same

loops appear different in different lines, as reported in Tripathi
et al. (2009), whereas Sakamoto et al. (2009) address the evi-
dence that hot loops appear fuzzier than cooler, not co-spatial,
and therefore different, loops.

There are several limitations in our approach. Small dura-
tion heat pulses are a necessary ingredient to have a multi-
temperature loop system. Here, we assume that the heat pulses
are the same in all strands, only their timing is different, and
that they occur with a constant time average. We expect some
broadness in the distribution of the heat pulses, in duration,

Figure 1.18: Left column: Mg VII cold (𝑇 < 1 MK) and Fe XV warm (𝑇 ∼ 2.5 MK)
loop bundles emission from (Guarrasi et al. 2010) simulation. Right column: emission
profiles along marked lines for the same transitions. Flux strands show up in the cooler
line, while, in the hot channel, the loop’s emission spreads out more uniformly.

trate the behaviour of plasma within a strand during an impulsive coronal heating event
(Cargill & Klimchuk 2004; Klimchuk et al. 2006; Reale 2007). Although monolithic
(single-strand) coronal loop models fail to reproduce many coronal loop observations
(Lenz et al. 1999), but successfully model flares (Cheng et al. 1983; Fisher et al. 1985;
Betta et al. 2001; Reale 2007), results from many single, evolving flux tubes can be
combined to reproduce the evolution of a multistranded coronal loop. This approach has
been used to model both static loops (Reale & Peres 1999) and those impulsively heated
by nanoflares (Warren et al. 2002), and it has also been applied to represent entire active
regions (Warren & Winebarger 2006). The multistrand approach usefully contributed in
(indirectly) testing the hypothesis of coronal heating by nanoflares against observations.
For instance, bundles of active region loops appear increasingly diffuse in harder and
harder energy bands sensitive up to about 3 MK (Brickhouse & Schmelz 2005; Tripathi
et al. 2009). Guarrasi et al. (2010) simulated a 3 MK active region loop made by bundles
of thin strands, each heated by a short and evenly intense pulse at a random time up to 10
MK. The model obtains precisely that in lines emitted by 2–3 MK plasma, the emission
is more uniform across the loop bundle, while in cooler lines, the loops strands are more
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distinct and the region appears less diffuse, as shown in Fig. 1.18. A complementary,
effective method to describe loops as ensembles of numerous independent strands with a
statistical distribution of heating events is the “0-D” approach, which tracks the temporal
evolution of averaged loop properties like temperature, pressure, and density (Klimchuk
et al. 2008; Cargill et al. 2012).

1.7 MHD coronal loop modelling
Multi-D MHD models no longer prescribe an ad hoc heating impulse but they treat the
heating mechanism self-consistently by including the nonlinear interaction between the
plasma and the magnetic field.

The time-dependent, ideal MHD equations are:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0, (1.54)

𝜕𝜌v
𝜕𝑡

+ ∇ · (𝜌vv − BB + I𝑝𝑡) = 𝜌g, (1.55)

𝜕𝜌𝐸

𝜕𝑡
+ ∇ · [v(𝜌𝐸 + 𝑃𝑡) + B(v · B)] = 𝜌u · g, (1.56)

𝜕B
𝜕𝑡

+ ∇ · (vB − Bv) = 0, (1.57)

where
𝑝𝑡 = 𝑝 +

𝐵2

2
, 𝐸 = 𝜖 + 𝑢

2

2
+ 𝐵

2

2𝜌
(1.58)

are the total pressure and energy density, respectively, and, 𝑡 is the time, 𝑛𝐻 is Hydrogen
numerical density, 𝜇 = 1.28 is the mean atomic mass, 𝑚𝐻 is the Hydrogen mass,
𝜌 = 𝜇𝑚𝐻𝑛𝐻 is the mass density, 𝑢 is the gas velocity, Φ𝑔 is the gravitational potential,
g is the gravity acceleration vector, 𝑇 is the temperature, v and B are the velocity and
magnetic fields, 𝑝 is the gas pressure, 𝜖 is the internal energy of the gas.

2D Simulations

A limitation of current 1D loop models is their inability to effectively account for the
expected magnetically-dependent transition region throat, due to the steep change of
pressure from the corona to the chromosphere. In particular, loop’s cross-sectional
area is expected to adapt in real time depending on the relative equilibrium between
magnetic pressure and time-dependent plasma pressure. Using a time-dependent 2D
MHD flaring loop model, Guarrasi et al. (2014) examined the area response to gradual
changes in coronal heating rates, challenging current steady-heating models. They found
that the area could vary significantly with the quasi-steady heating rate, such as a 40%
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change at 0.5 MK when loop temperatures range from 1 MK to 4 MK, thus affecting the
interpretation of differential emission measure (DEM) curves.

Another obvious limitation of 1D hydrodynamic simulations is their inability to de-
scribe self-consistently heating by magnetic field dissipation. For instance, magnetic
reconnection needs at least 2D MHD simulations to be addressed numerically. In partic-
ular, 2D simulations allow the study of the onset and evolution of magnetic reconnection
in infinite current layers with high spatial resolution. For example, Landi et al. (2015)
used 2D numerical simulations in compressible resistive MHD to study the tearing in-
stability in thin current sheets. They found that the tearing mode can induce plasmoid
formation and reconnection on Alfvénic timescales, which is essential for explaining
explosive flaring activity.

Ab-initio simulations with detailed chromosphere/TR physics

In their pioneering work, Gudiksen & Nordlund (2005a,b) first ran 3D MHD models
including an energy equation that incorporates field-aligned thermal conduction and
radiative losses. They began with a stratified atmosphere and a magnetic field derived
from a potential extrapolation of an MDI magnetogram (left image in Fig. 1.19). At the
photospheric boundary, they applied a simulated random granular pattern driving the
coronal magnetic field into an approximately nonlinear force-free (but close to potential)
field configuration. The resulting, Ohmic in nature, coronal heating arises from sporadic,
short-duration reconnection events due to numerical diffusion. Coronal loops becomes
EUV bright (right images in Fig. 1.19). The transition region is highly variable,
both spatially and temporally, while the density and temperature of the coronal plasma
fluctuate continuously over space and time. Since then, progresses have been made,
by addressing magnetically driven scenarios with multidimensional and multiphysics
numerical applications. For example, transition region downflows (Hansteen et al.
2010), as well as type I (Martı́nez-Sykora et al. 2009) and type II (Martı́nez-Sykora
et al. 2011) spicules, were reproduced by MHD simulations by including the effects of
optically thick radiation in the chromosphere using non-LTE radiative transfer (Carlsson
et al. 2010; Carlsson & Leenaarts 2012). In these simulations, chromospheric heating
is mainly caused by Ohmic dissipation at the edges of magnetic flux concentrations,
whereas, in the corona, episodic heating events are identified as the aftermath of magnetic
field stressing and flux emergence, although spicules might play a role too (De Pontieu
et al. 2017a). The key role of ambipolar diffusion from ion-neutral interactions in the
generation of spicules was emphasised by (e.g., Martı́nez-Sykora et al. 2017; De Pontieu
et al. 2017b).

Flux emergence (Heyvaerts et al. 1977) is also self-consistently described by ab
initio models with detailed chromosphere and transition region physics. For instance,
Archontis & Hansteen (2014) report on the formation of small energy bursts in the
micro/nanoflare range produced by the gradual emergence of the magnetic field. Spon-
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Figure 1.19: Ab-initio, MHD simulations of a large-scale coronal box. The panel on
the left shows a simulated magnetogram, while the top (bottom) panel on the right is
a synthetic image from TRACE 171 𝐴̊ (195 𝐴̊), showing three bright loops. Credit:
Gudiksen & Nordlund (2005a)

taneous formation of small current layers at the interfaces of the resulting network
of dynamically interacting loops produces patchy magnetic reconnection and coronal
heating, coherently with flux-cancellation-driven nanoflares models, for both solar chro-
mospheric and coronal heating (Priest et al. 2018).

Wave heating

Potential deviations from the purely 1D evolution could be caused by intense oscillations
or kinks (Ofman 2009). In such cases, the influence of the three-dimensional loop
structure should be considered to accurately describe the interaction with excited MHD
waves (McLaughlin & Ofman 2008; Pascoe et al. 2009; Selwa & Ofman 2009; Arregui
2015; Van Doorsselaere et al. 2020).

The generation, propagation, and damping of waves in the solar atmosphere are in-
vestigated through various methods (Arregui 2015). Linear wave analysis in simple mag-
netic configurations provides insights into wave trapping and propagation mechanisms,
while nonlinear wave analysis in structured plasmas examines wave transformation,
wave-flow interactions, and phenomena such as shock waves and Alfvén wave turbu-
lence. Large-scale numerical models, incorporating boundary conditions and drivers,
are employed for global solar seismology and for making observational predictions.

Resonant damping of oscillations (Van Doorsselaere et al. 2004) is a well-established
mechanism for transferring energy from large-scale transverse motions to localised
small-scale motions, arising from the inhomogeneity of the medium in the direction
perpendicular to the magnetic field (Goossens et al. 2006). This mechanism supports
multistrands structures (Terradas et al. 2008; Pascoe et al. 2011) and can be modelled
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with standing waves (Goossens et al. 2002) and propagating waves (Pascoe et al. 2012),
also using simple flux tube models (Ruderman & Erdélyi 2009; Goossens et al. 2011).

Pagano & De Moortel (2017) investigated the conversion of energy into thermal
energy through phase mixing of Alfvén waves in a cylindrical coronal flux tube, assess-
ing its implications for coronal heating and thermal structuring. In a subsequent study,
Pagano et al. (2018) expanded this analysis by including higher harmonics, in addition to
the fundamental harmonic, observed in standing oscillations of coronal loops. However,
these higher harmonics were found to hinder the formation of small-scale structures.
More realistic numerical simulations, including oscillations based on the observed coro-
nal power spectrum (Pagano & De Moortel 2019), demonstrated a significant role in the
development of small-scale structures, while Pagano et al. (2020) evaluated the impact
of varying initial density distributions, which were found to significantly affect the evo-
lution of the boundary shell. Across all cases, the authors concluded that phase mixing
is unlikely to contribute significantly to the global heating of the solar corona.

Alfvén wave turbulence is another extensively studied mechanism. Supported by an
increasing collection of observations (De Moortel et al. 2014), in this process, photo-
spheric foot-points motions are transported along magnetic loops and amplified as they
reflect at the transition region boundary. The resulting counterpropagating perturbations
interact in complex ways, leading to the formation of small-scale structures and the sub-
sequent dissipation of energy (Van Ballegooijen et al. 2011, 2014; Asgari-Targhi et al.
2013). Originally proposed by Coleman Jr (1968) and later first modelled by Belcher &
Davis Jr (1971); Alazraki & Couturier (1971), the concept of Alfvén wave turbulence
has been further developed in modern studies. Using three-dimensional models of the
solar corona and inner heliosphere, Sokolov et al. (2013) demonstrated that Alfvén waves
turbulence can reproduce the overall observable EUV emission, with some exceptions,
such as emission near active regions. The Alfvén Wave Solar Model (AWSoM) in-
troduced by van der Holst et al. (2014) addresses both coronal heating and solar wind
acceleration through low-frequency Alfvén wave turbulence, eliminating the need for
ad hoc heating functions. This approach simulates the three-dimensional magnetic field
topology using data from photospheric magnetic field measurements. The injection of
Alfvén wave energy at the inner boundary is determined by the Poynting flux, which is
taken to be proportional to the strength of the magnetic field.

Finally, transverse MHD oscillations can induce the formation of Kelvin-Helmholtz
instabilities that deform loop cross sections and produce small-scale currents (Browning
& Priest 1984; ?). The heating rate produced by these current sheets has been established
to be highly dependent on the formation of small spatial scales, which are influenced by
numerical resolution, as well as by the values of resistivity and viscosity (Howson et al.
2017). Shestov et al. (2017), using forward modelling of three-dimensional MHD sim-
ulations, demonstrated that small-amplitude transverse MHD waves can rapidly induce
strand-like structures in long, thin loops within EUV intensity images, often within just
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a few wave periods.

Heating in twisted flux tubes

Photospheric motions are easily expected to drive foot-point rotation which in turn may
twist the magnetic flux tube to gain magnetic energy (Rosner et al. 1978a). While
magnetic energy is stored, the flux tube could be subjected to potentially strong stresses
that may lead to impulsive magnetohydrodynamic instabilities (such as the kink insta-
bility, Hood et al. 2009) or to widespread Ohmic heating. According to the numerical
experiment described in Reale et al. (2016), the gained energy is likely to be widespread
released by magnetic dissipation as soon as a current density threshold is exceeded as
the twisting progresses. The subsequent evolution resembles usual large scale loop
evolution, including significant mass transfer from the chromosphere to the corona, and
plausible observables. Random components of the footpoint motion might explain the
internal filamentary loop structure.

region, and therefore an expansion of the dense lower layers
upward to the tenuous corona, the so-called chromospheric
evaporation.

The plasma moves along the magnetic field lines and the
twisting of the field makes the motion a spiraling one, adding a
significant component along f. Figure 7 clearly shows this
spiraling component of the upflows from the chromosphere,
which would produce blue- and redshifts if the loop is viewed
from the side, as found in recent observations of twisting
motions (De Pontieu et al. 2014).

The density never grows much above ∼3× 108 cm−3 in the
outer shell of the twisted tube. In the core, instead, the coronal
density gradually increases to higher values (∼109 cm−3), filling
the space between the chromospheres. In the end, a proper

coronal loop forms, with a dense and hot inner cylindrical region
and a thin and more tenuous shell. Looking carefully, especially
at the footpoints, at time t=2500 s, it is possible to distinguish
some fine structuring, due to the jagged current dissipation
(Figure 4). The fine structure is less remarkable up in the corona
both because of the efficient thermal conduction along the field
lines and because of the cross-field dispersal driven by the
reconnection (Schrijver 2007).
Figure 8 shows radial profiles of the density, temperature,

pressure, magnetic field intensity, azimuthal component of the
magnetic field, and current density at the top of the loop and at
the end of our simulation. The inner region is the one with the
highest values of most quantities, as expected. The first four
profiles show a decay from the central axis, to reach a value

Figure 5. Temperature rendering at the same times and in the same domain as in Figure 4. The units are [106 K]. Magnetic field lines are also shown (pink lines, see
Animation 2 in the online journal).
(An animation of this figure is available.)
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Figure 1.20: Rendering of the temperature evolution in a twisted coronal loop simulation.
3D MHD simulation of a twisted magnetic flux tube. The chromosphere is represented
by two solid cylindrical layers at the top and bottom. Twisted magnetic field lines are
shown by fuchsia curves. Credit: Reale et al. (2016)

1.7.1 Nanoflares MHD modelling
Models demonstrate that even simple magnetic fields can produce multiple current sheets
through random driving motions (e.g., Rappazzo et al. 2007, 2008). The footpoints of
an initially straight and uniform magnetic field are slowly shuffled, and the total Ohmic
and viscous dissipation over the time is then measured. This experiment is repeated
by varying only the resistivity and viscosity, and shows that both the intensity and
nature of the heating are highly dependent on the Reynolds number. Specifically,
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the time-averaged heating rate increases with higher Reynolds numbers, as reduced
dissipation allows stresses to build up to higher levels. Additionally, the heating becomes
much more intermittent and resembles nanoflares. Rappazzo et al. (2010, 2013) used
reduced MHD to further consider the heating rate for various rotational and shear
driving motions. In a following work, Rappazzo et al. (2017) examined the magnetic
topology and field line random walk characteristics of a magnetically confined, nanoflare
heated corona within the reduced MHD framework. Field lines emerging from current
sheets form coherent structures named “current sheet connected regions” (shown in Fig.
1.21). Field line random walk in these regions is highly anisotropic, diffusing mainly
along the in-plane length of the current sheets, and the mean square displacements
increase due to the stronger magnetic fields. Rappazzo et al. (2018) evaluated heating
by random driving motions for different ratios of the photospheric forcing velocity
timescale to the Alfvén loop crossing travel time, showing that both the heating rate
and the maximum temperature are approximately independent of the two timescales
relative amount. The significance of the driving (with associated helicity and topological
entropy) was addressed by Ritchie et al. (2016). They showed that heating is crucially
dependent on the nature of the photospheric driver with coherent motions typically
leading to fewer large energy-release events, whereas more complex motions resulting
in more frequent but less energetic heating events.

The multithermal nature of coronal plasma confined in coronal loops has been
addressed by Dahlburg et al. (2016). They investigated the evolution of a coronal loop
using numerical simulations of fully compressible three-dimensional MHD equations.
Random motions at the loop’s footpoints energise the magnetic field, leading to turbulent
nonlinear dynamics and the continuous formation and dissipation of field-aligned current
sheets, and to small-scale heating. The dissipation is unevenly distributed, resulting in
the heating of only a fraction of the coronal mass and volume at any time. Temperature
and density are highly structured at subobservational scales, making the loop plasma
multithermal, with dynamic hot and cool strands scattered throughout. Consequently,
coronal heating is found to be highly intermittent, with most of the loop cooling at any
given time.

Ab initio simulations with detailed description of the transition region, chromo-
sphere, photosphere, down to convective region physics have been used to investigate
how energy generated by photospheric magneto-convection is transported into the upper
atmosphere to heat a coronal magnetic loop and form its internal structure. Breu et al.
(2022) simulated an isolated coronal loop as a straightened magnetic flux tube rooted
in the convection zone, with the MURaM 3D MHD code (Vögler et al. 2005; Rempel
2016). The model incorporates field-aligned heat conduction, grey radiative transfer,
and optically thin radiative losses. The loop footpoints interact with surrounding granu-
lation, and heating occurs through Poynting flux generated by small-scale motions within
magnetic concentrations in the photosphere. Turbulence arises in the upper atmosphere
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PLATE 1

Fig. 3.—Top: Side view of two isosurfaces of the squared current at a selected time for a numerical simulation with , grid points andv /u p 200 512# 512# 200phA
a Reynolds number . The isosurface at the value is represented in partially transparent yellow, while red displays the isosurface with2 5 2Re p 800 j p 2.8# 10 j p1

, well below the value of the maximum of the squared current that at this time is . Note that the red isosurface is always nested inside the yellow5 2 68# 10 j p 8.4# 10
one and appears pink in the figure. The computational box has been rescaled for an improved viewing, but the aspect ratio of the box is 10; i.e., the axial length of the box
is 10 times bigger than its orthogonal length. Bottom: Top view of the same two isosurfaces using the same color display. The isosurfaces are extended along the axial
direction, and the corresponding filling factor is small.
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Figure 1.21: Side (left panel) and top (right panel) view of current density isosurfaces
from a long-duration, high-resolution (Reduced-) MHD simulation of turbulent plasma
in coronal loop. Strong current sheets (red isosurfaces) are always nested inside weaker
current layers (yellow). They spread throughout the entire domain with small filling
factor. Credit: Rappazzo et al. (2007)

as a result of these footpoint motions, with little evidence of heating from large-scale
magnetic braiding. Synthesised emission, as would be observed by instruments like the
AIA or the XRT, shows transient bright strands forming in response to heating events.
The model effectively replicates the observed properties and evolution of plasma within
coronal-loop substructures, providing a coherent picture of energy flux transfer.

Instead of creating multiple forced reconnection events through a complex driving
pattern on a initially simple magnetic field, a complex magnetic field undergoing insta-
bility can also generate numerous small-scale reconnection events. For example, Pontin
et al. (2011) studied the resistive relaxation of a coronal loop with a complex braided
magnetic field, where an instability leads to spontaneous reconnection and the formation
of many tiny nanoflares. Initially, the magnetic field has large-scale diffuse currents (left
panel of Fig. 1.22), but as it evolves, intense current layers naturally form (middle panel,
Fig. 1.22) until a resistive instability triggers reconnection, initiating a cascade of energy
release to smaller scales. They also observed that the magnetic field does not neces-
sarily follow the quickest or simplest path to untangling itself, but reconnects whenever
conditions are suitable for reconnection. This leads to a partial reduction in magnetic
stresses but not a complete untangling, requiring a continuous series of reconnection
events to fully resolve the field (Parnell et al. 2008). This process, known as ‘multiple’ or
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‘recursive reconnection’, allows the entire loop to be heated, rather than just a few strands
within it, potentially releasing significant energy over an extended period. According
to Pontin et al. (2016), for every field anchored to perfectly-conducting boundaries, a
force free equilibrium state exists and contain current sheets whose thickness is inversely
proportional to the topological entropy of the structure, i.e., the complexity of the braid.

forming and dissipating, until the system attains a new equilibrium (see also
Rappazzo and Parker 2013). The final equilibrium has a much simpler field line
topology, with tangling of field lines absent, but instead a large-scale twist remains
in the field (see Fig. 79). The presence of this large-scale twist is inconsistent with
the relaxation hypothesis of Taylor (1974), in which the only constraint on a
turbulent relaxation is the total magnetic helicity. This implies that the total helicity
(which is zero by symmetry for the braids considered) cannot be used to predict the
final state, and has led to the discovery of additional topological constraints, such as
the topological degree of the braid (Yeates et al. 2010, 2015) and the field line
helicity spectrum (Russell et al. 2015) (see Sect. 4.6.4). Indeed, in Fig. 79 the final
state has two twisted flux tubes which are predicted by conservation of the
topological degree and field line helicity but not by conservation of helicity alone.

To determine the global reconnection rate during the simulations, Pontin et al.
(2011b) identified the local reconnection rate associated with each current layer
(maximal integrated Ek along field lines threading each current layer, see Eq. 44).

The net effect of all of these reconnection events is that field lines traced from either
end of the domain are seen to ‘‘wander’’ across the opposite boundary (see Fig. 79
and associated animation)—recall that the plasma velocity is zero on the
boundaries, so this motion is entirely associated with the flipping of field lines in
3D reconnection. Explicitly, the red and orange field lines are traced from fixed
points anchored in the plasma on the upper boundary, with their motion on the lower
boundary exhibiting the flipping field line velocity (say win, see Sect. 4.7.2) created
by the multiple reconnection events within the loop. Conversely, the green and

(a) (b) (c)

Fig. 79 Magnetic field lines and currents during the resistive relaxation (turbulent decay) of a magnetic
braid. Shown at each time are magnetic field lines traced from two fixed rings of points on the line-tied
boundaries (red and orange from z ¼ 24, green and black from z ¼ "24), a current isosurface (at 50% of

the spatial maximum at that time), and the distribution of aH ¼ j # B=B2 on z ¼ "24. At the initial and
final times the currents are on large spatial scales, while at t ¼ 50 many individual current layers are
present. The simplification in the field line structure (‘‘unbraiding’’) can be seen qualitatively from the

field lines, and also by examining aH (which is constant along field lines in a force-free equilibrium,
which the initial and final states at t ¼ 0 and t ¼ 290 approximate). For related movies see Supplementary
Information. Image reproduced with permission from Pontin et al. (2016), copyright by AIP
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Figure 1.22: Resistive relaxation of a magnetic braid. In the left panel, magnetic field
lines are traced from four rings of points at the top (red and orange) and lower (green
and black) boundaries of the box. The process of unbraiding is qualitatively appreciable
from the field lines evolution (𝑡 = 0, 50, and 290 s), but also from the distribution of the
𝛼 = j · B/𝐵2 at the lower boundary (constant along field lines in force-free equilibrium;
bottom right panel). Electric currents (gray isosurfaces, top right of each panel) are
distributed over many individual layers, narrowing during the turbulent decay of the
structure (𝑡 = 50 s). Credit: Pontin et al. (2016)

Hood et al. (2016) discuss another example of modelling complex and unstable mag-
netic structures dissipating into small-scale reconnection events. With their 3D MHD
simulation of a loop containing 23 nonpotential, highly twisted magnetic threads, they
demonstrate that kink instability of a single thread can trigger an avalanche of recon-
nection events, even when the remaining threads are below marginal stability. Magnetic
energy is released in discrete bursts, with the overall heating pattern characterised by
short spikes that resemble the temporal behaviour of nanoflares rather than continuous
heating. This has important implications for coronal heating, as it offers a mechanism
for energy dissipation through triggered events (explored in more detail in Sec. 1.8.2).
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1.8 Flux tube instabilities
Flux ropes play a very important role in eruptions in the solar corona (Liu 2020;
Patsourakos et al. 2012). An idealised theoretical flux rope can be modelled by a
cylindrically-symmetric magnetic field (Priest 2014). This is an approximation of real
magnetic fields, often encountered in magnetically-confined fusion devices, such as
twisted magnetic fields bent into tori, and in solar and astrophysical environments,
where they are often embedded within complex topological structures.
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Figure 1.23: Co-moving surfaces of a flux tube perturbed by modes m = 0, m = 1 and
m = 2 compared with equilibrium (first column). Magnetic field represented by arrows.
Credit: Braithwaite (2006)

Consider an infinite cylindrically symmetric magnetic flux tube, whose equilibrium
magnetic field, in cylindrical polar coordinates (𝑟, 𝜙, 𝑧), is:

B = 𝐵𝜙𝜙 + 𝐵𝑧𝑧. (1.59)

The corresponding electric current density is:

j = −𝑑𝐵𝑧
𝑑𝑟

𝜙 + 1
𝑟

𝑑𝑟𝐵𝜙

𝑑𝑟
𝑧. (1.60)
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Suppose the field is force-free, with j × B = 0, or equivalently:

𝑑

𝑑𝑟

(
𝐵2
𝜙
+ 𝐵2

𝑧

8𝜋

)
= −

𝐵2
𝜙

4𝜋𝑟
(1.61)

As far as pressure force is negligible, equilibrium is completely determined by the
magnetic field profile.

Bernstein’s energy method (Bernstein et al. 1958, anticipated by Lundquist 1951) can
be applied to the system of a magnetic flux tube to infer the relative stability conditions
(Newcomb 1960), also under force-free conditions (Anzer 1968; Raadu 1972). It consists
of determining the second order change (𝛿𝑊) in potential energy when a plasma element
is displaced by a general perturbation 𝜉 from equilibrium. In cylindrical coordinates:

𝜉 = 𝜉 (𝑟) exp [𝑖(𝑙𝑟 + 𝑚𝜙 + 𝑘𝑧) + 𝑖𝜔𝑡] (1.62)

and, assuming force-free conditions, namely 𝛿B = ∇ × (𝜉 × B0):

𝛿𝑊 ∝
∫ [

𝛿𝐵2 + 𝛿B · 𝜉 × (∇ × B0)
]
𝑑𝑉 (1.63)

As soon as the equilibrium field components (𝐵𝜙,0 and 𝐵𝑧,0) are specified, 𝛿𝑊 variations
are tested for each set of wavenumbers (𝑙, 𝑚, 𝑘): broadly speaking, if the resulting value
of 𝛿𝑊 is negative (positive), the system is unstable (stable) to that class of perturbations
(Priest 2014).

For instance, Hood & Priest (1979a) addressed a force-free coronal tube anchored in
the photosphere, considering the uniform-twist force-free field:

𝐵𝜙 = 𝐵0
Φ𝑟𝐿

1 + (Φ𝑟𝐿)2 , (1.64)

𝐵𝑧 = 𝐵0
1

1 + (Φ𝑟𝐿)2 . (1.65)

where the parameter Φ is the angle of twist of a field line about the axis from one end to
the other. They considered a kink-like perturbation: 𝜉 ∝ 𝑒𝑖𝜙+𝑘𝑧 (with 𝑙 = 0, and 𝑚 = 1).
The resulting stability diagram indicates that the magnetic flux tube is first unstable to
kink modes when the twist exceeds about 3.3 𝜋. Therefore, perturbations with wave
numbers 𝑙 = 0 and 𝑚 = 1 (second row of Fig. 1.23) can lead to a flux tube instability
called ‘kink instability’. Fig. 1.24 shows the kink stability diagram of a cylindrical
flux tube (of length 𝐿, section 𝑎, and twisting angle Φ) with fixed footpoints. If we set
𝑚 = 0 (third row of Fig. 1.23), the related instability is called the ‘sausage instability’.
High-wave-number perturbations (e.g., third row of Fig. 1.23) produce more complex
field configurations but are less effective in instigating instability (to dominate is often
the kink 𝑚 = 1 mode, Braithwaite 2006).
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7.4 Energy (or Variational) Method 269

Stable

Unstable

R

ξR

1

Figure 7.7. Typical solutions for a flux tube to the Euler-Lagrange equation (7.39) for the radial component (ξR)
of the minimising perturbation as a function of radius (R).

Φ = L/a
Φcrit

!k =  !ka
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0.0 2π 4π 6π

Figure 7.8. The helical kink stability diagram for a line-tied uniform-twist force-free flux tube of length L and
effective width a, where k is the wavenumber of the perturbation along the tube and Φ is the twist (from Hood and
Priest 1979b).

tube is certainly stable, and when Φ > 3.3π it has certainly become unstable, but there may be some other

form for the perturbation that goes unstable at a lower threshold. Indeed, a full solution of the partial

differential equations of motion later showed that the real threshold for instability lies at 2.5π (Hood and
Priest 1981). Also, line-tying is described in Section 12.2.5.

It is unclear, without modelling stratification properly including pressure gradients, what is the best

boundary condition to adopt at the ends of a loop to simulate photospheric line-tying. Possibilities include

either ξ⊥ = 0, ξ = 0, or B1 = 0.

7.4.2 Use of the Energy (or Variational) Method

There are several points to note about the use of the energy method.

(a) If a displacement (ξ) is discovered that makes δW < 0, the plasma is certainly unstable, although a more

unstable mode may exist. It is more difficult to prove stability, since one needs δW > 0 for all possible

displacements. In practice, one often considers only a certain class of displacements; some skill is needed to

choose the particular class when seeking an instability. Most ξs will not satisfy the equation of motion, but

Figure 1.24: The helical kink stability diagram for a force-free, cylindrical flux tube,
line-tied at the boundaries and uniformly twisted. The stability of the mode with wave
number 𝑘 depends on the cylinder aspect ratio (Length over cross-section, 𝐿/𝑎) and the
twisting degree Φ. Credit: Hood & Priest (1979a)
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or, after using the divergence theorem on the first integral and Eq. (7.13) for B1,

= −µ−1

∫
[(ξ ×B0)×B1] · dS−µ−1

∫
B2

1 dV +

∫
j0 ·B1 × ξ dV.

If there is no displacement (ξ) on the boundary of the volume, the surface integral vanishes and
∫

ξ ·∇p1 dV = −
∫

p1(∇ · ξ) dV.

Then, after substituting for ρ1 from Eq. (7.14) and p1 from Eq. (7.11), the change in potential energy given

by Eq. (7.29) becomes

δW = 1
2

∫
[B2

1/µ− j0 · (B1 × ξ)+ (ξ ·∇p0)(∇ · ξ)+ γp0(∇ · ξ)2

+(ξ ·g)∇ · (ρ0ξ)] dV, (7.30)

assuming p0/ργ
0 = constant, where B1 is given by Eq. (7.13).

7.4.1 Example: Helical Kink Instability with Line-tying

Consider a cylindrically symmetric magnetic flux tube, whose equilibrium magnetic field in cylindrical

polar coordinates (R,φ,z) is

B0 = B0φ(R) φ̂+B0z(R) ẑ,

and whose corresponding electric current density is

j0 = −dB0z

dR
φ̂ +

1

R

d

dR
(RB0φ) ẑ.

Suppose now the field is force-free, with j0 ×B0 = 0, or equivalently

d

dR
(B2

0φ +B2
0z) = −

2B2
0φ

R
,

which determines B0 after either B0φ(R) or B0z(R) has been prescribed.

An intuitive explanation for the instability of the flux tube to a lateral kink-like perturbation (Figure 7.6)

is as follows. Suppose the magnetic field lines outside the equilibrium flux tube have only a φ-component

(Figure 7.6a). Then, after making kink-like displacement (Figure 7.6b), the field lines at A are closer
together than those at B. The magnetic pressure is therefore stronger at A than B, and the resulting force

from A to B is such as to increase the perturbation further.

This simple argument would be modified if extra features were added, such as an axial magnetic field, a

plasma pressure gradient, curvature or line-tying. Bernstein’s energy method was first applied to a magnetic

(a) (b)

B

A

R

z

Figure 7.6. (a) An equilibrium plasma tube surrounded by azimuthal magnetic field lines. (b) A lateral kink-like
perturbation of the tube.

Figure 1.25: Onset of kink instability in a cylindrical magnetic flux. The initial magnetic
field is azimuthally directed (left panel). A small perturbation creates a (irreversible)
misalignment between points A and B. Credit: Priest (2014)

1.8.1 The kink instability
A possible trigger mechanism for large-scale energy release is the MHD kink instability
in a single twisted magnetic flux strand (Hood & Priest 1979b). It typically arises in
narrow, strongly twisted magnetic tubes and results in the cross section of the plasma
column moving transversely away from its centre of mass, determining an irreversible
imbalance between the outward directed force of magnetic pressure and the inward force
of magnetic tension (Priest 2014).

A heuristic but intuitive argument for the kink instability in a straight and cylindrical
flux tube (Priest 2014) begins by considering a lateral kink-like perturbation, i.e. pertur-
bation proportional to 𝑒𝑖𝜙 cos (𝑘𝑧), which can be obtained by superposing two oppositely
twisted helical perturbations such as: 𝑒𝑖𝜙+𝑘𝑧 and 𝑒𝑖𝜙−𝑘𝑧. For simplicity, we assume that
magnetic field lines have only the 𝜙 component (left panel on Fig. 1.25). The kink-like
displacement makes the field lines at A close together and those at B to depart (right
panel on Fig. 1.25). The magnetic pressure is therefore stronger at A than at B, so
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that the resulting force is directed from A to B. Consequently, the initial perturbation
increases further indefinitely. This is a simple argument and implies that flux tubes with
purely azimuthal magnetic field are always unstable (i.e. unstable under any small, kink-
like perturbation). If extra features, such as an axial magnetic field, a plasma pressure
gradient, curvature, or line-tying, are added, equilibrium conditions shall be modified
(for instance, axial magnetic field has stabilising effect against kink-like perturbations,
Priest 2014).

Browning (2003) proposed that the onset of the ideal kink instability in a twisted
magnetic flux rope could serve as a trigger for relaxation. This hypothesis is supported
by laboratory spheromak experiments that demonstrate the crucial role of the kink
instability in relaxation processes (Duck et al. 1997). Some observations indicate the
occurrence of the ideal kink instability in the solar corona, for instance in initiating solar
eruptions (e.g., Török et al. 2004; Williams et al. 2005). The development of the kink
instability has also been extensively studied in laboratory astrophysics experiments (e.g.,
Bellan 2018).

As shown over the last decades by several numerical experiments of kink instability in
twisted magnetic flux tubes (e.g., Baty & Heyvaerts 1996; Velli et al. 1997; Lionello et al.
1998; Arber et al. 1999; Baty 2000; Gerrard et al. 2001; Gerrard & Hood 2003; Browning
et al. 2008; Hood et al. 2009; Kliem et al. 2010; Bareford et al. 2013; Gordovskyy et al.
2013), initially, a helical kink develops and grows in accordance with the linear theory
of instability. Subsequently, the initial helical current sheet progressively fragments
in a turbulent manner into smaller-scale sheets. During the onset of the instability,
kinetic energy increases rapidly, and throughout the nonlinear phase, magnetic energy
dissipates. Notably, reconnection events arise within fine-scale structures such as current
sheets. The dissipation occurring in these sheets is analogous to a nanoflare storm. As
time progresses, the magnetic field reaches a minimum energy state constrained by the
conservation of magnetic helicity, as expected in highly conducting plasmas (Browning
2003; Browning et al. 2008), but it is also subject to other topological constraints (e.g.,
Yeates et al. 2010).

Gibson (1977) interpreted X-ray flares observations on the limb as produced by kink
instability. Sakurai (1976) predicted instead that erupting filaments during two-ribbon
flares are another example of kink instability. Hood & Priest (1979b) addressed an
explanation for flares alternative to the emerging flux model (see e.g., Priest 1976a,b;
Heyvaerts et al. 1977). They suggested that small loop flares are induced by unstable,
possibly resistive, kink modes developing along the flux tubes. By considering the
stability of an infinitely long, cylindrical, twisted, magnetic flux tube, Kruskal et al.
(1958) and Shafranov (1963), showed that the kink instability is set when the amount
of twist exceeds a critical value Φcrit.. In a finite flux tube, the threshold depends
on its aspect ratio, plasma beta, and the detailed traverse tube structuring. Hood &
Priest (1981) estimated a critical threshold of 2.49 𝜋 for a uniformly twisted force-free
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field, by comparison with previous bounds of 3.3 for instability Hood & Priest (1979b).
Other different studies have predicted the critical twist in different configurations, e.g.,
Φcrit. = 4.8 𝜋 for a localised twisting profile (Mikic et al. 1990); and Φcrit. = 5.15 𝜋 for
a localised, variable twisting profile (Baty & Heyvaerts 1996). Van der Linden & Hood
(1998, 1999) used a WKB method (Connor et al. 1979) to estimate the critical length
for the onset of the ideal MHD instability in force-free, cylindrical, and line-tied coronal
loops, extending earlier approximations.

In order to evaluate the budget of free energy released during a kink instability, the
magnetic relaxation theory was initially developed, in the context of laboratory plasmas,
by Taylor (1974) and later extensively adapted for the solar corona (e.g., Heyvaerts &
Priest 1984; Priest et al. 2005). As anticipated by Woltjer (1958), and shortly discussed
in Sec. 1.5.4, Taylor (1974) proposed that in a plasma with small (but finite) resistivity,
the only invariant conserved is the total helicity (Berger et al. 1999). In other words, in a
highly conducting plasma, where small-scale magnetic reconnection occurs, the global
magnetic helicity remains approximately conserved as an invariant, namely, changes in
magnetic helicity are significantly less as compared with changes in magnetic energy,
which is dissipated through reconnection. Taylor’s hypothesis has been successfully
employed to account for the formation of the distinctive layer exhibiting a reversed
toroidal magnetic field in Reverse Field Pinch devices (Taylor 1974), as well as in
various other laboratory plasma settings (Taylor 1986, 2000). Further experimental
evidence for helicity conservation was provided by Ji et al. (1995), during relaxation
events in a Reverse Field Pinch, and similar applications have been made to spheromaks
(Bellan 2000) and tokamaks (Gimblett et al. 2006; Liang et al. 2010). Taylor’s theory has
also been extensively applied to the solar corona. In this context, for Taylor’s hypothesis
to hold, the conservation of magnetic helicity in the highly conductive solar corona must
be more robust than that of magnetic energy. This condition is met when dissipation is
primarily confined to small-scale structures, such as current sheets, that are associated
with magnetic reconnection (Browning et al. 2008). Indeed, as heuristically shown by
Browning (1988), since in current sheets dissipation occurs in thin layers of width 𝑙
much smaller than the global length scale 𝐿, then 𝑗 scales with 𝐵/𝑙. Moreover, since
the magnetic energy and helicity volumetric resistive dissipation rates scale respectively
as j · B (Eq. 1.35) and 𝑗2 (Eq. 4.16), their ratio will be very small (∼ 𝑙/𝐿). As a
consequence of that, when a non-linear force free magnetic magnetic field is disrupted,
it relaxes towards the state of minimum magnetic energy available under the constraint
of helicity conservation i.e. toward a linear force-free field:

∇ × B = 𝛼B (1.66)

with 𝛼 a constant parameter whose value is constrained by helicity conservation. During
the relaxation process, magnetic energy is initially converted into both thermal and
kinetic energy, but it ultimately dissipates into heating, e.g., by viscosity. Observations
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of this relaxation process in the solar corona have been discussed, e.g., by Nandy et al.
(2003). Further constraints on the relative magnitudes of helicity and energy dissipation
in the solar corona are provided by Berger (1984), with observational evidence supporting
Taylor relaxation in the flaring corona found in studies by, e.g., Nandy et al. (2003) and
Murray et al. (2013).

In order to apply these ideas to solar coronal heating, Heyvaerts & Priest (1984) con-
sidered that photospheric footpoint motions determine the growth of coronal magnetic
field stresses at timescales slower than the loops Alfvén travel time. They presented a
‘mixing-time’ theory according to heating results from motions that build up stresses
at a rate comparable to that at which reconnection relaxes them. As a result, the field
generally evolves towards a nonlinear force-free state with excess of magnetic energy.
When this state is perturbed, it relaxes to a lower-energy constant-𝛼 force-free configu-
ration, releasing any stored free energy as heat. This cycle of energy accumulation and
relaxation continuously generates heating, as in a stress-and-relax process.
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with piecewise constant 𝛼(𝑟). They proposed that heating events in the solar corona
may be initiated by the onset of an ideal (rather than resistive) MHD instability. Indeed,
in the highly conductive coronal plasma, only ideal instabilities have sufficiently rapid
(typically Alfvénic) timescales to be relevant for flare onsets or coronal heating. For
instance, evidence from 3D MHD simulations of cylindrical loop models (e.g., Velli
et al. 1997) with small, though non-zero, resistivity indicates that, during its nonlinear
phase, the ideal kink instability generates strong current sheets that facilitate rapid
energy dissipation through fast magnetic reconnection. In the Browning (2003) scenario,
the coronal magnetic field, stressed by photospheric footpoint motions, evolves quasi-
statically through a series of equilibria until it becomes ideally unstable. This instability
triggers a dynamic heating event, after which the field settles into a minimum energy or
constant-𝛼 state, preserving its helicity but with reduced energy. They apply relaxation
theory with linear instability calculations that include line-tying effects to determine the
ammount of energy release. The resulting energy release varies considerably based on the
specific current profile at the onset of instability. Notably, this model predicts a minimum
nanoflare size of approximately 1025 erg (1018 J), given specific loop parameters (length
of 20 Mm, radius of 1 Mm, and longitudinal magnetic field of 30 G), and a maximal
energy release up to 10 -100 times bigger, within the same coronal loop. This model was
further extended by Bareford et al. (2010, 2011) to explore the distribution of nanoflare
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Fig. 8. Case 3: contour plot of the current density, j, at z = 0 at time t = 55 and 85. The arrows show the velocity components, vx and vy, scaled by
a factor of 5. The length of the arrows are proportional to the magnitude of the horizontal velocity. a) Left is at t = 55. b) Right is at t = 85. The
colour scale for the current density is from 0 (light purple) to 15 (red).

Fig. 9. Case 3: contour plot of the current density, j, at z = 0 at time
t = 150. The arrows show the velocity components, vx and vy. The
colour scale for the current density is from 0 (blue) to 15 (red).

3.3. Heating and temperature profiles

Nothing very much happens to the density and temperature until
the first current sheet forms – after about t = 105 for Case 1.

A picture of what is happening can be seen by looking at
cuts through y = 0 and z = 0. The temperature as a function of
x is shown, for Case 1, in Fig. 11. Initially (t = 180), there is
only heating at the current sheet with a peak dimensionless tem-
perature of 0.015. The location of the spike corresponds closely
to the initial current spike (discussed above). During this time
the dimensionless density is of order unity. When the kinetic en-
ergy reaches a maximum value around t = 200, the maximum
temperature reaches a value around 0.06 but now there are more
spikes appearing. Eventually, at t = 250, the peak temperature is

slightly lower, at around 0.02, but it is reasonably uniform across
a radius of 1.5.

It is also very instructive to look at contour plots of temper-
ature, taking a cross-section across the loop midplane (z = 0),
as shown in Figs. 12 and 13, for Case 3. These snapshots cor-
respond to the same times as the velocity, current and fieldline
plots shown in Figs. 8 and 10. There is some initial heating asso-
ciated with the current sheet formation (though not exactly co-
located), see Fig. 12a. Then, when a strong current sheet has
formed, around t = 85, there is very localised heating inside the
current sheet and within the reconnection outflows (Fig. 12b).
Finally, once a fragmented current sheet has been established,
a much more distributed temperature profile arises, with hot
plasma (albeit still with filamentary structure) across the full
cross-section (Fig. 13).

Assuming a typical dimensional magnetic field strength of
B0 = 50 G, and mass density of ρ0 = 1014 m−3 × 1.6726 ×
10−27 kg, the dimensional value of the temperature is typically
around

T = 0.02
B2

0

µ

1
Rρ0
= 2.7 × 108 K.

This value is high but it should only be considered as an up-
per estimate to the actual value. Since the energy equation does
not allow thermal energy to leave the system through radia-
tion losses, the resulting temperature is necessarily too high.
Haynes & Arber (2007) obtained lower values for their field pro-
file and parameter choices. In addition to radiative losses, ther-
mal conduction will also lower this value and so the predicted
temperatures can only give estimates of the maximum values
likely in the relaxation process. The inclusion of thermal con-
duction and radiation is likely to be important during the slow
evolution towards the final relaxed state but less so during the
phase of rapid energy release.

What about the temperature variation along the loop?
Figure 14 shows how the hotter plasma (T = 0.02) is near the
summit of the loop (corresponding to where the initial ohmic
heating occurs). The lower temperature material (T = 0.01) is

920 A. W. Hood et al.: Numerical simulations of heating by nanoflares

Fig. 8. Case 3: contour plot of the current density, j, at z = 0 at time t = 55 and 85. The arrows show the velocity components, vx and vy, scaled by
a factor of 5. The length of the arrows are proportional to the magnitude of the horizontal velocity. a) Left is at t = 55. b) Right is at t = 85. The
colour scale for the current density is from 0 (light purple) to 15 (red).

Fig. 9. Case 3: contour plot of the current density, j, at z = 0 at time
t = 150. The arrows show the velocity components, vx and vy. The
colour scale for the current density is from 0 (blue) to 15 (red).

3.3. Heating and temperature profiles

Nothing very much happens to the density and temperature until
the first current sheet forms – after about t = 105 for Case 1.

A picture of what is happening can be seen by looking at
cuts through y = 0 and z = 0. The temperature as a function of
x is shown, for Case 1, in Fig. 11. Initially (t = 180), there is
only heating at the current sheet with a peak dimensionless tem-
perature of 0.015. The location of the spike corresponds closely
to the initial current spike (discussed above). During this time
the dimensionless density is of order unity. When the kinetic en-
ergy reaches a maximum value around t = 200, the maximum
temperature reaches a value around 0.06 but now there are more
spikes appearing. Eventually, at t = 250, the peak temperature is

slightly lower, at around 0.02, but it is reasonably uniform across
a radius of 1.5.

It is also very instructive to look at contour plots of temper-
ature, taking a cross-section across the loop midplane (z = 0),
as shown in Figs. 12 and 13, for Case 3. These snapshots cor-
respond to the same times as the velocity, current and fieldline
plots shown in Figs. 8 and 10. There is some initial heating asso-
ciated with the current sheet formation (though not exactly co-
located), see Fig. 12a. Then, when a strong current sheet has
formed, around t = 85, there is very localised heating inside the
current sheet and within the reconnection outflows (Fig. 12b).
Finally, once a fragmented current sheet has been established,
a much more distributed temperature profile arises, with hot
plasma (albeit still with filamentary structure) across the full
cross-section (Fig. 13).

Assuming a typical dimensional magnetic field strength of
B0 = 50 G, and mass density of ρ0 = 1014 m−3 × 1.6726 ×
10−27 kg, the dimensional value of the temperature is typically
around

T = 0.02
B2

0

µ

1
Rρ0
= 2.7 × 108 K.

This value is high but it should only be considered as an up-
per estimate to the actual value. Since the energy equation does
not allow thermal energy to leave the system through radia-
tion losses, the resulting temperature is necessarily too high.
Haynes & Arber (2007) obtained lower values for their field pro-
file and parameter choices. In addition to radiative losses, ther-
mal conduction will also lower this value and so the predicted
temperatures can only give estimates of the maximum values
likely in the relaxation process. The inclusion of thermal con-
duction and radiation is likely to be important during the slow
evolution towards the final relaxed state but less so during the
phase of rapid energy release.

What about the temperature variation along the loop?
Figure 14 shows how the hotter plasma (T = 0.02) is near the
summit of the loop (corresponding to where the initial ohmic
heating occurs). The lower temperature material (T = 0.01) is

Figure 1.26: MHD simulation of a kink-unstable flux tube with zero net-current with
Lare-3D code (Arber et al. 2001). The min plane maps of the current density before
(left), during (middle), and after (right) the onset of the instability are shown. The arrows
show the velocity components along the plane scaled proportionally to the magnitude of
the horizontal velocity. As the flux tube is distorted, a helical current sheet forms and
increases at the surface. It further breaks into two and, finally, it chaotically fragments
into many sheets. Credit: Hood et al. (2009)

energies resulting from random photospheric twisting motions.
Browning et al. (2008) compared Browning (2003) model outcomes with the results

obtained from a three-dimensional numerical MHD simulation of energy release in a
cylindrical coronal loop model. The initial magnetic field profiles are chosen to be
linearly kink-unstable. The results include line-tying effects and are extended to account
for a surrounding potential field layer. The loop initially develops a helical kink, whose
structure and growth rate align well with linear stability theory, followed by the formation
of a current sheet. During this phase, there is a burst of kinetic energy as the magnetic
energy decays. A new relaxed equilibrium, closely resembling a constant-𝛼 field, is
established. The energy released is evaluated against predictions that the magnetic
field will relax to a minimum energy state with conserved magnetic helicity, forming a
constant-𝛼 force-free field, it is also consistently dependent on the initial current profile.

A 3D magnetohydrodynamic numerical code (Lare-3D, Arber et al. 2001) is used to
simulate the evolution of coronal loops which are initially in ideally unstable equilibrium.
The initial states have zero net current. The results are interpreted by comparison
both with linear stability analysis and with helicity-conserving relaxation theory. The
disturbance due to the unstable mode is strongly radially confined when the loop carries
zero net current. Strong current sheets are still formed in the nonlinear phase with
dissipation of magnetic energy by fast reconnection. The nonlinear development consists
first of reconnection in a large-scale current sheet, which forms near the quasi-resonant
surface of the equilibrium field. Subsequently, the current sheet extends and then
fragments, leading to multiple reconnections and effective relaxation to a constant 𝛼
field. Magnetic reconnection is triggered in the non-linear phase of kink instability in
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loops with zero net current. Initially, reconnection occurs in a single current sheet, which
then fragments into multiple reconnection sites, allowing for almost full relaxation to the
minimum energy state. The loop is heated to high temperatures throughout its volume.

Hood et al. (2009) further explored coronal heating by magnetic reconnection in
kink-unstable loops with zero net current. They show that in loops with zero-net-
current, where the instability is more localised, the relaxation remains as effective
as in previous studies involving net-current loops. In their 3D MHD simulations,
fast magnetic reconnection occurs during the nonlinear phase of the kink instability,
effectively dissipating magnetic energy and allowing the loop to relax to a minimum
energy state, consistent with relaxation theory predictions. In particular, the kink mode
initially exhibits exponential growth, leading to helical deformation of the loop and an
internal double-vortex flow. As the deformation increases, a helical current ribbon forms
near the surface of the most unstable linear mode (Fig.1.26, left panel). The current
sheet grows in both magnitude and length, eventually splitting into two (Fig.1.26, middle
panel) and becoming distorted within the loop, forming a complex, fragmented current
sheet structure throughout the loop cross section (Fig.1.26, right panel). Reconnection
occurs vigorously within this fragmented structure, driving further reconnection and
heating the plasma to temperatures exceeding 108K. Due to the initial profile containing
currents of opposite signs and the involvement of the surrounding potential field layer
in the relaxation process, the final 𝛼 value is nearly zero, resulting in a final field that
closely resembles a uniform axial field.

Strong bursts in plasma temperature (∼ 108K) as well as in kinetic energy are
attenuated by an order or magnitude when the effects of thermal conduction along field
lines are taken into account (Botha et al. 2011). Such effects play a fundamental role, as
they strongly influence the plasma properties, as well as the global timescales of the fast
MHD event, with deep consequences also in the forward modelling of such loops.

In contrast to cylindrical models, real coronal loops exhibit field line convergence at
the photospheric footpoints, leading to significantly weaker field strength at the loop tops
compared to the footpoints (Gordovskyy et al. 2013, 2014). In 3D MHD simulations of
confined solar flares within twisted coronal loops, the footpoints are gradually twisted
within a dipolar magnetic region and a gravitationally stratified atmosphere until insta-
bility occurs. Specifically, Bareford et al. (2016) investigated magnetic reconnection
in twisted magnetic flux tubes with different loop configurations, to establish the role
of field geometry, heat conduction, and atmospheric stratification on the stability and
further heating distribution in twisted coronal loops. For instance, when coronal loops
large-scale curvature is taken into account, the current (and thus heating) distribution
loses its cylindrical symmetry (as in the straight-cylinder case), with strong currents
clustered in a thin shield on the top. Curvature is also demonstrated to systematically
reduce the stability of flux tubes. In the loops with strong convergence at footpoints, cur-
rent sheets and heating are stronger and localised above the footpoints. Stability proves
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different for curved and straight flux tubes: in curved loops footpoints convergence has
a stabilising effect, the opposite is true for straight tubes. Atmospheric stratification is
demonstrated to affect loop stability because of the destabilising effect of waves prop-
agating from the chromosphere to the corona. In agreement with Botha et al. (2011),
localised heating is smoothed by thermal conduction, although the temperature distri-
bution remains very structured across field lines. Curved loops typically experience
an upward “failed eruption”, marked by an initial expansion followed by contraction
and large-scale reconnection, eventually relaxing to a lower-energy, weakly twisted state
(Bareford et al. 2016; Pinto et al. 2016). Observationally, such failed eruptions are com-
monly detected as energy release signatures in reconnecting twisted loops (e.g., Leamon
et al. 2003; Srivastava & Dwivedi 2010; Kuridze et al. 2013).

Studies have also analysed line-of-sight velocities and velocity dispersions in relaxing
twisted loops, linking these to non-thermal spectral broadening (Gordovskyy et al. 2016),
with results indicating positive correlations between velocity dispersion and temperature,
consistent with observations (Doschek et al. 2008). Work in cylindrical geometries has
identified additional soft X-ray signatures (Pinto et al. 2015), such as loop expansion and
intensity increases at the loop edges, with potential observables for DKIST (Snow et al.
2018). Other signs of energy release in reconnecting twisted loops include microwave
polarization patterns (Sharykin et al. 2018).

1.8.2 MHD avalanches
While much of the discussion has focused on individual twisted loops so far, configu-
rations with multiple twisted flux ropes also contain free magnetic energy that can be
released as these flux ropes merge through magnetic reconnection (Browning & Priest
1986). As twisted flux ropes coalesce with each other, they generate a cascade of energy
release from smaller to larger scales that has been interpreted as “domino” or “avalanche”
mechanism.

The concept of avalanche mechanism (Charbonneau et al. 2001) for energy release
in a magnetically complex corona dates back to the works of Lu & Hamilton (1991)
and Lu et al. (1993). They suggested that the solar coronal magnetic field exists in a
self-organised critical state, which accounts for the observed power-law distribution of
solar flare occurrence rates across more than five orders of magnitude in peak flux. This
mechanism posits that the clustering of numerous dissipating magnetic discontinuities
within a localised area can lead to large-scale explosive events. In their model, the
magnetic field is defined over a three-dimensional grid, with “rules” applied at each
grid point to determine whether magnetic energy dissipation occurs based on local
field stresses. Dissipation at one point can destabilise adjacent points, triggering a
chain reaction. This model envisions solar flares as avalanches of numerous small-scale
reconnection events.

The cellular automaton (CA) approach has been extensively developed for modelling
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solar flares and coronal heating through nanoflares (see review by Charbonneau et al.
2001; Aschwanden et al. 2016), showing that continuous energy release models can
be translated into discrete self-organised critical models (Bak 2013). In these models,
various rules can be defined to drive the system, determine instability, and relax to a
stable state. Typically, the CA models represent the magnetic field using vector or scalar
values on a 2D or 3D rectangular grid. Relaxation is triggered when a field value deviates
significantly from neighbouring values or when the horizontal field or twist exceeds a
critical threshold (e.g., Vlahos & Georgoulis 2004; Fuentes & Klimchuk 2010, 2015).
Subsequent research has expanded on this idea using increasingly sophisticated models,
including CA to simulate highly inhomogeneous active regions (Vlahos et al. 1995),
considering an ensemble of field lines rather than magnetic field strength (Hughes et al.
2003; Morales & Charbonneau 2008), or using deterministic driving to reproduce the
slow twisting of a loop (Strugarek et al. 2014). A CA model whose instability criterion
recalls kink instability in twisted loops has been proposed by Mendoza et al. (2014),
although it does not account for reconnection between neighbouring loops.

An alternative scenario suggests that photospheric motions with vorticity twist in-
dividual elements of a magnetic flux tube (e.g., De Moortel & Galsgaard 2006). Con-
sequently, the coronal magnetic field is likely nonpotential, composed of numerous
current-carrying threads, simplified as twisted magnetic flux rope, often separated by
current sheets. The merging of two or more twisted flux ropes into a single structure
has long been considered a potential mechanism for releasing stored magnetic energy,
leading to both large-scale flares and, on smaller scales, coronal heating (e.g., Gold &
Hoyle 1960; Melrose 1997; Kondrashov et al. 1999). As twisted flux ropes coalesce into
fewer, larger structures, the typical field scale-length increases, which can be interpreted
as an inverse energy cascade from small to large scales or as a self-organization process.
Reconnection and energy release during flux rope mergers have been both modelled
(e.g., Linton et al. 2001; Kliem et al. 2014) and observed in various eruptive events
(Liu 2020). Merging flux ropes may also contribute to the pre-eruption formation of a
large-scale flux rope (Patsourakos et al. 2012, 2020; Kliem et al. 2021). The merging of
magnetic flux ropes has been explored in several laboratory reconnection experiments.
For example, in the MAST spherical tokamak, two current-carrying plasma tori merge
into a single twisted flux rope, resulting in significant heating and forming a hot spher-
ical tokamak plasma through “merging-compression” (Stanier et al. 2013; Browning
et al. 2014; Gryaznevich & Sykes 2017). Semi-analytical models have been developed
for plasmas within a conducting chamber of rectangular cross-section, using both an
infinite-aspect ratio configuration (Browning et al. 2014, 2015) and a tight-aspect ratio
cylindrical configuration (Bareford et al. 2016). This models begin with two adjacent
flux ropes of rectangular cross-section, determining the values of 𝛼 and peak magnetic
field by imposing constraints of helicity and toroidal flux conservation. This relaxation
model is adaptable to simulate coronal loop mergers, where initial configurations could
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include multiple loops or oppositely twisted loops (Browning et al. 2015).
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Fig. 7. Contour plots of current density magnitude, j(x, y, 0), as functions of x and y at z = 0 at the times indicated. The figures on the left and
right are for Case 3 and Case 4, respectively. The colour scale for the current density goes from 0 (white) to 5 (purple).

of both threads. Hence, since the plasma is optically thin, these
magnetic structures will appear brighter than Case 3, when
viewed from the side.

The heating in Case 4 is the most interesting, since it is the
only case where a single stable thread is destabilised by its unsta-
ble neighbour and able to release its free magnetic energy. The
the mid-plane temperature, at eight different times, is shown in
Fig. 12. The stable thread is destabilised around t = 140 and
a clear sharp boundary in the temperature is seen on the left-
hand side of the heated plasma. This develops into a hot arc at
t = 150, that is similar is nature to the initial current sheet that
forms around t = 80. By the end of the simulation, a large area
has been heated.

The effectiveness of heating of coronal loops through the ex-
citation of reconnection events in multiple magnetic threads can
be assessed by the studying the resulting temperatures after the
magnetic field has relaxed. In our simulations, the dimension-
less temperature after heating is approximately in the range of
T = 0.005∼0.02. To convert these to actual coronal values, we
consider a typical magnetic field strength of B0 = 50 G and
a typical mass density of ρ0 = 1.67 × 10−13 kg m−3. The ref-
erence temperature is approximately 1.4 × 1010 K. Therefore,
the dimensional temperature in our simulations is around T ∼ 7
to 28 × 107 K. These values are high compared to observed val-
ues. Of course, we expect the actual values to be smaller with
the inclusion of thermal conduction. This effect could reduce
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magnetic structures will appear brighter than Case 3, when
viewed from the side.

The heating in Case 4 is the most interesting, since it is the
only case where a single stable thread is destabilised by its unsta-
ble neighbour and able to release its free magnetic energy. The
the mid-plane temperature, at eight different times, is shown in
Fig. 12. The stable thread is destabilised around t = 140 and
a clear sharp boundary in the temperature is seen on the left-
hand side of the heated plasma. This develops into a hot arc at
t = 150, that is similar is nature to the initial current sheet that
forms around t = 80. By the end of the simulation, a large area
has been heated.

The effectiveness of heating of coronal loops through the ex-
citation of reconnection events in multiple magnetic threads can
be assessed by the studying the resulting temperatures after the
magnetic field has relaxed. In our simulations, the dimension-
less temperature after heating is approximately in the range of
T = 0.005∼0.02. To convert these to actual coronal values, we
consider a typical magnetic field strength of B0 = 50 G and
a typical mass density of ρ0 = 1.67 × 10−13 kg m−3. The ref-
erence temperature is approximately 1.4 × 1010 K. Therefore,
the dimensional temperature in our simulations is around T ∼ 7
to 28 × 107 K. These values are high compared to observed val-
ues. Of course, we expect the actual values to be smaller with
the inclusion of thermal conduction. This effect could reduce
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Figure 1.27: MHD simulation of the merging of two twisted flux tube with Lare-3D
code (Arber et al. 2001). The maps of the current density at the mid plane are shown
at four evolution stages. Initially (top-left panel), the flux tube on the left undergo
kink instability. The unstable tube expands and eventually coalesces with the other one
(top-right, bottom left panels), the final structure is a single, quasi-circular flux tube
(bottom-right panel). As the magnetic structure evolve, the current density tubes breaks
and chaotically fragments into many sheets. Credit: Tam et al. (2015)

In general, there are two primary approaches to study the non linear evolution of
merging flux ropes: in the first, the twisted flux ropes carry a net current, causing them
to attract each other (e.g., Stanier et al. 2013); in the second, the flux ropes are in full
equilibrium, necessitating an instability or external driving force to initiate merging. Tam
et al. (2015) addressed the second scenario, as an initial step toward the development of
MHD avalanche models by propagation of kink instabilities. In a series of numerical
experiments, they explored the heating of a coronal loop composed of multiple small
magnetic threads. Their study focused on a scenario involving two magnetic threads,
in which one thread was rendered unstable to the kink instability. A key finding from
these simulations is that a stable magnetic thread can be destabilised by an adjacent
unstable thread if they are sufficiently close and share the same twist orientation. In
fact, since the unstable loop expands in the radial direction (‘partial relaxation’, Bareford
et al. 2013, see also the top panels of Fig. 1.27), during the relaxation process, it can
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disrupt the nearby stable loops (bottom-left panel of Fig. 1.27). After both threads
become destabilised, the system relaxes into a single, larger loop with reduced twist
(bottom-right panel of Fig. 1.27). The characteristic length scales of this weakly twisted
field are now greater than those of the original configuration, similarly to the inverse
cascade of magnetic helicity observed by Antiochos (2013).

Hood et al. (2016) demonstrate that an MHD avalanche can occur in a nonpotential
multithreaded coronal loop. Considering 23 twisted magnetic threads within a loop, they
used 3D MHD simulations to show that a single unstable thread can trigger the decay
of the entire structure. In particular, as shown in Fig. 1.28, each flux tube coalesces
with the neighbouring ones and releases discrete heating bursts. The spiky temporal
evolution of heating agrees with the nanoflare-storm scenario for coronal loop heating.

Tam et al. (2015) and Hood et al. (2016) 3D MHD results have been successfully
compared with a model for the relaxation and merging of twisted flux ropes, based on
a helicity-conserving relaxation hypothesis (Taylor 1974, 1986). Hussain et al. (2017)
determined the lowest available energy state under the constraint of total helicity conser-
vation: a linear force-free field 𝛼 determined by the conservation of the dimensionless
helicity-axial-flux ratio (Taylor 1974, 1986). Since the lowest energy is likely achieved
imposing circular boundaries, the relaxed field is assumed to be a circular cross-section
flux tube, whose extent is constrained by few assumptions on the total flux ropes volume
conservation, and magnetic/gas pressure balance. Solar coronal fields have no conduct-
ing walls, so the background potential field must remain unchanged as in a free boundary
problem (Browning 1988; Dixon et al. 1989).

Simulations with more complex initial states, such as braided magnetic fields, tend
to relax to configurations that deviate from a Taylor state, often resulting in two weakly
twisted flux ropes with opposite signs of 𝛼. Indeed, relaxation theory does not always
predict a minimum energy state. For relaxation to proceed, a sufficient level of turbulent
reconnection is required to allow field line reconnection across the volume. In cases
like two oppositely twisted flux ropes, free magnetic energy may remain unreleased, as
reconnection to achieve a minimum energy state (a potential field) is unlikely, due to the
alignment of azimuthal fields at the interface. Furthermore, for astrophysical plasmas,
which lack the conducting boundaries of laboratory plasmas, relaxation theory must
be adjusted to account for partial relaxation, where only a limited volume of the field
undergoes relaxation while the surrounding magnetic field remains unchanged (Bareford
et al. 2013). The merger of two flux ropes can in general be classified as either “co-
helicity” or “counter-helicity” depending on whether the helicities of the ropes are the
same or opposite (Yamada et al. 1990). Co-helicity mergers, which are observed in
spherical tokamaks, seem more probable in the solar corona. In the counter-helicity
scenario, oppositely twisted flux ropes are less likely to relax and release energy since
neither toroidal nor poloidal magnetic fields reverse at the interface, making magnetic
reconnection initiation difficult without a strong external trigger (Ripperda et al. 2017a,b).
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3.1. Axial Current Density

To illustrate the development of an MHD avalanche, we
show results in the cross section at the midplane, z=0.
Contours of the axial current, jz, give a clear indication of
current sheet formation, break up and relaxation. The
simulation runs to a final time of t=800. During this period,
there are nine distinct interaction stages that lead to the MHD
avalanche. These are shown in Figures 4 and 5. Figure 4 shows
contours of jz at three early times and covers stage 1 (linear
phase, top), stage 1 (nonlinear phase, middle), and stage 2 (first
interaction). The top panel is during the initial kink instability
of loop 1 at time t=75. The first current sheet is clearly seen
in loop 1. The middle panel is at time t=150. The current
sheet in the unstable loop has fragmented and small current
sheets are forming throughout the volume of loop 1. This is
during the first stage of the avalanche, as the single unstable
thread is evolving. The fragmented currents are reminiscent of
a turbulent system, with a range of scales all the way down to
dissipation. In addition, thread 1 has expanded and is now
interacting with the neighboring threads, numbered 2, 3, 4, 5, 6,
and 8 as indicated in Figure 2. However, the first stable loop to
be disrupted is thread 2, as can be seen in the bottom panel in
Figure 4 and this is the start of stage 2. Because of the

Figure 3. Initial (a) axial field, Bz, and (b) transverse field, By, at the midplane
(z = 0) and at y=0 as a function of x.

Figure 4. Contours of the axial current at the midplane (z = 0) for t=75, 150,
165 during the early stages: stage 1 (top and middle panels) and stage 2 (bottom
panel). Here the background resistivity is zero. Red corresponds to positive
current, blue to negative, and white to zero.
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fragmented current sheet development of thread 1, it is not clear
why it should be thread 2 that is disrupted first, though this loop
is closest to the initial midplane current sheet in thread 1 (see
top panel of Figure 2). Note that as thread 2 begins to coalesce
with thread 1, it interacts strongly with threads 3 and 4, forming
current sheets between them. At the midplane, the jz contours
are still remarkably symmetric, despite the kink instability
breaking symmetry and the turbulent nature of the plasma.
Interactions then start to happen more frequently, as shown in

Figure 5. The top panel shows jz contours at time t=200. This
is stage 3 and threads 3 and 4 have been pulled into the middle
and there is evidence of current sheets forming at threads 5 and
6. The symmetry in the interactions is no longer seen at time
t=290 (middle panel) and thread 5 is already beginning to
disrupt before thread 6 in stage 4. The following stages are
noted. In stage 5, thread 7 is disrupted, essentially on its own.
Stage 6 involves threads 8, 9, and 10 (in that order). Stage 7 sees
the disruption of threads 11–14. Stage 8 covers the disruption of
threads 15 and 16 and the final stage in this simulation (bottom
panel) involves the disruption of threads 17 and 18.
There may be a few more interactions after the end of the

simulation but it is also possible that the avalanche ends with a
few threads still remaining unaffected. In this simulation, those
unaltered are threads 19–23.

3.2. Magnetic Field Lines

Figure 6 shows a sample of the magnetic field lines for three
times: namely the initial state, the partially relaxed state at
t=400, and the state at the end of our simulation (t= 800).
The individual twisted threads are clearly seen in the top figure
and as the threads are disrupted the twist is reduced, leaving
only weakly twisted field lines at the end. The system has not
yet fully relaxed, as there are 5 threads that are still twisted and
in their initial state.

3.3. Heating

As one would expect, the magnetic energy is reduced at each
of the stages when a thread is disrupted. The volume integrated
magnetic energy, minus its initial value, is shown as a function
of time in Figure 7. There is no reduction in magnetic energy
until the kink instability develops around t=75. Then, there
are several times when the gradient is steep and then followed
by a shallower gradient. These periods of rapid decrease in
magnetic energy correspond to the various loops being
disrupted.
The maximum free magnetic energy of each thread depends

on the value of the twist parameter, λ, and this can be estimated
as its initial energy minus the potential field with the same axial
flux. Strictly speaking the radius of the relaxed thread will be
larger than the original thread, but we ignore this small effect.
For the unstable thread, 1.8M � and the free volume integrated
magnetic energy is 1.8. From Figure 7, the magnetic energy
released is approximately 1.3 between t=75 and t=145. Not
all the available energy is released in this time partly because
the relaxed state is not a potential field and partly because the
relaxation process takes longer to reach its final equilibrium.
Stage 2 is triggered before this can happen. For the stable
threads the volume integrated magnetic energy available is 0.8
and during stage 2, the magnetic energy of the thread is
reduced by 0.6. Again not all the energy is released. Similar

Figure 5. Contours of the axial current at the midplane (z = 0) for times 200,
290, and 800 during the later stages. Stage 3 is shown in the top panel, stage 4
in the middle, and stage 9 in the bottom. Here the background resistivity is
zero. Red corresponds to positive current, blue to negative, and white to zero.
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Figure 1.28: MHD simulation of an MHD avalanche in a multi-threaded coronal loop
with Lare-3D code (Arber et al. 2001). The maps of the axial current density at the mid
plane are shown at six evolution stages. The avalanche process is triggered by a single,
kink-unstable coronal loop strand (first panel from the top-left). As the process evolve
(following panels), the unstable flux tubes coalesce with nearby stable one, causing
widespread current density fragmentation in current sheets. the Credit: Hood et al.
(2016)
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Fig. 1. From Paper I, the geometry of the three-thread model and asso-
ciated driving motions on the boundary, indicated by the direction of the
arrows at z = ±10. Each thread has a dimensionless diameter 2a, where
a = 1.0.

The initial conditions comprise a uniform plasma with a
magnetic field in the z-direction, along the threads. At both foot-
points of the threads, rotational motions in the x, y-plane were
centred at (x, y) = (0, 0) for the first thread, (2, 0) for the second,
and (�2, 0) for the third, such that the three threads touch each
other along y = 0. Defining a local radial coordinate r for each
thread, the rotational velocity is:

v� = v0

8>><>>:
r
a

⇣
1 � r2

a2

⌘3
r < a,

0 r � a,
(6)

and is imposed throughout the simulation. The maximum speeds
are chosen to be 0.05, 0.02, and 0.02, respectively (achieved
with v0 = 0.21, 0.084, 0.084) and the dimensional radii take on
the value a = 1.0. These values ensure that the driving is both
significantly sub-Alfvénic and faster than any resistive footpoint
slippage of the field lines (e.g. Bowness et al. 2013).

3. Global energetics

3.1. Overall behaviour

The overall behaviour of the three-strand avalanche was
described fully in Paper I; the results can be summarized by a
plot of the instantaneous heating as a function of time, shown by
the blue curve in Fig. 2. The initial photospheric motions take
the strands through a sequence of equilibria, with the magnetic
energy growing quadratically in time. Alfvén waves generated
at the start of the driving are damped by the background vis-
cosity (see Figs. 3 and 4 of Paper I). Marginal stability of the
central thread is passed at t ⇡ 100, leading to the onset of the
kink instability. This is identified by an exponential growth in
the kinetic energy (Fig. 11 of Paper I), by the formation of a
strong, crescent-shaped current sheet in the mid-plane (Fig. 5
therein), and by a gradual rise in the heating (Fig. 2). Fast recon-
nection facilitated by the anomalous resistivity leads to the ini-
tial release of magnetic energy; the first large spike in the total

Fig. 2. Instantaneous total heating as a function of time, from the photo-
spheric velocities given by Eq. (6) (blue). The red dotted vertical lines
mark large heating events, as identified in Figs. 9–11 of Paper I. The
green curve indicates the total heating in a similar simulation, with the
rotational velocity of each thread halved.

heating occurs at t = 200, indicated by the first vertical dashed
line. The unstable, rapidly evolving central thread engulfs the
outer two in turn, as a mini-avalanche, accompanied by major
energy releases at t = 250 and t = 350. Thereafter, the continu-
ally driven system continues to produce releases of small bursts
of energy, again indicated by the dashed vertical lines in Fig. 2.
These bursts are superposed on a fairly steady level of total heat-
ing, suggestive of a “background” heating prevailing in the vol-
ume as a whole. We return to the nature of this background in
Sect. 4.1.

In order to understand the e↵ect of resolution on the results,
the same numerical experiment was performed using the three
grids mentioned in Sect. 2, with the same values for the di↵usion
coe�cients in all cases. In Fig. 3a, the evolution over time of the
volume-integrated magnetic energy is shown in the upper pan-
els. (The dimensionless magnetic energy at t = 0 is 360 W0L3

0,
almost all of which is associated with the regions outside the
threads, and so, for clarity, the di↵erence from this is shown in
the upper left panel.) It is clear, firstly, that the initial instability
and subsequent engulfing of the two outer threads before t = 400
are largely independent of the chosen grid, and, secondly, that
while the details after this time di↵er from case to case, roughly
the same level of dissipation arises. We remark that a steady state
is not reached after t = 1000 (see Paper I) and that this holds for
all resolutions. (Further integration is restricted by the available
computational resources.) Figures 3b,c, and d show the kinetic
energy, instantaneous heating, and viscous heating, respectively,
as functions of time. The kinetic energy is small in all cases, but,
unlike the change in magnetic energy, shows temporal structur-
ing that di↵ers between the various grids, even as soon as the
onset of the initial kink mode. This behaviour is also seen in the
total and viscous heating rates, although, for these, the agree-
ment is better in the initial kinking. This indicates that, despite
the overall rate of dissipation in the system being similar for all
models, the details of how this happens, in other words the prop-
erties of the localized regions of viscous and Ohmic heating, do
depend on the resolution.

Considering these results physically is dependent upon
the prescribed normalizing scales. The dimensionless figures
presented can be read with any normalizing values, but, for
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Fig. 10. Instantaneous total heating over time. This is the sum of Ohmic
heating, heating by shock viscosities, and heating by uniform viscos-
ity. The red dashed lines identify an illustrative sample of visibly large
heating events.

Fig. 11. Volume-integrated kinetic energy over time. The red dashed
lines match the times of large heating events identified in Fig. 10.

heating, attests to the possibility of a consistent source of heat-
ing, long after the threads have become unstable and ceased to
hold any of their recognizable cylindrical form. Although one
finds, apparently, evidence of consistent heating of indefinite
duration, the individual events which constitute this effect pro-
vide little evidence of strong, discernible periodicity, with no
intervals appearing in a power spectrum.

6. Discussion and conclusions

This paper has addressed coronal energy release by considering
the driven evolution of three neighbouring threads within a large-
scale loop structure. Instability of one of the threads leads to
the release of magnetic energy in all three, with bursty energy
release continuing throughout the simulation.

An important outcome of this work is that, while the rela-
tively simple driving of three vortex motions at the photospheric
boundaries initially produces three coherent and distinct flux
tubes, after the instability and subsequent disruptions, the mag-
netic field lines are connected to different vortices and the
continued photospheric motions begin to braid the magnetic

field in a much more complex manner. Indeed, there is little
cylindrical symmetry left in the final field, and the complex
three-dimensional magnetic field lines readily form numerous
small current sheets and possible heating sites. This scenario dif-
fers from that proposed by others who argue that current sheets
will always form in sufficiently tangled magnetic fields gener-
ated by complex motions (e.g. Hendrix & Van Hoven 1996; Ng
et al. 2012). Here, the current sheets form spontaneously from a
highly ordered initial state, with the photospheric motions bring-
ing about braiding of the magnetic field, as has often been seen
in such driven simulations (Wilmot-Smith 2015), and hence the
possibility of the topological dissipation discussed by Parker
(1972).

The field then attempts to relax to a lower-energy configu-
ration, but nevertheless the constant imposition of the driving
velocity necessitates a departure from the classical theory of
Taylor (1974). The perpetual influx of energy by photospheric
driving precludes the system attaining a minimal energy state.
In addition, the work by Yeates et al. (2010) suggests that the
constant-↵ state will not be reached, but instead a higher-energy
state conserving topological degree. Nonetheless, the magnetic
field is still non-potential and contains available energy. That
external driving causes departures from a pure Taylor state has
been widely discussed in the case of laboratory plasmas (see
Kitson & Browning 1990; Tang & Boozer 2005).

The temporal evolution of the total heating shows that, after
the first few large releases of energy, there is a continued back-
ground level of heating and a large number of small heating
events. There is no obvious periodicity or size for these events.
The question of the origin of the background heating (in terms
of viscosity models), and whether it is really steady or a series
of very small events, will be presented in a subsequent paper.
Future work will also address the spatial dependence of the heat-
ing, in order to ascertain whether the heating is likely to be
localized (e.g. footpoint heating) or spread throughout the corona
(quasi-uniform heating, see Klimchuk 2015).

The application of avalanches to coronal energy dissipation,
posited by Lu & Hamilton (1991) and since then considered
by several authors (Aschwanden et al. 2016), was noted ear-
lier. In this and earlier work, we have demonstrated using full
three-dimensional MHD simulations that the destabilization of
large-scale magnetic fields by a single unstable “node” is indeed
feasible. This is conceptually similar to the ideas arising in the
concept of “self-organized criticality” (SOC), whereby an insta-
bility occurs following the breach by a certain parameter of some
critical condition, and leads to a reconfiguration which affects
neighbouring regions. As the disruption spreads, with neigh-
bours successively impacting upon each other, an “avalanche”
results (Bak et al. 1987; Bak 1997).

However, there are important differences between our results
and those arising from SOC. In particular, these models iter-
ate through external driving and dissipation in accordance with
basic rules, with a marginally stable state being attained. We do
not find evidence for this here. The reason is likely to be that, at
this time, MHD simulations cannot be run for nearly long enough
to attain the SOC marginal state. Thus, the major outstanding
issue in applying SOC and cellular automata (CA) to the coro-
nal energy release problem, namely the construction of rigorous
rules governing the instability and subsequent redistribution of
the field and, hence, heating of the plasma, remains untested.
However, this and earlier work (Hood et al. 2016) do suggest
merit in the idea of coronal avalanches, and more computational
power will eventually bridge this gap.
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Fig. 10. Instantaneous total heating over time. This is the sum of Ohmic
heating, heating by shock viscosities, and heating by uniform viscos-
ity. The red dashed lines identify an illustrative sample of visibly large
heating events.

Fig. 11. Volume-integrated kinetic energy over time. The red dashed
lines match the times of large heating events identified in Fig. 10.

heating, attests to the possibility of a consistent source of heat-
ing, long after the threads have become unstable and ceased to
hold any of their recognizable cylindrical form. Although one
finds, apparently, evidence of consistent heating of indefinite
duration, the individual events which constitute this effect pro-
vide little evidence of strong, discernible periodicity, with no
intervals appearing in a power spectrum.

6. Discussion and conclusions

This paper has addressed coronal energy release by considering
the driven evolution of three neighbouring threads within a large-
scale loop structure. Instability of one of the threads leads to
the release of magnetic energy in all three, with bursty energy
release continuing throughout the simulation.

An important outcome of this work is that, while the rela-
tively simple driving of three vortex motions at the photospheric
boundaries initially produces three coherent and distinct flux
tubes, after the instability and subsequent disruptions, the mag-
netic field lines are connected to different vortices and the
continued photospheric motions begin to braid the magnetic

field in a much more complex manner. Indeed, there is little
cylindrical symmetry left in the final field, and the complex
three-dimensional magnetic field lines readily form numerous
small current sheets and possible heating sites. This scenario dif-
fers from that proposed by others who argue that current sheets
will always form in sufficiently tangled magnetic fields gener-
ated by complex motions (e.g. Hendrix & Van Hoven 1996; Ng
et al. 2012). Here, the current sheets form spontaneously from a
highly ordered initial state, with the photospheric motions bring-
ing about braiding of the magnetic field, as has often been seen
in such driven simulations (Wilmot-Smith 2015), and hence the
possibility of the topological dissipation discussed by Parker
(1972).

The field then attempts to relax to a lower-energy configu-
ration, but nevertheless the constant imposition of the driving
velocity necessitates a departure from the classical theory of
Taylor (1974). The perpetual influx of energy by photospheric
driving precludes the system attaining a minimal energy state.
In addition, the work by Yeates et al. (2010) suggests that the
constant-↵ state will not be reached, but instead a higher-energy
state conserving topological degree. Nonetheless, the magnetic
field is still non-potential and contains available energy. That
external driving causes departures from a pure Taylor state has
been widely discussed in the case of laboratory plasmas (see
Kitson & Browning 1990; Tang & Boozer 2005).

The temporal evolution of the total heating shows that, after
the first few large releases of energy, there is a continued back-
ground level of heating and a large number of small heating
events. There is no obvious periodicity or size for these events.
The question of the origin of the background heating (in terms
of viscosity models), and whether it is really steady or a series
of very small events, will be presented in a subsequent paper.
Future work will also address the spatial dependence of the heat-
ing, in order to ascertain whether the heating is likely to be
localized (e.g. footpoint heating) or spread throughout the corona
(quasi-uniform heating, see Klimchuk 2015).

The application of avalanches to coronal energy dissipation,
posited by Lu & Hamilton (1991) and since then considered
by several authors (Aschwanden et al. 2016), was noted ear-
lier. In this and earlier work, we have demonstrated using full
three-dimensional MHD simulations that the destabilization of
large-scale magnetic fields by a single unstable “node” is indeed
feasible. This is conceptually similar to the ideas arising in the
concept of “self-organized criticality” (SOC), whereby an insta-
bility occurs following the breach by a certain parameter of some
critical condition, and leads to a reconfiguration which affects
neighbouring regions. As the disruption spreads, with neigh-
bours successively impacting upon each other, an “avalanche”
results (Bak et al. 1987; Bak 1997).

However, there are important differences between our results
and those arising from SOC. In particular, these models iter-
ate through external driving and dissipation in accordance with
basic rules, with a marginally stable state being attained. We do
not find evidence for this here. The reason is likely to be that, at
this time, MHD simulations cannot be run for nearly long enough
to attain the SOC marginal state. Thus, the major outstanding
issue in applying SOC and cellular automata (CA) to the coro-
nal energy release problem, namely the construction of rigorous
rules governing the instability and subsequent redistribution of
the field and, hence, heating of the plasma, remains untested.
However, this and earlier work (Hood et al. 2016) do suggest
merit in the idea of coronal avalanches, and more computational
power will eventually bridge this gap.
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Figure 1.29: Lare-3D (Arber et al. 2001) MHD simulation of an MHD avalanche within a
three-stranded coronal loop twisted at the boundaries (as shown on top panel). Bottom-
right panel: instantaneous total (Ohmic+viscous) heating over the time. Bottom-left
panel: volume-integrated kinetic energy over time. The red dashed lines indicates the
times of visibly large heating events. Credit: Reid et al. (2018, 2020)

According to Hussain (2018), relaxation between oppositely twisted threads is unlikely
or occurs more slowly, requiring stronger triggers. This is attributed to topological
constraints not accounted for in Taylor’s hypothesis (Yeates et al. 2015).

In general, the energy stored by photospheric motions can be released via viscous and
Ohmic dissipation during a dynamic relaxation process (Reid et al. 2018) and thereafter
through a sequence of impulsive, localised, and aperiodic heating events under the action
of continuous photospheric driving (Reid et al. 2020). One question is whether repeated
episodes of instability and energy release can occur, as the field is continually twisted or
the disordering of the field prevents the onset of further kink instabilities (Rappazzo et al.
2013). Reid et al. (2018, 2020) addressed coronal energy release by MHD avalanches
considering the driven evolution of three neighbouring threads within a large-scale loop
structure, twisted by boundary motions. In agreement with previous investigations (Tam
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et al. 2015; Hood et al. 2016) they demonstrated, using full three-dimensional MHD
simulations, that the destabilisation of large-scale magnetic fields by a single unstable
“node” is feasible: the instability of one of the threads leads to the release of magnetic
energy in all three, with burst energy release continuing throughout the simulation. An
important outcome of this work is that, while the relatively simple driving of three
vortex motions at the photospheric boundaries initially produces three coherent and
distinct flux tubes, after the instability and subsequent disruptions, the magnetic field
lines are connected to different vortices and the continued photospheric motions begin
to braid the magnetic field in a much more complex way. This scenario differs from that
proposed by others who argue that current sheets will always form in sufficiently tangled
magnetic fields generated by complex motions (Hendrix & Van Hoven 1996; Ng et al.
2012). Here, the current sheets spontaneously form from a highly ordered initial state,
with photospheric motions that cause the braiding of the magnetic field, as has often
been seen in such driven simulations (Wilmot-Smith 2015). The field then attempts to
relax to a lower-energy configuration, but nevertheless the constant imposition of the
driving velocity necessitates a departure from the classical theory of Taylor (1974). The
perpetual influx of energy by photospheric driving prevents the system from attaining a
minimal-energy state. This suggests that the constant-𝛼 state will not be reached. The
temporal evolution of the total heating shows that after the first few large releases of
energy, there is a continued background level of heating and a large number of small
heating events. There is no obvious periodicity or size for these events (Reid et al. 2020).

In a recent work, Threlfall et al. (2021) and Reid et al. (2022) demonstrated the
feasibility of MHD avalanches within the more physically realistic curved geometry of a
coronal arcade. In this configuration, MHD avalanches effectively amplify instabilities
across strong solar magnetic fields, leading to widespread plasma disturbances. Unlike
in straight-cylindrical models, the curved geometry induces a modified ideal MHD kink
mode that occurs more readily and preferentially in the upward direction.

Threlfall et al. (2018) focused on non-thermal particle behavior within 3D MHD
simulations of unstable, multi-threaded coronal loops. In particular, they investigated
particle acceleration mechanisms under conditions of magnetic reconnection, occurring
during the loop magnetic decay. By using a numerical scheme based on the rela-
tivistic guiding center approximation (Northrop 1963; Threlfall et al. 2016a,b, 2017),
they examined the electron and proton dynamics in Tam et al. (2015) high-resolution
MHD simulations, showing the effects of uniform background resistivity against those
of anomalous resistivity (Rosner et al. 1978b; Hood et al. 2009). Specifically, they
demonstrated that anomalous resistivity can lead to near-identical particle impact sites
at the footpoints, while background resistivity results in distinct impact locations. Addi-
tionally, when secondary thread instability is triggered, a secondary acceleration event
and the emergence of a hardened particle energy spectrum are identified, with energetic
particles spreading across both loop strands volumes.



2
Methods

2.1 The numerical tool: PLUTO Code
PLUTO code (Mignone et al. 2007, 2012) is a modular, Godunov-type code (Godunov
& Bohachevsky 1959) for the solution of astrophysical plasma flows in up to 3 spatial
dimensions, in different system geometries and physical regimes (Newtonian, relativistic,
MHD or relativistic MHD). The code provides a multiphysics, multi-algorithmic modular
environment particularly oriented toward the treatment of astrophysical flows in the
presence of discontinuities. The code is also designed to make efficient use of massive
parallel computers using the message passing interface (MPI) library for interprocessor
communications. PLUTO code exploits a general framework for integrating the system
of conservation laws:

𝜕𝑈

𝜕𝑡
+ ∇ · F = 𝑆, (2.1)

where F is the (hyperbolic and/or parabolic) flux and 𝑆 stands for the sources, built on
modern Godunov-type, high resolution, shock-capturing schemes (HRSC, Toro et al.
1997; LeVeque et al. 1998) that makes it particularly suitable for the treating fluids
discontinuities.

The majority of HRSC codes shares a common discretisation scheme (schematically
shown in Fig. 2.1), involving three general steps, discussed below:

• A piece-wise polynomial reconstruction. Interpolation routines are designed to
reconstruct a piece-wise polynomial approximation of the solution between each
cell from the cell values (Toro et al. 1997; LeVeque et al. 1998). In PLUTO many
reconstruction methods are available, including flat, linear, parabolic schemes
(Mignone 2005), and so forth. For instance, linear interpolation provides second
order accuracy in space.
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Figure 2.1: HRSC discretisation scheme involving: (1) a piece-wise polynomial recon-
struction, (2) computation of fluxes at the cell interfaces, (3) temporal update.

• The solution of Riemann problems at zone interfaces followed by the compu-
tation of fluxes at the cell interfaces. The discontinuity at each cell interface
evolves into a discontinuity breakup. Its exact evolution involves the decay of a set
of non-linear waves, according to the Rankine-Hugoniot jump conditions, whose
solution in turn requires relatively high computational times (especially within
MHD, where seven wave patterns must be taken into account, Li 2005). Linear
solvers (such as Roe solvers, Roe 1986) have a small numerical diffusivity, but
can easily lead to numerical pathologies. Finally, the HLL family of solvers (Toro
et al. 1994; Batten et al. 1997) is based on a guess of the signal speed and on
the integral average of the Riemann fan (so fewer weaves are considered). Those
methods, although less accurate (numerical diffusive), are numerically robust and
preserve the positivity of the solution. Parabolic terms (such as electric resistiv-
ity, and thermal conduction) introduce second-order spatial derivatives and their
treatment requires the solution of diffusion equations, bringing further time step
limitations. The (explicit) super time stepping method (Alexiades et al. 1996),
where the solution vector is evolved over a super time step (Δ𝑡𝑎𝑑) consisting of
𝑁 smaller substeps (Δ𝑡𝑝𝑎𝑟), has been proved to be very effective at speeding up
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explicit time-stepping schemes for parabolic problems. Indeed, the STS requires
𝑁𝑆𝑇𝑆 ∼

√︃
Δ𝑡𝑎𝑑
Δ𝑡𝑝𝑎𝑟

substeps rather than 𝑁exp =
Δ𝑡𝑎𝑑
Δ𝑡𝑝𝑎𝑟

as would be the case with explicit
classical subcycling schemes. This approach is crucial when high values of plasma
temperature are reached (e.g., during flares) the explicit scheme being subject to a
rather restrictive stability condition (i.e. Δ𝑡 ≤ (Δ𝑥)2/2𝜂, where 𝜂 is the maximum
diffusion coefficient), because the thermal conduction timescale 𝜏𝑐𝑜𝑛𝑑 is shorter
than the dynamical one 𝜏𝑑𝑦𝑛 (see, e.g., Orlando et al. 2005, 2008 Orlando et al.
2008).

• A final temporal evolution stage. PLUTO provides a number of time-marching
schemes (Euler, RK2, RK3, RK4, Hancock, Characteristic Tracing) for the explicit
discretisation and integration of the (left hand side of) Eq. 2.1.

2.2 MHD modelling of the solar corona
The works presented in the following sections are based on the design, execution, anal-
ysis, and forward modelling of numerical experiments aimed at reproducing coronal
activity without losing the conceptual effectiveness of ideal MHD modelling. The
numerical experiments are based on a solar atmosphere model that includes a chromo-
spheric layer and a magnetised coronal environment crossed by one or multiple coronal
loop strands. Each loop is modelled as a straightened magnetic flux tube connecting two
far and independent chromospheric layers at the opposite sides of the box, as shown in
Fig. 2.2. The length of the tubes is taken to be much larger than their radius. For this
reason, the effects of the curvature on their structure are negligible.

The evolution of the plasma and magnetic field in the box is described by solving
the full time-dependent MHD equations including gravity (for a curved loop), thermal
conduction (Alexiades et al. 1996), also with the effects of heat flux saturation, radiative
losses (Raga et al. 1997), and magnetic diffusivity.

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0, (2.2)

𝜕𝜌v
𝜕𝑡

+ ∇ · (𝜌vv) = −∇ · (I𝑃 + I
𝐵2

8𝜋
− BB

8𝜋
) + 𝜌g, (2.3)

𝜕𝐵

𝜕𝑡
− ∇ × (v × B) = −𝜂∇2B, (2.4)

𝜕

𝜕𝑡

(
𝐵2

8𝜋
+ 1

2
𝜌𝑣2 + 𝜌𝜖 + 𝜌𝑔ℎ

)
+ ∇ ·

[
𝑐

4𝜋
E × B + 1

2
𝜌𝑣2v + 𝛾

𝛾 − 1
𝑃v + Fc + 𝜌𝑔ℎv

]
=

= 𝑄(𝑇). (2.5)
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Figure 2.2: The typical semicircular loop geometry v.s. the adopted straight box ge-
ometry. Upper picture: a semicircular coronal loop box with straight chromospheric
layers at the base. Lower picture: schematic representation of the 3D box containing the
computational domain of the simulation. In the corona we adopted a stretched grid and
the field aligned gravity of a semicircular coronal loop (blue arrows on the top).

where 𝑡 is the time; 𝜌 is the mass density; v is the plasma velocity; 𝑃 is the thermal
pressure; B is the magnetic field; E is the electric field; g is the gravity acceleration
vector for a curved loop; I is the identity tensor; 𝜖 is the internal energy; j is the induced
current density; 𝜂 is the magnetic diffusivity; 𝜎 = 𝑐2

4𝜋𝜂 is the electrical conductivity; 𝑇
is the temperature; Fc is the thermal conductive flux; 𝑄(𝑇) includes the radiated energy
losses and heating.

The MHD equations (Eq.s 2.2 to 2.5) are solved in the Eulerian, conservative form,
using the MHD module available in PLUTO, configured to compute intercell fluxes
with the Harten-Lax-Van Leer approximate Riemann solver (Janhunen 2000), while the
second order in time is achieved using a Runge-Kutta scheme (Cockburn & Shu 2001).
A Van Leer limiter (Van Leer 1974) for the primitive variables is used.
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The solution to the MHD equations must fulfil the solenoidal constraint at all times.
According to the induction equation (Eq. 1.13 and Eq. 2.4), the magnetic field solenoidal
condition (∇ · B = 0, Eq. 1.2) formally holds at any time 𝑡, provided that the initial
conditions are well posed (Eq. 1.14). On the other hand, numerical errors can produce
non-negligible magnetic field divergence. The monopole control strategies available
in PLUTO are ‘Divergence cleaning’ (Tóth 1996), ‘Eight-waves’ (Powell 1994; Powell
et al. 1999), ‘Constrained transport’ (Londrillo & Del Zanna 2004; Balsara & Spicer
1999). In this work, we consider the Constrained transport approach that maintains the
solenoidal condition at machine accuracy. In particular, with the constrained transport
approach, the staggered magnetic field is treated as an area-weighted average on the zone
face and Stoke’s theorem is used to update it:∫ (

𝜕B
𝜕𝑡

+ ∇ × E
)
𝑑𝑆 = 0 =⇒ 𝑑B

𝑑𝑡
+ 1
𝑆

∮
E · d𝑙 = 0. (2.6)

2.2.1 Supplementary Maxwell equations
Ampère’s law in MHD regime (which holds until 𝑣 ≪ 𝑐) gives the current density in
terms of the magnetic field curl:

j =
𝑐

4𝜋
∇ × B, (2.7)

In Eq. (2.7), the displacement current has been neglected, provided that the plasma
velocity is not relativistic (i.e. 𝑣 ≪ 𝑐). The electric field E is defined by Ohm’s law:

E = −v
𝑐
× B + j

𝜎
, (2.8)

From this, the Poynting flux can be decomposed into three terms:

𝑐

4𝜋
E × B = − 1

4𝜋
B(v · B) + 𝐵

2

4𝜋
v + 𝜂

𝑐
j × B. (2.9)

The first term on the right-hand side (- 1
4𝜋B(v · B)) is significant for the driving, as it

determines the energy injected into the domain by the photospheric driver. The second
term (𝐵2

4𝜋v) represents the flow of magnetic energy across the boundaries of the domain.
Finally, the third term (𝜂

𝑐
j × B) is related to Ohmic dissipation and field line diffusion at

the boundaries of the domain.
We use the ideal gas law for a fully ionized plasma:

𝑝 = (𝛾 − 1)𝜌𝜖 = 2𝑘𝑏
𝜇𝑚𝐻

𝜌𝑇. (2.10)

where 𝑚𝐻 is the hydrogen mass; 𝑘𝐵 is the Boltzmann constant; 𝜇 = 1.265 is the
mean ionic weight (relative to a proton and assuming metal abundance of solar values:
𝑋 (H) ≃ 70.7 %, 𝑌 (He) ≃ 27.4 %, 𝑍 (Li − U) ≃ 1.9 %; Anders & Grevesse 1989);
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2.2.2 Thermal conduction
The thermal conductive flux is defined in Eq. 2.11 and accounts also for heat flux
saturation.

Fc =
𝐹sat

𝐹sat + |𝐹class |
Fclass, (2.11)

where,

Fclass = 𝑘 ∥ 𝑏̂(𝑏̂ · ∇𝑇) + 𝑘⊥
[
∇𝑇 − 𝑏̂(𝑏̂ · ∇𝑇)

]
, 𝐹sat = 5𝜙𝜌𝑐3

iso. (2.12)

The subscripts ∥ and ⊥ denote the parallel and normal components to the magnetic field,
𝑘 ∥ = 𝐾∥𝑇

5
2 and 𝑘⊥ = 𝐾⊥𝜌2/(𝐵2𝑇

1
2 ) are the thermal conduction coefficients along and

across the field, 𝐾∥ = 9.2× 10−7 and 𝐾⊥ = 5.4× 10−16 (cgs units), 𝑐𝑖𝑠𝑜 is the isothermal
sound speed, 𝜙 < 1 is a free parameter that we set to 0.9 (Cowie & Mckee 1977),
𝑏̂ = B/𝐵 is the unit vector pointing along the magnetic field, and 𝐹sat is the maximum
flux magnitude in the direction of Fc. Specifically, the classical thermal conductivity
𝐹class holds when the mean free path is relatively short. Vice versa, when it becomes
comparable to the temperature scale height, the heat flux is no longer equal to the classical
values: we describe this effect as heat saturation. In this limit (i.e. for large temperature
gradients) the flux is assumed to be independent of ∇𝑇 . In particular, the flux magnitude
approaches 𝐹sat. The thermal conduction is treated separately from the advection terms
through operator splitting. In particular, we adopted the super-time-stepping technique
(Alexiades et al. 1996).

2.2.3 Radiative losses
Atmospheric gravitational stratification on the Sun is modulated by radiative and heat
transfer. In the corona, collision de-excitation and photon absorption are negligible,
generated photons directly escape. Optically thin radiative cooling is important in the
corona with a rate per unit volume:

𝑄coro = 𝑛H𝑛eΛ(𝑇), (2.13)

where Λ(𝑇) is the plasma emissivity per unit emission measure (integrated over all
wavelengths); 𝑛H and 𝑛e are the hydrogen and electron number density, respectively
(assumed equal). PLUTO code includes optically thin radiative losses in a fractional
step formalism, which preserves the second-order time accuracy, since the advection
and source steps are at least second-order accurate; the radiative loss values (Λ(𝑇))
are computed at the temperature of interest using a table lookup/interpolation method.
In particular, we considered the radiative losses from optically thin plasma per unit
emission measure (shown in the plot of Fig. 2.3), derived from the CHIANTI v. 7.0
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Figure 2.3: Function of optically thin radiative losses per unit emission measure, derived
from the CHIANTI v. 7.0 database (Landi & Reale 2013), assuming coronal element
abundances (Widing & Feldman 1992).

database (e.g., Landi & Reale 2013) assuming coronal element abundances (Widing &
Feldman 1992).

One can also include an accurate description of the radiative losses in the more
optically thin chromospheric layers. The chromospheric radiative energy balance is
dominated by a small number of strong lines, including neutral hydrogen (H i), singly
ionized calcium (Ca ii), and singly ionized magnesium (Mg ii) (Vernazza et al. 1981).
In those lines most of the emitted photons are immediately absorbed in the same transi-
tions as the collisional destruction probability is often very low. Therefore, each photon
escapes after large number of scattering events. In particular, the basic cooling process
is the electron impact excitation followed by radiative deexcitation. These strong lines
are formed out of Local Thermodynamic Equilibrium (LTE) which means that numer-
ical simulations of the dynamic chromosphere need to solve simultaneously the MHD
equations, the radiative transfer equations, and the rate equations for all the radiative
transitions and energy levels involved. Carlsson & Leenaarts (2012) used detailed ra-
diative transfer calculations from dynamical snapshots to derive simple lookup tables
that only use easily obtainable quantities from each single simulation snapshot. They
tested these recipes by applying them to several simulation runs, compared the radia-
tive losses from detailed solutions with those from the recipes, and found, in general,
good agreement. The net effects of this process on cooling can be approximated as the
product of three factors, all dependent on local quantities: 𝐿𝑋𝑚 (𝑇), the optically thin
radiative loss function for the element 𝑋 in the ionisation stage 𝑚 (i.e. the energy loss
from generation of photons in absence of absorption); 𝐸𝑋𝑚 (𝜏), the escape probability
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Figure 2.4: Look-up tales for approximated radiative cooling/heating in the chromo-
sphere from lines out of LTE derived by (Carlsson & Leenaarts 2012). First column:
Function of total collisional excitation rate (probability density function of the radiative
losses, in black, and heating from the same transitions, in red) in the H lines (top, solid),
Lyman-continuum (top, dashed), Ca ii lines (bottom, solid), and Mg ii lines (bottom,
dashed), as function of the temperature. Second column: probability density function of
the escape probability at Lyman-𝛼 line center, as function of the optical depth, and Ca ii
(bottom, solid) and Mg ii (bottom dashed), as function of column mass. Third column:
probability density function of the fraction of neutral hydrogen atoms, calcium atoms in
the form of Ca ii, and magnesium atoms in the form of Mg ii, as function of temperature.

(meaning the probability that the photon escapes from the chromosphere); and 𝑁𝑋𝑚/𝑁𝑋 ,
the ionization fraction for each element. Fig. 2.4 shows the tabulated functions.

𝑄𝑋 = −𝐿𝑋𝑚 (𝑇) 𝐸𝑋𝑚 (𝜏)
𝑁𝑋𝑚

𝑁𝑋
(𝑇)𝐴𝑋

𝑁𝐻

𝜌
𝑛𝑒𝜌, (2.14)

where 𝐴𝑋 is the abundance of the element 𝑋 , and 𝑁𝐻 = 4.407 × 1023 is the number of
hydrogen (𝐻) particles per gram of solar material.
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2.2.4 Heating
Beyond time-dependent heating deriving from conversion of magnetic energy (described
in Sec. 2.2.7), other terms are typically included, which allow, for instance, to maintain
the system at equilibrium and therefore isolate the effect of impulsive events.

Heating production and transfer can be split into three terms: a background coronal
heating 𝐻0; chromospheric heating from incident coronal radiation (as part of the
radiative losses in the corona is absorbed by the chromosphere in the continua of helium
and neutral hydrogen); heating by photospheric absorption (that is the reverse process
of chromospheric cooling, Sec. 2.2.3).

The volumetric heating rate 𝐻0 balances the energy losses to keep the corona static,
e.g., at ∼ 1 MK. This is taken as a background atmosphere for initial conditions,
according to hydrostatic loop models (Serio et al. 1981; Guarrasi et al. 2014). An estimate
of this heating rate can be derived from loop scaling laws. According to Rosner-Tucker-
Vaiana (RTV) scaling laws (𝐻0 ∼ 10−3𝑇3.5

6 𝐿−2
9 , where 𝑇6 and 𝐿9 are the temperature and

the loop half-length in units of 106 K and 109 cm, respectively, Rosner et al. 1978b, and
in Sec. 1.5.2, Eq.s 1.49, 1.50), a volumetric heating rate 𝐻0 = 4.3 × 10−5 erg cm−3 s−1

is sufficient to keep the corona static with an apex temperature of about 8 × 105 K and a
half-length of 𝐿 = 2.5 × 109 cm (25 Mm). This provided a background atmosphere that
was adopted as the initial condition, according to the hydrostatic loop models of Serio
et al. (1981) and Guarrasi et al. (2014). This heating rate was not scaled similarly for
temperatures below the chromospheric cut-off temperature (cf. Johnston et al. 2020)

Part of the emissivity associated to the frequency integrated radiative losses 𝜂 =

𝑄coro/4𝜋 in the corona (𝑧𝑏 < 𝑧 < 𝑧𝑡) hits the solar surface (𝑧𝑏) with incoming intensity:

𝐼 (𝜇)coro =
1
|𝜇 |

∫ 𝑧𝑡

𝑧𝑏

𝜂(𝑧′) 𝑑𝑧′, (2.15)

where 𝜇 = cos(𝜃) is the angle of incidence. It is then absorbed mainly after the process of
ionisation of neutral helium at the edge of its ground state whose representative opacity
𝜒 is:

𝜒 = 𝛼𝑁𝐻𝑒 𝐼 = 𝛼𝜌
𝑁𝐻

𝜌
𝐴𝐻𝑒

𝑁𝐻𝑒𝐼

𝑁𝐻𝑒
(𝑇), (2.16)

with 𝛼 = 2×10−18 the cross section fo the helium continuum, 𝐴𝐻𝑒 the helium abundance
and 𝑁𝐻𝑒𝐼/𝑁𝐻𝑒 the (tabulated) fraction of neutral helium as a function of the temperature.
Assuming for each location 𝜂 or 𝜒 be zero the classical, full radiative transfer equations:

𝑄chrom = 𝜒

∫
Ω

𝐼 𝑑Ω − 𝜂, (2.17)

𝑑𝐼

𝑑𝑠
= 𝜂 − 𝜒𝐼, (2.18)
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can be simplified and integrated. In particular, chromospheric heating from incident
coronal radiation (Eq. 2.17) can be approximated by the product of the opacity by the
angle-average intensity (solution of Eq. 2.18):

𝑄chrom = 2𝜋𝜒(𝑧)
∫ 1

−1
𝐼 (𝑧, 𝜇)𝑑𝜇, (2.19)

where 𝜏(𝑧) is the optical depth.
Carlsson et al. (2010) argue that the cool parts of the chromosphere can be heated

by radiation at the same transitions of chromospheric cooling. In particular they show
that full radiative-transfer process of cool pockets chromospheric heating:

𝑄 =

∫ ∞

0
𝜒𝜈 (𝐽𝜈 − 𝑆𝜈)𝑑𝜈, (2.20)

can be approximated by the same functional form used for cooling (Eq. 2.14, Sec. 2.2.3).
In particular, in the two-level atom approximation, the source function 𝑆𝜈 results from
the sum of the Planck function 𝐵𝜈 and the mean intensity 𝐽𝜈:

𝑆𝜈 = 𝜖𝐵𝜈 − (1 − 𝜖)𝐽𝜈, (2.21)

weighted by the collisional destruction probability 𝜖 ∼ 𝑓 (𝑇) 𝑛𝑒. Assuming the opacity
function for the generic ion 𝑋𝑚 likewise Eq. 2.16, the resulting heating rate has the
following functional form:

𝑄 = 𝑓 (𝑇) 𝛼0
𝑁𝑋𝑚, 𝑗

𝑁𝑋𝑚
×

∫ ∞

0
𝜙𝜈 (𝐽𝜈 − 𝐵𝜈)𝑑𝜈 ×

𝑁𝑋𝑚

𝑁𝑋
(𝑇) × 𝐴𝑋

𝑁𝐻

𝜌
𝑛𝑒𝜌, (2.22)

where the first therm of products depends on 𝑇 and can be interpreted as a (positive)
optically thin radiative losses term, while the integral emulates the escape probability
𝐸 (𝜏).

2.2.5 Transition region capturing methods
One of the main difficulties encountered in MHD models is the need to implement a
grid that fully resolves the steep gradients in the transition region (Bradshaw & Cargill
2013). Across the transition region, the number density and the temperature change by
two orders of magnitude in less than 100 km. Specifically, the temperature scale length
𝐿𝑇 = 𝑇/(𝑑𝑇/𝑑𝑠) (with 𝑠 the coordinate along the loop) is generally as small as 1 km, but
it can scale down to 100 m or less during strong and impulsive events. Resolving such
rapid variation and steep gradients would ordinarily require an extremely high spatial
resolution (very small grid cell widths, less than 1 km) and would lead to unfeasible
computational times (Bradshaw & Cargill 2013), as it acts, in turn, as a major constraint
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on the time step. As pointed out by Bradshaw & Cargill (2013), the main consequence of
not properly resolving the transition region when using the standard Spitzer Jr & Härm
(1953) conduction description is that the resulting coronal density in response to heating
is artificially low (while the TR is, conversely, denser): the heat flux directed downward
to the underresolved TR directly jumps over the deeper and denser layers, where the
energy is rapidly radiated. Since the emission measure scales with the density squared,
underestimating the density leads to inaccurate conclusions when numerical predictions
are compared with real observational data.

The Linker–Lionello–Mikić method (Linker et al. 2001; Lionello et al. 2009; Mikić
et al. 2013) allows us to artificially broaden the transition region without significantly
changing the properties of the loop in the corona, obviating this challenge. In particular,
Linker-Lionello–Mikić approach modifies the temperature dependence of the parallel
thermal conductivity and radiative emissivity below a fixed temperature threshold, e.g.,
𝑇𝑐 = 2.5 × 105 K:

𝑘̃ ∥ (𝑇) =
{
𝑘Spz(𝑇) , 𝑇 > 𝑇𝑐 ,

𝑘Spz(𝑇𝑐) , 𝑇 < 𝑇𝑐 ,
(2.23)

Λ̃∥ (𝑇) =

ΛSpz(𝑇) , 𝑇 > 𝑇𝑐 ,

ΛSpz(𝑇)
(
𝑇
𝑇𝑐

)5/2
, 𝑇 < 𝑇𝑐 .

(2.24)

In impulsively heated coronal loops, a fixed value of 𝑇𝑐 might not be suitable, as
the transition region might dramatically change. Johnston & Bradshaw (2019) devised
a method that allows the characteristic temperature of the TR, 𝑇𝑐, to change in response
to the dynamic coronal loop evolution. As pointed out by Johnston & Bradshaw (2019),
modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC)
method permits fast and accurate numerical solutions of the field-aligned hydrodynamic
equations, capturing the enthalpy exchange between the corona and transition region,
when the corona undergoes impulsive heating. The TRAC method eliminates the need
for highly resolved numerical grids in the transition region and the commensurate very
short time steps that are required for numerical stability. Johnston et al. (2020) and
Johnston et al. (2021) presented a highly efficient formulation of the TRAC method for
use in multidimensional MHD simulations, thus extending the TRAC method to MHD
simulations. It efficiently accounts for the magnetic field evolution, without the need to
trace field lines at each time step. The field aligned thermal conduction is modified as
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Figure 2.5: 1D simulations of a impulsively heated coronal loop with PLUTO code
(Mignone et al. 2007) with high (red line) and low (black, dotted line) spatial resolu-
tion. The black, solid line show the results with the modified TRAC thermal conduc-
tion/radiative losses. The top row show the initial temperature (left panel) and density
(right panel) distributions over the loop length 𝑥. The bottom row show the same quanti-
ties after 3000 s. HD, Spitzer simulation is numerically unstable at low temperature and
(overestimate) underestimate the initial (temperature) density. Inversely, the LD Spitzer
simulation (overestimates) underestimates the (temperature) density after the heat pulse.
Even at low small resolution TRAC is reproduce reliable, numerically stable results.

follows:

𝑘̃ ∥ = max


5𝑘𝐵 |𝑛𝑣 | +

√︃
25𝑘2

𝐵
(𝑛𝑣)2 + 4 𝑘Spz

𝑇

[
𝑛2ΛSpz(𝑇) −𝑄Spz(𝑇)

]
2𝛿
𝐿𝑅

, 𝑘Spz

 (2.25)

for 𝐿𝑇 < 2𝐿𝑅/𝛿, (2.26)

𝑘̃ ∥ = max


√︃

4 𝑘Spz
𝑇

[
𝑛2ΛSpz(𝑇) −𝑄Spz(𝑇)

]
2𝛿
𝐿𝑅

, 𝑘Spz

 (2.27)

for 𝐿𝑇 > 2𝐿𝑅/𝛿. (2.28)

where 𝑘Spz is the Spitzer thermal conduction and ΛSpz and𝑄Spz are the original radiative
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Figure 2.6: SDO/AIA lines light-curves of a impulsively heated coronal loop, forward-
modelled from the 1D coronal loop simulation described in figure 2.5. Numerical
stability and low spatial resolution affect systemic plasma emission within Spitzer ther-
mal conduction (red and black, dotted lines), as compared with TRAC results (black,
solid line).

losses and heating rates, 𝐿𝑅 is the pixel resolution and 𝛿 is a parameter (set equal to 2).
Thermal conduction is thus enhanced in underresolved grid cells of the TR. To broaden
the steep temperature and density gradients in the TR, as already proposed by Linker
(Linker et al. 2001), Lionello (Lionello et al. 2009), and Mikić (Mikić et al. 2013),
heating 𝑄 and radiative losses Λ(𝑇) rates are modified thus keeping the Λ × 𝑘 ∥ product
constant and, therefore, ensuring that the total radiation and heating, integrated across
the TR, remains the same:

ΛSpz(𝑇) → ΛSpz(𝑇)
𝑘 ∥
𝑘Spz

(2.29)

𝑄Spz(𝑇) → 𝑄Spz(𝑇)
𝑘 ∥
𝑘Spz

(2.30)

2.2.6 Gravity
We assumed that the flux tube is semicircularly curved only in the corona and that it is
straight in the chromosphere. Thus, we considered the gravity of a curved loop in the
corona:

𝑔(𝑧) ẑ = 𝑔⊙ sin
(
𝜋
𝑧

𝐿

)
ẑ, (2.31)
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where 𝑔⊙ =
𝐺𝑀⊙
𝑅2
⊙

is constant; 𝐺 is the gravitational constant; 𝑀⊙ is the solar mass; and
𝑅⊙ is the solar radius. We note that the gravitational acceleration decreases and becomes
zero at the loop apex (𝑧 = 0) to account for the loop curvature. Below the corona, gravity
is uniform and vertical. Gravity orientation is schematically shown in Fig. 2.2.

2.2.7 Anomalous plasma resistivity
The resistivity is critical in constraining rate and amount of magnetic energy converted
into heat. Anomalous magnetic resistivity, i.e. much higher than predicted by Spitzer
collisional diffusion, is customary in MHD simulations of magnetic reconnection (e.g.,
Ugai 1992; Yokoyama & Shibata 1994).

Rosner et al. (1978a) showed that the observed high temperature and inhomogeneous
structure of the solar corona can be explained by in situ heating via anomalous current
dissipation. Duijveman et al. (1981), through the use of a marginal stability analysis,
investigate the anomalous character of the current dissipation as caused by ion-cyclotron
and/or ion-acoustic instabilities. They show that ion acoustic modes become unstable
only when the electron temperature exceeds three times the ion temperature. According
to Benford (1983), the electrostatic ion cyclotron instability is the dominant mechanism
heating coronal loops, while ion acoustic modes never become unstable (𝑇𝑒/𝑇𝑖 < 3).
Heating is ultimately determined by complex interactions of boundary effects and tur-
bulent resistivity.

In the simplified MHD framework, anomalous resistivity is switched on only when
the magnitude of the current exceeds a critical value as in the following:

𝜂 =

{
𝜂0 |𝐽 | ≥ 𝐽𝑐𝑟

0 |𝐽 | < 𝐽𝑐,
(2.32)

Kliem et al. (2000) showed how this spatially varying critical resistivity could be derived
by matching the local electron drift speed with the local ion sound speed. They also veri-
fied that the system dynamics weekly depends on the particular choice of the parameters
set for the resistivity. For example Gordovskyy et al. (2014) set a variable resistivity
whose critical current density is determined independently in each cell, locally in space
and time, by the electron-ion drift velocity 𝑣𝐷 = 𝑗/(𝑒 𝑛). In particular, an “anomalous”
value for 𝜂 is set where and when 𝑣𝐷 exceed the critical velocity, 𝑣𝑐𝑟 =

√︁
( 𝑝
𝜌
), equal to

the sound speed; otherwise it is assumed to vanish. The expression for critical current
density is therefore:

𝑗𝑐𝑟 = 𝑒 𝑛

√︂
𝛾
𝑝

𝜌
, (2.33)

that can be written in normalized units as:
𝑗𝑐𝑟

𝑗0
=

√︂
𝛾

2
𝛽
𝐿0
𝑅𝑝

𝜌

𝜌0
(2.34)



2 Methods 93

where 𝛽 =
2𝑛𝑘𝐵𝑇
𝐵2

0/8𝜋 is the plasma beta, and 𝑅𝑝 =
𝑚𝑝

𝑒𝐵0

√︃
𝛾
𝑝

𝜌
is the Larmor radius of the

thermal proton. The typical thickness of reconnecting current sheets approximates
the Larmor radius of the proton (∼ 1 m in the corona). Grid pixel resolution (𝛿𝑥) in
(3D)MHD numerical experiments of the solar corona is typically orders of magnitude
higher, meaning that the real current densities are underestimated by the same factor
𝛿𝑥/𝑅𝑝. To overcome this problem, the correcting factor of 𝛿𝑥/𝑅𝑝 is introduced in
Eq. 2.34. This extra factor accounts for finite spatial resolution and depends on local
quantities. In particular, since the Larmor proton radius is proportional to

√
𝑇/𝐵, the

resulting current density will depend on the local plasma quantities in the following way
(Bareford & Hood 2015):

𝑗𝑐𝑟

𝑗0
=

√︂
𝛾

2
𝛽
𝐿0
𝛿𝑥

𝜌

𝜌0
∝ 1
𝛿𝑥

𝜌𝑇

𝐵
(2.35)

Hood et al. (2009) assume that an anomalous plasma resistivity with fixed critical
current density which brings the critical current just above the current densities before
the kink instability. As far as the value for the anomalous resistivity is concerned, it is
more difficult to determine a physically justified value. For example, Reale et al. (2016)
also sets a fixed threshold value for the switch on of the local magnetic dissipation. They
assume 𝜂0 = 1014 cm2 s−1, 𝐽𝑐𝑟 = 75 Fr cm−3 s−1. With this assumption, the minimum
heating rate above switch-on is 𝐻 = 𝜂0(4𝜋 |𝐽𝑐𝑟 |/𝑐)2 ∼ 0.1 erg cm−3 s−1, which is the
equilibrium heating of a loop with a maximum temperature of ∼ 6 MK and half length
2.5 × 109 cm, according to the loop scaling laws (Rosner et al. 1978b).





3
Asymmetric twisting of coronal loops

This chapter is structured based on the paper titled “Asymmetric twisting of coronal
loops” (Cozzo et al. 2023a).

The bright solar corona entirely consists of closed magnetic loops rooted in the
photosphere. Photospheric motions are important drivers of magnetic stressing, which
eventually leads to energy release into heat. These motions are chaotic and obviously
different from one footpoint to the other, and in fact there is strong evidence that loops
are finely stranded. One may also expect strong transient variations along the field
lines, but at glance coronal loops ever appear more or less uniformly bright from one
footpoint to the other. In this work we aim to understand how much coronal loops can
preserve their own symmetry against asymmetric boundary motions that are expected
to occur at loop footpoints. We investigate this issue by time-dependent 2.5D MHD
modelling of a coronal loop including its rooting and beta-variation in the photosphere.
We assume that the magnetic flux tube is stressed by footpoint rotation but also that the
rotation has a different pattern from one footpoint to the other. In this way we force
strong asymmetries, because we expect independent evolution along different magnetic
strands. We found that until the Alfvén crossing-travel time relative to the entire loop
length is much lower than the twisting period, the loop’s evolution depends only on the
relative velocity between the boundaries, and the symmetry is efficiently preserved. We
conclude that the very high Alfvén velocities that characterise the coronal environment
can explain why coronal loops are capable to maintain a very high degree of symmetry
even when they are subjected to asymmetric photospheric motions for a long time.

95
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3.1 Introduction

Coronal loops are relatively dense and bright structures supported by an arch-like mag-
netic tube. They fill the magnetic skeleton of the lower solar corona with tenuous
(𝑛 ∼ 108 cm−3) and hot (𝑇 ∼ 106 K) plasma. They are acknowledged as “build-
ing blocks” of this layer where the emergent magnetic field is typically organized in a
network of topologically closed structures (Reale 2014). As coronal loops commonly
exhibit strong magnetic fields of the order of 10 G (Yang et al. 2020; Long et al. 2017)
it is thought the closed field lines confine the plasma, and make it move and transport
energy mostly along them (Reale 2014). Coronal loops are anchored to the underlying
chromosphere and, a little further down, to the photospheric layer where the plasma beta
parameter exceeds one by few orders of magnitude. For this reason, the loop footpoints
are dragged by photospheric plasma motions which in turns might be highly structured.
The typical strength of the photospheric magnetic field in active regions is found to be
few hundreds of G (Ishikawa et al. 2021). By ascending toward the corona the pressure
decreases, the magnetic field lines progressively expand and the field intensity decreases
keeping the magnetic flux conserved. The greater expansion rate is expected across
the thin transition region dividing the cromosphere to the upperlying corona (Gabriel
1976b).

As coronal loops built up in the lower corona, they go through different phases of
twisting, heating and brightening, ultimately cooling back to a tenuous, ∼ 1 MK hot
atmosphere. Observations and numerical experiments provided evidence that coronal
loops evolution is deeply influenced by the photospheric motion. For instance, foot-
points rotation may lead the magnetic structure to twist and gain magnetic energy.
The transverse-velocity pattern of the photospheric plasma can show an high degree of
complexity. Indeed, each foot-point may undergo to an independent evolution. While
magnetic energy is stored, the flux tube could subjected to potentially strong stresses
that may lead to fast magnetohydrodynamic instabilities (as the kink instability, Hood
et al. 2009) or to a long lasting Ohmic heating. According to the numerical experiment
described in Reale et al. (2016), in the last case, the gained energy is likely to be released
by magnetic dissipation when a current density threshold is exceeded. In particular,
when Ohmic dissipation starts, the highly efficient thermal conduction spreads the heat
along the whole magnetic tube. The heat pulse reaches also the transition region and
drains material from the underling chromospheric layer leading to a sudden enhancement
of the coronal loop’s density. The loop brightening is associated to the progressive
densification of the flux tube which in turns leads the differential emission measure
(𝐷𝐸𝑀 (𝑇) =

∫
𝑛2(𝑇)𝑑𝑟) of the loop’s optically-thin material to increase. Axisymmetric

2D and 3D MHD simulations (Guarrasi et al. 2014; Reale et al. 2016) have investigated
the behaviour of such systems by including gravity as in curved loop, thermal conduction,
radiative losses from optically thin plasma, Ohmic heating by magnetic dissipation and
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magnetic field expansion across a dense chromospheric layer and a thin transition region.
In Reale et al. (2016) the twisting of the magnetic field lines is provided by photospheric
motion at the boundaries of the domain. For each foot-point, such a photospheric motion,
despite non-uniform at small scales, is assumed to be constrained by the same azimuthal
velocity’s macroscopic envelope. For this reason the coronal loop is always found to be
symmetric with respect to the plane transverse to the tube at its apex (mirror-symmetry).

In this chapter we assess how much the degree of twisting along the tube depends on
the specific degree of coherence of the foot-points rotation. Moreover, we investigated
how coronal loop’s properties could be influenced by asymmetries in the photospheric
boundary conditions. In general, we found that coronal loops tend to preserve an high
degree of symmetry when subjected to different foot-points velocities as well as by
different cross-sections in the rotation patterns. This is deeply related to the high Alfvén
speeds that characterise the coronal environment. However, if the coronal density is
enhanced by a long-lasting chromospheric evaporation the Alfvén speed may be reduced
enough to not ensure fast signal transmission and magnetic field relaxation against
asymmetric photospheric motions. We concluded that only long lasting footpoints
rotation can lead initially mirror-symmetric coronal loops to evolve into asymmetric
configurations.

3.2 Methods
We considered a single, axi-symmetric coronal loop. The loop is modelled as a straight-
ened magnetic flux tube hooked to two chromospheric layers at the opposite sides of the
box. The length of the tube is taken much longer that its radius. For this reason, the
effects of the curvature on its structure are negligible. Moreover, the two (upper and
lower) chromospheric layers can be assumed as independent regions. The domain is a
2.5D box while the geometry of the problem is cylindrical (𝑟, 𝜙, 𝑧).

The MHD equations (Eq.s 2.2 - 2.5) are solved in the non-dimensional conservative
form (Mignone et al. 2007). We use the ideal gas law as equation of state (Eq. 2.10),
assuming 𝜇 = 1.265 as the mean atomic mass (from typical solar metal abundances,
Anders & Grevesse 1989) and assume negligible viscosity. Thermal conductive flux is
treated as in Eq.s 2.11, 2.12 with thermal conduction coefficients 𝐾∥ = 9.2 × 10−7 and
𝐾⊥ = 5.4 × 10−16, in cgs units, and 𝜙 = 0.9 (Cowie & Mckee 1977). We account for
optically thin radiative losses (see Sec. 2.2.3 and Eq. 2.13) and uniform heating (Sec.
2.2.4):

𝑄(𝑇) = −Λ(𝑇)𝑛𝑒𝑛𝐻 + 𝐻0 (3.1)

where Λ(𝑇) are the optically thin radiative losses per unit emission measure obtained
from the CHIANTI v. 7.0 database (Dere et al. 1997; Reale & Landi 2012; Landi &
Reale 2013, e.g.,) assuming typical coronal element abundances (Widing & Feldman
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1992). 𝐻0 = 4.3 × 10−5 erg cm −3 s−1 is a uniform heating rate per unit volume which
maintains the corona with a temperature of about 8 × 105 K (Serio et al. 1981; Rosner
et al. 1978b; Reale 2014; Guarrasi et al. 2014). Gravity in the corona is treated by taking
into account only the component along the (untwisted) flux tube (see Eq. 2.31). By
considering an anomalous plasma resistivity, Ohmic dissipation activates only when the
current density magnitude exceeds a certain threshold 𝐽𝑐𝑟 (Eq. 2.32, Hood et al. 2009).
Here we assume 𝜂0 = 1014 cm, and 𝐽𝑐𝑟 = 75 Fr cm−3 s−1.

The calculations are performed using the PLUTO code (Mignone et al. 2007, 2012),
a modular, Godunov-type code for astrophysical plasmas (see also Reale et al. 2016;
Guarrasi et al. 2014, and Sec 2.1 for more details about the numerical setup).

3.2.1 The loop setup

We addressed a typical active region loop of length 5 × 109 cm and initial temperature
of ∼ 106 K. The loop’s foot-points are anchored at the upper and lower boundaries of
the domain through two independent chromospheric layers separated from the coronal
environment by a steep transition region. Across this thin layer, temperatures suddenly
increase from 104 K, typical of the upper cromosphere, to few millions of K in the
corona. The magnetic field expands across the chromospheric layer as the plasma beta
parameter decreases up to very small values in the corona. Such initial conditions are
provided following the same procedure adopted in Guarrasi et al. (2014). Initially, the
chromosphere and the corona are treated as two isothermal layers at temperatures of 104

K and 8×105 K respectively. We assumed an initial vertical, non-uniform magnetic field.
It is more intense near the axis, 𝐵(𝑟 = 0) ∼ 500𝐺, and it decreases radially down to a
background value of 10 G. As we let this configuration relax, the magnetic field expands
in the corona, until a horizontal total pressure balance sets in. In contrast, below the
transitions region the magnetic field lines remain fundamentally unperturbed as they are
rooted in the dense high-𝛽 chromospheric plasma. Finally, in the longitudinal direction
density and temperature vary until thermal conduction, radiative losses and a background
heating balance and the loop relaxes to the steady state configuration described so far.
In this new configuration, the magnetic field is more intense in the deep chromosphere
where it reaches 300 G. It then decreases in the corona down to 12 G at the loop apex.

The computational domain is 2.5 D cylindrical. The domain range is −𝑧𝑀 < 𝑧 < 𝑧𝑀
(with 𝑧𝑀 = 3.1 × 109 cm) in the vertical direction and 𝑟0 ≤ 𝑟 ≤ 𝑟𝑀 (where 𝑟0 = 7 × 107

cm and 𝑟𝑀 = 3.5× 109 cm) in the radial direction. To properly account for the transition
region, high spatial resolution is needed (Bradshaw & Cargill 2013). For this reason,
the cell size in the corona decreases from |𝑧 | ∼ 2.4 × 109 cm to 𝑑𝑟 ∼ 𝑑𝑧 ∼ 3 × 106 cm
in the transition region. The adopted piece-ways uniform and stretched grid is sketched
in figure 3.1. We assume reflective boundary conditions (B.Cs.) near the symmetry
axis (i.e. at 𝑟 = 𝑟0) and at 𝑟 = 𝑟𝑀 ; periodic B.Cs. at the azimuthal boundaries; and
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equatorial-symmetric B.Cs. at 𝑧 = ±𝑧𝑀 .

Figure 3.1: Maps of initial temperature (left) and density (right) distributions. For
instance, cold colours on the left are representative of the chromospheric layer where
temperatures do not exceed 104 K. Shades on red instead color the nearby 1 MK hot
coronal environment. Chromosphere and corona are separated by a steep transition
region where high gradients of temperature and density occurs. On the left, white straight
lines highlight the structure of non-uniform grid. Higher resolution is expected across
the chromospheric layer and the transition region as well as in the highest magnetised
regions of the domain (i.e. near the loop’s axis). On the right, solid, white lines trace
the shape of the magnetic field. Magnetic field expansion (tapering) is clearly visible at
the top and bottom sides of the flux tube.

3.2.2 Loop Twisting

We tested the evolution of a coronal loop under the effects of a footpoint rotation.
Rotation at the loop’s foot points induces a twisting of the magnetic field lines. As flux
tube torsion proceeds the current density is amplified and eventually exceed a critical
value triggering magnetic diffusion and heating via Ohmic dissipation. Two rotation
profiles have been taken into account. The first one is that of a rigid body around the
central axis, i.e., the angular speed is constant in an inner circle and then decreases



3 Asymmetric twisting of coronal loops 100

linearly in an outer annulus (Reale et al. 2016):

𝑣𝜙 = 𝜔(𝑟)𝑟, (3.2)

𝜔 = 𝑣𝑚𝑎𝑥/𝑅𝑚𝑎𝑥 ×


1 𝑟 < 𝑅𝑚𝑎𝑥

(2𝑅𝑚𝑎𝑥 − 𝑟)/𝑅𝑚𝑎𝑥 𝑅𝑚𝑎𝑥 < 𝑟 < 2𝑅𝑚𝑎𝑥
0 𝑟 > 2𝑅𝑚𝑎𝑥 ,

(3.3)

where 𝑣𝑚𝑎𝑥 is the maximum tangential velocity and 𝑅𝑚𝑎𝑥 provides a size of the region
subjected by photospheric rotation. The second one is a smoother profile (Reid et al.
2018) where the tangential velocity increases almost linearly around 𝑟 ∼ 0 cm and
becomes zero for 𝑟 > 2𝑅𝑚𝑎𝑥 . The velocity decrease rapidly toward zero at 𝑟 ∼ 𝑅𝑚𝑎𝑥 but
the profile is differentiable everywhere.

𝑣𝜙 =

{
2𝑣𝑚𝑎𝑥 𝑟𝑎 (1 − 𝑟2

𝑎2 )3 𝑟 < 𝑎

0 𝑟 ≥ 𝑎,
(3.4)

where 𝑎 = 2𝑅𝑚𝑎𝑥 .

Figure 3.2: The solid and dashed, black lines represent the profiles of two angular
velocities implemented at the lower and upper boundaries of the domain. In the first
case (solid line), the photosphere initially (𝑟 ≤ 𝑅𝑚𝑎𝑥) rotates as a solid body. Then (for
𝑟 > 𝑅𝑚𝑎𝑥) it linearly decays to zero. There are two discontinuities in the derivative of
𝜔(𝑟) at 𝑟 = 𝑅𝑚𝑎𝑥 and at 𝑟 = 0. For 𝑟 > 2𝑅𝑚𝑎𝑥 there is no rotation. In the second case
(dashed line) the angular velocity profile is smoother: it is everywhere differentiable.
Again, the rotation kindly stops at 𝑟 > 2𝑅𝑚𝑎𝑥 .



3 Asymmetric twisting of coronal loops 101

Five different configurations of 𝑣𝑚𝑎𝑥 and 𝑅𝑚𝑎𝑥 where explored. In case a. and b. both
foot-points are driven by a coherent photospheric rotation at the same speed and same
radius. In case c. only one foot-point rotates under the influence of the photospheric
boundary conditions. In case d. different dimensions of the rotation pattern at the loop
basis are considered. In the last case, the loop initially evolves symmetrically as in case
a. and b. and, after a while (𝑡0 = 1400 s), one foot-point progressively slows down and
stops (after 𝛿 = 600 s) while the other one accelerates up to 10 km/s as in configuration
c. The time 𝑡0 was chosen so that the loop is already filled by chromospheric plasma
when the symmetry at foot-points is broken.

Table 3.1: The table shows the five cases explored to study the loop’s behaviour under
different photospheric drivers. Each case differs for the maximum speed of the rotation
(𝑣𝑚𝑎𝑥) or its maximum extent (𝑟𝑚𝑎𝑥). Moreover two different profiles are considered:
Reale et al. (2016) and Reale et al. (2016). Each foot point undergoes to an independent
evolution. They are labelled as “up” and “down”.

Simulation down up
𝑣𝑚𝑎𝑥 [km/s] 𝑅𝑚𝑎𝑥 [km] 𝑣𝑚𝑎𝑥 [km/s] 𝑅𝑚𝑎𝑥 [km] Velocity profile

a. 5 3000 5 3000 Reale et al. (2016)
b. 5 3000 5 3000 Reale et al. (2016)
c. 10 3000 0 * Reale et al. (2016)
d. 5 6000 5 1500 Reale et al. (2016)
e. (for 𝑡 < 𝑡0) 5 3000 5 3000 Reale et al. (2016)
e. (for 𝑡 > 𝑡0 + 𝛿) 10 3000 0 * Reale et al. (2016)

* The radius is not defined because no rotation occurs.

The choice of a photospheric rotation with a maximum tangential velocity of
10 km s−1 is a compromise to have an effective heating in reasonable computational
times still maintaining a velocity in the order of realistic ones, for instance, comparable
with typical photospheric swirls and chromospheric vortexes (e.g., Dı́az-Castillo et al.
2024; Moll et al. 2011). In this work we are exclusively interested in the coronal evolution
of the flux tube, therefore we make simplifying assumptions regarding the photosphere
and the chromosphere and we do not study their details.

3.3 Results
Our model presents a coronal loop that is straightened into a vertical magnetic flux tube
hooked to two independent chromospheric layers. The magnetic field rapidly expands
through the chromosphere while the loop body in the corona has approximately constant
cross section. Figure 3.3 shows the initial condition of the simulation. It shows the steep
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gradient of the density (𝜌) and temperature (𝑇) across the transition region, and the
strong change of plasma 𝛽 by a few orders of magnitude across the domain. The vertical
component of the current density (𝐽𝑧) is initially zero because the loop is untwisted.
For completeness, the figure shows the null maps of angular velocity (𝑣𝜙). Finally, in
order to track the plasma upward motions from the chromosphere, we also include the
map of a passively-advected tracer of the chromospheric mass, initially identified where
𝑇 < 104 K.

Figure 3.3: First row: maps of the initial plasma density, temperature, azimuthal
velocity, and tracer. Second row: maps of the initial plasma beta, azimuthal magnetic
field, magnetic field magnitude on the r-z plane, vertical component of the current
density. Field lines are marked as white solid lines. Initial conditions are the same for
all the simulations discussed below. Black lines in the last panel enclose the region of
the domain where 𝑇 > 104 K (i.e. transition region and corona).

3.3.1 Mirror-symmetric driver
In simulations a. and b. (see table 3.1) the rotation at both loop footpoints is driven by
same but opposite photospheric motions. Figure 3.4 and 3.5 show the maps at 𝑡 = 5000 𝑠
for simulations a. and b., respectively.
At the very beginning the rotation propels material just above the photospheric bound-
ary. As the magnetic field is frozen into the plasma, this rotation generates an azimuthal
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Figure 3.4: Same as Fig. 3.3 for Simulation a. and after 5000 s. Black arrows in the
third panel show the orientation of the plasma velocity along the r-z plane. The dashed
line in magenta in the last panel encloses the region of the domain where the current
density exceeds the current threshold of 75 Fr cm−3 s−1.

component of the magnetic field which propagates as perturbation upward to the corona.
The same happens to azimuthal component of the velocity, so that the loop is progres-
sively twisted throughout. Figure 3.6 shows the sampled velocity of such magnetic
perturbation traveling along the loop compared to the theoretical Alfvén velocity, and
the map of the Alfvén speed at t = 0 s. Of course, the propagation speed of the signal
is slow in the dense chromosphere and greatly speeds up in the much more tenuous
corona. The signal-traveling velocity agrees with what expected from the theoretical
value 𝑣Alf =

𝐵√
4𝜋𝜌

.

The vertical component of current density also grows with the twisting. However, its
sign reverses at larger radial distance from the centre (i.e. outer ring) where the the radial
derivative of the tangential velocity switches its sign (see eqs. 3.3, 3.4). Since outside
of the loop no twisted magnetic field is present, according to the Ampere’s law the total
current flowing across the loop must be zero. Thus an inversion current is present in the
outer shells of the loop as shown in figures 4 and 5. In the corona, the z-component of
the current density dominates over the other ones. Current perpendicular to z is more
concentrated below the transition region where the loop expansion is stronger. Current
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Figure 3.5: Same as Fig. 3.4 for Simulation b.

flows inside and outside of the domain across the upper and lower boundaries as a
consequence of the boundary conditions. In the sheared shell between twisting and no
twisting, there is some magnetic compression, which makes some dense plasma move
upwards from the chromosphere. Indeed the chromosphere is more compressed by the
twisting than the corona because the magnetic field is stronger there. As a consequence
of that, the chromospheric plasma is forced to rise above in the corona. By looking at the
tracers in Fig. 3.4 and Fig. 3.5 we might conclude that the smoother the shearing layer,
the slower is this plasma transfer (Fig.3.2). Indeed, the compression experienced by the
tube is proportional to the gradient of the tension provided by the twisted magnetic field
lines. There is stronger compression when the radial profile of the angular velocity is
steeper. A stronger compression in turn drives more upflowing plasma. For this reason,
the harsher the velocity profile the more intense will be the ascended material across the
outer boundary of the magnetic tube.

The current density first increases in the shell boundary layer between the twisted
and untwisted region (i.e., at 𝑟 = 6000 Km, Reale et al. (2016)). It takes some minutes to
grow above the critical value in the corona and trigger the heating by Ohmic dissipation.
In particular, after 800 s it exceeds the threshold of 75 Fr cm−3 s−1, and the enhanced
resistivity allows magnetic dissipation to start in the corona and the gained magnetic
energy is partially released as heating. The Ohmic dissipation remains mostly localised
just above the chromosphere where the current density magnitude is higher, because of
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Figure 3.6: Left: theoretical Alfvén velocity (solid line) progressing upwards along the
central z-axis, as compared to the velocity of the signal propagating at a certain height
and measured in the simulation (dashed line). Right: map of the Alfvén velocity at 𝑡 = 0
s. The logarithmic colour scale emphasizes the deep difference in magnitude between
chromosphere and corona.

the tapering of the magnetic field. The density magnitude of the inversion current is
close to the direct current in the corona, but mostly below the dissipation threshold and
therefore not driving significant plasma evaporation. Because of the efficient thermal
conduction the whole magnetic tube almost uniformly heats up to about 4 𝑀𝐾 after
𝑡 = 1500 s in the central part of the tube, much less in the outer shell. The heating drives
an overpressure which makes chromospheric plasma expand upwards to fill the tenuous
coronal part of the tube (chromospheric evaporation). After 𝑡 = 2400 s the coronal loop
is filled by a dense and hot plasma and the initial, tenuous coronal plasma is compressed
near the loop apex. The plasma is confined in the inner cylindrical region and in a thin
and more tenuous shell. In particular, inside the tube, density increases up to ∼ 109 cm−3

while in the outer shell only to 3 × 108 cm−3. After 𝑡 = 2400 s evaporation has slowed
down and the flow motion is significantly smaller. The evaporating chromospheric
plasma moves upward following the orientation of the twisted magnetic field lines as
shown by the reversed-signed 𝑣𝜙 component inside the flux tube and just above the
chromosphere. The coronal part of the loop is not completely empty initially. For this
reason, the chromospheric plasma flowing upwards cannot penetrate in the preexisting
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Figure 3.7: Simulation a. First column: radial profiles of density, temperature, pressure
at 𝑧 = 0 (loop apex) and velocity at photospheric level. Second column: total magnetic
field intensity, azimuthal component of the magnetic field and modulus of the current
density. The profiles are spaced by about 200 s and the color coding marks the time
progression from purple (0 s) to red (5000 s).

coronal plasma, and remains behind it, thus filling the loop only partially and not reaching
the loop apex.

Fig. 3.7 shows the radial profiles of the density, temperature, pressure, magnetic field
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intensity, azimuthal component of the magnetic field, and current density at the top of
the loop at different times. In the last panel of figure 3.7 the velocity at the photospheric
level is shown. The profiles are consistent with those in Reale et al. (2016). In particular,
density, temperature and pressure peak at the central axis. Then they decay to ambient
values outside the tube cross-section. The secondary peak at 𝑟 ≃ 1.2 × 109 cm is
localised in the outer shell which is heated mostly by compression. Each quantity is only
slightly perturbed by the twisting and it is left almost unchanged until Ohmic heating
is switched on. As shown in figures 3.7, 3.8, and 3.9, the azimuthal component of the
magnetic field grows almost linearly in time as expected from ideal induction equation.
Indeed, for a straight, cylindrical tube 𝜕𝐵𝜙

𝜕𝑡
=

𝜕 (𝑣𝜙𝐵𝑧)
𝜕𝑧

. Then, taking 𝑣𝜙 ∼ 𝜔(𝑟)𝑟 𝑧
𝐿

(we
assume the absolute value of the angular velocity decreases almost linearly with height
and becomes zero at the loop apex) and 𝐵𝑧 uniform along the whole tube’s length 2𝐿, we
find: 𝐵𝜙 = 𝜔(𝑟)𝑟𝐵𝑧

𝐿
𝑡. During the last stages of the simulation, Ohmic diffusion efficiently

damps the rise of 𝐵𝜙 which settles to a steady value. The radial profile of the azimuthal
magnetic field fits, as expected, the shape of the implemented photospheric rotation.
The rise of 𝐵𝜙 influences the radial profile of the vertical magnetic field since it carries a
stronger and stronger magnetic tension that compresses the inner twisted flux tube. For
this reason, the vertical component of the magnetic field slightly rises up in a region
closed to the loop’s axis. On the other hand, since the magnetic field is line tied to the
photosphere, magnetic flux is globally kept constant also in the corona. So, 𝐵𝑧 must drop
just outside the region where magnetic twisting is performed to preserve the magnetic
flux. The behaviour of 𝐵𝑧 found is these simulations fits the numerical solutions of the
Grand-Shafranov equation retrieved in Browning & Hood (1989).

Fig. 3.8 shows the density, temperature, pressure, magnetic field intensity, azimuthal
component of the magnetic field, and current density along the vertical direction and
near the symmetry axis 𝑟 = 0 at different times. Because of the cylindrical symmetry of
the problem (and the solenoidal condition ∇ ·B = 0), the magnetic field lines at 𝑟 = 0 are
expected to be aligned with the axis. For this reason we probed the physical properties
of the plasma along a field line. Temperature, density and pressure do not change until
heating starts at 𝑡 ≃ 800𝑠. Then, the temperature suddenly rises and overcomes 3 MK
at the end of the simulation. Pressure and density rise as well at a rate that can be
traced looking at the evolution of the vertical velocity. In particular, the chromospheric
plasma is accelerated in a very sharp region (the transition region) where the density
abruptly drops with height. In few 107 cm, the velocity reaches values of several 106

cm/s. Its maximum is placed just above the transition region. While climbing the
thread, the material decelerates as it compresses the over lying plasma. At the loop
apex the velocity is zero, as expected from symmetry arguments. 𝐵𝑧 and 𝐵𝑟 magnetic
field components do not seem to change by the twisting (at list, near the loop axis).
𝐵𝜙 and consequently the magnitude of the current density grows fast at the beginning
of the simulation as photospheric rotation twists the flux tube. Finally, at the end of
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Figure 3.8: Simulation a. First column: vertical profiles of density, temperature, pressure
and velocity at 𝑟 ≃ 0 (near the loop axis). Second column: vertical profiles of the total
magnetic field intensity, azimuthal component of the magnetic field and modulus of the
current density at 𝑟 ≃ 0 (near the loop axis). The profiles are spaced by 500 s and the
color coding marks the time progression from purple (0 s) to red (5000 s). In the third
panel on the right, the critical current density is marked by a horizontal dashed line.

the simulation, temperature, density and pressure, as well as, the 𝜙 component of the
magnetic field and current density magnitude settle to a stable value, as the magnetic
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diffusion balances the growing field stresses. Once again, the results found here are
consistent with those shown in previous works (Guarrasi et al. 2014; Reale et al. 2016)
as well as with 1D hydrodynamics simulations (Warren et al. 2002).

Fig. 3.9 shows the trend of the maximum (black line) and averaged (red line)
temperature, the maximum values of the vertical velocity, the maximum current density
magnitude, the maximum and averaged heating rate, and the temporal behaviour of
the azimuthal component of the magnetic field in four different locations inside the
domain. Space-averaging has been performed inside a cylinder of radius 109 cm,
entirely contained within the corona (𝑇 > 104 K). The maximum temperature as well
the averaged one (top left panel) are initially steady at about 1 MK. The maximum
temperature starts to increase at t=800 s and at the end of the simulation it overcomes
3 MK, typical of an active region loop. The average temperature increases significantly
only after 1300 s and it reaches ≃ 2.5 MK after 3000 s. Loop heating is provided by
the electric current density as soon as it exceeds the threshold of 75 Fr cm−3 s−1 after
800 s. The maximum vertical speed shows that the plasma evaporation also starts as soon
as the maximum current magnitude exceeds the threshold for dissipation in the corona
(𝑡 ∼ 800𝑠). It peaks at 𝑡 = 1500 s (𝑣max ≃ 8 × 106 cm s−1), approximately when the first
impulsive evaporation front reaches the top of the loop, and then settles at ∼ 6 × 106

cm/s indicating a more gentle evaporation. These values are subsonic and usual for
evaporation, driven by a continuous sequence of heat pulses (e.g., ?). The maximum
heating rate is shown in the upper panel on the right. The average heating rate is instead
plotted in the middle panel on the right column. It is obtained by averaging only among
the effectively heated cells i.e. where 𝑗 ≥ 𝑗cr. Both quantities keep growing as the
squared value of the maximum (averaged) current density. In the last panel of Figure
3.9 the azimuthal magnetic field component 𝐵𝜙 is shown at two different heights (along
the loop apex and just above the transition region) and at two different radial distances
from the central loop axis (close to the axis and 3000 km apart). The twisting initially
makes 𝐵𝜙 grow linearly at all positions. After 𝑡 = 1200 s 𝐵𝜙 stops growing close to the
loop’s axis and to the chromosphere because of magnetic dissipation.

3.3.2 Asymmetric twisting
We so far have discussed cases a. and b. where photospheric rotation is symmetric
at the upper and lower boundary conditions, and the loop evolution is therefore mirror
symmetric with respect to the loop apex. We now test how the symmetry of the coronal
loop is retained upon the effect of an asymmetric driver. We consider three different
cases, already described in sec 2.2 and listed in table 1. In case c., one foot-point rotates
while the other one is held fixed. In case d. both foot-points rotate at the same speed
but the rotation radius is not the same. Finally, in case e. rotation begins symmetrically
but after a while (𝑡0 = 1400 s) one foot-point accelerates and the other one slows down
until it stops at 𝑡0 + 𝛿 = 2000 s. So in case e. asymmetries are implemented only after
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Figure 3.9: Simulation a. Evolution of the maximum temperature, vertical velocity,
and coronal maximum current density in the simulation domain, and of the maximum
heating rate per unit volume (top), the averaged heating over cells with 𝐸ℎ > 0, and of
the azimuthal component of the magnetic field 𝐵𝜙, at the two labeled heights 𝑧 along the
loop, i.e., apex (solid) and just above the transition region (dashed) and at the two labeled
radial distances 𝑟 from the central axis, i.e., close to the axis (black) and 3000 km far
away (red). In the left panel the averaged temperature (red line) and current threshold
for dissipation (horizontal dashed line) are also shown. Space-averaging is performed
inside a cylinder of radius 109 cm, entirely contained within the corona (𝑇 > 104 K).

plasma evaporation has started filling the tube with dense chromospheric material.

Case c

In case c., one footpoint (the upper one) does not rotate, the other (lower) rotates at a
speed twice bigger than in cases a. and b., so that the magnetic stress grows at the same
rate. As in the previous experiments, rotation at the photospheric boundary twists the
magnetic field lines. Initially, the twisting is localised near the rotating footpoint. Then,
the azimuthal component of the magnetic field grows and propagates upwards reaching
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Figure 3.10: Same as Fig. 3.4 for Simulation c.

the corona in the expected Alfvén time. Rotation never involves the upper chromospheric
layer. Nevertheless, except that there is a certain time delay, the current density equally
grows fast on both sides of the domain. It exceeds the threshold value after about 800 s,
almost simultaneously in both upper and lower layers above the transition region. The
loop evolution then continues very similar to the symmetric cases, for about 3800s. Then
the magnetic structure starts to warp. The final state of the simulation is shown in Fig.
3.10. It represents the maps of density, temperature, azimuthal velocity, plasma beta,
chromospheric tracer and current density at t = 5000 s. The dense, hot part of the loop
fits the shape of the field lines. The azimuthal components of the plasma velocity is
significantly higher where chromospheric evaporation fills the tube with dense material.
There, the plasma 𝛽 is about one order of magnitude larger than in the surrounding
environment because of the higher pressure, enhanced both by heating and compression.
The tube expands on its lower half and it is squeezed on the upper side. It is clearly visible,
looking at the evolution of the tracer, that the upper lying chromospheric material pushes
down the underlying plasma. The same dynamics signature is visible in the orientation
of the velocity in the r-z plane (black arrows in the third panel). This is because in
the upper side of the domain more heating is released. Consequently, more plasma is
injected from the upper side than the lower part. This is shown in eighth panel of Figure
3.10. The dashed line in magenta encloses the region where the current density exceeds



3 Asymmetric twisting of coronal loops 112

2 0 2
10 2

10 1

100

101

pr
s [

dy
ne

 c
m

2 ]

2 0 2

109

1011

n 
[c

m
3 ]

0 s
500 s

1000 s
1500 s

2000 s
2500 s

3000 s
3500 s

4000 s
4500 s

5000 s

2 0 2

104

106

T 
[K

]

2 0 2
2.0

2.5

3.0

3.5

B
 [G

au
ss

]

2 0 2

102

B r
,z

 [G
au

ss
]

2 0 2
z [1.e9 cm]

101

102

103

J [
Fr

 s
1  c

m
3 ]

2 0 2
z [1.e9 cm]

5

0

5

v z
 [1

06  c
m

 s
1 ]

Figure 3.11: Same as Fig. 3.8 for Simulation c.

75 Fr cm−3 s−1 i.e. where magnetic reconnection dissipates magnetic energy into heat.
The heated region looks bigger in the upper side of the domain than in the lower part.

Figure 3.11 shows the density, temperature, pressure, magnetic field intensity, az-
imuthal component of the magnetic field, and current density probed long the vertical
direction and near the symmetry axis at different times. During the first 2500 s the loop’s
evolution is closely symmetric. The profiles shown in figure 3.11 are similar to those
depicted in figure 3.8. In the last 2500 s of the numerical experiment, temperature, den-
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Figure 3.12: Same as Fig. 3.9 for Simulation c. We represented in the last panel (bottom
left) the azimuthal component of the magnetic field 𝐵𝜙 at the three labeled heights 𝑧 along
the loop i.e., apex (solid) and just above the transition region 𝑧 = −2.5×109 cm (dashed)
and 𝑧 = 2.5 × 109 cm (dotted) and at the two labeled radial distances 𝑟 from the central
axis, i.e., close to the axis (black) and 3000 km far away (red). The current threshold for
dissipation (horizontal dashed line) is also shown. Space-averaging is performed inside
a cylinder of radius 109 cm, entirely contained within the corona (𝑇 > 104 K).

sity and pressure are only slightly evolved. For instance, the tube appears to warm up at
slower and slower rates. The vertical velocity displays the same profile discussed before
but its peak decays in time as evidence of the reduced chromospheric evaporation. The
height at which the velocity reverses its sign is not exactly the loop apex but displaced
by few hundreds of kilometres toward the lower part of the domain. Both the magnetic
field components and the current density magnitude are clearly distorted from the mirror
symmetric initial configuration and the asymmetry appears to grow in time.

Fig. 3.12 shows the trend of the maximum (black line) and averaged (red line)
temperatures, the maximum values of the vertical velocity, the maximum current density
magnitude, the maximum and averaged heating rates, and the temporal behaviour of the
azimuthal component of the magnetic field in six different locations inside the domain.



3 Asymmetric twisting of coronal loops 114

Figure 3.13: Same as Fig. 3.4 for Simulation d.

During the last 2500 s the averaged and maximum temperatures reach a steady state, at
2.5 MK and 3.5 MK, respectively. As before, after the peak at t=1600s the maximum
velocity slowly decays to settle at about 20 km/s. Both the maximum current density,
and the maximum heating rate settle to about 250 Fr cm−3 s−2 and 0.07 erg cm−3

s−2, respectively during the second half of the simulation. The averaged heating rate
instead begins to decrease after t=3000 s. The evolution of the azimuthal magnetic field
at different locations along the flux tube (last panel of Figure 3.12) clearly shows the
departure from mirror symmetry.

As with the symmetric twisting, the azimuthal magnetic field initially increases
everywhere but more rapidly far from the axis where the tangential speed is faster. At
𝑡 ∼ 1200 s, the heating rate begins to grow and at the same time 𝐵𝜙 saturates close to the
loop axis, where the dissipation is stronger. Farther from the axis and at the loop apex,
the magnetic field saturates slightly later. Finally, closer to the chromosphere but far
from the axis, the azimuthal component keeps increasing with a trend very similar to the
heating rate (dashed line) at z = −2.5×109 cm, and a flat one (dotted line) at the opposite
side, until the end of the simulation. The red dashed and dotted field lines remarkably
departure in the final stages of the numerical experiment as a consequence of the broken
mirror-symmetry. The black dashed and dotted lines keeps following the same path until
the end of the simulation suggesting that asymmetries becomes less pronounced near
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Figure 3.14: Same as Fig. 3.8 for Simulation d.

the loop axis.

Case d

In case d, both foot-points rotate around the symmetry axis at the same maximum
tangential velocity 𝑣max but with different extension of the rotating region for the
footpoints (𝑅max). The smaller rotating footpoints rotates with faster angular veloc-
ity (𝜔 = 𝑣max/𝑅max), as the paremeter 𝑣max is the same for both. Once again, the loop
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Figure 3.15: Same as Fig. 3.12 for Simulation d.

initially evolves very symmetrically and its behaviour fits quite well with cases a and b,
discussed in the previous section. As in case c. the effects of the asymmetric boundary
conditions becomes dominant after 3800 s. Figure 3.13 shows the evolved coronal loop
at 𝑡 = 500 s0. Figure 3.14 focus on the temporal evolution of several physical quantities
sampled along the loop axis. Figure 3.15 finally displays the evolution in time of some
maximum and space-averaged quantities. All the results shown in the previous figures
agree very much with those shown in figures 3.10, 3.11, 3.12 for case c. Indeed, in
both cases asymmetries develops after 3000 s. In particular, the upper side of the loop
is squeezed while the lower side of the structure expands. Since velocities and magnetic
field strength at the photospheric boundaries are similar to case c. we expected to probe
a similar evolution (at least in terms of times scales and orders of magnitude involved).

Case e

With case e. we wanted to test the behaviour of a coronal loop when asymmetries are
implemented at the boundaries only after the flux tube has been filled by chromospheric
plasma. Indeed, in the previous cases, asymmetric boundary conditions acts from the
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Figure 3.16: Same as Fig. 3.4 for Simulation e.

beginning i.e. when the magnetic structure encloses only a tenuous coronal atmosphere.
This time, the flux tube initially evolves under the effect of a symmetric photospheric
driver. After 1400 s the lower foot-point accelerates to double its initial velocity. In the
meantime the upper foot-point progressively decelerates and it stops after 2000 s. After
that time, boundary conditions are the same as in case c. The initial evolution of the loop
is exactly the same as in case a. (we performed the simulation deploying the rotation
pattern described in Eq. 3.2 and 3.3). Also in this case asymmetries becomes clearly
appreciable only after 3800 s from the beginning of the numerical experiment.

Also in this case, the asymmetric evolution of the loop in the latest stages of the
simulation remarks very well that described for case c. In particular, figure 3.16 shows
the evolved coronal loop at 𝑡 = 5000 s. Figure 3.17 focus on the temporal evolution
of several physical quantities sampled along the loop axis. 3.18 finally displays the
evolution in time of some maximum and space-averaged quantities. All the results
shown in the previous figures agree very much which those shown in figures 3.10, 3.11,
3.12 for case c. This is expected since, after 2000 s, the loop twisting is driven by the
same photospheric driver considered for case c.
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Figure 3.17: Same as Fig. 3.8 for Simulation e.

3.4 Discussion

We have addressed the brightening of a coronal loop hooked to two independent chro-
mospheric layers through their footpoints. We performed a series of 2.5D simulations
in cylindrical geometry. The coronal loop is treated as a straightened, cylindrically
symmetric flux tube, where the gravity is that of a curved arch. The basic assumption
is that the flux tube is progressively twisted by the rotation of the footpoints due to
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Figure 3.18: Same as Fig. 3.12 for Simulation e.

photospheric motions. The tube is then heated by Ohmic dissipation when the induced
current grows above a threshold. Since it is difficult to imagine that the photospheric
rotation is exactly identical at the two footpoints, here we study the effect of asymmetric
twisting on the evolution of the heated loop. This extends the results presented in Reale
et al. (2016) where only coherent photospheric motions are taken into account. We
chose to take into account five particular cases to explore the space of the parameters
involved in the prescription of the photospheric rotation. For comparison we first con-
sider mirror-symmetric twisting in cases a. and b. which differ only for the radial shape
of the angular velocity 𝜔(𝑟): trapezium-like vs smoother and everywhere differentiable,
respectively. In particular, simulations a. and b. resemble the numerical experiments
performed in the previous work (Reale et al. 2016). We assured the new results are
coherent with the older ones.

In case c. the rotation is driven only at one side of the cylindrical box, in case d. the
rotating area is different from one footpoint to the other, maintaining the same maximum
speed, in case e. the rotation is mirror symmetric initially and then made different
after few thousands of seconds. In the last three cases, the loop evolution is closely
symmetric for the first 3800 s. Asymmetries becomes non-negligible after the tube has
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Figure 3.19: Evolution of the pixel-averaged Alfvén velocity 𝑣Alf (left). magnetic field
𝐵 (middle), and density 𝜌 (right). Black, red and blues lines refer respectively to models
c, d, and e.Space-averaging is performed inside a cylinder of radius 109 cm, entirely
contained within the corona (𝑇 > 104 K).

been filled enough by dense chromospheric plasma. All the simulation shows the same
qualitative behaviour during the first 2400 s. The azimuthal component of the magnetic
field and the current density are tracers of the degree of twisting of the magnetic field
lines. Both quantities grow smoothly with the boundary rotation. Photospheric rotation
is transmitted by the line tied magnetic field up to the chromosphere and the corona at the
expected Alfvén crossing time (see figure 3.6). A quasi-steady coherent twisting settles
in the corona after just few Alfvén crossing travel times. Then, both the azimuthal
component magnetic field and the maximum current amplitude grow almost linearly
with time, as expected from the induction equation (eq. 1.13). Energy is gained by the
stressed magnetic field until the current density exceeds the threshold of 75 Fr cm−3 s−1.
Then Ohmic dissipation of the magnetic field is triggered and the next evolution is similar
to that found in previous loop models.

Here our attention focuses on the symmetry of the evolution. We invariably observe
that even when the rotation pattern at the footpoints is not symmetric (cases c. d. and
e.), the evolution is initially symmetric, i.e., the evolution of the two legs of the tube
almost overlaps. The explanation lies in the speed of propagation of the signal from
one footpoint to the other. The magnetic twisting driven by the footpoint rotation is
transmitted along the tube at the Alfvén speed. This speed is very high in the tenuous
initial loop corona (⟨𝑣Alf⟩ ∼ 6 × 107 cm s−1), and makes the twisting uniform along
the whole loop in a very short time (few Alfvén crossing travel times) and leads to the
initially symmetric evolution. The chromospheric evaporation determines a reduction
of the Alfvén speed and a slight disequilibrium which makes the heating more effective
at first in the lower leg than in the upper one. The higher plasma pressure inflates the
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Figure 3.20: Left: Map of the density at time t=3500 s with field lines for simulation c.
We selected a specific field line (solid blue line) and two symmetric points along it (red
points), and we measured their distance 𝑟up and 𝑟down from the axis (red lines). Middle:
𝑟up and 𝑟down vs time for cases c. d. and e. Right: difference Δ𝑟 = 𝑟up − 𝑟down vs time
for cases c. d. and e. Black, red and blues lines refer respectively to models c, d, and e.

loop more, i.e. the magnetic field becomes weaker, and the current density as well, thus
eventually making the heating steadily weaker in the low region than in the upper region.
A simple model can qualitatively describe the behaviour of the Alfvén velocity at the
early stages of the simulation and at the latest.

Initially, the Alfvén speed slightly grows. Indeed, changes in the average magnetic
field are relatively small (≤ 25%) and the density stays approximately constant for the
first 1500 s. In particular, 𝐵𝜙 grows almost linearly with time while 𝐵𝑧 and 𝐵𝑟 slightly
readjust as a consequence of the rising azimuthal stresses. The evolution of 𝐵𝜙 is
approximately given by solving the induction equation, assuming that 𝐵𝑟 is negligible
in the corona and 𝐵𝑧 can be kept constant throughout the initial part of the evolution.A
simple expression for the Alfvén velocity follows from the previous assumptions:

𝑣𝐴 =
𝐵√︁
4𝜋𝜌

∼

√︃
𝐵2
𝑧 + 𝐵2

𝜙√︁
4𝜋𝜌

∼ 𝐵𝑧√︁
4𝜋𝜌0

[
1 + 1

2

(𝜔𝑟𝑡
𝐿

)2]
. (3.5)

All three components lose strength because of Ohmic dissipation at later times. In
particular, after 2400 s the strong current dissipation stops the growth of 𝐵𝜙, which
settles to a steady value. At the same time the coronal density increases strongly because
of chromospheric evaporation, and reduces the Alfvén speed:

𝑣Alf ∼
⟨𝐵⟩√︁

4𝜋𝜌(𝑡)
∝ 1

√
𝑡
, (3.6)
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Figure 3.21: Evolution of the pixel-averaged plasma 𝑏𝑒𝑡𝑎. Black, red and blues lines
refer respectively to models c, d, and e. Space-averaging is performed inside a cylinder
of radius 109 cm, entirely contained within the corona (𝑇 > 104 K).

where ⟨𝐵⟩ is the averaged magnetic field. The left panel of Figure 3.19 shows the
evolution of the Alfvén speeds obtained by averaging over the pixels inside the coronal
part of the flux tube (i.e. at 𝑇 > 104 K). It initially increases linearly. After 1000 s, it
reaches a peak and then starts to decrease rapidly because of the increase in the plasma
density.

In order to track the evolution of the asymmetries inside the loop, we consider a
single magnetic field line at the edge of the flux tube, marked in Fig.3.20. We select
two points along this field line, at symmetric distances from the footpoints, and we
measure their radial distance from the tube central axis as a function of time. This
distance holds the same for mirror-symmetric simulations, but it does not if there are
deviations from symmetry; so we are measuring these deviations and we do this for all
three simulations c., d. and e. The middle and right panels of Figure 3.20 clearly show
that for all three simulations the general trend is that the distance is constant for about
2000 s, then it shrinks until a time between 𝑡 = 3500 s and 𝑡 = 4500 s, and widens again
afterwards, showing a clear minimum. However, on all three simulations the distance
decreases much more for the lower point than for the other, and this detachment starts at
𝑡 ∼ 2500 s, thus remarking the asymmetry since then.

Figure 3.21 shows the evolution of the plasma 𝛽 over the time. It increases in the
corona as a consequence of the magnetic dissipation and the further chromospheric
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evaporation. Asymmetries shown in the previous figure occur once the plasma beta has
reached relatively high values in the corona. These results suggest that the asymmetries
are allowed to occur only in relatively high-𝛽 environments. In other words, the de-
tachment from mirror-symmetry is not directly caused by the long-lasting nature of the
asymmetric twisting but by its occurrence when the loop density is very high. Indeed,
until the loop is not filled with dense plasma, asymmetries can not occur, not even if
the foot-points have been dragged for a long time. On the other hand, a relatively rapid
evolution of the asymmetries is expected in high beta coronal loops (as in case-e loop at
time t=2000 s).

3.5 Conclusions
We have extended the study done in Reale et al. (2016) by addressing a coronal loop
twisted by asymmetric photospheric motions. Indeed, the previous work addressed
a straightened coronal loop subjected to a symmetric twisting at its footpoints. This
time, we consider that independent photospheric motions can drag field lines toward a
stressed configuration. We, in particular, investigated the response of these coronal loops
to non-coherent photospheric motions by forcing strong asymmetries at the boundary
conditions. Our numerical MHD simulations show that coronal loops are capable to
maintain a very high degree of symmetry for a relatively long time against asymmetric
twisting drivers at their footpoints.

Observations agree with the simulations. As far as isolated coronal loops are con-
cerned, such magnetic flux tubes do not display strong side-by-side asymmetries despite
their footpoints are likely driven by different rotation drivers at the photospheric foot-
points. Here we only account for coherent drivers but irregular patterns on smaller scales
may lead to field braiding, which may make any possible asymmetry unobservable on
large scales. In general, the magnetically complex environment in which all coronal
loops are embedded can influence each tube shape. For instance, coronal loops can be
tangled with each other or may interact with open-field-lines structures. On the other
and, their cross sections are widely observed to be almost constant along their length
i.e. they would appear symmetric if stretched. In other words, also non-isolated coronal
loops possess a hidden symmetry that may be highlighted looking at the uniformity of
their physical properties (for instance, temperature, density, emission measure) along
their entire length. A plasma 𝛽 in the corona even smaller than the one implied by
our model assumptions could explain why such coronal loops preserve so well such
symmetry properties. Moreover, we understand that in order to break the symmetry,
high plasma beta values are required. This regimes can be reached by long lasting
photospheric twisting. They are unlikely to occur because of the stochastic (turbulent)
behaviour of the photospheric plasma. In addition, highly twisted coronal loops would
be unstable against kink modes.





4
Coronal heating by MHD avalanches:
Effects on a structured, active region
coronal loop

This chapter is structured based on the paper titled “Coronal heating by MHD avalanches.
Effects on a structured, active region coronal loop” (Cozzo et al. 2023b).

A possible key element for large-scale energy release in the solar corona is a MHD
kink instability in a single twisted magnetic flux tube. An initial helical current sheet
progressively fragments in a turbulent way into smaller-scale sheets. Dissipation of
these sheets is similar to a nanoflare storm. Since the loop expands in the radial
direction during the relaxation process, an unstable loop can disrupt nearby stable
loops and trigger an MHD avalanche. Exploratory investigations have been conducted
in previous works with relatively simplified loop configurations.In this work, we address
a more realistic environment that comprehensively accounts for most of the physical
effects involved in a stratified atmosphere typical of an active region. The questions we
investigate are whether the avalanche process will be triggered, with what timescales,
and how will it develop as compared with the original, simpler approach. We used three-
dimensional MHD simulations to describe the interaction of magnetic flux tubes, which
have a stratified atmosphere with chromospheric layers, a thin transition region to the
corona, and a related transition from high-𝛽 to low-𝛽 regions. The model also includes
the effects of thermal conduction and of optically thin radiation. Our simulations address
the case where one flux tube amongst a few is twisted at the footpoints faster than its
neighbours. We show that this flux tube becomes kink unstable first in conditions in
agreement with those predicted by analytical models. It then rapidly affects nearby
stable tubes, instigating significant magnetic reconnection and dissipation of energy as
heat. In turn, the heating brings about chromospheric evaporation as the temperature
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rises up to about 107 K, close to microflare observations. This work confirms, in more
realistic conditions, that avalanches are a viable mechanism for the storing and release
of magnetic energy in plasma confined in closed coronal loops as a result of photospheric
motions.

4.1 Introduction
Observations and numerical experiments provide evidence that the evolution of coronal
loops is strongly influenced by photospheric motions (Chen et al. 2021). The coronal
magnetic field must be driven towards a stressed state, which will be a non-potential
configuration. For instance, footpoint rotation may lead the magnetic structure to twist
and gain magnetic energy. While magnetic energy is stored, the flux tube could poten-
tially be subject to strong stresses that may eventually trigger fast magnetohydrodynamic
instabilities, such as the kink instability (Hood et al. 2009) or the tearing mode instability
(Del Zanna et al. 2016), or lead to long-lasting Ohmic heating (Klimchuk 2006).

Heating and brightening of coronal loops may occur as a ‘storm’ of impulsive events
(Klimchuk 2009; Viall & Klimchuk 2011). Such heat pulses may be driven by multiple
localised instances of the magnetic field relaxing. The irregular photospheric motion,
as well as a large range of magnetohydrodynamic instabilities, may lead the magnetic
structure to develop fast reconnection and to produce heat.

In the corona, the magnetic field might become unstable under resistive modes as
it is slowly forced by photospheric motions to explore a series of non-linear force-free
states. In conditions of high magnetic stress, the field must reconnect and relax towards
a linear force-free state, ∇ × B = 𝛼B, with uniform 𝛼 (Woltjer 1958; Heyvaerts & Priest
1983).

A possible trigger mechanism for large-scale energy release (such as solar flares)
is the magnetohydrodynamic (MHD) kink instability in a single twisted magnetic flux
strand (Hood & Priest 1979b; Hood et al. 2009). It typically arises in narrow, strongly
twisted magnetic tubes and results in the cross-section of the plasma column moving
transversely away from its centre of mass, determining an irreversible imbalance between
the outward-directed force from magnetic pressure and the inward force of magnetic ten-
sion (Priest 2014). During the twisting, a helical current sheet forms that can eventually
trigger reconnection along the tube. The condition for the instability to occur can be
expressed in terms of a critical amount of twist Φcrit.. Different studies have predicted
the critical twist in different configurations: Φcrit. = 3.3 𝜋 for a uniform twisting (Hood
& Priest 1979a); Φcrit. = 4.8 𝜋 for a localised twisting profile (Mikic et al. 1990); and
Φcrit. = 5.15 𝜋 for a localised, variable twisting profile (Baty & Heyvaerts 1996). En-
ergy is released after the magnetic field becomes unstable to ideal MHD modes. At the
beginning, a helical kink develops and grows according to the linear theory of instability.
Afterwards, the initial helical current sheet progressively fragments, in a turbulent way,
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into smaller-scale sheets. During the onset of instability, the kinetic energy rapidly
increases, and throughout the non-linear phase of the instability, magnetic energy dissi-
pates. In particular, reconnection events arise in fine-scale structures like current sheets.
Dissipation of these sheets is similar to a nanoflare storm. As time progresses, the
magnetic field reaches an energy minimum constrained by the conservation of magnetic
helicity, as expected in highly conducting plasmas (Browning 2003; Browning et al.
2008), but also subject to other topological constraints (e.g., Yeates et al. 2010).

Since the loop expands in the radial direction, during the relaxation process, an
unstable loop can disrupt nearby stable loops (Tam et al. 2015) and trigger an MHD
avalanche (Hood et al. 2016). For instance, Hood et al. (2016) demonstrates that an
MHD avalanche can occur in a non-potential multi-threaded coronal loop. They showed
that a single unstable thread can trigger the decay of the entire structure. In particular,
each flux tube coalesces with the neighbouring ones and releases discrete heating bursts.
In general, the energy stored by photospheric motions can be released via viscous and
Ohmic dissipation during a dynamic relaxation process (Reid et al. 2018) and thereafter
through a sequence of impulsive, localised, and aperiodic heating events under the action
of continuous photospheric driving (Reid et al. 2020).

The earlier works we cited conducted exploratory investigations with relatively sim-
plified loop configurations, with no gravitational stratification and consequently no
variation of 𝛽 with height while also neglecting thermal conduction and optically thin
radiation. Separately, others have considered the effect of thermal conduction, but in a
purely coronal loop (Botha et al. 2011), and again without stratification in density. Here,
we consider a more realistic scenario of flux tubes interacting within a stratified atmo-
sphere that includes chromospheric layers, and the thin transition region to the corona,
the associated transition from high-𝛽 to low-𝛽 regions, as well as including thermal
conduction and optically thin radiation (as in Reale et al. 2016). The questions that we
investigate are whether the avalanche process will be triggered, with what timescales,
and how it will develop in comparison with the evolution in the original, simplified
approach.

4.2 The model
The numerical experiment is based on a solar atmosphere model that consists of a
chromospheric layer and a coronal environment crossed by multiple coronal loop strands.
Each strand is modelled as a straightened magnetic flux tube linked to two chromospheric
layers at opposite ends of a box (Fig. 4.1). The length of each tube is much longer
than its cross-sectional radius. Though the loop-aligned gravity is that of a curved,
untwisted loop, we neglect other effects of the curvature. In our scenario, the two
(upper and lower) chromospheric layers are the two loop footpoints and are so distant
from each other that they can be assumed independent regions. The evolution of the
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plasma and magnetic field in the box is described by solving the full, time-dependent
MHD equations including gravity (for a curved loop), thermal conduction (including
the effects of heat flux saturation), radiative losses from an optically thin plasma, and an
anomalous magnetic diffusivity.

Figure 4.1: The initial conditions used in the numerical simulation. Upper-left panel:
Map of the angular velocity at the bottom of the box. The colour scale emphasizes
higher angular velocity. The uniform grid is marked. The two rotating regions have
the same radius 𝑅max. The region on the left has a higher angular velocity (𝑣max.,left =
1.1× 𝑣max.,right). Lower-left panel: Map of average plasma 𝛽 as a function of 𝑧 at 𝑡 = 0 s.
The solid curve shows the initial temperature along the z axis. Right panel: Three-
dimensional rendering of the initial magnetic field configuration in the box around the
two flux tubes. The green field lines are twisted more quickly than the purple ones.

The MHD equations (Eq.s 2.2 - 2.5) are solved in the non-dimensional conservative
form (Mignone et al. 2007). We use the ideal gas law as equation of state (Eq. 2.10),
assuming 𝜇 = 1.265 as the mean atomic mass (from typical solar metal abundances,
Anders & Grevesse 1989) and assume negligible viscosity. Thermal conductive flux is
treated as in Eq.s 2.11, 2.12 with thermal conduction coefficients 𝐾∥ = 9.2 × 10−7 and
𝐾⊥ = 5.4 × 10−16, in cgs units, and 𝜙 = 0.9 (Cowie & Mckee 1977).

We account for optically thin radiative losses (see Sec. 2.2.3 and Eq. 2.13) and
uniform heating (Sec. 2.2.4):

𝑄(𝑇) = −Λ(𝑇)𝑛𝑒𝑛𝐻 + 𝐻0 (4.1)

where Λ(𝑇) are the optically thin radiative losses per unit emission measure obtained
from the CHIANTI v. 7.0 database (Dere et al. 1997; Reale & Landi 2012; Landi &
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Reale 2013, e.g.,) assuming typical coronal element abundances (Widing & Feldman
1992). 𝐻0 = 4.3 × 10−5 erg cm −3 s−1 is a uniform heating rate per unit volume which
maintains the corona with a temperature of about 8 × 105 K (Serio et al. 1981; Rosner
et al. 1978b; Reale 2014; Guarrasi et al. 2014).

The Linker–Lionello–Mikić method (Linker et al. 2001; Lionello et al. 2009; Mikić
et al. 2013) allowed us artificially to broaden the transition region without significantly
changing the properties of the loop in the corona, obviating that challenge. In partic-
ular, we modified the temperature dependence of the parallel thermal conductivity and
radiative emissivity below a temperature threshold 𝑇𝑐 = 2.5 × 105 K (see E.s 2.23 and
2.24).

We assumed that the flux tube is circularly curved only in the corona and that it is
straight in the chromosphere. We note that gravitational acceleration (see Eq. 2.31)
decreases and becomes zero at the loop apex (𝑧 = 0) to account for the loop curvature.
Below the corona, gravity is uniform and vertical.

We considered an anomalous plasma resistivity that is switched on only in the corona
and transition region (i.e. above𝑇cr. = 104 K) where the magnitude of the current density
exceeds a critical value, as in the Eq. 2.32 (e.g., Hood et al. 2009), where we assumed
𝜂0 = 1014 cm−2 s−1 and 𝐽cr. = 250 Fr cm−3 s−1. The current threshold was chosen so
as to avoid Ohmic heating before the onset of the avalanche process and to permit the
ideal build-up to the instability. With this assumption, the minimum heating rate above
the threshold is 𝐻 = 𝜂0(4𝜋 |𝐽cr. |/𝑐)2 ≈ 0.3 erg cm−3 s−1. Below the critical current,
a minimum numerical resistivity is inevitably present, but it does not contribute any
heating during the simulation.

4.2.1 The loop setup
The 3D computational domain of our reference simulation contains two flux tubes, each
with a length of 5 × 109 cm and an initial temperature of approximately 106 K (see
lower-left panel of Fig. 4.1). Their footpoints are anchored to two thick, isothermal
chromospheric layers at the top and bottom of the box. As the plasma 𝛽 decreases
farther from the boundaries, the magnetic field expands (see Fig. 4.1). The initial
atmosphere is the result of a preliminary simulation in which we let a domain with a
vertical magnetic field relax to an equilibrium condition until the maximum velocity
reached a value below 10 km s−1, as described in Guarrasi et al. (2014).

The computational box is a 3D Cartesian grid, −𝑥𝑀 < 𝑥 < 𝑥𝑀 , −𝑦𝑀 < 𝑦 < 𝑦𝑀 , and
−𝑧𝑀 < 𝑧 < 𝑧𝑀 , where 𝑥𝑀 = 2𝑦𝑀 = 8×108 cm, 𝑦𝑀 = 4×108 cm, and 𝑧𝑀 = 3.1×109 cm,
with a staggered grid. We adopted the piecewise uniform and stretched grid sketched in
Fig. 4.1. In particular, in the corona, we considered a non-uniform grid whose resolution
degrades with height. To describe the transition region at sufficiently high resolution,
the cell size there (|𝑧 | ≈ 2.4 × 109 cm) decreases to Δ𝑟 ∼ Δ𝑧 ∼ 3 × 106 cm and remains
constant across the chromosphere. The boundary conditions are periodic at 𝑥 = ±𝑥𝑀
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and 𝑦 = ±𝑦𝑀 . Reflecting boundary conditions were set at 𝑧 = ±𝑧𝑀 . There, the magnetic
field has equatorial-symmetric boundary conditions (i.e., symmetric for the normal
component of the magnetic field and anti-symmetric for the tangential components).

We also performed a second numerical experiment, extending the domain in the
x-direction (𝑥𝑀 = 1.5 × 109 cm) and including a third flux tube. The results of this
simulation are discussed in Sect. 5.6.

4.2.2 Loop twisting
We tested the evolution of a coronal loop under the effects of a footpoint rotation. In
particular, both strands were driven by coherent photospheric rotations that switch signs
from one footpoint to the other. Rotation at the threads’ footpoints induces a twisting of
the magnetic field lines. As flux tube torsion increases, the current density is amplified.
Once the conditions for kink instability are reached, a strong current sheet forms and
the critical current is exceeded, triggering magnetic diffusion and heating via Ohmic
dissipation. The angular velocity 𝜔(𝑟) is that of a rigid body around the central axis;
that is, the angular speed is constant in an inner circle and then decreases linearly in an
outer annulus (Reale et al. 2016):

𝜔 = 𝜔0 ×


1 𝑟 < 𝑟max.

(2𝑟max. − 𝑟)/𝑟max. 𝑟max. < 𝑟 < 2𝑟max.

0 𝑟 > 2𝑟max.

, (4.2)

where 𝜔0 = 𝑣max./𝑟max., 𝑣max. is the maximum tangential velocity (𝑣𝜙 = 𝜔𝑟), and 𝑟max.
is the characteristic radius of the rotation. In this specific case, the central loop is driven
at a speed that is 10% higher than the lateral ones and is equal to 1.1 km s−1. The
maximum velocity achieved by twisting is always smaller than the minimum Alfvén
velocity 𝑣Alf = 𝐵/

√︁
4𝜋𝜌 in the domain. Moreover, the characteristic velocity (𝜔0 𝑟max.)

is high enough to avoid field line slippage at the photospheric boundaries caused by
numerical diffusion. The choice of a mirror-symmetric photospheric driver does not
cause the further system evolution to lack generality: as the relatively high Alfvén
velocities lead coronal loops to maintain a very high degree of symmetry, even when
they are subjected to asymmetric photospheric motions for a long time (Cozzo et al.
2023a). The 𝑟max. parameter was set to 1200 km for both loops (see top-left panel of Fig.
4.1). For many recent simulations of coronal loops subject to photospheric driving, a
significant challenge has been in attaining realistic driving speeds, given that there is a
need to drive quickly enough to prevent slippage of field lines, which requires modelling
velocities that are much faster than those observed. However, with velocities of the order
of 1 km s−1, we approach typical photospheric velocity patterns (Gizon & Birch 2005;
Rieutord & Rincon 2010) and benefited from growing computational resources.
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4.2.3 Numerical computation
The calculations were performed using the PLUTO code described in Chapter 2.

A Van Leer limiter (Sweby 1985) for the primitive variables was used. The evolution
of the magnetic field was carried out adopting the constrained transport approach (Balsara
& Spicer 1999). Thermal conduction was treated separately from advection terms
through operator splitting. In particular, we adopted the super-time-stepping technique
(Alexiades et al. 1996).

4.3 Basic theory

4.3.1 Twisting with expanding magnetic tube
Simple analytical models can predict the initial, steady-state evolution of a system
provided that certain assumptions be satisfied (Hood & Priest 1979a; Browning &
Hood 1989). Each loop is modelled as a cylindrically symmetric magnetic structure
not interacting with the neighbouring ones. The initial magnetic field is not uniform:
magnetic field lines expand from the photospheric boundaries (where 𝐵 ≈ 300 G) to the
upper corona (where 𝐵 ≈ 10 G). As the field lines expand, the magnetic field decreases
by an order of magnitude because of conservation of magnetic flux. The expansion
of the field corresponds to a height that is roughly equal to the distance between the
chromospheric sources, so it involves a small fraction of a coronal loop length, and thus
the loop is of mostly uniform width in the corona. Field line tapering is strong in the
chromosphere, where changes in the plasma beta are steeper, but weaker in the corona.
In typical coronal conditions, such as high (𝑇 ≈ 1 MK) and uniform temperature, the
pressure scale height is large compared with the loop length. Therefore, density and
pressure can be assumed to be uniform and constant in the corona. Averaged values
can be constrained from the RTV scaling laws (Rosner et al. 1978b) once the total
length of the loop 2𝐿 and the uniform heating rate 𝐻0 are given. At the boundaries,
the photospheric driver twists the magnetic field, causing the azimuthal component to
increase. Perfect line-tying to the photospheric boundaries is assumed and no field line
slippage is taken into account. The driver is much slower than the Alfvén velocity so
that the magnetic torsion can be assumed to be instantaneously transmitted along the
whole tube.

Under these assumptions, it is possible to express the magnetic field of a single thread
in cylindrical coordinates in terms of the flux function 𝜓 as a generalized parameter:

B =
1
𝑅

(
−𝜕𝜓
𝜕𝑧
, 𝐺 (𝜓), 𝜕𝜓

𝜕𝑅

)
, (4.3)

where 𝜓(𝑅, 𝑧) =
∫ 𝑅

0 𝐵𝑧 (𝑟′, 𝑧)𝑟′ d𝑟′. In Eq. (4.3), the azimuthal magnetic field com-
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ponent is given by a function, 𝐺, of the flux function, 𝜓. The function 𝐺 is related to
the radial profile of the twisting velocity. In the following, 𝑅 denotes the radius in the
corona, and 𝑟 is the radius in the photosphere. Under typical coronal conditions (i.e.
low plasma beta), the force-free condition,

(∇ × B) × B = 0 , (4.4)

holds. Using Eq. (4.3), the force-free equation is satisfied by the Grad-Shafranov
equation (Grad & Rubin 1958; Shafranov 1958):

𝜕2𝜓

𝜕𝑅2 − 1
𝑅

𝜕𝜓

𝜕𝑅
+ 𝜕

2𝜓

𝜕𝑧2 + 𝐹 (𝜓) = 0, (4.5)

where 𝐹 = 𝐺 d𝐺
d𝜓 is a function of 𝜓. The third term on the left-hand side can be

neglected in the corona, under the assumption of negligible field line curvature, 𝜕𝜓
𝜕𝑧

≈ 0
(Browning & Hood 1989; Lothian & Hood 1989). As a first assumption, we considered
the azimuthal velocity to be linear in 𝑧, since the twisting is equal in magnitude and
opposite in direction at the two ends:

𝑣𝜙 = 𝜔(𝑟)𝑟
𝑧

𝑙
, (4.6)

where 𝑙 is a length scale that can be assumed to be equal to 𝐿, the half-length of the loop,
in order that this equation matches the angular speed imposed on the boundaries. From
the linearization of the ideal induction equation (Eq. 1.13), with 𝜂 = 0, the azimuthal
component of the magnetic field in the photosphere is easily linked to the given twisting
angular velocity 𝜔(𝑟) (see Eq. 4.2):

𝜕𝐵𝜙,phs

𝜕𝑡
=
𝜕

(
𝐵𝑧 (𝑟)𝑣𝜙

)
𝜕𝑧

=
𝐵𝑧 (𝑟)𝜔(𝑟)𝑟

𝑙
𝑡 = 𝑟𝐺. (4.7)

The vertical component at the photosphere, 𝐵𝑧,phs(𝑟), is given by the superposition of
a background magnetic field 𝐵bk and a Gaussian function with amplitude 𝐵0 and a
characteristic width 𝜍 , that is:

𝐵𝑧,phs(𝑟) = 𝐵bk + 𝐵0𝑒
− 𝑟2

𝜍2 (4.8)

so that:

𝜓(𝑟,±𝐿) = 1
2
𝐵bk𝑟

2 − 𝐵0𝜎
2

2

(
𝑒−𝑟

2/𝜍2 − 1
)
. (4.9)

The magnetostatic equilibrium of a coronal loop in response to slow twisting of the
photospheric footpoints can be investigated in the corona by solving the Grad-Shafranov
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equation:

𝐵𝜙,coro.(𝑅) =
𝐺

𝑅
(4.10)

𝐵𝑧,coro.(𝑅) =
1
𝑅

𝜕𝜓

𝜕𝑅
. (4.11)

In this way, we accounted for the flux tube expansion across the chromosphere just
by assuming magnetic flux conservation throughout the loop volume and force-free
condition in the corona. In particular, the volume-integrated magnetic energy of a single
thread in the corona is given by:

𝐸mag. = 2𝜋 · 2𝐿 ·
∫ 𝑦𝑀

0

𝐵2
𝑧coro. + 𝐵2

𝜙,coro.

8𝜋
𝑟 d𝑟. (4.12)

The volume-integrated kinetic energy can be roughly assessed by assuming the coronal
loop to reach a steady state where the plasma is moved only by the magnetic field torsion:

𝐸kin. = 2𝜋
∫ −𝐿

𝐿

d𝑧 ·
∫ 𝑦𝑀

0
𝑟

1
2
⟨𝜌⟩Ω(𝑟)2

( 𝑧
𝐿

)2
𝑟2 d𝑟, (4.13)

where Ω(r) is the angular velocity of the loop in the corona (the relation Ω(𝜓) = 𝜔(𝜓)
holds) and ⟨𝜌⟩ is the averaged coronal density.

In a cylindrically symmetric flux tube, the angular velocity produces the axial current
density and the azimuthal magnetic field (see Eq. 4.2):

𝐽𝑧 =
1
𝑟

𝜕

𝜕𝑟

(
𝑟𝐵𝜙 (𝑟)

)
=
𝑐

4𝜋
2𝜔0𝐵𝑧𝑡

𝐿
×


1 𝑟 < 𝑟max.
4𝑟max.−3𝑟

2𝑟max.
𝑟max. < 𝑟 < 2𝑟max.

0 𝑟 > 2𝑟max.

, (4.14)

according to Eq.s 2.7, 4.2, 4.6, and 4.7. A rough but effective estimate of the maximum
current density over the time is retrieved by evaluating the current density at the loop
axis:

𝐽max. = 𝐽𝑧 (𝑟 = 0, 𝑡) = 𝑐

4𝜋
2𝐵𝑧 (0)𝜔(0)

𝐿
× 𝑡. (4.15)

As soon as the azimuthal component of the magnetic field increases linearly with time,
magnetic energy should grow quadratically and the current density should grow linearly.

4.3.2 Energy equations
The temporal evolution of the four energy terms (i.e. magnetic, kinetic, internal, and
gravitational energy) is driven by the energy sources and sinks (background heating and
radiative losses, respectively) and several energy fluxes at the boundaries of the domain
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(such as thermal conduction, Poynting flux, enthalpy flux, and kinetic and gravitational
energy fluxes). In addition, energy transfer terms may link two different forms of energy.
This is the case for Ohmic heating, which converts magnetic energy into heat, and
work done per unit time by the Lorentz force, the pressure gradient, and gravity, which
respectively convert kinetic energy into magnetic, thermal, and gravitational energy.
The respective equations governing the evolution of magnetic, kinetic, internal, and
gravitational energy are as follows:

𝜕

𝜕𝑡

𝐵2

8𝜋
+ ∇ ·

[
− 1

4𝜋
B (v · B) + 𝐵

2

4𝜋
v + 𝜂

𝑐
j × B

]
= − 𝑗

2

𝜎
− v
𝑐
· (j × B) , (4.16)

𝜕

𝜕𝑡

(
1
2
𝜌𝑣2

)
+ ∇ ·

(
1
2
𝜌𝑣2 v

)
= −v · ∇𝑃 + v

𝑐
(j × B) + 𝜌 v · g, (4.17)

𝜕 (𝜌𝜖)
𝜕𝑡

+ ∇ ·
[
𝛾

𝛾 − 1
𝑃 v + ∇ · F𝑐

]
= v · ∇𝑃 + 𝑗2

𝜎
, (4.18)

𝜕 (𝜌𝑔ℎ)
𝜕𝑡

+ ∇ · (𝜌𝑔ℎ v) = −𝜌 v · g. (4.19)

The sum of the four equations gives the energy equation (Eq. 2.5) discussed in
Sec. 2.2. Terms on the left-hand sides include rates of change in energy (the derivatives
with respect to time) and energy fluxes (i.e. surface terms, which appear here as
divergences). Energy transfer terms, sources, and sinks are on the right-hand sides.

4.4 Results

4.4.1 Continued driving: Evolution before the instability
The box size is 6.2 Mm in the 𝑧 direction. The chromosphere extends for 0.7 Mm on both
sides, and the corona (including the transition region) is in the middle 2𝐿 = 5 × 109 cm.
In the following, we cautiously restricted our analysis to the inner domain between
𝑧 = ±2 × 109 cm in order to avoid any possible undesired contributions from expected
changes in transition region height. Since boundary conditions are periodic at the side
boundaries of the box, fluxes were only evaluated at the upper and lower boundaries of
the sub-domain (i.e. at 𝑧 = ±2 × 109 cm).

Initially, the two flux tubes were slowly twisted at a speed much slower than the
Alfvén speed. As a consequence, the initial evolution of the magnetic structure is
through quasi-steady states. In particular, an azimuthal magnetic field component grows
almost linearly with time. The magnetic torsion is transmitted to the coronal part of the
magnetic tube (i.e. at |𝑧 | < 2 × 109 cm) after two hundred seconds, in accordance with
the time estimated for a magnetic signal to cross the chromospheric layer.

Fig. 4.2 shows the rate of change of the total energy, which is given as the sum of
magnetic, kinetic, thermal, and gravitational energy. The total energy is not constant
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Figure 4.2: Evolution of the rate of change of the total energy, incoming fluxes, sources,
and sinks for the reference simulation. The blue curve indicates the change in total energy
over time, given by the sum of internal, kinetic, magnetic, and gravitational energies of
the system, plotted as functions of time, before the onset of the instability. The red curve
represents the sum of the total fluxes, energy sources, and sinks as a function of time
before the onset of the instability. The closeness of the blue and red curves demonstrates
the approximate energy conservation in the domain. The dashed black curve depicts the
Poynting flux, which is the dominant flux and adds to the magnetic energy.

inside the coronal volume as a result of incoming fluxes at the chromospheric boundaries
of the domain (such as Poynting flux, kinetic energy flux, enthalpy flux, gravitational
energy flux, and thermal conduction), energy sources (background heating), and sinks
(radiative losses). The total energy in the system, accounting for incoming and outgoing
fluxes (see Eq. 2.5), is approximately conserved throughout the numerical experiment.
Amongst all the external contributions, the Poynting flux is dominant during the build-up
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Figure 4.3: Fourier transform of pressure work, gravity work, and kinetic energy rates.
The blue curve indicates the Fourier transform of the work done by pressure gradients
per unit time, before the onset of the instability. The red curve represents the Fourier
transform of the work done by gravity force per unit time, before the onset of the
instability. Both curves show a peak around 𝑇 ≈ 365 s (identified by eye). The green
curve depicts the Fourier transform of the kinetic energy before the onset of the instability.
It shows a peak around 180 s.

of the twisting.
The initial evolution of the system might be seen as the superposition of a long-lasting

and steady tube twisting (where magnetic energy and current density slowly grow as a
consequence of the field line torsion) and a wave-like response to the induced dynamics
(where oscillations of short characteristic timescales are damped with time).

In particular, long-period oscillation (𝑃 ≈ 360 s) is clearly visible in Fig. 4.2 and
in Fig. 4.3, the latter of which shows the work done by the pressure gradient and the
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Figure 4.4: Kinetic energy damping before the instability onset. In blue is the total
kinetic energy, plotted as a function of time, in the time leading up to the instability. The
last exponential rise shows the time at which the first thread is disrupted. In dashed red
is a theoretical estimation of the steady state based on the model described in Eq. (4.13).
As waves are progressively damped, the total kinetic energy is expected to tend towards
this theoretical steady state prior to the instability.

work done by gravity as functions of time. Given the length of the loop (50 Mm) and
the typical coronal sound speed (150 km s−1), a standing slow wave would also have a
period around 400 s. Alfvén waves appear in each thread as azimuthal modes with a
period of nearly 50 s.

In Fig. 4.4, the kinetic energy reaches a steady state value around a time of 6000 s
and remains there until about 𝑡 = 11000 s, when it exponentially increases as the first
kink instability occurs. The theoretical limit, computed from Eq. (4.13) and shown as a
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Figure 4.5: Evolution of the volume integrated magnetic energy prior to the instability.
In blue is the total magnetic energy before the onset of the instability, plotted as a function
of time. In dashed red is a theoretical estimate based on the model described in Sect. 4.3,
which grows through the energy input by photospheric driving.

red dashed line, agrees with the actual volume-averaged kinetic energy. The oscillations
in kinetic energy have a period of approximately 𝑡 = 180 s (see. Fig. 4.3) and are the
result of magnetosonic waves. Moreover, the growth of the kinetic energy during the
onset of the ideal kink instability is, as expected, exponential with time. This is shown in
the internal panel of Fig. 4.4. In particular, the slope of the exponential increase matches
with the theoretical value 𝜏 = 0.1 × 2𝐿/𝑣𝐴, where 𝑣𝐴 is the Alfvén velocity (Van der
Linden & Hood 1999; Hood et al. 2009).

Fig. 4.5 shows that the magnetic energy determined from the simulation is very
close to the prediction of the theoretical model presented in the previous section. The
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Figure 4.6: Evolution of the maximum current density. The solid, blue curve represents
the maximum current intensity, before the onset of the instability, as a function of time.
In dashed red is the theoretical estimate based on the model described in Sect. 4.3.

quadratic increase of the magnetic energy is determined by the linear growth of the
azimuthal component of the magnetic field during the twisting.

The vertical component of the current density dominates over the other ones. It also
grows linearly in time as a consequence of the magnetic tube twisting (see Fig. 4.6). As
assumed in Eq. (4.15), the maximum current intensity is along the axis of each flux tube
As shown in Fig. 4.7, the axial current remains positive around the centres of the strands.
On the outer edge, there is a neutralizing negative current, ensuring the net axial current
remains zero.
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Figure 4.7: Profiles of the apex current intensity along the x-axis (𝑦 = 0) at different
times.

4.4.2 Onset of the instability

The first tube becomes unstable after around 12400 s. We estimated the amount of twist,
defined as Φ = 2𝜋𝑁 (with 𝑁 the number of twists in the unstable strand), at the time of
the kink instability. We considered both the maximum tangential photospheric velocity
𝑣𝜙 and an averaged value ⟨𝑣⟩ =

∫ 2𝑟max.
0 𝑣𝜙𝑟𝑑𝑟/

∫ 2𝑟max.
0 𝑟𝑑𝑟 . In the first case, the Φ ≈ 10,

while in the second one it is smaller by a factor of two. In both cases, Φ is of the
same order of magnitude as previous results, such as the Kruskal-Shafranov condition
(ΦKS = 3.3 𝜋) (Priest 2014).

The onset of the first kink instability and the subsequent MHD cascade can be
followed by inspecting the current density and velocity evolution. For instance, Fig. 4.8
shows the current density distribution (first column) and the velocity field (second
column) over the loop mid-plane at four different times. In the first panel (𝑡 = 12400 s),
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the onset of the first kink instability is shown: the unstable flux tube begins to flex owing
to the growing magnetic pressure imbalance. Consequently, a single current sheet
forms at the edge of the loop, and the velocity grows at its sides. Then, in the second
panel (𝑡 = 12500 s), the current sheet fragments in a turbulent way (see the velocity
map) into smaller current sheets, and the entire structure expands to interact with the
neighbouring loop. This causes the second strand’s instability. The third (𝑡 = 12550 s)
and fourth (𝑡 = 12600 s) panels show the evolution of the MHD cascade (i.e. second
loop disruption) triggered by the first kink instability. Throughout the process, zones
of high plasma velocity on the horizontal mid-plane spread over regions of high current
density. This is expected since plasma is mostly accelerated by magnetic forces where
magnetic field gradients are higher.

The average temperature peaks 100 s after the onset of the avalanche process, while
the average density and radiative losses reach the maximum value after a further period
of 800 s (see first panel of Fig. 4.9). The turbulent evolution of the system is difficult to
follow, but quantitative information on its dynamics can be obtained from the maximum
current, temperature, and velocity evolution shown in Fig. 4.9. The three plots show
the same qualitative behaviour with some high peaks around 𝑡 = 12500 s; that is, during
large heating events corresponding to dissipation of relatively large current sheets. In
particular, the first group of peaks occurs during the onset of the first kink instability. The
second and third groups correspond to the times when the second loop is destabilized and
when it is finally disrupted, respectively. Another peak in the current intensity occurs
at 𝑡 = 13000 s and is followed by a moderate enhancement in the loop temperature and
velocity. It is produced by the formation and subsequent dissipation of a big current
sheet induced by the continuous driving at the boundaries.

The dissipation of the multi-threaded loop into smaller current sheets can be traced
by following the magnetic field lines connectivity over time. The third column of Fig. 4.8
shows the end points of some field lines on the upper boundary plane 𝑧 = 𝑧max.. Red dots
correspond to field lines connected at the bottom to the left footpoint (i.e. 𝑧 = −𝑧max.).
Conversely, blue dots refer to field lines connected at the bottom to the footpoint on
the right. Field lines were traced from the bottom side of the box and mapped into the
upper one using a second-order Runge-Kutta integration scheme. The location of the
starting points at 𝑧 = −𝑧max. were updated according to the imposed rotation, while the
points at the opposite side were expected to change as the field lines move or change
by reconnection. It is easy to see that the field line connectivity changes as soon as the
MHD cascade takes place and that magnetic reconnection has occurred in the meantime.
Indeed, during the avalanche process, field lines from each strand become entangled
and eventually cross the lateral boundaries of the domain. The same thing is likewise
evident in Fig. 4.10, where field lines in the box are shown in full-3D rendering. The
field lines were computed using a fourth order Runge-Kutta scheme, and colour was
attributed depending on where on the photosphere the starting points were placed. As
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Figure 4.8: Onset and evolution of the MHD avalanche. First column: Horizontal cut of
the current density across the mid-plane at times (from the top) 𝑡 = 12400 s (onset of first
kink instability), 𝑡 = 12500 s, 𝑡 = 12550 s (second strand’s disruption), and 𝑡 = 12600 s.
Second column: Horizontal cut of the velocity across the mid-plane at the same four
times. The arrows show the orientation of the velocity field. The colour maps evaluate
the intensity of the vertical component of the velocity field. Third column: Terminal
locations (𝑧 = 𝐿) of the sample field lines at the same four times. The red field lines
(spots) depart from the 𝑧 = −𝐿 footpoint on the left (red shaded region), and the blue
field lines depart from the right (blue shaded region). Initially, the red and blue field
lines are randomly distributed inside the blue and red circles, respectively. Subsequent
starting locations at the lower boundary points were determined at later times by tracking
their locations in response to the photospheric motions.

the twisting triggers the kink instability, field lines reconnect with each other. At the end
of the process, some light blue and purple lines connect different loop footpoints.

The energetics of the numerical experiment reflect the physical processes that drive
the system dynamics. Fig. 4.11 shows the evolution of the four energy components (i.e.
magnetic, kinetic, thermal, and gravitational energy). The magnetic energy dominates
over the other components during the initial, smooth evolution of the system. As men-
tioned above, the main source of energy derives from the Poynting flux (see Fig. 4.2).
The net effect of thermal conduction, radiative losses, and background heating is neg-
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Figure 4.9: Global evolution of the MHD avalanche. From top to bottom: Average
normalized radiative losses, density and temperature in the corona, maximum current
density, maximum temperature, and maximum velocity against time. The red vertical
lines mark the times of large heating events.

ligible provided that the magnetic field changes are slow compared with the radiative
and conductive timescales. In Fig. 4.14, the sum of the time-integrated thermal flux,
radiative losses, and uniform heating is practically zero, while the thermal conduction
dominates over the radiative losses, as expected in typical coronal conditions.

After the onset of the MHD avalanche, the magnetic energy rapidly drops. The kinetic
energy increases exponentially but remains at least one order of magnitude smaller than
the magnetic energy. Most of the magnetic energy gained, through footpoint driving, is
converted into heat, and the steep rise in thermal energy follows the plasma acceleration.
This may be attributed to the accelerated conversion of kinetic energy into internal
energy during the instability, which cascades energy to smaller scales where it can be
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Figure 4.10: Three-dimensional rendering of the magnetic field lines in the box around
the two flux tubes at different times. Far left panel: Field lines at 𝑡 = 12400 s (onset
of first kink instability). Middle left panel: Field lines at 𝑡 = 12500 s. Middle right
panel: Field lines at 𝑡 = 12550 s (second loop disruption). Far right panel: Field lines at
𝑡 = 12600 s. The change in the field line connectivity during the evolution of the MHD
cascade is highlighted by the different colours.

dissipated more efficiently through numerical dissipation.
Fig. 4.12 shows how the rate of change in magnetic energy matches the instantaneous

Ohmic heating and how it, in turn, influences the rate of change in heating.
Several heat pulses released after the multiple magnetic reconnection events enhance

the thermal conductive flux towards both transition regions (see Fig. 4.14). The heat
flow was then slowed down in the chromosphere because conduction is less efficient
at cooler temperatures. As a consequence, an excess of pressure accumulates in the
transition region and the top of the chromosphere. This creates the pressure gradient
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Figure 4.11: Magnetic (purple), internal (pink), kinetic (orange), and gravitational
(yellow) energies as functions of time. The black is the total energy given as the sum of
the four energy terms. The onset of the avalanche is marked with a vertical red dashed
line.

that causes the evaporative upflow. The plasma expanding upwards, in turn, leads to an
increase in the coronal density inside the magnetic structure.

The sudden growth of the gravitational potential energy traces this strong mass
flow upwards, as shown in Fig. 4.13. After the beginning of the MHD avalanche, the
gravitational energy increases as a consequence of the chromospheric plasma evaporation
in the coronal volume. It supplied gravitational energy flux at the boundaries while the
remaining contribution to the potential energy is given by the work done by the gravity
force to distribute this denser plasma over the entire loop length.

Fig. 4.15 shows the average vertical thermal flux, radiative losses, density, and
temperature as a function of time and height. The strongest thermal flux (first panel)
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Figure 4.12: Rates of change in magnetic (solid black) and internal (dashed black)
energies and Ohmic heating (red) as functions of time. The vertical red solid lines
highlight times of large heating events. The onset of the avalanche is marked with a
vertical red dashed line.

developed at the times when each loop is disrupted (i.e. when the temperature gradient
is greatest). The heat flux propagates towards the upper and lower transition regions
and was stronger in the corona. In contrast, the radiative losses (second panel) were
stronger at later times, when the density (third panel) has increased by chromospheric
evaporation. The biggest contribution is localised in the transition region where the
rates exceed the coronal radiative losses by at least two orders of magnitude. As heating
released during the MHD avalanche rapidly spread (in few tens of seconds) along the
tube, temperature (fourth panel) rises uniformly. It then slowly decreases from 10 MK
to 1 MK on a timescale of 1000 s.
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Figure 4.13: Gravitational energy (red), time-integrated gravitational energy flux (solid
black), and work done by gravity (dashed black) as functions of time. The onset of the
avalanche is marked with a vertical red dashed red line.

4.4.3 Three-stranded loop simulation
The propagation of the instability described so far is an avalanche process that can
extend to increasing numbers of nearby flux tubes (Hood et al. 2016). To ensure this
progression, we performed a second numerical experiment with three interacting strands
within a coronal loop. The initial configuration of the magnetic structure is shown in
the left panel of Fig. 4.16. As in the previous case, this magnetic structure is embedded
in a stratified atmosphere with a cold (𝑇 ≃ 104K ) chromospheric layer and a hot and
tenuous corona (𝑇 ≃ 106K and 𝑛 ≃ 109cm−3). Equations (2.2 - 2.5) summarize the
underlying physics driving the evolution of the system, as discussed in Sec. 5.2. As
in the first case, one of the magnetic strands is twisted at its footpoint faster than the
others and becomes kink unstable. The right panel of Fig. 4.16 shows the propagation
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Figure 4.14: Time-integrated thermal flux (solid black), radiative losses (dashed black),
and background heating (dotted black) as functions of time. The solid red curve is the
sum of the three contributions. The onset of the avalanche is marked with a vertical red
dashed line.

of the instability from a central, faster tube to the two adjacent tubes. As expected,
the first unstable strand triggers the global dissipation of the magnetic structure into
smaller current sheets. Heating by Ohmic dissipation is localised inside relatively small
regions where the current density is higher. These current sheets develop and spread in
a turbulent way throughout the entire extension of the domain.

4.5 Discussion
This work addresses the energy released impulsively in the corona under strong magnetic
stresses. In particular, we have shown that MHD avalanches are efficient mechanisms for



4 Coronal heating by MHD avalanches:
Effects on a structured, active region coronal loop 149

Figure 4.15: Average vertical thermal flux, radiative losses, plasma density, and tem-
perature against time (on the horizontal axis) and height (z; on the vertical axis). The
averaging is on the horizontal planes. The region of the domain where the temperature
exceeds 104 K (i.e. transition region and corona) is bounded (magenta lines).

fast release of magnetic energy in the solar corona progressively stored by slow, uniform
photospheric motions. We describe a system consisting of two neighbouring twisted
flux tubes. These interacting flux tubes comprise a stratified atmosphere including
chromospheric layers, a thin transition region to the corona, and an associated transition
from high-𝛽 to low-𝛽 regions. Our model includes the effects of thermal conduction and
of optically thin radiation. Rotation of the plasma at the upper and lower boundaries of
our computational domain applies twisting to the magnetic flux tubes. Since line-tying
of the field lines at the photospheric boundaries is expected to be maintained over time
by high plasma beta values and a sufficient spatial resolution, each loop can develop
high levels of twist, as the azimuthal component of the magnetic field increases. Above
a certain stress threshold, the structure becomes kink-unstable and suddenly relaxes to
a new equilibrium configuration (Hood et al. 2009). In particular, since one strand is
twisted faster than the other, that strand will become unstable before the other and trigger
the avalanche process that will, in turn, spread as it affects the neighbouring flux tube.
Magnetic reconnection between unstable flux tubes causes bursty and diffuse energy
release (similar to a nanoflare storm) and changes the field connectivity. Moreover,
through repeated reconnection events, the system relaxes towards the minimum energy
state. The system undergoes an initial dynamic phase where the plasma is rapidly
accelerated. The initial helical current sheet progressively fragments in a turbulent
way into smaller current sheets, which, in turn, dissipate magnetic energy via Ohmic
heating. As soon as the steep rise in kinetic energy is damped in the corona, the released
heating rapidly increases the coronal temperatures and, consequently, the pressure scale-
height. As a consequence of that process, the steep rise in temperature is followed by a
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Figure 4.16: Three-threaded coronal loop simulation: initial condition and evolution of
the MHD avalanche. Left panel: Three-dimensional rendering of the initial magnetic
field configuration in the proximity of each coronal loop (for the second model, with
three strands). The purple field lines were subjected to a faster twisting driver than the
green ones. Right panel: Horizontal cut of the Ohmic heating per unit time and per unit
volume at the middle of the box at different times. From the top down, these times are:
𝑡 = 11200 s (onset of first kink instability), 𝑡 = 11400 s, 𝑡 = 11800 s (disruption of the
second and third strands), and 𝑡 = 11900 s. The green filaments indicate areas where the
current density exceedes the threshold value for dissipation.

progressive coronal density enhancement due to chromospheric evaporation.
Results achieved in this work agree with those found by Hood et al. (2009), Hood

et al. (2016), and Reid et al. (2018), but also go further and extend them. In particular, we
demonstrate that even inside a stratified atmosphere, highly twisted loops with zero net
current undergo the non-linear phase of the kink instability where reconnection in a single
current sheet triggers the fragmentation of the flux tubes at multiple reconnection sites.
In particular, once the first unstable strand is disrupted, it coalesces with the neighbouring
strands, inducing an MHD cascade, as found in uniform coronal atmospheres (Tam et al.
2015; Hood et al. 2016; Reid et al. 2018).

As shown in Fig. 4.12, magnetic energy is released in discrete bursts as stable strands
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are disrupted and single current sheets are dissipated. This bursty heating does not show
evidence of reaching a steady state.

Thermal conduction is very effective in spreading heating along field lines, and this
leads to the filamentary structuring in loop temperature. Also, as shown in Fig. 4.9,
because of thermal conduction, the temperature grows to about 107 K, which is much
cooler than the temperatures of approximately 108 K found in Hood et al. (2009). Peak
temperatures of a few tens of millions of kelvin as well as variations in magnetic and
internal energy of 1027 erg are found in our simulations. They agree with those measured
from microflare observations (Testa & Reale 2020).

Radiation also has an important effect on the temperature distribution. Radiative
losses are stronger across the transition region, where the plasma density is higher. As
the upper atmosphere is heated, this layer acts as a thermostat for the corona since it
tends to restore the initial coronal temperature. Indeed, it maintains the temperature
gradient that allows heat to flow out of the corona.

A deep chromospheric layer is important to guarantee line-tying throughout the whole
evolution of the coronal loop. With this layer in place, photospheric motions can slowly
twist the magnetic flux tubes expanding across the chromospheric layer. At the same
time, the chromosphere acts as a reservoir of dense plasma that can flow into the corona
as a consequence of impulsive heating. Modelling the chromospheric evaporation and
the resulting increase of the loop emissivity is fundamental to corroborate the results
through comparison with EUV and X-ray observations of dynamic coronal loops.

As shown in Sect. 4.4.3, the propagation of the instability is an avalanche process that
can extend to increasing numbers of nearby flux tubes (Hood et al. 2016). In conclusion,
this work confirms, and constrains the conditions for, the propagation of a kink instability
amongst a cluster of flux tubes, including a more complete, stratified loop atmosphere,
as well as important physical effects, in particular thermal conduction and optically thin
radiative losses. The avalanche can trigger the ignition and heating of a large-scale
coronal loop with parameters not far from those inferred from the observations.

The reconfiguration of the magnetic structure and the resulting plasma dynamics have
been found to occur at timescales on the order of 10 s and over spatial scales smaller than
one arcsecond. The detection of these small scales involved in coronal heating release
will be the target of high-resolution spectroscopic observations of future missions, such
as MUSE (Cheung et al. 2022; De Pontieu et al. 2022) and SOLAR-C/EUVST (Shimizu
et al. 2020).





5
Coronal heating by MHD avalanches:
EUV line emission from a multi-threaded
coronal loop

This chapter is structured based on the paper titled “Coronal heating by MHD avalanches
II. EUV line emission from a multi-threaded coronal loop” (Cozzo et al. 2024).

Magnetohydrodynamic instabilities, such as the kink instability, can trigger the
chaotic fragmentation of a twisted magnetic flux tube into small-scale current sheets that
dissipate as aperiodic impulsive heating events. In turn, the instability could propagate
as an avalanche to nearby flux tubes and lead to a nanoflare storm. The previous
section was devoted to related 3D MHD numerical modelling, which included a stratified
atmosphere from the solar chromosphere to the corona, tapering magnetic field, and
solar gravity for curved loops with the thermal structure modelled by plasma thermal
conduction, along with optically thin radiation and anomalous resistivity for 50 Mm flux
tubes. Using 3D MHD modelling, this section addresses predictions for the extreme-
ultraviolet (EUV) imaging spectroscopy of such structure and evolution of a loop, with
an average temperature of 2-2.5 MK in the solar corona. We set a particular focus on
the forthcoming MUSE mission, as derived from the 3D MHD modelling. From the
output of the numerical simulations, we synthesized the intensities, Doppler shifts, and
non-thermal line broadening in three EUV spectral lines in the MUSE passbands: Fe ix
171 Å, Fe xv 284 Å, and Fe xix 108 Å, emitted by∼ 1 MK,∼ 2 MK, and∼ 10 MK plasma,
respectively. These data were detectable by MUSE, according to the MUSE expected
pixel size, temporal resolution, and temperature response functions. We provide maps
showing different view angles (front and top) and realistic spectra. Finally, we discuss
the relevant evolutionary processes from the perspective of possible observations. We
find that the MUSE observations might be able to detect the fine structure determined by

153
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tube fragmentation. In particular, the Fe ix line is mostly emitted at the loop footpoints,
where we might be able to track the motions that drive the magnetic stressing and detect
the upward motion of evaporating plasma from the chromosphere. In Fe xv, we might
see the bulk of the loop with increasing intensity, with alternating filamentary Doppler
and non-thermal components in the front view, along with more defined spots in the
topward view. The Fe xix line is very faint within the chosen simulation parameters;
thus, any transient brightening around the loop apex may possibly be emphasized by the
folding of sheet-like structures, mainly at the boundary of unstable tubes. In conclusion,
we show that coronal loop observations with MUSE can pinpoint some crucial features
of MHD-modelled ignition processes, such as the related dynamics, helping to identify
the heating processes.

5.1 Introduction

Figure 5.1: MHD avalanche 2D snapshots. Upper panels. Horizontal cuts of the current
density across the mid plane at time 𝑡 = 180 s (left) and 𝑡 = 285 s (right). The green
contours encloses the regions of the domain heated by Ohmic dissipation. Lower panels.
Horizontal cuts of the magnetic field across the mid-plane at the same snapshot-times
as before. The vector field is included.

The Multi-slit Solar Explorer (MUSE, De Pontieu et al. 2020; De Pontieu et al.
2022; Cheung et al. 2022) is an upcoming NASA MIDEX mission, featuring a multi-slit
extreme-ultraviolet (EUV) spectrometer and an EUV context imager, planned for launch
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Table 5.1: MUSE spectrometer emission lines.

Line Wavelength [𝐴̊] log10 (T [K])

Fe ix 171 5.9
Fe xv 284 6.4

Fe xix / Fe xxi 108 7.0 / 7.1

in 2027. MUSE is designed to offer high spatial and temporal resolution for spectral
and imaging observations of the solar corona. One of the MUSE science goals is to
advance the understanding of the heating mechanisms in the corona of both the quiet Sun
and active regions, as well as of the physical processes governing dynamic phenomena
like flares and eruptions. MUSE will provide fine spatio-temporal coverage of coronal
dynamics, as well as wide field of view (FoV) observations, offering valuable insights
into the physics of the solar atmosphere. In particular, it will obtain high resolution
spectra (≈ 0.38”), with wide angular coverage (≈ 156” × 170”; resembling the typical
size of an active region) and 12 s cadence. With its 35-slit spectrometer, MUSE will
provide spectral observations, with unprecedented combination of cadence and spatial
coverage, in different EUV passbands dominated by strong lines formed over a wide
temperature range, enabling the testing of state-of-the-art models related to coronal
heating, solar flares, and coronal mass ejections.

The main EUV lines in the MUSE passbands (171Å Fe ix, 284Å Fe xv, and 108Å
Fe xix and Fe xxi), are listed in Table 5.1 (for details, see De Pontieu et al. 2020;
De Pontieu et al. 2022). Here, we focus on the new spectroscopic diagnostics provided
by MUSE, but of course the findings can be extended to observations with other imaging
and spectroscopic solar instruments observing at similar wavelengths, for instance,
SDO/AIA (Pesnell et al. 2012; Lemen et al. 2012), Hinode/EIS (Culhane et al. 2007;
Tsuneta et al. 2008), and the forthcoming Solar-C/EUVST (Shimizu et al. 2019).

To make meaningful predictions that can then be compared with solar observations,
two critical developments are essential. Firstly, the modelling approach must encompass
crucial physical components, including the thermodynamic response of the atmosphere,
to derive realistic observational outcomes. Secondly, observational techniques must
achieve sufficient temporal and spatial resolution within the pertinent spectral bands. The
synergistic comparison between coronal observations and synthetic plasma diagnostics
from numerical simulations can, on the one hand, significantly improve our interpretative
power on real observational data. On the other hand, it can also help to refine the solar
coronal modelling process.
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This study focuses on extending the plasma diagnostics of the MHD avalanche model
introduced by Cozzo et al. (2023b), also presented in Chap. 4, to observations with the
forthcoming MUSE spectrograph. Although our analysis addresses plasma diagnostics
from the MUSE spectrometer, the present work has a more general application to the
plasma emission at representative coronal temperatures.

We extracted plasma diagnostics from a full 3D MHD simulation of a flaring coronal
loop undergoing an MHD avalanche, as described in Cozzo et al. (2023b) and Chap.
4. In particular, we modelled the response of the MUSE spectrometer by using our
simulated plasma output to synthesize line emission, intensity maps, Doppler shifts and
non-thermal line widths, across the three spectral channels available with the instrument.

5.2 Model
The model setup is described in Sec. 2 and Sec. 4.2.3. The magnetised solar atmosphere
is a 3D cartesian box of size, −𝑥𝑀 < 𝑥 < 𝑥𝑀 , −𝑦𝑀 < 𝑦 < 𝑦𝑀 , and −𝑧𝑀 < 𝑧 < 𝑧𝑀 ,
where 𝑥𝑀 = 2𝑦𝑀 = 8.5 × 108 cm, and 𝑧𝑀 = 3.1 × 109 cm.

The background atmosphere consists of a chromospheric and a coronal column
separated by a thin transition region. In the corona, two flux tubes interact, each
with a length 50 Mm and initial temperature of approximately 106 K, while the two
chromospheric layers are ∼ 6 Mm wide each and 104 K hot. The transition region,
≈ 1 Mm wide, is artificially broadened using Linker–Lionello–Mikić method (Linker
et al. 2001; Lionello et al. 2009; Mikić et al. 2013).

Two rotational motions at the footpoints twist each of the flux tubes. The two rotating
regions have the same radius (𝑅 ≈ 1 Mm), but one has an angular velocity that is higher
than the other by 10% (≈ 10−3 rad s−1 vs. ≈ 0.9 × 10−3 rad s−1), so that the faster strand
becomes unstable first, triggering the avalanche process. As a reference time, deemed
𝑡 = 0 s, we chose the time when the faster flux tube is nearly kink-unstable. Then, this
kink-unstable tube rapidly disrupts the other one (𝑡 = 285 s). A 3D rendering of the two
flux tubes and of their interaction as a result of the instability is shown in Fig.5.2. Here,
we focus on the evolution after the first kink instability.

The left panels of Fig. 5.1 shows a cross-section at the mid-plane of the computational
box at time 𝑡 = 180 s, after the beginning of the instability, when the flux tube on the
left (𝑥 < 0) has already become unstable and fragmented, and is about to trigger the
instability of the flux tube on the right (𝑥 > 0). The current density map (top left
panel) clearly shows on the left the thin, intense current sheets, around which magnetic
reconnection occurs and magnetic energy dissipates. On the right of the map, we see
the other flux tube, still not involved in the instability. In the lower-left panel, we show
the magnetic field intensity: where the left-hand flux tube was, the field is more blurred,
dispersed, and irregularly distributed as a consequence of the instability. The flux tube
on the right is still compact and coherent. The twisting is emphasized by the vector
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Figure 5.2: 3D rendering of the magnetic field lines inside the box at times (from left to
right): 𝑡 = 0 s (initial condition), 180 s, (first loop disruption), and 500 s. The change in
the field line connectivity during the evolution of the MHD cascade is emphasized by
the colors.

field of the component parallel to the plane. The right panels of Fig. 5.1 show the same
quantities as do those on the left, but at a later time (𝑡 = 285 s), when the flux tube on
the right has also been disrupted.

Figure 5.3: 3D rendering of the magnetic field lines inside the box at the same times
shown in Fig.5.2. Magnetic field lines are color-coded according to the plasma temper-
ature.

The emission intensity 𝐼 (Boerner et al. 2012) from the modelled (optically thin)
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plasma expected to be measured with MUSE is:

𝐼 (𝑥, 𝑦) =
∫ ∞

0
Λ 𝑓 (𝑇) DEM(𝑇) 𝑑𝑇, (5.1)

where Λ 𝑓 (𝑇) is the temperature response function per unit pixel for the line, 𝑓 , and
DEM(𝑇) = 𝑛𝐻𝑛𝑒

𝑑𝑧
𝑑𝑇

is the differential emission measure (with 𝑛𝑒 the free electron
density). Then, Λ 𝑓 (𝑇) combines the emission properties of the plasma with the response
of the instrument:

Λ 𝑓 (𝑇) =
∫ ∞

0
𝐺 (𝜆, 𝑇) 𝑅 𝑓 (𝜆) 𝐴pix 𝑑𝜆, (5.2)

where 𝐺 (𝜆, 𝑇) is the plasma contribution function, 𝑅 𝑓 (𝜆) is the spectral response of the
f-th instrument channel, and 𝐴pix is the area of a single MUSE pixel (0.167” × 0.4”).

Figure 5.4: Response function Λ𝑖 (𝑇) for the three MUSE emission lines (Fe ix, Fe xv,
and Fe xix) as a function of temperature.

5.3 Methods

5.3.1 Forward modelling
The temperature response functions for the three MUSE channels are shown in Fig. 5.4.
They are calculated using CHIANTI 10 (Del Zanna et al. 2021) with the CHIANTI ion-
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ization equilibrium, coronal element abundances (Feldman 1992), assuming a constant
electron density of 109 cm−3, and no absorption considered. Each curve is multiplied
by a factor to convert photons into data-numbers (DN). Each curve peaks approximately
at the temperatures listed in table 5.1. The intensity of a single cell, labeled in the
numerical grid by the indices i, j, k, in units of DN s−1 pix−1, is equal to (De Pontieu
et al. 2022):

𝐹𝑖, 𝑗 ,𝑘 = 𝑛
2
𝑒 𝑖, 𝑗 ,𝑘 (𝑇) Λ 𝑓 (𝑇) Δ𝑧, (5.3)

with 𝑛𝑒 ≃ 𝜌

𝜇 𝑚𝐻
, where 𝜌 is the mass density, 𝑚𝐻 is the hydrogen mass, and Δ𝑧 is

the cell extent along a specific line of sight (LoS), such as 𝑧. We assume a Gaussian
profile for each line, at a fixed temperature and density. Therefore, each cell, with a
local velocity of 𝑣𝑖, 𝑗 ,𝑘 along the LoS, contributes to the overall line spectrum with the
following single-cell line profile:

𝑓𝑖, 𝑗 ,𝑘 (𝑣) =
𝐹𝑖, 𝑗 ,𝑘√︃
2𝜋𝜎2

𝑇

exp

[
−

(
𝑣 − 𝑣𝑖, 𝑗 ,𝑘
𝜎𝑇

)2
]
, (5.4)

where

𝜎𝑇 =

√︂
2 𝑘𝑏 𝑇
𝑚Fe

(5.5)

is the thermal broadening and 𝑚Fe is the iron atomic mass, since we will look only at
iron lines. The synthetic instrument response, namely, the integrated emission along the
LoS is computed as:

𝐼
𝑖, 𝑗

0 = 𝐼𝑖, 𝑗 =
∑︁
𝑘

𝐹𝑖, 𝑗 ,𝑘 . (5.6)

MUSE will measure the line profiles, from which we can derive the line Doppler
shifts and the line widths. We can compute the first moment of the velocity distribution
along the LoS:

𝐼
𝑖, 𝑗

1 = 𝑣𝑖, 𝑗 =

∑
𝑘 𝐹𝑖, 𝑗 ,𝑘𝑣𝑖, 𝑗 ,𝑘

𝐼0
, (5.7)

which can be compared to the Doppler shifts measured along the LoS. We can derive the
non-thermal contribution to the line width (measured after subtracting the thermal line
broadening, 𝜎𝑇 , and instrumental broadening) from the second moment of the velocity:

𝐼
𝑖, 𝑗

2 = Δ𝑣𝑖, 𝑗 =

√︄∑
𝑘 𝐹𝑖, 𝑗 ,𝑘 (𝑣𝑖, 𝑗 ,𝑘 − 𝐼1𝑖, 𝑗 )2

𝐼0
. (5.8)
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5.4 Data interpolation
To resemble the typical, semicircular, coronal loops shape, the original simulation
results have been remapped and interpolated onto a new cartesian grid (see Fig. 5.5). In
particular, points (𝑥, 𝑦, 𝑧) in the original grid corresponds to points (𝑥, 𝑦̃, 𝑧) defined by
equations (5.9) for the corona and (5.10) for the chromospheric layer.

Specifically, the coronal region of the domain (𝑧 ∈ [−𝐿, 𝐿]) is transformed into a
half cylinder shell with characteristic radius 𝑅0 = 2 𝐿/𝜋:

𝑥 = 𝑅 sin 𝜃,
𝑦̃ = 𝑥,

𝑧 = 𝑅 cos 𝜃.
for 𝑧 ∈ [−𝐿, 𝐿] (5.9)

with 𝑅 = 𝑅0 + 𝑦 and 𝜃 = 𝜋
2
𝑧
𝐿

.
The chromospheric layers are instead threaded as two parallel parallelepipeds of

height 𝑧max − 𝐿: 
𝑥 = 𝑦,

𝑦̃ = 𝑥,

𝑧 = 𝐿 − |𝑧 |,
for |𝑧 | > 𝐿. (5.10)

New vectors components (𝑣̃𝑥 , 𝑣̃𝑦, 𝑣̃𝑧), such as velocity and magnetic field, are obtained
from the former (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) using the following rule:

𝑣̃𝑥
𝑣̃𝑦
𝑣̃𝑧

 =


0 − sin 𝜃 cos 𝜃
1 0 0
0 − cos 𝜃 sin 𝜃

 ·

𝑣𝑥
𝑣𝑦
𝑣𝑧

 (5.11)

where both triads 𝑣̃𝑖 and 𝑣𝑖 are functions of (𝑣̃𝑥 , 𝑣̃𝑦, 𝑣̃𝑧). In general, the correspondence
between the former set of coordinates and latter is that the gravity vector g points uni-
formly along 𝑧. Magnetohydrodynamic quantities are interpolated in the new geometry
at high resolution, compatible with the original cell sizes. Synthetic observables are first
extracted with such resolution, i.e. the dimension of the cells edges perpendicular to the
LoS, and then rebinned to the given instrument resolution. In particular, the grid pixel
size will be equal to 170 km × 290 km, corresponding to 0.167” × 0.4” i.e. the angular
extension of the instrument’s pixel (parallel and perpendicular to the slits orientation).

Figure 5.3 shows the resulting field line configuration colored by temperature in the
new geometry at the three times already shown in Fig. 5.2.

5.5 Results
To replicate the typical, semicircular, coronal loops shape better, the original data have
been remapped and interpolated onto a new cartesian grid. The method is discussed in
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Figure 5.5: Original and interpolated box geometry. Lower picture: schematic repre-
sentation of the 3D box containing the computational domain of the simulation. Upper
picture: geometry of the interpolated domain mapping the straight flux tube into a curved
one.

Sec. 5.4. Fig. 5.3 shows the 3D rendering of magnetic field lines in the new geometry, at
the same snapshot times used for Fig. 5.2. Magnetic field lines are color-coded according
to the plasma temperature, ranging from 104 K in the chromosphere (blue-layer in the
lower part of the box) up to 4 × 106 K in the upper corona. The sequence clearly shows
that both flux tubes are progressively heated from about 1 MK to more than 2 MK in the
coronal part.

5.5.1 Side view
Figure 5.7 shows a side view of the loop in the MUSE passbands, obtained from the
PLUTO 3D MHD model of the kink-unstable, multi-threaded coronal loop (discussed
in Section 5.2) at the time 𝑡 = 180 s (as in Fig. 5.1). The top three rows show the
possible positions of the MUSE slits (dashed vertical lines). Each column for the
MUSE line (Fe ix, Fe xv, and Fe xix) shows the intensity, Doppler shift, non-thermal
line broadening, current density, and the emission measure integrated along the LoS and
in a temperature range the line is most sensitive to. Here, we show MUSE observables
only where the line intensity exceeds 5 % of the peak, as we address the main emission
features. Regarding the Fe xix line, we have decided to equally show emission features
in this line for completeness, even though this line hardly reaches an acceptable level for
detection with MUSE for this specific simulation, both because the response function
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Figure 5.6: MUSE synthetic line profiles for Fe ix, Fe xv and Fe xix emission line,
as a function of height, 𝑧, slit number, and Doppler shift velocity, as seen in Fig. 5.7.
The spectral bins here are Δ𝑣 = 25 kms−1 for Fe ix, Δ𝑣 = 30 kms−1 for Fe xv, and
Δ𝑣 = 40 kms−1 for Fe xix. The angular pixel along z is 0.4”, equivalent to 290 km (see
Sec. 5.4) for Fe ix and Fe xv lines and 2.7” for Fe xix. The positions of the profiles
shown in Fig. 5.11 are marked (circle, diamond and star).

is quite lower than the other two and because the densities are also lower at these
temperatures. We expect more emission in this line for more energetic simulations, for
instance, with a higher background magnetic field.

As shown in Fig. 5.4, the emission in the Fe ix line peaks around 1 MK. Figure
5.3 shows that the bulk of the flux tubes is soon heated to higher temperatures. As a
consequence, the emission in this line mostly comes from the transition region at the
footpoints, where the temperature steadily remains around 1 MK. On the other hand, the
Fe xv line is emitted higher in the flux tubes, although the loop is still not entirely bright
at this time.

For the hot Fe xix line, we show the emission maps rebinned on macropixels (0.4”×
2.7”), increasing the level of emission closer to the detection level (De Pontieu et al.
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Figure 5.7: MUSE synthetic maps, from PLUTO 3D MHD model of the multi-threaded
magnetic flux tube discussed in Section 5.2. Here we show the tube structure at time
∼ 180 s after the onset of the instability and with the loop in off-limb configuration (LoS
along the 𝑦̂ direction). From the top, the first row shows the intensity of Fe ix, Fe xv,
and Fe xix emission lines. Second row shows the related line shifts instead. Third row
shows the non-thermal line broadenings. In the the Fe ix Doppler shifts and widths, we
only show the pixels where the line intensity exceeds the 5% of its peak (𝐼0 > 0.05 𝐼max

0 ).
We show Fe xix observables rebinned on macropixels (0.4” × 2.7”). Fourth row shows
the maximum of the current density-magnetic field ratio (per each pixel plasma column)
in three temperature bins, around the temperature peak of each line (see Movie 1).

2020). We acknowledge that the emission in this line would come mostly from the region
around the loop apex, where the temperature can reach around 10 MK.

The second row of Fig. 5.7 shows the Doppler shifts maps obtained as the first
moment of the velocity distribution along the LoS (see Eq. 5.7). For the Fe ix line,
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we show only the regions where the emission is within 5% of the maximum intensity,
because we focus our attention on the brightest, low part of the loop. The overlapping
velocity patterns along the LoS similar to those shown in Fig.5.1 (bottom left) designate
an irregularly alternate Doppler shift pattern at the footpoints visible in the Fe ix line,
generally below 25 km s−1, complicated by the starting instability.

The Fe xv line captures the emission from most of the loop and emphasizes the
chaotic filamentary (cross-section on the order of 1000 km) pattern of alternating blue-
red shifts (≤ 50 km s−1), due to the initial MHD instability. Within the limitations above,
we might infer a similar pattern (with higher speeds to about 100 km s−1) also in the
Fe xix line, although the structuring does not overlap with the Fe xv one, because of
different contributions along the LoS.

The third row shows maps of the second moment of each line, which is a proxy
of the non-thermal line broadening. As a reference, we mention that the thermal line
broadenings as defined in Eq. 5.5, at the line peak temperatures, namely, 𝑇 = 0.9 MK
for the Fe ix line, 𝑇 = 2.5 MK for the Fe xv line, and 𝑇 = 10 MK for the Fe xix
line, is 16 km s−1, 27 km s−1, and 54 km s−1, respectively. The non-thermal broadening
describes co-existing velocity components in different directions along the LoS. In
very elongated structures, the thermal and non-thermal components are comparable;
however, for the Fe xv (and Fe xix ) line in outer shells, the latter can exceed the former
significantly, with a chaotic structure resembling that of the Doppler shifts. In the Fe xv
line, there is a long strip around the loop apex where the non-thermal broadening exceeds
75 km s−1. The fourth row shows the maximum of the current density-magnetic field
ratio (per each pixel plasma column) in three temperature bins, around the temperature
peak of each line, to locate the regions where reconnection is most likely to occur.

Figure 5.6 shows the synthetic line profiles for the Fe ix, Fe xv, and Fe xix lines,
as a function of height 𝑧, slit number, and Doppler shift velocity, in a slit-like format,
similar to the expected direct output of the spectrometer (e.g., De Pontieu et al. 2022,
Fig.4). These profiles account for both the thermal and non-thermal line broadening
since they have been obtained from the integration of the single-cell Gaussian profiles
(see Eq. 6.4) along the LoS and the angular coverage of each slit. The Fe ix line, bright
at the footpoints only, does not show significant overall Doppler shift. The Fe xv line,
brighter low in the loop, shows some distortion when moving to the upper and fainter
regions. In the faintest top region we also see an oscillatory trend.

Regarding the Fe xix line, we might say (solely in generical sense) that we could
expect to see some Doppler shifts that are more on the blue side, but only if we had
enough sensitivity in the top loop region. In general, having multi-slit allows us to see
all these features across the loop in these three lines in the same instance.
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5.5.2 Top view
Figure 5.8 shows the MUSE synthetic images from a different perspective, with the
LoS along 𝑧 (i.e.m the loop is observed from the top) at times of 𝑡 = 285 s, when the
emission intensity is high in all three lines. Also in this case, the maximum current
density (weighted for the strength of the magnetic field) in the three lines temperature
bins is shown in the fourth row, as in Fig. 5.7.

Figure 5.8: MUSE synthetic maps at time ∼ 285 s and with the LoS along the 𝑧 direction
(the loop is observed from the top). From the top, the first row shows the intensity of
Fe ix, Fe xv, and Fe xix emission lines. Second row shows the Doppler line shifts. Third
row shows the non-thermal line broadenings. In the the Fe ix Doppler shifts and widths
we show only pixels where the line intensity exceeds the 5% of its peak (𝐼0 > 0.05 𝐼max

0 ).
We show Fe xix observables rebinned on macropixels (0.4” × 2.7”). We also show
the Fe xix observables rebinned on macropixels (0.4” × 2.7”). The fourth shows the
maximum of the current density (per each pixel plasma column) in three temperature
bins, around the temperature peak of each line. The 12 dashed vertical lines mark the
position of the MUSE slits. 12 dashed vertical lines mark the position of the MUSE slits
(see Movie 2).

In Fig. 5.8, as expected, the Fe ix line intensity map shows bright footpoints at the
sides, with no emission in between. In particular, helical patterns map the footpoint
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rotations of the two flux tubes. The upper tube is better defined because not involved in
the kink instability yet. The related Doppler map shows mostly blue shifts of up-moving
plasma, driven by the heating. At the footpoints, the non-thermal broadening is noisy
and mostly below 20 km s−1. Overall, it maps the current density pattern rather well.

The Fe xv line is bright along most of the loop, but more so in the lower, kink-unstable
loop than in the upper kink-stable loop. Significant blue-shifts at about 100 km s−1 are
present low in the loop legs, marking bulk upflows. An alternation of blue and redshifts
are present high in the loop. Non-thermal broadening above 50 km s−1 is located at
intermediate heights it and maps the structuring of the current density quite well.

Also, from this perspective, the hot Fe xix line is at its brightest around the loop apex
and, in particular, at the boundary between the two flux tubes (in the mid plane). The
Doppler shift pattern is diluted by rebinning, except for a couple of spots of redshift and
non-thermal broadening.

5.5.3 Time evolution
In Fig. 5.7, we mark the cross-sections along the loop where each line is bright and we
use them to analyse the time evolution of the lines emission. In Fig. 5.9, we show the
same quantities as in the top three rows of Fig. 5.7, but considering three single slits
(marked in Fig. 5.7) as a function of time. The time of Fig. 5.7 (𝑡 = 180 s) is marked.

The Fe ix line, sampled at one loop footpoint, starts to brighten quite early (𝑡 ∼ 100 s)
overall and, in particular, in correspondence to the outer shell of the loop. While it does
not occur uniformly, the brightness increases progressively over time. Conversely, the
Doppler shift and the non-thermal broadening show higher values earlier in the evolution,
around 150-200 s. Both of them have a patchy pattern, with alternating red and blue
Doppler shifts and high small-line broadening, respectively.

The Fe xv line brightens significantly after 𝑡 = 200 s, which is quite later than the
Fe ix line, because of the time taken by dense plasma to come up from the chromosphere.
The brightening is more uniform than that seen for the Fe ix line and it already gets to its
peak, in part of the loop, at about 𝑡 = 300 s. Also in this case we have more significant
dynamics at early times (between 𝑡 = 100 s and 𝑡 = 300 s), with Doppler shifts declining
well below 50 km s−1 and broadenings below 20 km s−1 by the time the intensity peak is
reached. However, the predicted intensities are already high enough (De Pontieu et al.
2020) at the time of peak shift or broadening to detect those line properties. In the
Doppler-shift maps, we see more defined alternating red and blue patterns both in terms
of the time and along the slit.

While it is quite faint, the Fe xix line, emitted at the loop top, brightens very early
(𝑡 ∼ 100 s), for a short time and with an irregular pattern, marking the time interval when
the heating from reconnection is most effective (because the density is still relatively
low) and the temperature has a peak (see Fig.9 in Cozzo et al. 2023b). In the interval
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Figure 5.9: Same as in Fig. 5.7, but considering the three single slits marked in Fig. 5.7,
as a function of time and of the distance from the loop’s inner radius 𝑟. Times from Fig.
5.7 are shown as solid vertical lines.

between 100 s and 300 s we also see a bright spot of blue shift (100 km s−1) and one of
line broadening (100 km s−1.)

Figure 5.10 is similar to Fig. 5.9, but the evolution is taken along a line in the XY
plane, with a LoS that is parallel to the Z-direction (top view). Also, in this case, we
see an increasing line luminosity in the Fe ix and Fe xv lines and flashes in the Fe xix
line. The evolution of the Doppler shifts cut shows clearly the presence of strong and
long-lasting upflows from the loop footpoints (Fe ix).

Movie 1 1 shows the system evolution in the side view of Fig. 5.7, from the onset of
the instability to 500 s, when the system is close to a steady state.

Significant currents appear first in the low temperature bin and around the loop
apex at the onset of the instability and then again after 1 min in the other temperature

1Link to Movie 1: https://www.aanda.org/articles/aa/olm/2024/09/aa50644-24/aa50644-24.html
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Figure 5.10: Same details as in the top two rows of Fig. 5.8, but considering three
single slits (slit numbers 2, 4, and 6 in Fig. 5.8, for the Fe ix, Fe xv, and Fe xix lines,
respectively), as a function of time and 𝑦. The time of Fig. 5.8 is marked (solid vertical
lines).

bins. After about 2 min, when the plasma suddenly reaches 10 MK, we see some faint
emission at the top in the Fe xix line, which rapidly extends down along the loop. At
about 𝑡 = 150 s we start to see emission also in the other two lines, starting from the
loop footpoints, and then propagating upwards in the Fe xv line only. At 𝑡 = 300 s the
whole loop appears illuminated in this line, while the Fe xix line rapidly disappears
completely. In the Fe xv line, we clearly see bright fronts moving up and down and
also that the brightness is not uniform across the loop, but with a filamented structuring
which changes in time.

The Doppler shift images have quite well defined patterns around 𝑡 = 170 s (blue
on the right, red on the left in the Fe xv line), alternating wide strips in the Fe xix line.
These patterns rapidly become finely structured and chaotic by 𝑡 ∼ 200 s in both lines.
In the first 2 min, we also see large intense (red) spots of non-thermal broadening in
the same two lines, which become filamentary later on, until they decrease significantly
below 50 km s−1 after about 5 min. The movie confirms that there is some level of
correspondence between the evolution and structuring of the non-thermal broadening in
the Fe xv line and those of the current density.

When looking more closely at the single lines, the Fe xix line shows a brightening
strip at the onset of the first instability (130 s < 𝑡 < 160 s) at the low boundary around
the apex of the curved tube. There we can also see some blue-shift, more to the left,
a spot of non-thermal broadening (> 100 km s−1) and intense current density. These
features are produced by the folding of elongated structures which align along the LoS.
We see an analogous effect at the onset of the second instability (250 s < 𝑡 < 290 s),
this time involving more the top boundary. The evolution of the Fe xv line emission
is more independent of the onset of the instabilities. In this side view, the loop starts
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to brighten from the footpoints after 𝑡 = 150 s and is filled in about 100 s. Then, its
intensity increases more or less uniformly and progressively. Irregular Doppler-shifts
and non-thermal broadening patterns are more intense at some times but progressively
fade out. The Fe ix line shows irregular patterns, which are difficult to discern as they
are very flat at the footpoints.

Movie 22 shows the system evolution (analogously to movie 1) from the top view of
Fig. 5.8. Again we clearly see the first brightening in the Fe xix line in a thin strip at
the boundary between the two rotating tubes (𝑡 = 125 s). Then the first unstable loop
brightens up in all lines at the same time. At 𝑡 = 153 s, bright helices appear at the
footpoints in both Fe xv and Fe ix lines and a broad oblique band extending over the
whole loop length in the Fe xix line. The Fe xv and Fe ix brightenings rapidly extent to
the other flux tube, with two definite helices. The helices rapidly blur and fade away in
the Fe xv line, while the emission gradually bridges over the whole loop region. Initially,
it is brighter in the first unstable tube. In the Fe xix line, there are rapid faint flashes
of few tens of seconds involving different, but relatively large coronal regions: the first
unstable tube earlier and the other one later. Regarding the Doppler shifts, this view
clearly shows the expected strong upflows as the flux tubes initiate the instability, from
𝑡 ∼ 200 s. We see strong blueshifts in the first unstable tube at the footpoints in the Fe ix
line, propagating to the body of the loop in the Fe xv line, and continuing with redshifts
in the Fe xix line flows, moving from one side to the other.

Also, from this view, we see the strongest non-thermal broadenings soon after the
instabilities are triggered in both flux tubes, with a structuring similar to the one shown
by the current density, especially in the Fe xv and Fe xix lines. In particular, the Fe xix
line confirms the large non-thermal broadening when the line is more intense. Looking
in more detail at each line, in the Fe xix line emission boundary strips brighten again,
due to the folding of emission sheets that overlap along the LoS. At the same time,
there are significant downflows and line broadening, downstream, or close to the areas
of intense current density.

The Fe ix emission shows the helical patterns clearly at the onset of the instability
(𝑡 > 150 s, 𝑡 > 260 s). Alternating blueshifts and redshifts are also present at the onset of
the instability (𝑡 = 167 s, with velocity 𝑣 > 50 km s−1), then blue-shifts become dominant
(𝑡 > 200 s). Transient non-thermal broadenings are present for 160 s < 𝑡 < 330 s (3 min,
Δ𝑣 ∼ 30 km s−1).

In the Fe xv line, we see the ignition of the lower part of the first unstable tube at
𝑡 = 167 s, the whole tube is bright at 𝑡 = 264 s. The other tube starts to brighten at
𝑡 = 264 s, and is entirely bright at 𝑡 = 313 s. Strong blueshifts appear at the footpoints
early after each tube becomes unstable and extends upwards. Redshifts are present in
area of weak emission, as well as large non-thermal broadenings.

2Link to Movie 2: https://www.aanda.org/articles/aa/olm/2024/09/aa50644-24/aa50644-24.html

https://www.aanda.org/articles/aa/olm/2024/09/aa50644-24/aa50644-24.html
https://www.aanda.org/articles/aa/olm/2024/09/aa50644-24/aa50644-24.html
https://www.aanda.org/articles/aa/olm/2024/09/aa50644-24/aa50644-24.html


5 Coronal heating by MHD avalanches:
EUV line emission from a multi-threaded coronal loop 170

5.6 Discussion

This chapter addresses how coronal loops, heated by an MHD avalanche process, would
be observed with the forthcoming MUSE mission. It is an extension of the modelling-
oriented work described in Cozzo et al. (2023b) and Chap. 4, and it delves into the
synthesis of spectroscopic observations in Fe ix, Fe xv, and Fe xix lines with the forth-
coming MUSE mission, which will probe plasma at ∼ 1 MK, ∼ 2 MK, and ∼ 10 MK,
respectively, at high spatial and temporal resolution.

In this work, forward-modelling bridges theoretical investigation of loop heating
through MHD instability (Hood et al. 2009; Cozzo et al. 2023b) with realistic observa-
tions in the EUV band. This approach represents a significant progress both because it
is based on a non-ideal MHD model (see also Guarrasi et al. 2014, Cozzo et al. 2023a)
and because it realistically accounts for future instrumental improvements (the MUSE
mission). In particular, we provide specific observational constraints that are useful for
testing the model and guide future modelling efforts. Forward-modelling for comparison
with real observations requires a very detailed and complete physical description and
including the space-time dependence at different spectral lines makes this task even more
difficult. Historically, time-dependence has been possible using the 1D hydrodynamic
modelling applied, for instance, to the light curves and line spectra of impulsively heated
loops, (e.g., Peres et al. 1987; Antonucci et al. 1993; Testa et al. 2014). Constraints on
the heating parameters of non-flaring loops were derived from comparing space-time
dependent loop modelling with the brightness distribution and evolution observed with
TRACE (Reale et al. 2000c,b) and SDO/AIA (Price et al. 2015). Collections of single
loop models have been used to synthesize the emission and patterns of entire active
regions (Warren & Winebarger 2007; Bradshaw & Viall 2016). Collections of 1D loop
models have been used also to describe the emission of multi-stranded loops (Guarrasi
et al. 2010).

Regarding proper multi-D MHD loop modelling, Reale et al. (2016) showed the
synthetic emission of a coronal loop heated by twisting in two EUV (SDO/AIA 171 𝐴̊ and
335 𝐴̊, Lemen et al. 2012; Pesnell et al. 2012) channels and in one X-ray (Hinode/XRT
Ti-poly, Lee et al. 2009) channel. Also in that case, only the transition region footpoints
brighten in the 171 𝐴̊ channel since the loop plasma is mostly at temperatures around
2–3 MK, at which the 335 𝐴̊ channel is more sensitive. The central region of the coronal
loop, at higher temperature plasma, is also bright in the X-ray band.

A list of preliminary applications of MHD forward-modelling to the MUSE mission
is reported in De Pontieu et al. (2022) and Cheung et al. (2022). They show that Doppler
shifts and line broadening are important tools to provide key diagnostics of the mech-
anisms behind coronal activity. Moreover, they point out the importance of coupling
high-cadence, high-resolution observations with advanced numerical simulations.

The full 3D MHD model in Cozzo et al. (2023b) describes a release of magnetic
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energy in a stratified atmosphere. It accounts for a multi-threaded coronal loop made up
by two (or more) interacting magnetic strands, subjected to twisting at the photospheric
boundaries. The global, turbulent decay of the magnetic structure is triggered by the
disruption of a single coronal loop strand, made kink-unstable by twisting. Massive
reconnection episodes are triggered and determine local impulsive heating and rapid
rises in temperature. These are then tempered by efficient thermal conduction and
optically-thin radiative losses. The overpressure drives the well-known chromosphere
evaporation into the hot corona and consequent loop brightening in the EUV and X-ray
bands.

The model allows for both space and time resolved diagnostics. In particular, we
synthesized MUSE observations in the Fe ix, Fe xv, and Fe xix emission lines, sensitive
to a wide range of emitting plasma temperature, i.e., ∼ 1 MK, ∼ 2 MK, and ∼ 10 MK,
respectively.

The modelled loop is a typical active region loop of length 50 Mm with an average
temperature of about 2.5 MK. As such, much of it its brightness is steadily in the Fe xv
line, only at the footpoints in the Fe ix line, and (very faintly and transiently) at the apex
of the Fe xix line.

The loop is initially cold (𝑇 ≲ 1 MK) and tenuous (𝑛 ∼ 108 cm−3), with faint
emission only in the 171 𝐴̊ channel of Fe ix. Rapid, high temperature peaks, with faint
emission in the Fe xix line, occur during the dynamic phase of the instability, but most
of the radiation is emitted by Fe xv at a temperature of ≳ 2 MK (Fig. 5.3).

In Fig. 5.6, we show the overall distribution of lines intensity and shape at time
∼ 180 s. In this case, line profiles show deviations from the Gaussian profile, such as an
asymmetric shape and/or multiple peaks, as a consequence of the dynamic and impulsive
behaviour of the instability. This is remarked also in Fig. 5.11 with three examples of
Fe ix (solid), Fe xv (dashed), and Fe xix (dotted) profiles at different slits and heights.
The main peak of the Fe ix line is almost at rest, whereas Fe xv and Fe xix show strong
Doppler shifts (blue and red, respectively, at |𝑣 | ≳ 50kms−1). In all these cases, there
is an increase of non-thermal width in locations where reconnection seems to occur. In
particular, multi Gaussian components appear in Fe ix line (small, red-shifted peak at
𝑣 ∼ 100kms−1), in the Fe xix line (small, blue-shifted peak at 𝑣 ∼ −100kms−1) and the
Fe xv line (strong contribution at rest).

Testa & Reale (2020) show evidence of plasma heated at 10 MK during a microflare.
In particular, they analysed the coronal (131 and 94 𝐴̊ channels of AIA) and spec-
tral (Fe xxiii 263.76 𝐴̊ line of Hinode/EIS) imaging and compared observations with
hydrodynamic 1D modelling of a single loop heated by a 3 min pulse up to 12 MK.
Forward modelling from the simulations provides additional evidence of the coronal
loop multistructuring into independently heated substrands.

We have obtained results in both a spatially resolved (Section 5.5.1) and a time-
resolved (Section 5.5.3) fashion. In all cases, we conclusively show how the three
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Figure 5.11: Detailed (normalized) profiles of the Fe ix (solid), Fe xv (dashed), and
Fe xix(dotted) lines at the positions marked in Fig. 5.6.

lines provide plasma information at different places, dynamical stages, and physical
conditions. In particular, we have managed to efficiently disentangle the instability
evolution into: (Fe ix) foot point response and plasma ablation in the transition region;
(Fe xv) over-dense and warm plasma rising at intermediate heights; and, faintly in this
case, (Fe xix) hot flaring plasma inside current sheets.

Progressive brightening is expected in the cooler lines, while we expect that the
hottest line might be bright only occasionally and with a lower count rate. This is due
to the low densities at the loop apex and the small filling factor, namely, only a small
plasma volume gets close to the Fe xix line formation temperature. We might expect
more emission for higher temperature loops, as produced, for instance, by a stronger
background magnetic field. The hot Fe xix shows faint emission here as soon as the flux
tube becomes unstable, therefore, it may potentially become a signature of the initial
phase of the instability. Fe xix emission is expected to be short-lived and around the loop
top, to be compared with recent evidence of traces of very hot plasma (e.g., Ishikawa
et al. 2017; Miceli et al. 2012).

In this analysis, we have reproduced expected line profiles integrated along possible
lines of sight (Fig. 5.6). In a limb snapshot view (Fig. 5.7), MUSE observations
might show alternating red-blue patterns along the loop, especially in the Fe xv line.
The non-thermal broadening might be also quite irregular with filamented structure.
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The line profiles taken in a side view might show an irregular trend across the loop in
the hot lines. The top view (Fig. 5.8) provides complementary information, helical
patterns in the footpoints region, and systematic blue-shifts in the loop legs during the
rise phase, but also possible faint one-way flows and filamented non-thermal patterns
in the corona. More intense plasma dynamics from Doppler-shifts and non-thermal
broadenings are expected during loop ignition, namely, just after the onset on the insta-
bilities and avalanche process. Blue-shifts might be more persistent in the 1 MK line.
Cross-structuring is ultimately linked to the assumptions on dissipation, in particular the
resistivity determines the cross-size. The photospheric drive plays a role too close to
the strands footpoints while it does not seem to influence cross-structuring in the upper
corona. MUSE observations might provide crucial information. The instability propa-
gates with a delay of about 2 min, the timing depends on some assumptions (thickness
of the flux tubes/rotation radius, rotation rate, field intensity).

The Fe xix line (if detectable) might be a fair proxy of strong and dynamic current
buildups such as current sheets. They form and rapidly dissipate during the earliest,
most violent phase of the instability. At the same time (i.e., at the time of the disruption
of the threads), the Fe ix footpoint emission provides complementary information about
the status of the magnetic structure (Fig. 5.1), suggesting a potential diagnostics role in
terms of extrapolating information about the linear phase of the instability (Fig. 5.8), as
it might outclass the observational restriction imposed by the small counts-rate obtained
with Fe xix line (De Pontieu et al. 2020).

After the early stages of the instability, Fe xv emission returns information about the
evaporation process triggered by the avalanche. This is the only case in which almost
the whole coronal loop structure becomes visible to the instrument.

Doppler shifts and non-thermal line broadening can provide additional informa-
tion about the plasma dynamics, confirming the strongly turbulent behaviour of the
avalanche process, which is otherwise difficult to grasp only from emission maps anal-
ysis. Doppler-shift maps also contribute complementary information on the strength of
the chromospheric evaporation nearby footpoints (Fig. 5.8). Indeed, after the instability,
the lines from the simulation broaden and strongly blue-shift, due to the strong chromo-
spheric evaporation up-flows and in agreement also with Testa & Reale (2020) forward
modelling of 1D microflaring coronal loop.

According to the estimated uncertainties in centroid and line width determination
discussed in De Pontieu et al. (2020), minimum line intensities of ∼ 100/150 photons for
Fe ix/Fe xv, lines and∼ 20 photons for Fe xix, are required to obtain the desired accuracy.
In our simulations, Fe ix, and Fe xv, Doppler shifts, and non-thermal line broadening
can be accurately estimated in the brightest regions (above 5% of the intensity peak)
and with exposure times of ≳ 5 s. Emission in the Fe xix MUSE line would perhaps
be detectable only with particularly deep exposures (> 30 s) with our setup, but with
shorter exposures for stronger magnetic field.
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This work addresses in detail the observability of a 2 MK coronal loop system that is
triggered by an MHD instability and described by a full 3D MHD model. To be specific,
this forward-modelling approach is applied to the EUV spectrometry to be obtained
with the forthcoming MUSE mission. Although calibrated on the high capabilities
of this ambitious mission, our analysis is generally valid for observations made with
instruments working in similar bands, such as present-day SDO/AIA, Hinode/EIS, Solar
Orbiter SPICE (Anderson et al. 2020), and EUI (Rochus et al. 2020), or the forthcoming
Solar-C/EUVST as well. The capabilities in terms of spatial, temporal, and spectral
resolution of current observations (e.g., SDO/AIA, Hinode/EIS, Solar Orbiter SPICE
and EUI) do not allow us to reach the diagnostic level shown by our analysis and further
support the implementation of the MUSE mission.



6
Coronal heating by MHD avalanches:
Identification of a reconnection nanojet

This chapter is structured based on the paper titled “Coronal heating by MHD avalanches
III. Identification of a reconnection nanojet”, submitted to A&A.

Nanojets are believed to be a possible signature of magnetic reconnection in the
solar corona and specifically a way to detect the occurrence of ubiquitous small-angle
magnetic reconnection. The aim of this work is to identify possible diagnostic techniques
of nanojets in hot coronal loops with the Atmospheric Image Assembly (AIA) on-board
the Solar Dynamics Observatory and the forthcoming MUltislit Solar Explorer (MUSE),
in a realistically dynamic coronal loop environment in which an MHD avalanche is
occurring. We consider a 3D MHD model of two magnetic flux tubes, including a
stratified, radiative and thermal-conducting atmosphere, twisted by footpoint rotation
(Cozzo et al. 2023b). The faster rotating flux tube becomes kink-unstable and soon
involves the other one in the avalanche. The turbulent decay of this magnetic structure
on a global scale leads to the formation, fragmentation, and dissipation of current sheets
driving impulsive heating akin to a nanoflare storm. We captured a clear outflow from
a reconnection episode soon after the initial avalanche and synthesized its emission as
detectable with AIA and MUSE. The nanojet has maximum temperature around 8 MK, an
energy budget of 1024 erg, an outflow velocity of a few hundreds km s−1, and a duration
of less than 1 min. We show the emission in the AIA 94 Å channel (Fe xviii line) and
in the MUSE 108 Å Fe xix spectral line. This nanojet shares many features with those
recently detected at lower temperatures. Its low emission measure makes however its
detection difficult with AIA, but Doppler shifts can be measured with MUSE. Conditions
become different in a later steady state phase when the flux tubes are filled with denser
and relatively cooler plasma.
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Figure 6.1: Schematic representation of guide field small-angle reconnection at three
different stages. Step A: two field lines are tilted in opposite directions. Step B: field
lines reconnect in the diffusion region 𝐷𝑅 where currents are stronger. Step C: after
the reconnection the field line connectivity has changed. The black arrows indicate the
outflows.

6.1 Introduction

As already discussed in Sec. 1.5.7, recently, possible direct probes for nanoflare activity
have been found to be the so-called ‘nanojets’: reconnection outflow jets generated
by the “slingshot effect” of magnetic field lines during reconnection. They consist of
the simultaneous ejection of plasma in opposite directions from the reconnection point,
reaching Alfvénic speeds. They are considered a potential signature of reconnection-
based nanoflares associated with the process of heating coronal loops.

A schematic description of the reconnection processes yielding the nanojet accel-
eration is shown in Fig. 6.1. As drifting magnetic field lines converge towards one
another (A), the magnetic field component perpendicular to the guide field vanishes at
the ‘dissipation region’ 𝐷𝑅, and it induces the field connectivity to change (B). It is a
fully-3D reconnection process in the presence of non-vanishing magnetic field (see Sec.
1.3.6 for further details): the magnetic field reconnects inside the dissipation region
(where E · B ≠ 0, Hesse & Schindler 1988; Schindler et al. 1988). The new field lines
configuration induces a magnetic tension imbalance which in turns drives field lines to
expand outwards (C). Outside of the dissipation region the plasma is frozen in the field,
and is accelerated by the slingshot effect caused by the released magnetic tension.

High resolution observations of active regions (Antolin et al. 2021, Sukarmadji
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et al. 2022, Patel & Pant 2022, Sukarmadji & Antolin 2024) have revealed a variety of
small (500 − 1500 km), and transient (< 30 s) nanoflare-like EUV bursts followed by
collimated nanojets, 100 to 300 km s−1 fast, sometimes driven by dynamic instabilities
such as MHD avalanches (Antolin et al. 2021), Kelvin Helmholtz, and Rayleigh–Taylor
instabilities (Sukarmadji et al. 2022). The forthcoming MUltislit Solar Explorer (MUSE,
De Pontieu et al. 2019, also described in Sec. 1.2.4) will provide key diagnostics of
nanojets, as shown in, e.g., De Pontieu et al. (2022). They predict MUSE synthetic
observables from the 3D MHD model of Antolin et al. (2021). Distinctive signatures
of the ongoing nanojet appear in Doppler shifts and non-thermal line widths (e.g., small
Doppler velocity and enhanced non-thermal line broadening at the reconnection site,
respectively).

Properties of such reconnecting plasma outflows were investigated via MHD nu-
merical simulations (e.g., Antolin et al. 2021; Pagano et al. 2021; De Pontieu et al.
2022). Antolin et al. (2021) show a non-ideal MHD simulation of two interacting,
gravitationally stratified coronal loops, the footpoints of which are slowly moved in
opposite directions to create a small angle between the loops. As the x-type misalign-
ment increases, the electric current between the loops increases as well, thus leading to
magnetic field lines reconnection at the mid-plane. The enhanced magnetic tension in
the reconnection region drives a transverse displacement of the plasma. A high-velocity
(up to 200 km s−1), collimated (widths of order of few Mm), bidirectional nanojet also
results from the reconnection process. Beyond the work already done in basic models,
it remains to be addressed if nanojets can occur in more realistic and dynamic scenarios
and whether even in these circumstances they can be detected and observed with current
instruments. To answer these questions, this work addresses the MHD and forward
modelling of a nanojet, forming and evolving during an MHD Avalanche (Hood et al.
2016). We investigated the full 3D MHD simulation of an MHD-avalanche described
in Cozzo et al. 2023b and Chap. 4, and checked the occurrence of nanojets-like events
during the evolution of instability.

6.2 The model
We consider the 3D MHD simulation described in Cozzo et al. (2023b) and in Chap.
4 of an MHD avalanche in a kink unstable, multi-threaded coronal loop system (see
also, Hood et al. 2016; Reid et al. 2018, 2020). In this case, small angle reconnection
episodes result from the turbulent dissipation of the twisted magnetic field during the
instability, rather than by regular photospheric motions, directly tilting the file lines,
as in Pagano et al. (2021) and De Pontieu et al. (2022). Two identical magnetic flux
tubes are embedded in a stratified solar atmosphere with a 1 MK corona anchored on
both sides to a dense and cooler isothermal (104 K) chromosphere. The flux tubes are
progressively twisted at different angular velocity by photospheric rotation motions at
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their footpoints, mirrored with respect to the middle plane (Reale et al. 2016; Cozzo et al.
2023a), in a background magnetic field (𝐵𝑏𝑘𝑔 = 10 G). The time-dependent 3D MHD
equations are solved with the PLUTO code (Mignone et al. 2007). The computational
box has a size Δ𝑥 = 16 Mm, Δ𝑦 = 8 Mm, Δ𝑧 = 62 Mm. Anomalous magnetic resistivity
(𝜂0 = 1014 cm−2 s−1, Hood et al. 2009; Reale et al. 2016, and Sec. 2.2.7) turns on in the
corona (𝑇 > 104 K) when and where the electric current density j exceeds the threshold
value 𝑗cr = 250 Fr cm−2 s−1. The equations include radiative losses, thermal conduction
and gravity component for a curved flux tube (closed coronal loop). Due to progressive
twisting, the faster rotating flux tube becomes kink-unstable and rapidly fragments into a
chaotic system with thin current sheets hosting small-size impulsive reconnection events.
The instability soon propagates to the nearby slower tube, which then evolves in a similar
way. The impulsive events cause local heating of the plasma to peaks above 10 MK.

6.3 Reconnection nanojet identification
Following the evolution of several magnetic fields lines in the aftermath of the MHD
avalanche, we identified a few examples of nanojets, i.e. bundles of magnetic field lines
whose evolution follows the patterns described in Fig.6.1. We selected one of them as
a reference case resulting from the reconnection of two slightly misaligned magnetic
filaments carried out by swirling plasma flows.

Figure 6.2 shows a localized reconnection event with the reference outflow. In the
box (62 Mm long, and 4 Mm × 8 Mm cross section), the atmosphere is stratified, with
two chromospheric layers at the top and lower sides and a 50 Mm corona. Field lines in
the box are shown in full-3D rendering at three different times and from two different
perspectives. They are computed using a fourth order Runge-Kutta scheme, while the
colour is attributed depending on the starting points at the lower photospheric boundary,
which move following photospheric twisting. On the left, a view from the top, along
the coronal loop axis (z-axis), with a cut at the mid-plane of the box showing in blue
the electric field component parallel to the magnetic field. Arrows mark the orientation
and strength of the velocity field. On the right, a front view. We draw two reconnecting
magnetic field lines. The sites of reconnection are localized as those where the electric
field component parallel to the magnetic field is non-zero (𝐸∥ , blue spots in the left
panels, Hesse & Schindler 1988; Schindler et al. 1988; Reale et al. 2016, see also Fig.
6.3 for a full-3D rendering of 𝐷𝑅). The velocity field (arrows) illustrates the approaching
flows and the collimated outflows diverging from the reconnection site. Movie 31 shows
the evolution of the 3D rendering. Initially, the two field lines approach each other
dragged by the chaotic dynamics of the MHD avalanche. The outflowing plasma is

1Link to Movie 3:
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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Figure 6.2: Magnetic reconnection and the outflow. Rendering 3D at 3 times since the
beginning of the avalanche: 𝑡 = 0 s (lines approaching), 𝑡 = 10 s (lines reconnecting),
and 𝑡 = 20 s (new lines detaching). Left column, top view and cut at the middle plane:
two reconnecting magnetic field lines (marked by yellow and magenta lines among two
bundles), reconnection sites (blue spots close to the center of the plane), and velocity
field (white arrows), which shows the collimated outflow departing from the reconnecting
lines (see Movie 3). Right row: same reconnecting lines from a front view (the coronal
part of the loop is 50 Mm long, see also Movie 4).

then accelerated (second panel) in the dissipation region near the mid-plane centre, i.e.,
where 𝐸∥ becomes stronger. Afterwards (third panel) the reconnecting field pushes the
plasma outwards where it eventually disperses in the ambient magnetic field. On the
right (and in Movie 42), the front view shows the reconnecting lines emphasizing the
presence of the guide field, similar to Fig. 6.1. In the first panel, reconnecting magnetic
field is starting to push the plasma outwards (as emphasized by arrows in few, high
velocity spots near the reconnection site). The plasma velocity is mostly perpendicular
to the field lines, with a small component along them. This transverse motion is stronger
(middle panel) and longer lasting (third panel) around the middle of the flux tube.

Figure 6.3 shows the 3D rendering of the diffusion region (in solid cyan, see also Fig.
2Link to Movie 4:

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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Figure 6.3: 3D rendering of the analyzed magnetic reconnection region. Field lines are
the same as in the second panel of Fig. 6.2 (𝑡 = 10 s). The temperature (red color) is
shown in the background. Here we also show the diffusion region 𝐷𝑅 (pale blue, Fig.
6.1) defined by the region where where E ·B ≠ 0. The solid blocks at the top and bottom
are the footpoints in the chromosphere.

6.1) between two reconnecting field lines at 𝑡 = 10 s (as in Fig. 6.2). The thin diffusion
region develops where the field lines meet and reconnect (i.e. close to the box center).
It is elongated and oriented along the guide field, with short “branches” inclined with
the magnetic field bundles to form an “X shape”. Hot coronal plasma is in the proximity
of the reconnection site. Field lines are embedded in the chromosphere, shown by solid
blocks at the top and bottom sides on the box.

The evolution of the reference outflow in the midst of the first 300 s from the onset
of the instability is shown in Fig. 6.4. To follow the evolution of the reference nanojet
throughout the simulation we focused on a horizontal slice of size Δ𝑥 = 16 Mm, Δ𝑦 =

4 Mm centered at the origin of the box. In the first two rows of figure 6.4 we show
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Figure 6.4: Evolution of the coronal loop inside a reference, horizontal slice of size
Δ𝑥 = 1.6 × 109 cm, Δ𝑦 = 0.5 × 109 cm centered at the origin of the box. From the
top left to the bottom right: magnetic energy density, kinetic energy density, internal
energy density, temperature, x-component of the velocity, x-component of the magnetic
tension, current density, and the component of the electric field parallel to the magnetic
field. All the quantities are averaged over Δ𝑦 and expressed as a function of 𝑥 and time.

(from the top left) the evolution of the magnetic energy density, kinetic energy density,
internal energy density, and temperature, averaged over the width Δ𝑦 of the reference
box. At time 𝑡 ≃ 170 s the nanojet acceleration starts. As a consequence of that, kinetic
energy abruptly grows up, following the field line trajectory. Internal energy increases
as well, with temperature peaking close to the acceleration sites. As far as the nanojet
expands, magnetic energy density drops down, as expected by energy conservation. In
the third row of figure 6.4 the averaged x-components of velocity (left) and magnetic
tension (right) are shown as a function of time. These maps hint at the role of magnetic
tension in accelerating the outflow to a few hundreds of kilometers per second. Finally,
in the fourth row of figure 6.4 the averaged current density (left) and parallel component
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Figure 6.5: Evolution of the coronal loop inside a reference volume of size Δ𝑥 =

1.6 × 109 cm, Δ𝑦 = 0.5 × 109 cm, Δ𝑧 = 0.5 × 109 cm centered at the origin of the
computational box. From top to bottom: total magnetic, kinetic, and internal energy
changes as function of time; maximum and averaged current density against time;
maximum and averaged temperature against time. Blue, vertical lines encapsulate the
time lapse when the nanojet is accelerated. The red, dashed, horizontal line in the second
panel indicates the threshold value for dissipation.

of the electric field to the magnetic field are displayed. The last quantity is different than
zero only in the zones interested by magnetic dissipation i.e. where the current density
exceeds the threshold value for dissipation. The velocity stays high (≳ 200 km s−1)
for about 30 s, then the jet slows down, the current density dissipates, and the plasma
smoothly cools down. We can therefore estimate as ∼ 30 s the outflow overall duration.
The two opposite jets propagate (toward positive and negative 𝑥, respectively) with
different velocities (as also remarked by the different front slopes in the firt panel of Fig.
6.4). In particular, the bidirectional jet, after Δ𝑡 = 30 s the reconnection takes place, has
expanded by about 10 Mm, with ∼ 40% of asymmetry between the two parts.

During the event, a magnetic energy amount of ∼ 1024 erg is converted into kinetic
and internal energy, as shown by the top panel of figure 6.5. It plots the evolution of
the total magnetic, kinetic, and internal energy over the entire elapsed time of the MHD
avalanche in the slab where the outflow dynamics is stronger, namely a reference volume
of size of size Δ𝑥 = 10 Mm, Δ𝑦 = 4 Mm, Δ𝑧 = 10 Mm, centered at the origin of the
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computational box. This energy budget is compatible with the nanoflare energy predicted
by Parker (1988). Within the box, an excess of magnetic energy initially increases, but
then rapidly drops (below its initial level) upon activation of the anomalous resistivity.
Concurrently, both the thermal and kinetic energies rise at similar rates. Magnetic
and thermal energy variations are larger compared to kinetic one: plasma compression
concurs in heating at the expense of the kinetic energy, localized near the centre of the
reconnection (where the plasma is accelerated to ∼ 200 km s−1). The peak in kinetic
energy lasts about 30 s, compatibly with the estimated duration of the outflow. The
second and third panels of figure 6.5 shows the evolution of the averaged and maximum
current density and temperature, respectively. During the occurrence of the nanojet (i.e
between the two blue, vertical lines) the current density grows up abruptly, far beyond
the threshold for dissipation (indicated by a horizontal, dotted, red line). The maximum
temperature of the jet overcomes 7 MK although it occurs locally, both in space and
time. The averaged temperature indeed does not exceed 5 MK.

In Fig. 6.6 we illustrate details of the selected nanojet. The three columns show the
velocity component perpendicular to the magnetic field, current density and temperature
maps, on the mid-plane perpendicular to the 𝑧 vertical axis and at the same times as Fig.
6.2. Movie 53 shows the evolution of same quantities. The velocity maps 𝑣⊥ emphasize
where the plasma is accelerated by the magnetic field tension (as the Lorentz force acts
always perpendicular to B) or where the plasma drags the magnetic field lines. As
expected, the velocity field diverges from the central reconnection site, near 𝑥 = 0 Mm
and 𝑦 = −1 Mm in two strong, subalfvénic collimated jets. Its duration is of the order of a
few tens of seconds. The current maps show an intense sheet in the central reconnection
region (middle panel), where the magnetic field clearly reverses its direction on the
midplane. The current density in the sheet exceeds the threshold for dissipation into
Ohmic heating imposed in the simulation (𝐽cr = 250 Fr cm−2 s−1). The current density is
rather weak at the beginning, it becomes more intense at the 𝐷𝑅, and it finally becomes
intense and fragmented in the region around the collimated jets. The temperature maps
confirm the dissipation of the reconnection current sheets into heat although rapidly
decreasing because of the effect of dynamics and thermal conduction. In particular, as
the strongest current deposits around the reconnection center, high-temperature spots
(𝑇 ∼ 8 MK) reside within these dissipation regions, indicating that Ohmic dissipation
likely plays a role in heating the surrounding plasma. The reference nanojet itself is
actually at these high temperatures while the density does not exceed 𝑛 ∼ 109 cm−3.

The simulated solar atmosphere consists of a chromospheric and a coronal column
separated by a thin transition region. Specifically, field aligned gravity, thermal con-
duction, optically thin radiative losses, heating by anomalous magnetic resistivity, and
a background heating structures a 5 Mm long coronal loop, while its chromospheric

3Link to Movie 5:
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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Figure 6.6: Dynamics of the nanojet. First column: horizontal mid-plane map of the
value of the velocity component perpendicular to the magnetic field at the same three
times shown in Fig. 6.2, i.e., 𝑡 = 0 s (top, current sheet formation), 𝑡 = 15 s (middle,
nanojet acceleration), and 𝑡 = 30 s (bottom, nanojet deceleration). The velocity field
in the plane is also shown (arrows). Second column: horizontal mid-plane map of the
current density. The map saturates where the current density exceeds the threshold value
for dissipation. The magnetic field in the plane is also shown (arrows). Third column:
horizontal mid-plane map of the temperature. (See Movie 5.)

footpoints are ∼ 6 Mm wide each and 104 K hot (Reale et al. 2016; Cozzo et al. 2023b).
Figure 6.7 shows the temperature and density stratification along a column of pixels
passing through the nanojet center (coordinates: 𝑥 = 𝑦 = 0 Mm). Before the avalanche
(black curve), the atmosphere is tenuous (𝑛 ∼ 108 cm−3) and cold (𝑇 < 1 MK). After
the instability, when the nanojet is formed, plasma is soon heated (solid, orange line,
𝑡 = 0 s) and temperature rise up to 10 MK (red line, 𝑡 = 15 s), and subsequently cools
(orange line, 𝑡 = 30 s). Density (dashed lines) increases as well, approaching, but never
exceeding, 𝑛 ∼ 109 cm−3.

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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Figure 6.7: Atmospheric plasma stratification. The plot shows the temperature (solid
line) and density (dashed) stratification along a pixels column crossing the nanojet center
(coordinates: 𝑥 = 𝑦 = 0 Mm) at the time before the instability (black curve) and at times
𝑡 = 0 s (orange) 𝑡 = 15 s (red), 𝑡 = 30 s (dark-red).

6.4 Forward modelling
In the previous section we have described the dynamics of a nanojet event occurring
in a tenuous atmosphere heated up to 10 MK. In this section we discuss the result
concerning the synthetic plasma diagnostics we extracted from the simulation results,
described so far. In order to test the possibility to detect such reconnection events in the
solar corona, we synthesise the emission lines of highly ionized iron atoms which have
a formation temperature close to the one found during the nanojet reconnnection in the
MHD simulation.

6.4.1 Methods
In order to compare with the familiar semicircular shape of coronal loops, the original
simulation outputs were remapped and interpolated onto a new cartesian grid. In this
process, the initially straight coronal section of the domain was curved into a half-
cylinder shell with a characteristic radius of 𝑅 = 𝐿/𝜋 with 𝐿 = 50 Mm, the loop’s
coronal length. On the other hand, the chromospheric layers were modeled as two
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Figure 6.8: Temperature response functions Λ𝑖 (𝑇) for the AIA and MUSE channels.
Top: MUSE spectrometer lines: Fe ix 171 𝐴̊, Fe xv 284 𝐴̊, and Fe xix 108 𝐴̊. Middle:
AIA 94 𝐴̊ (containing Fe xviii line), 131 𝐴̊, 171 𝐴̊, 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊ channels.
Bottom: expected response function of the 94 𝐴̊ AIA channel (black line) after the
subtraction of the cold component (dotted line) obtained by combination of 131 𝐴̊,
171 𝐴̊, 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊ AIA channels from the the total one(light green).



6 Coronal heating by MHD avalanches:
Identification of a reconnection nanojet 187

Figure 6.9: Synthetic maps of AIA emission integrated along a line of sight from a
side view of the curved loop system for 94 𝐴̊, 131 𝐴̊, 171 𝐴̊, 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊
channels, respectively (see Movie 6).

parallel parallelepipeds, as described in Cozzo et al. (2024).
To remap on observation-like images, we computed line emission 𝐼0 from the pixel

𝑖, 𝑗 , by integrating cells intensity 𝐹𝑖, 𝑗 ,𝑘 (in units of ph s−1 pix−1) along the line of sight
(as in De Pontieu et al. 2022; Cozzo et al. 2024):

𝐼
𝑖, 𝑗

0 =
∑︁
𝑘

𝐹𝑖, 𝑗 ,𝑘 , (6.1)

with:
𝐹𝑖, 𝑗 ,𝑘 = 𝑛

2
𝑒 (𝑥, 𝑦̃, 𝑧;𝑇) Λ 𝑓 (𝑇) Δ𝑧, (6.2)

where 𝑛𝑒 is the free electron density, Λ(𝑇) is the instrument temperature response
function, and Δ𝑧 is the cell width. Instrument temperature response functions are
calculated using CHIANTI 10 (Del Zanna et al. 2021) with the CHIANTI ionization
equilibrium, coronal element abundances (Feldman 1992), assuming a constant electron
density of 109 cm−3, and no absorption considered.

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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Figure 6.10: Synthetic maps of MUSE emission integrated along a line of sight from a
side view of the curved loop system for the Fe ix 171 𝐴̊, Fe xv 284 𝐴̊, and Fe xix 108 𝐴̊
lines, respectively (see Movie 7).

In Fig. 6.8 we show the temperature response functions Λ(𝑇) of the three MUSE
EUV lines: Fe ix 171 𝐴̊, Fe xv 285 𝐴̊, and Fe xix 108 𝐴̊ (De Pontieu et al. 2020); and of
the six AIA EUV channels at 94 𝐴̊, 131 𝐴̊, 171 𝐴̊, 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊, respectively
(Boerner et al. 2012).

In Fig. 6.9 we show synthetic AIA emission maps from 9 s effective exposures across
a 30 s observing window. Each panel shows the side view of the intensity distribution
integrated over the entire filterband of the six EUV channels in Fig. 6.8. Emission in
131 𝐴̊, and 171 𝐴̊ channels is dominated by a realtively cool (≲ 1 MK) plasma component
just above the transition region (< 5 Mm in height); 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊ channels
show evidence of warmer plasma (2 − 4 MK) at intermediate height (≳ 5 Mm). A faint
feature from hot (≳ 5 MK) plasma shows up around the loop top (∼ 15 Mm) in the
94 𝐴̊ channel (containing the ’hot’ Fe xviii line), although most of the intensity comes
from the cooler plasma background. Movie 64 shows the evolution of the coronal loop
emission as imaged by the six AIA channels (Fig 6.8), and contributing to the integrated
emission of Fig. 6.9. The atmosphere appears roughly steady in all the channels, with
some noisy gleaming in the lower, cooler corona, and slow variations in the atmospheric
structuring of the warm plasma at intermediate heights. Only the hot plasma jet at the
loop top evolves dynamically, and expands outward until its emission vanishes in the
background.

The synthetic emission as sampled by the three MUSE channels (Fig. 6.8) is shown
in Fig. 6.10. We assumed a 30 s exposure time and line of sight from a side view
of the curved loop. MUSE lines (Fe ix 171Å, Fe xv 284Å, and Fe xix 108Å) detect

4Link to Movie 6:
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
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plasma emitting mostly around ∼ 1 MK, ∼ 2 MK, and ∼ 10 MK plasma, respectively. In
particular, the Fe ix line is emitted mostly at the loop footpoints; in the Fe xvline we see
the bulk of the loop; the Fe xix line shows a transient brightening around the loop apex.
Similarly to Movie 6, Movie 75 shows the evolution of the loop in the MUSE lines when
the jet is visible. No evidence of the jet is found in the cooler MUSE channels. In the
hot 108Å line the bright feature stretches into a strongly elongated structure.

Fig. 6.8 shows also the temperature response function Λ(𝑇) for the AIA filter at
94 𝐴̊ (light green curve, Boerner et al. 2012) The figure also shows the same response
function after subtraction of the cool component (dotted line) obtained by a combination
of the other AIA responses (131 𝐴̊, 171 𝐴̊, 193 𝐴̊, 211 𝐴̊, and 335 𝐴̊). More in particular,
we derived the background-subtracted emission maps 𝐼94𝐴̊

0 for the AIA filter at 94 𝐴̊ as
follows:

𝐼94𝐴̊
0 = 𝐼94𝐴̊

0 − 𝐼bkg
0

𝐼
bkg
0 = (2.3 𝐼131𝐴̊

0 + 0.8 𝐼171𝐴̊
0 + 1.0 𝐼193𝐴̊

0 +

+ 2.6 𝐼211𝐴̊
0 + 30.1 𝐼335𝐴̊

0 ) × 10−3 (6.3)

where 𝐼bkg
0 is the cooler background image we obtain from the other AIA filters (Reale

et al. 2011; Warren et al. 2012; Cadavid et al. 2014; Antolin et al. 2024). In this way we
manage to isolate better the emission in the hot Fe xviiiline.

To compute the line profiles (Fe xix line), we assumed at fixed temperature, density
and plasma velocity, a Gaussian profile:

𝑓cell(𝑣) =
𝐹cell√︃
2𝜋𝜎2

𝑇

exp

[
−

(
𝑣 − 𝑣cell
𝜎𝑇

)2
]

(6.4)

where 𝜎𝑇 =

√︃
2𝑘𝐵𝑇cell
𝑚Fe

is the thermal broadening, 𝑚Fe is the Fe atomic mass and 𝑣cell is
the plasma velocity parallel to the line of sight in a single cell. MUSE Fe xix spectral
bin is Δ𝑣 = 40 km s−1 (De Pontieu et al. 2020). We assumed a spectral bin twice as
large, Δ𝑣 = 80 km s−1, to increase the photon-counts. We account for both thermal and
non-thermal broadening.

Finally, we rebinned MUSE Fe xix observables on macropixels (0.4” × 2.7”) that
collect more photon counts, closer to the detection level (De Pontieu et al. 2020); AIA
94 𝐴̊ channel intensity is shown with the original pixel size (0.6” × 0.6”).

We have also convolved all the emission maps at the original resolution for the
instrumental Point-Spread-Functions (PSFs) and then re-binned them to the instrument
pixel size. MUSE PSF is modeled by a Gaussian with FWHM of 0.45”. AIA PSFs are
described in, e.g., Poduval et al. (2013).

5Link to Movie 7:
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing

https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing
https://drive.google.com/drive/folders/1D2K1bjEp7AZyBOQ2WCRpCvMPwZhpEvNn?usp=sharing


6 Coronal heating by MHD avalanches:
Identification of a reconnection nanojet 190

6.4.2 Results
Having described the physical mechanism that leads to a nanojet in our MHD avalanche
simulation, we then test the detectability of such an event. Specifically, whether the
nanojet can be detected in EUV channels which contain spectral lines emitted by such
hot plasma. We considered the 94 𝐴̊ channel of the Atmospheric Imaging Assembly
(AIA, Lemen et al. 2012) on-board the Solar Dynamics Observatory (SDO, Pesnell et al.
2012), including a Fe xviii line emitted at log𝑇 ∼ 6.8, and the 108 𝐴̊ Fe xix spectral
line, formed around log𝑇 ∼ 7.0, which will be observed by the forth-coming Multi Slit
Solar Explorer (De Pontieu et al. MUSE, 2022; Cheung et al. MUSE, 2022; see Fig.
6.8 in the former Sec. 6.4.1, which also describes how the synthetic observables are
calculated).

Figure 6.11: Synthetic maps in the AIA 94 Å channel integrated along a line of sight
from a side view of the curved loop system. In this geometry the top of the loop is
high in the image, as shown in the left panel. Second panel: intensity map in the entire
filterband. Third panel: intensity map of the cool component (∼ 1 MK). Fourth panel:
map of the hot (Fe xviii) component only, after subtracting the middle from the left.

In the synthetic maps, for a more realistic representation, the flux tube box is
remapped onto a curved loop-like geometry (as in Cozzo et al. 2024, ans Sec. 5.4).
Figure 6.11 presents how we would detect the emission in the AIA 94 𝐴̊ channel inte-
grated along a line of sight from a side view of the loops. The model has been remapped
and oriented along the selected line-of-sight to maximize the brightness of observational
signatures at the apex. The overlapping magnetic field lines at the loop top align the hot
plasma along the line-of-sight within a compact region, thereby increasing the emission
filling factor.

Under nominal operations, AIA exposure times are up to 2.9 s while the basic time
step between to snapshots is set to 12 s (Lemen et al. 2012). We assume an exposure
time of ∼ 9 s, to sample an event ≲ 36 s long (3× 12 s merged observing windows) from
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𝑡 = 0 s. On the left we show the emission map in the whole filterband. The low dense
and cooler regions of the image are very bright because the filterband includes other
intense 1 MK lines (Testa & Reale 2012; Boerner et al. 2014).

The hot nanojet emission is already visible, but very faint, high (𝑧 ∼ 15 Mm) in the
image. To enhance its contrast, we subtracted the cooler component (middle panel of
Fig. 6.11) as obtained from other properly rescaled AIA channels (Reale et al. 2011;
Warren et al. 2012; Cadavid et al. 2014; Antolin et al. 2024, and Eq. 6.3). The result is
shown in the right panel. The signature of the nanojet is the horizontal elongated feature
(about 10 Mm long) high in the image with a bright spot on the left. The brightest
emission (above 50% of the peak). In this synthetic image, the emission from the hot
nanojet plasma leads to counts about 4 times higher than the rest of the image, but
nevertheless arguably barely detectable without rebinning.

Figure 6.12: MUSE synthetic map and spectrum (line of sight shown in the fig. 6.11).
Left: the Fe xix 108 Åline emission map as in Fig.6.11. The emission is integrated over
macro-pixels of size Δℎ = 0.28 Mm, Δ𝑣 = 1.89 Mm (0.4” × 2.7”). Right: Fe xix line
spectrum obtained integrating the emission along the volume marked in the map on the
left (white solid lines, cross section 5 × 5 Mm). The spectral bin is Δ𝑣 = 40 kms−1. We
account for thermal, non-thermal and instrumental broadening.

In Fig. 6.12, we present the corresponding synthetic emission for the MUSE Fe xix
108 Å spectral line. We considered an observing mode with long exposure time of
30 s from 𝑡 = 0 s. This exposure time envelopes the event completely, although the
bulk of the emission is contained in a shorter time. To improve for photon statistics
closer to the detection level (De Pontieu et al. 2020), we rebin the map on macro-pixels
(0.4” × 2.7”). The Fe xix emission map is very similar to the “hot” 94 Å map on the
right of Fig.6.11, and it highlights the bipolar jet about 500% more clearly, and the hot
emission is better isolated in this single line. Also in this case the brightest emission
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Figure 6.13: 3D rendering of the MUSE Fe xix line emission at 𝑡 = 10 s. In the 3D box,
we show two field lines remapped in curved geometry for reference. The arrow point in
the direction of the jet propagation.

(above 50% of the peak) has an elongated shape, about 10 Mm long. The Fe xix line
profile (on the right) is obtained by integrating over an area 5×5 Mm2 large and inclined
by 10 degrees (schematically highlighted on the right, and between the white lines of the
mid panel). The surface is oriented exactly along the jet, and in this way we emphasize
the plasma motion along the line of sight. The double-sided jet determines the presence
of a clearly-defined double peak in the line profile, with peaks located at 𝑣 ≈ ±200 km s−1

(the Alfvén velocity is about 1000 km s−1).
In Fig. 6.13, the 3D rendering in curved geometry clearly shows the jet emission in

the MUSE Fe xix channel at 108𝐴̊ to be perpendicular to the guide field (represented by
the drawn field lines). This can be compared to observed nanojets as in Antolin et al.
(2021). Specifically, the brighter plasma (yellow volume) envelopes the jet at the loop
top, but “tails” of hot plasma (redder parts), propagating along the field, also stands out
in the EUV Fe xix line emission. They form because thermal conduction efficiently
spreads heat from the reconnection site.



6 Coronal heating by MHD avalanches:
Identification of a reconnection nanojet 193

6.5 Discussion

In this work we studied the serendipitous formation and evolution of a nanojet within
the complex background of a coronal flux tube system, which fragments into smaller
current sheets with random reconnection episodes. We analysed what kind of detection
we might expect both with current instruments, such as the AIA imager, and with the
forthcoming MUSE spectrometer. This outflow is the result of a reconnection event,
of nanoflare size, and comes out perpendicular to the flux tube guide field. It shares
therefore many features with observed small size jets, named nanojets (Antolin et al.
2021).

Previous 3D MHD simulations had addressed the issue of nanojets acceleration with
ad hoc setups where field lines are tilted by photospheric motions (Antolin et al. 2021) or
where their misalignment is provided from the begin, by initial conditions (Pagano et al.
2021). They provide a clear description of nanojet acceleration in terms of occurrence
of magnetic reconnection and release of magnetic field tension perpendicularly to the
guide magnetic field. Cozzo et al. (2023b) 3D MHD model (see Chap. 4) describes
the turbulent, large-scale energy release of multiple magnetic strands within a stratified
atmosphere, twisted by footpoints motions. This model provides an excellent opportunity
to study the development of nanojets, and their possible detection, where they are
dispersed in a more realistic situation. In other words, in this work we single out one
magnetic reconnection event based on the heating and plasma acceleration that it causes,
in the midst of the dynamic and thermally evolving loop structures. The described event
is localized. It involves the thick field lines in Fig. 6.2, which are driven to cross each
other and then detach again with a different topology. Although the configuration is
not ideal as in plane parallel cases, there are all signatures of reconnection, including
localized heating, and perpendicular flows. The 𝐸∥ component can be different from zero
only in non-ideal plasma condition (reconnection) and shows very high values half way
down the loop, where the filed lines initially cross each other, and much small nearby, as
emphasized in Fig.6.3 showing the extension of the dissipation region (𝐸∥ ≠ 0) in full
3D. Similarly to Antolin et al. (2021) observations, the jet is observed after the initial
MHD avalanche.

The outflow event is generated as a result of the formation and dissipation of a current
sheet, induced by the chaotic motion of plasma and magnetic field lines during the MHD
avalanche. Magnetic field lines evolution is remarkably similar to schematic picture
shown in Fig. 6.1. This event exhibits typical signatures of nanojets as anticipated
by previous theoretical and numerical investigations, and observations (e.g., Antolin
et al. 2021; Sukarmadji et al. 2022) such as, typical lateral dimension of few thousand
kilometers and typical velocity of few hundreds of kilometers per second. It also
takes place at the top of the loop, as many nanojets observed by Antolin et al. (2021);
Sukarmadji et al. (2022); Sukarmadji & Antolin (2024). The magnetic energy released
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during this event approximates 1024 erg, in agreement with Parker (1988), and the
observational results discussed by e.g., Antolin et al. (2021). A significant fraction of this
energy is converted into heat, increasing the plasma temperature above 8 MK, while the
remaining energy propels the outflow. The jet originates from a localized reconnection
event that is the dominant source of plasma heating. Field lines overlapping, when
the system is mapped into a curved geometry, increases the plasma filling factor and,
therefore, the signatures in the forward modelling. Fig. 6.11 shows that the outflow
described here is very difficult to detect with present-day capabilities (AIA). Specifically,
the AIA 94 𝐴̊ channel is in principle sensitive to such hot plasma but its detection is
made difficult both by the low emission measure of these events and by the presence of
a strong cool component in the same filterband. The subtraction of this cool component
is an approximation that does not work perfectly and introduces an extra source of noise
(on top of photon noise, readout noise, digitization noise). Such noise related to the
subtraction is likely significantly larger than the other sources of noise, and not properly
quantifiable because the individual contributions of the different spectral lines within
the broad AIA passbands cannot be accurately determined.

The MUSE spectrometer is instead able to isolate the Fe xix line which is specifically
sensitive to hot plasma only. In consideration of the low emission measure of these
events, MUSE thus offers significant advantages over AIA given its sensitivity to the
high temperature signal and its capability of detecting the predicted bidirectional Doppler
shifts. The characterization of these events will be made even stronger by the peculiar
expected bidirectional Doppler shift which MUSE is tailored to capture.

It is arguable that a stronger magnetic field, or denser loops, can lead to events easier
to detect. In fact, higher heat capacity 𝑐 (due to high averaged density) need higher
magnetic energy budgets Δ𝐸𝐵 to keep the temperature high, i.e., in the Fe xviii-Fe xix
temperature range, according to:

𝑐 𝑛Δ𝑇 = Δ

(
𝐵2

8𝜋

)
, (6.5)

indicating that Δ𝑇 ∝ 𝐵2/𝑛. With such a scaling pattern, the dissipation of a magnetic
field just

√
10 times stronger (e.g. ∼ 30 G) heats up a 10 times denser plasma (e.g.

∼ 1010 cm−3) to million degrees (up to ∼ 10 MK), attaining a 102 larger emission
measure (enough to be easily detected by MUSE at a cadence as short as 10 s). In our
simulation, we considered a typical coronal magnetic field strength of 10 G (Long et al.
2017) with plasma density of about 109 cm−3. Nevertheless, in active regions magnetic
field can exceed 30 G (e.g. Van Doorsselaere et al. 2008; Jess et al. 2016; Brooks et al.
2021) while density that can reach 1010 cm−3 (Reale 2014). In these cases, higher
emission is expected and, comparably, shorter exposure times would be needed to single
out the outflow jet, making its evolution suitable to be inferred with short-cadence (10 s
or less) observing modes (that will be available with MUSE). This scaling needs to be
verified to pave the way for the detection of magnetic reconnection in the solar corona.
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The event described has all the physical features predicted by the theory of recon-
nection and shows strong similarities with the theoretical model proposed by Antolin
et al. (2021): they both originate from a small-angle reconnection event, and share the
same orders of magnitude in terms of dimensions, velocity, and duration of the outflow
jets. A detailed, physical analysis of the simulated event has also shown many features
matching with Antolin et al. (2021) numerical model, including: the distribution and
orientation of the velocity field (Fig. 6.2), the detailed evolution of the magnetic, kinetic,
and thermal energy (Fig. 6.5), and the location and structuring of the dissipation region
(Fig. 6.3). As significant deviation from the more idealized model by Antolin et al.
(2021) (towards observation, e.g., Patel & Pant 2022), we have shown a bidirectional,
but asymmetric jet. Although we do not account for magnetic curvature (Pagano et al.
2021) in the simulation, other factors, in particular local field line braiding and warping,
and the non-uniform background plasma effectively make the propagation different on
the two sides.

Antolin et al. (2021) model suggests the role of small-angle magnetic reconnection
in accelerating (nano-) jets within a non-vanishing coronal loop magnetic field. This
is supported by observational evidence of collimated jets, interpreted as the kinetic
counterpart of nanoflare heating. Smoking guns of such nanoflare heating in the tenuous
solar corona are difficult to catch because of the small emission measure, and the highly
efficient thermal conduction, limiting the visibility of such events to their already short
kinetic times scales. In this work we show that detection of nanoflare jets might be
possible with MUSE, even at high temperatures, when the plasma is under-dense and
fainter, thanks to the MUSE detailed EUV spectroscopic diagnostics, until now restricted
to the UV band (De Pontieu et al. 2014).

The onset of the reconnection event is caused be the overlapping of two misaligned
bundles of field lines, ultimately brought together by the residual dynamics of the
MHD avalanche. This scenario supports the interpretation of Antolin et al. (2021), and
Sukarmadji et al. (2022) observations, where it is argued that MHD instabilities can
trigger reconnection and nanojets.

This study focusses on MHD events occurring around the MHD avalanche triggered
by the kink instability. At that time the impulsive heating events have not been effective
to fill the flux tubes with dense plasma yet. In these conditions of tenuous plasma the
heat pulse is effective to determines a steep increase of the local temperature, and the
outflowing jet is therefore hot as well, and faint because of the low density.

This period of the evolution probably represents a relatively short transient in the
global evolution of a loop system. So such hot and faint jets are also probably unfrequent
and fainter. In future work, we intend to study the formation and possible detection of
reconnection jets in more steady state conditions, i.e., later in the loop evolution, when
the flux tubes are filled with denser plasma coming up from the chromosphere, driven
by the heating. Cooler and brighter nanojets are therefore expected later in this more
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steady regime.



7
Work in progress: effects of radiative
transport on coronal loop heating,
and nanojets statistical properties

In this chapter we briefly discuss some further developments of the model presented in
Chap. 4 and Cozzo et al. (2023b) addressing dynamics and heating of a multi-threaded
coronal loop for a long time after the MHD avalanche.

In our model, a continuous driver (Reid et al. 2018) at the photospheric footpoints
constantly injects magnetic energy into the corona. The already fragmented magnetic
field facilitates the formation of current sheets, dissipating by Ohmic heating. The system
eventually reaches a statistical balance between radiative losses, thermal conduction,
and coronal DC heating, but no evidence of a steady state is predicted (Reid et al.
2020). A realistic, stratified solar atmosphere is fundamental to study the coronal
and chromospheric plasma response to impulsive heating and to forward model the
observational signatures to be compared with current (e.g., AIA/SDO and IRIS) and
forthcoming (MUSE) observations (see Chap. 5 and Cozzo et al. 2023b). Reconnection
induced outflow nanojets (Antolin et al. 2021) are expected to self consistently develop in
MHD simulations of multi-threaded coronal loops (Chap. 6): the physical descriptions
of single events are described in Antolin et al. (2021) and in chap. 6. A physics-based
statistical description of these events is now timely to physically interpret the growing
amount of nanojets observations (Antolin et al. 2021; Sukarmadji et al. 2022; Patel &
Pant 2022; Sukarmadji & Antolin 2024). In this chapter we describe a new MHD model
of multistrands coronal loop, accounting for detailed corona optically thin emission
(Reale et al. 2016) and approximated chromospheric NLTE radiative transfer (Carlsson
& Leenaarts 2012). Moreover we describe and test an algorithm for the automatic
detection of nanojets in PLUTO simulations, showing preliminary results and future
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prospects.

7.1 PLUTO simulations setup
We used a model of a magnetized solar atmosphere in a 3D cartesian box where inter-
acting and twisted coronal loop strands undergo braiding at sub-arcsec scales, similar to
the one presented by Cozzo et al. (2023b); Reale et al. (2016) and described in Sec.s 2.2
and 4. The simulations are performed using the PLUTO code (Mignone et al. 2007).
The radiative loss values are taken from look-up tables (Carlsson & Leenaarts 2012).
In particular, chromospheric radiative transfer and radiative heating are approximately
treated as discussed in Sec.s 2.2.3 and 2.2.4. In particular, the chromospheric radiative
energy balance is dominated by the strong lines, of neutral hydrogen (H i), singly ionized
calcium (Ca ii), and singly ionized magnesium (Mg ii), formed out of LTE (Vernazza
et al. 1981). The net effect of each transition process on chromospheric cooling is
approximated as the product of a optically thin radiative loss function, an escape prob-
ability, and the ionization fraction for each element, all dependent on local quantities
(Eq. 2.14 in Sec. 2.2.3, Carlsson & Leenaarts 2012). Heating production and transfer
is split into three parts: a background coronal heating 𝐻0; chromospheric heating from
incident coronal radiation, as part of the radiative losses in the corona is absorbed by the
chromosphere in the continua of helium and neutral hydrogen; heating by photospheric
absorption that is the reversed process of chromospheric cooling (Carlsson & Leenaarts
2012). These simulations account for a typical active region stratified atmosphere with a
high-beta chromosphere, a narrow transition region, and a tenuous magnetized corona.
An example of the system evolution is described in Fig. 7.1. Specifically, in the corona,
four straightened coronal loop strands interact, each with length 50 Mm, aspect ratio
≫ 1, and initial temperature ∼ 1MK (first column, Fig. 7.1). The computational box
is a 3D Cartesian grid, −𝑥𝑀 < 𝑥 < 𝑥𝑀 , −𝑦𝑀 < 𝑦 < 𝑦𝑀 , and −𝑧𝑀 < 𝑧 < 𝑧𝑀 , where
𝑥𝑀 = 𝑦𝑀 = 14 Mm, and 𝑧𝑀 = 31 Mm, with a staggered grid, uniform along 𝑥 and 𝑦̂,
with Δ𝑥 = Δ𝑦 ∼ 0.03 Mm. Along 𝑧 we use a non-uniform grid, with high resolution
(Δ𝑧 ∼ 0.03 Mm) in the chromosphere and TR, while Δ𝑧 logarithmicly increases with
height in the corona. For the simulations we discuss here, we implemented the Transition
Region Adaptive Conduction (TRAC) method (Johnston & Bradshaw 2019; Johnston
et al. 2021, see also Sec. 2.2.5) to accurately capture the enthalpy exchange between
the corona and transition region, without need of extremely high grid resolution. Each
flux tube is rooted to the chromosphere by its footpoints, with maximum strength of
few hundred G, and it expands approaching the corona, with background intensity of
∼ 10 G or more. The loop’s magnetic field is line-tied to the photospheric boundaries,
at the opposite sides of the domain, where rotational motions at the footpoints twist
the flux tubes (similar to the setup of Cozzo et al. 2023a, Chap. 3, and Cozzo et al.
2023b, Chap. 4). The four rotating regions have the same radius (∼ 1 Mm) but one has
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twisting velocity higher than the other by 10% (𝑣max = 2.2 km/s). The kink instability,
triggered in the fastest strand, makes the initially monolithic flux tube fragment into
a turbulent structure of thinner strands (second column, Fig. 7.1). The initial helical
current sheet fragments into smaller and smaller current sheets, which dissipate by mag-
netic reconnection. As a consequence, a sequence of aperiodic, impulsive heating events
expand and propagate across the guide field towards the others, nearby stable, magnetic
strands (third column, Fig. 7.1). The initial decay of the magnetic structure on a global
scale leads to the formation, fragmentation, and dissipation of current sheets akin to a
nanoflare storm. Afterwards, photospheric motions continue to induce magnetic field
braiding in the corona and drive impulsive heating at a steady frequency (DC heating).
The same setup is used for the other simulations we consider, to study the heating pro-
cess in the presence of higher coronal magnetic field strength. For example, figure 7.2
compares two simulations with background magnetic field of 20 (blue lines) and 10
(red lines) G, respectively. Energy is stored throughout the first ∼ 1300 s. Then, and
in both cases, a MHD avalanche disrupts the magnetic structure, and energy is rapidly
dissipated at small (spatial and temporal) scales within “turbulent” current sheets. After
a short transient (∼ 300 s) plasma and current density, velocity, and temperature set
around a constant level. In particular, plasma and current density, and temperature are
systematically higher in the 20 G case than in the 10 G one, while the velocity sets to
∼ 20 km s−1 in both cases (Lorentz force, ∝ 𝑗 , and plasma inertia, ∝ 𝑛, have opposite
influence on 𝑣).

7.2 Methodology
In the simulations we investigate, small scale heating events caused by magnetic field
line braiding occur, driven by photospheric motions. Nanojets resulting from magnetic
reconnection can also be found, as shown in previous work (e.g., Antolin et al. 2021,
De Pontieu et al. 2022, and Chap. 6).

To investigate the potential of nanojets as diagnostic tools for coronal heating, our
initial step involves developing a way to detect nanojets within simulations and ascertain
their characteristics, allowing us to examine their correlations with heating properties.
Toward this objective, we have formulated an automatic detection algorithm capable of
identifying nanojets in the 3D MHD numerical simulations of the corona.

Nanojets automatic detection algorithm

The output quantities of the simulations include the plasma density (𝜌) and pressure (𝑝)
or the internal energy (𝜖), and the velocity and magnetic vector fields (𝑣𝑖 & 𝐵𝑖, with
𝑖 = 𝑥 𝑦 𝑧). From these primary variables, we can infer secondary variables such as: the
current density 𝑐

4𝜋∇ × B and the electric field E = −v
𝑐
× B + j/𝜎, where 𝜎 = 𝑐2

4𝜋𝜂 is the
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t = 0 s t = 1000 s t = 1500 s

Figure 7.1: 3D MHD simulation with the PLUTO code modelling interacting coronal
loops. Here we show a model of four flux tubes evolving and interacting, due to a
rotation imposed at their footpoints (see text for details). For three times during the
evolution – top to bottom: t = 0s (initial conditions), 1000s (first strand disruption), and
1500s (fourth strand disruption) – we show (left to right) a 3D rendering of the magnetic
field lines in the box around the four modelled flux tubes (the change in the field line
connectivity during the evolution of the MHD cascade is highlighted by the different
colors); horizontal cuts of the current density; velocity modulus and orientation (green
arrows); and plasma temperature across the mid plane.
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Figure 7.2: Temporal evolution of two multi-threaded coronal loops subjected to con-
tinuous footpoints twisting with guide magnetic field strength of 10 (red) and 20 (blue)
G. The plots describe the averaged coronal (𝑇 > 1 MK) density (top-left), velocity (top-
right), electric current density (bottom-left), and maximum temperature (bottom-right)
evolution as function of time.

electrical conductivity, 𝜂 the magnetic resistivity, and 𝑐 the speed of light.
To automatically detect nanojets in the simulations, we base our criteria on specific

properties of velocity, magnetic, and electric fields. In particular, we first extract a
booleans 4D-cube (space and time) to cluster the plasma volume involved in reconnection
outflow events. As described below and illustrated in Figure 7.3, we then apply a
(connected components) machine learning clustering algorithm (He et al. 2017) to the
new cube, to separate different nanojets events in space and time (top-right panel).

We define a nanojet as rapid plasma outflow generated by the slingshot-effect of
magnetic field lines after reconnection. We thus consider a region of plasma 𝐴 (Eq. 7.1
below) characterized by an increase in the velocity field, and where the component of
the velocity perpendicular to the magnetic field exceeds a certain threshold value (for
e.g., 100 km s−1; top-left panel in Figure 7.3). We also account for a region of space 𝐵
(Eq. 7.2 below) where magnetic dissipation region occurs, that can be identified where
the electric field component parallel to the magnetic field is different than zero.

𝐴 =


𝑣⊥ = v − v·B

|𝐵 | ,

|𝑣⊥ | > 100 km s−1,

∇2 |𝑣⊥ | < 0;
(7.1) 𝐵 =

{
𝐸∥ =

E·B
|𝐵 | ,

𝐸∥ ≠ 0.
(7.2)

The nanojet is identified as the union of 𝐴 and 𝐵 but only when their intersection
is not an empty set: 𝐴 ∪ 𝐵 ≠ ∅, 𝐴 ∩ 𝐵 ≠ ∅. This way, we can identify volumes
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J-mod. [statQ s  cm ]−1 −2

Figure 7.3: Example of automatic detection code of nanojets in 3D MHD simulations.
We show the application of the automatic detection code to the PLUTO simulation
shown in Figure 7.1. Top row: horizontal cut of the velocity magnitude perpendicularly
to the magnetic field across the midplane and at time 𝑡 = 2000 s (left panel); cut of the
current density magnitude (middle panel), in which we highlight in green where the
current exceeds the value for magnetic dissipation; and, cut of the nanojets clustering
as a result of the automatic detection method (right panel). Lower panel: 3D rendering
of magnetic field lines in the proximity of a nanojet reconnection region. Green and
magenta field lines show connectivity change close to the light-blue nanojet cluster at
the midplane. Arrows show strength and orientation of the velocity field in the proximity
of the magnetic field lines.

of space where the plasma is accelerated by the magnetic field, as a consequence of
released magnetic tension during reconnection. By clustering, we could also track the
temporal evolution of each nanojet, allowing for statistical analysis of the results in
terms, for instance, of released magnetic/internal/kinetic energy; correlations between
temperature, velocity, and current density (first row, Fig. 7.4); geometrical properties
(such as volume and circularity) and their relation with other physical quantities (second
row, Fig. 7.4).
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Figure 7.4: Example of statistics of nanojets properties that can be derived from the
simulation. We show 2D histograms of the nanojets properties from the PLUTO sim-
ulation in Figure 7.1, highlighting possible correlations. Top row (from left): nanojets
maximum velocity v.s. maximum temperature; maximum velocity v.s. maximum cur-
rent density; and maximum current density v.s. max temperature. Bottom row (from
left): nanojets maximum velocity, v.s. volume; maximum velocity v.s. circularity; and
maximum current density v.s. circularity.

Statistical Analysis of Nanojets Properties in Simulations

The nanojet events, as identified and catalogued via the application of the above described
automatic algorithm, can be analysed in detail and statistically across different models,
codes, and synthetic observables. We can investigate properties such as: emission
measure for different spectral lines, velocity perpendicular and parallel to the field lines,
currents, temperatures, morphological properties (e.g., length, width), and duration. In
Figure 7.4 we show examples of 2D histograms of pairs of variables, to investigate
possible correlations, from the simulation shown in Figure 7.1. For instance, these
histograms suggest correlations of maximum velocity and temperature in the nanojet
with current density value, and that the highest speeds are found for larger and more
elongated jets.

Discussion

This ongoing investigation is particularly timely as it addresses a the newly observed
phenomenon of nanojets, that might significantly impact, as a direct nanoflares diagnostic
tool, our understanding of coronal heating from magnetic reconnection. Investigating
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nanojets with state-of-the-art 3D MHD models, where the physical variable are known,
has multiple benefits including better understanding the nature of nanojets (e.g., by
studying correlations of nanojets properties with the physical processed at work), and
therefore putting the interpretation of the data on firmer grounds. In fact, synthetic
observables can be derived from the physical parameters of the models (as in e.g.,
De Pontieu et al. 2022; Testa & Reale 2012; Testa et al. 2016; Chen et al. 2021;
Hansteen et al. 2023; Cozzo et al. 2024, and Chap. 6), including the optically thin
emission in the coronal SDO/AIA passbands (94Å, 131Å, 171Å, 211Å, 335Å), and the
IRIS imaging and spectral TR emission. We can analyse the synthetic observables as
the observational data, and derive the properties of the nanojets “as observed”, also
investigating the detectability of the simulated nanojets with different observatories and
testing the feasibility of plasma diagnostics. Another key aspect of this work is that we
can compare the results from the various simulations and explore the dependence of
nanojets properties on the different physical conditions modelled, as well as possibly on
the different approaches and assumptions of different codes in modelling the relevant
physics. This work can allow us to evaluate possible effects of different modelling
approaches while providing robust results in our understanding of reconnection driven
nanojets, including constraints on nanoflare coronal heating.



8
Summary and conclusions

The work discussed in this thesis addresses the energy release in the corona as a result
of photospheric-driven twisting of single or interacting magnetic flux tubes.

The work contributes to the topic of multistranded coronal loop modelling (Fuentes
& Klimchuk 2010), in which coronal loops are described as an assemblage of multi-
ple intertwined flux tubes that can be twisted, tangled, or braided together by chaotic
photospheric motions. Such magnetic configurations may lead to the intensification of
electric currents in narrow current sheets, thereby triggering magnetic reconnection and
impulsive heating. Multistranded MHD coronal loop models represent the state-of-the-
art approach in simulating DC coronal heating. This work builds upon the foundational
1D-HD framework (e.g., Peres et al. 1982), where the evolution of each individual loop
strand is simulated independently by modelling the plasma as confined inside a magnetic
flux tube. These models can effectively simulate the plasma response within a single
strand once heating has occurred (Klimchuk 2015). Ad hoc impulsive heating is applied
in a realistic stratified atmosphere from the chromosphere to the corona. These models
were successfully applied to light curves and line spectra of flaring (e.g., Peres et al.
1987; Antonucci et al. 1993; Testa et al. 2014), and non-flaring coronal loops (Reale
et al. 2000c,b; Price et al. 2015). By combining results from single-strand simulations,
one can model multi-stranded coronal loops (Klimchuk 2006; Guarrasi et al. 2010; Reale
2014), or even of entire active regions (Warren & Winebarger 2007; Bradshaw & Viall
2016).

Our approach is a conceptual extension of this track to 3D MHD, made possible
by recent improvements of computing power, and aims at studying the physics of the
solar corona without loosing the conceptual effectiveness of ideal MHD modelling: we
addressed specific questions about coronal loops physics, therefore avoiding a complex
and encompassing reproduction of the coronal activity as a whole. As in 1D-HD coronal
loop modelling, we describe the response of a stratified solar atmosphere in a straightened
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flux tube against impulsive coronal heating (Linker et al. 2001; Lionello et al. 2009; Mikić
et al. 2013). On the other hand, MHD allows us to address self consistent plasma heating
by magnetic reconnection making a strong assumption on anomalous magnetic resistivity
(Benford 1983; Hood et al. 2009), which is an intrinsically 3D phenomenon. This has
enabled us to further explore the effects of magnetic reconnection within a guide magnetic
field, where small-angle tilting of magnetic field lines may power the formation of
reconnection outflow jets (nanojets, Antolin et al. 2021) as a direct, observable aftermath
of nanoflare heating. In general, growing magnetic stresses are stored in strongly non-
potential, braided, and eventually MHD-unstable magnetic structures, where excess of
magnetic energy is gathered within twisted flux tubes, tapering in the chromosphere
(Guarrasi et al. 2014). Many parameters are constrained by, e.g., boundary conditions
(such as the amount of Poynting flux injected by photospheric vortexes, or the aspect
ratio of the flux strands), thus ultimately determining amount and rate of energy released.

As a preliminary step, we have extended the study done in Reale et al. (2016) by
relaxing the assumption of symmetric twisting at footpoints (chapter 3 and Cozzo et al.
2023a). Observed isolated coronal loops usually do not display strong side-by-side
asymmetries despite their footpoints are likely driven by different rotation drivers in the
photosphere. The small plasma 𝛽 in the corona could explain why such coronal loops
preserve so well such symmetry properties. Therefore, we have addressed a coronal loop
twisted by non-coherent photospheric motions and investigated its response by forcing
strong asymmetries. We show that coronal loops are capable to maintain high degree of
symmetry for long time against asymmetric twisting drivers at their footpoints. Indeed,
in order to break the symmetry, a relatively high plasma beta (𝛽 ∼ 1) is required. This
regime is hardly reached in the corona and strong, long lasting twisting would anyway
make coronal loops unstable against kink modes (Hood & Priest 1979b). In Cozzo et al.
(2023a) we have only accounted for large scale, ordered drivers but irregular patterns
on smaller scales may lead to field braiding, which may make any possible asymmetry
unobservable on large scales. The MHD numerical experiments presented in Cozzo
et al. (2023a) can be used as a benchmark model to study energy gain and release in
magnetic flux tubes, twisted by photospheric motions. By addressing observed coronal
loop features (such as their symmetry), we have ultimately explored the parameter space
of the Reale et al. (2016) model focusing on the flux tube evolution against different
boundary twisting profiles, including non-coherent photospheric motions.

Chapters 4 and 5 (see also Cozzo et al. 2023b, and Cozzo et al. 2024) addressed
coronal energy release by twisted magnetic flux tubes above the threshold for kink
instability and how coronal loops, heated through an MHD avalanche process, would be
observed with the forthcoming MUSE mission (De Pontieu et al. 2022). In a scenario
of several twisted magnetic threads close to each other, a single unstable flux strand
can trigger a cascade of instabilities in the nearby tubes, even if they are not yet kink-
unstable (Tam et al. 2015). In particular, we have shown that such MHD avalanches
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(Hood et al. 2016) are efficient mechanisms for fast release of magnetic energy in the
corona progressively stored by slow, uniform photospheric motions (Reid et al. 2018,
2020). Cozzo et al. (2024) move on to forward modelling spectroscopic observations in
Fe ix, Fe xv, and Fe xix lines with the forthcoming MUSE mission, diagnosing plasma
at temperatures of about ∼ 1 MK, ∼ 2 MK, and ∼ 10 MK, respectively, at high spatial
and temporal resolution. In particular, we provided specific observational constraints,
useful for testing the model and as a guide for future modelling efforts.

In Chapter 4 magnetic reconnection inside unstable flux tubes drives bursty energy
release akin to a nanoflare storm, while altering magnetic field connectivity. Repeated
reconnection events lead the system towards a minimum energy state (Bareford et al.
2016). The initial helical current sheet fragments into smaller sheets, dissipating mag-
netic energy through Ohmic heating (Hood et al. 2009) and driving a usual loop ignition
including chromospheric evaporation (Reale 2014; Reale et al. 2016). Cozzo et al.
(2023b) extend prior studies on uniform coronal atmospheres by (Hood et al. 2009;
Tam et al. 2015; Hood et al. 2016; Reid et al. 2018, 2020, among others), to a strat-
ified atmosphere, confirming that twisted loops with zero net current experience kink
instability. Thermal conduction effectively spreads heating along field lines, resulting
in a filamentary loop temperature structure (Botha et al. 2011). In the simulation peak
temperatures reach about ten millions of Kelvin degrees, with enhancement of magnetic
and internal energy around 1027 erg, consistent with microflare observations (e.g., Testa
& Reale 2020).

The modelled loop shown in Chapter 5 is typical of active region loops outside of
the core and displays steady brightness primarily in the Fe xv line, with transient faint
emission in Fe ix and Fe xix at the footpoints and apex, respectively. Fe ix, Fe xv,
and Fe xix emissions reveal distinct aspects of plasma behavior. The footpoints Fe ix
emission and transition-region ablation tracks the early response of the loop plasma
to the impulsive energy release, while the Fe xv tracks denser plasma at intermediate
heights, and the Fe xix traces the hottest plasma within current sheets. Doppler shifts
and line broadening provide further plasma dynamics details, supporting the turbulent
nature of the avalanche process and aligning with forward-modelled microflaring events
(Testa & Reale 2020). Line profiles frequently deviate from Gaussian shapes, reflecting
the impulsive and dynamic characteristics of the instability, with notable Doppler shifts
in Fe xv and Fe xix during chromospheric upflows.

Chapter 6 focuses on the spontaneous formation and evolution of a nanojet within
the same coronal flux tube system. The study aims to understand potential observa-
tional signatures of nanojets with both current and forthcoming instruments, specifically
comparing the AIA imager with the future MUSE spectrometer. Unlike prior simula-
tions (Antolin et al. 2021; Pagano et al. 2021), which imposed specific magnetic field
alignments, this study singles out a collimated outflow associated with a serendipitous
reconnection event triggered by the chaotic dynamics of a thermally evolving loop struc-
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ture. The outflow shares usual features with observed nanojets, namely, thousands of
kilometers wide and reaching velocities of several hundred kilometers per second (An-
tolin et al. 2021; Sukarmadji et al. 2022; Sukarmadji & Antolin 2024; Patel & Pant
2022). The nanojet forms close to the loop apex, releasing approximately 1024 erg, with
a substantial portion converted to heat, raising plasma temperatures above 8 MK. Al-
though, in principle, the SDO/AIA 94 Å channel is able to detect such high-temperature
plasma, the cool component in the same channel makes the detection very hard. MUSE
can instead isolate the hot Fe xix line. MUSE capability to capture the expected bidi-
rectional Doppler shifts adds on for a clearer, more precise characterization of nanojet
dynamics.

Finally, in chapter 7 we further investigate DC coronal heating in multi-stranded
coronal loops. We addressed the effects of continuous footpoints rotation, keeping
driving the strands footpoints for a long time after the onset of the avalanche, and
allowing the system to achieve a statistical energy balance. We show preliminary results
focusing on the role of the guide magnetic field strength. Moreover, a physics-based
algorithm for automatic detection of nanojets is presented as promising tool to investigate
the nanoflare phenomenon and its observational signatures. We apply the algorithm to
a simulation to show statistical correlations between general nanoflare/nanojet physical
and geometrical properties.

This thesis advances our understanding of solar and stellar atmosphere heating by
employing detailed numerical experiments that enable in-depth study of magnetic energy
conversion to heat. By simulating twisted magnetic flux tubes under realistic solar con-
ditions, this work dissects key physical mechanisms, such as reconnection and plasma
response, which govern coronal heating. A major contribution of this research is the
forward modelling of signatures —like nanojets and EUV emissions- that allow us to
trace energy release dynamics. These diagnostics not only aid in interpreting complex
observations but also provide rigorous tests for validating and refining numerical models
through direct comparison with observed phenomena. Furthermore, the findings con-
tribute directly to the science case for future instrumentation, particularly the upcoming
MUSE mission. By predicting observable features of magnetic reconnection events
and other heating signatures, this study helps shape the observational goals to improve
MUSE capability to probe coronal heating.

In conclusion, although limited by some strong assumption in the microphysics to
make the numerical approach feasible, this thesis shows that 3D MHD modelling of
interacting and unstable coronal flux tubes provides a powerful tool both to investigate
coronal heating mechanisms and physics and to provide possible diagnostics for checking
with forthcoming spectroscopic observations.
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8.1 Future works

The work in this thesis opens the way to a broad range of extensions and applications.
First of all there are developments already on-going, those described in Chapter 7 which
are still to be finalized. These developments concerns again multistrands coronal loop
modelling and reconnection driven DC heating, and in particular the further application
of 3D MHD simulations to interpret the observations of nanojets. We will analyze several
3D MHD coronal simulations modelling with an exploration of the space of the param-
eters in order to investigate statistically the properties of MHD, steady-state DC heating,
and nanojets, including their correlation with the reconnection-driven nanoflares.

The modelling illustrated in this thesis is also projected toward a long-term obser-
vational perspective. It will be very interesting to test the model predictions against the
real observations to be obtained with the MUSE mission, whose launch is planned in
2027. Because of its simultaneously high temporal, spatial and spectroscopic resolution,
this mission will allow for deep probing physical conditions and therefore represent a
quantum leap in the diagnostics of the confined corona and of magnetohydrodynamic
mechanisms.

A line of future investigation concerns nanojets and their heating diagnostics by
additional extensive use of 3D MHD modelling of the solar corona. We also aim
to maximize the science potential of IRIS data, fully taking advantage of its spatial,
temporal, and spectral resolution, and using them as a unique tool for understanding
coronal heating (despite mostly observing non-coronal plasma).

We will refine the automatic nanojet detection algorithm we devised to Pluto
(Mignone et al. 2007), and apply it also to Bifrost (Gudiksen et al. 2011) and MU-
RaM (Vögler et al. 2005; Rempel 2016) simulations, that model different coronal en-
vironments in which heating and dynamics are primarily caused by current dissipation
driven by footpoint braiding. Several simulations are already available for the analysis: a
(Bifrost) network region (Hansteen et al. 2019) and a plage region (Hansteen et al. 2023),
a (MURaM) emerging (Chen et al. 2023) and a smaller bipolar active region (Rempel
2016). They all include the chromospheric layer and overlying coronal regions. Pluto
simulations are described in Sec. 7.1 and are based on the model discussed in Cozzo
et al. (2023b) and Sec. 4, extended to include approximate chromospheric radiative
transfer (Carlsson & Leenaarts 2012). We will complement the forward modelling and
synthetic plasma diagnostics with automated detection of nanojets, therefore allowing
for a statistical analysis of the temporal, geometrical, and physical properties of these
events, and investigate their possible correlations with the characteristics of the heating
processes.

As a parallel effort, we aim to extend the statistics of observations from Antolin et al.
(2021); Sukarmadji et al. (2022); Sukarmadji & Antolin (2024); Patel & Pant (2022)
by analyzing additional coordinated IRIS/SDO nanojet observations. In particular, we
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plan to select observations of coronal loops configurations that closely resemble the
ones in the used simulations (e.g., magnetic network region, quiescent AR, more active
AR) and carry out a quantitative comparison of the observed nanojet properties with
the ones predicted by these numerical experiments. We will use coordinate SDO/HMI
data to infer the magnetic field properties of the observed targets for a more appropriate
comparison with models matching those conditions and we will extend the existing
statistics from observations by analyzing additional IRIS and SDO/AIA datasets. We
will finally compute IRIS and SDO/AIA synthetic observables of nanojets to directly
compare them with the observations. The observed quantities could differ from the ones
derived without taking into account the observability. For instance, the event duration,
can be significantly affected by the sensitivity of the instrument and the observing mode,
while the maximum velocity might occur at a time when the emission measure in the
observed line is not sufficient to observe the event, or the integration times are long
compared with the nanojet dynamic properties, significantly impacting the statistical
properties. Therefore, it is important to analyze both the intrinsic properties of the
nanojets in the simulations, and the ones folding the instrumental responses. We also
note that this work is of great interest as well for future missions such as EUVST and
MUSE (De Pontieu et al. 2022).

This future investigation is particularly timely as it addresses a the newly observed
phenomenon of nanojets, that might significantly impact, as a direct nanoflares diagnostic
tool, our understanding of coronal heating from magnetic reconnection. Investigating
nanojets with state-of-the-art 3D MHD models, where the physical variable are known,
has multiple benefits including better understanding the nature of nanojets and therefore
putting the interpretation of the data on firmer grounds. Additionally, by studying the
correlations of nanojets properties with the physical processed at work will allow us
to infer diagnostics from observations and test their feasibility for specific instruments.
Another key aspect of this work is that we will compare the results from the various
simulations and explore the dependence of nanojets properties on the different physical
conditions modelled, as well as possibly on the different approaches and assumptions of
the different code in modelling the relevant physics. This work will allow us to evaluate
possible effects of different modelling approaches while providing robust results in
our understanding of reconnection driven nanojets, including constraints on nanoflare
coronal heating.

It is to be mentioned that this work is also a launch pad in the wider perspective
of space weather issues, and it has been included in the COSPAR International Space
Weather (ISWAT) Action Team: “Origins of the Spectral Irradiance and its Intermediate
Timescale Variability”, aimed at providing physical models for improved forecasts of
the spectral irradiance and accurate nowcasts of gaps in wavelength coverage.
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Acronym Index

AIA = Atmospheric Imaging Assembly
CA = Cellular Automaton
DEM = Differential Emission Measure
EM = Emission Measure
ESA = European Space Agency
EUV = Extreme UltraViolet
EUVST = Extreme UltraViolet High-Throughput Spectroscopic Telescope
FIR = Far InfraRed
FoV = Field of View
HD = HydroDynamic
Hi-C = High Resolution Coronal Imager
HMI = Helioseismic and Magnetic Imager
HXR = Hard X-Rays
IR = InfraRed
IRIS = Interface Region Solar Imager
JAXA = Japan Aerospace eXploration Agency
LTE = Local Thermodynamic Equilibrium
MDI = Michelson Doppler Imager
MHD = MagnetoHydroDynamics
MUSE = MUltislit Solar Explorer
NASA = National Aeronautics and Space Administration
NIR = Near InfraRed
NIXT = Normal Incidence X-ray Telescope
SDO = Solar Dynamics Observatory
SMM = Solar Maximum Mission
SoHO = Solar and Heliospheric Observatory
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SOT = Hinode/Solar Optical Telescope
STEREO = Solar Terrestrial Relations Observatory
TR = Transition Region
TRACE = Transition Region Coronal Explorer
UV = UltraViolet
XRT = X-Ray Telescope
XUV = Xray to UltraViolet
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Gudiksen, B. V. & Nordlund, Å. 2005a, The Astrophysical Journal, 618, 1031
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