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A B S T R A C T

We develop 𝐻(div)-conforming mixed finite element methods for the unsteady Stokes equations
modeling single-phase incompressible fluid flow. A projection method in the framework of the
incremental pressure correction methodology is applied, where a predictor problem and a cor-
rector problem are sequentially solved, accounting for the viscous effects and incompressibility,
respectively. The predictor problem is based on a stress–velocity mixed formulation, while the
corrector projection problem uses a velocity–pressure mixed formulation. The scheme results
in pointwise divergence-free velocity computed at the end of each time step. We establish
unconditional stability and first order in time accuracy. In the implementation we focus on
generally unstructured triangular grids. We employ a second order multipoint flux mixed finite
element method based on the next-to-the-lowest order Raviart–Thomas space 𝑅𝑇1 and a suitable
quadrature rule. In the predictor problem this approach allows for a local stress elimination,
resulting in element-based systems for each velocity component with three degrees of freedom
per element. Similarly, in the corrector problem, the velocity is locally eliminated and an
element-based system for the pressure is solved. At the end of each time step we obtain a second
order accurate 𝐻(div)-conforming piecewise linear velocity, which is pointwise divergence free.
We present a series of numerical tests to illustrate the performance of the method.

1. Introduction

The unsteady Stokes equations, which approximate the Navier–Stokes equations for flows at small Reynolds numbers, are
representative of physical processes where the time scale of the viscous effects is much smaller than the time scale of the inertial
effects, in which case the transient inertial term dominates the advection inertial term [1]. Some examples of unsteady Stokes flows
are: unsteady creeping flows [1,2], microswimmers flows [3], and pulsating cerebrospinal fluid flows [4–7].

One of the main issues in the numerical solution of the incompressible Stokes equations is that a saddle point problem needs to
be solved, where the pressure plays the role of a Lagrange multiplier for imposing the divergence-free constraint. For the solution of
unsteady incompressible flow one of the most successful approaches is provided by the ‘‘projection methods’’, which started in the
late 1960s with the two independent works of Chorin [8] and Temam [9]. Instead of solving a coupled saddle point system for the
velocity and pressure unknowns at each time step, an intermediate velocity field is computed first, using the momentum equation and
neglecting the incompressibility constraint. This intermediate velocity is projected to the space of (weakly) divergence-free velocity
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fields in the second step, to get the next update for the velocity and pressure. Detailed discussions of the projection methods can
be found, for example, in the review papers [10,11].

The classical projection methods are based on the velocity–pressure formulation of the governing equations, which has long been
the mainstream of incompressible flow computations. The associated finite element methods use inf-sup stable finite element pairs,
such as the Taylor-Hood, the Crouzeix–Raviart, or the MINI elements [12]. The projection step involves the solution of a Poisson
problem for the pressure with continuous finite elements. As a result, the computed velocity is not pointwise divergence-free. In this
paper we develop 𝐻(div)-conforming mixed finite element projection methods for the unsteady Stokes equations with pointwise
divergence-free velocity. The predictor problem is based on a stress–velocity mixed formulation, while the corrector projection
problem uses a velocity–pressure mixed formulation. We consider the Raviart–Thomas 𝑅𝑇𝑘, 𝑘 ≥ 0 or Brezzi–Douglas–Marini 𝐵 𝐷 𝑀𝑘,
𝑘 ≥ 1 families of spaces for the viscous stress components in the predictor problem and the velocity in the projection problem.
n either case, the computed velocity at the end of each step is 𝐻(div)-conforming and divergence-free piecewise polynomial of
egree ≤ 𝑘. Our family of methods is motivated by the projection method developed in [13] for the Navier–Stokes equations, see
lso [14,15], which uses a finite volume method for the predicted velocity and 𝑅𝑇0-based two point flux approximation (TPFA)

method for the corrected velocity. We note that there has been extensive work on developing numerical methods for Stokes flow
with divergence-free velocity and/or pressure-robustness (independence of the velocity error of the viscosity and pressure), see
e.g., [16–21]. These approaches are based on the velocity–pressure formulation and require solving a saddle point problem. Our
rojection method provides an efficient alternate to obtain a divergence-free velocity using a stable pair of mixed finite element
paces for the Poisson problem in the projection step. Furthermore, our proposed implementation through the use of multipoint flux
ixed finite element methods requires solving only symmetric and positive definite systems.

The stress–velocity mixed finite element method for the Stokes and Navier–Stokes equations has received increased attention in
ecent years, see, e.g. [22–25]. Advantages of this approach include unified framework for Newtonian and non-Newtonian flows,

local momentum balance, and direct 𝐻(div)-conforming computation of the stress, the latter being paramount for modeling fluid
flow around an obstacle. A disadvantage of this formulation is that it results in increased number of degrees of freedom. This issue is
addressed in [26], where a multipoint stress mixed finite element method for Stokes flow is developed, based on the stress–velocity–
vorticity formulation. There, a suitable choice of mixed finite element spaces and quadrature rules allows for a local elimination of
the stress and vorticity, resulting in a positive definite system for the velocity. In all of the aforementioned works, the pressure is
eliminated using the incompressibility constraint. As a result, mass conservation is only weakly imposed. In addition, the formulation
involves the deviatoric part of the stress and the velocity approximation is discontinuous. In contrast, in our projection method, the
pressure gradient in the momentum balance equation solved in the predictor problem is taken from the previous time step and does
not need to be eliminated, hence the method involves the full stress. Moreover, while the predicted velocity is discontinuous, the
corrected velocity computed in the projection step is 𝐻(div)-conforming and exactly divergence-free.

In the first part of the paper we develop the family of mixed finite element projection methods for the unsteady Stokes equations
of general polynomial degree. We perform stability analysis for the fully discrete method, establishing unconditional stability. The
analysis is complicated by the fact that the predicted and the corrected velocity live in different finite element spaces, the former
being discontinuous, and the latter 𝐻(div)-conforming. Critical components of the analysis are the inclusion in the scheme of a
ariable approximating the pressure gradient, which lives in the space of the predicted velocity, and the fact that divergence-free
ectors in either 𝐵 𝐷 𝑀𝐾 or 𝑅𝑇𝑘 are piecewise polynomials of degree ≤ 𝑘. We then proceed with the time-discretization error analysis,

focusing on the semi-discrete continuous-in-space scheme. We establish first order convergence in time for the viscous stress and
the corrected velocity.

In the second part of the paper we develop a specific method from the family introduced in the first part, based on the next-
to-the-lowest order Raviart–Thomas velocity space 𝑅𝑇1 and discontinuous piecewise linear polynomials on generally unstructured
triangular grids. This results in a method that is second order accurate in space. In order to avoid solving saddle point problems, we
employ the methodology of multipoint flux mixed finite element (MFMFE) methods developed in [27] for the Poisson problem. The
approach is based on choosing a suitable combination of a finite element space for the vector flux variable and a quadrature rule for
the associated bilinear form, which leads to a block-diagonal mass matrix with small local blocks. The flux can therefore be locally
eliminated, resulting in a symmetric and positive definite algebraic system for the scalar potential variable. In [27], the lowest
order Brezzi–Douglas–Marini 𝐵 𝐷 𝑀1 space on simplicial or quadrilateral grids is utilized, together with a vertex quadrature rule.
The blocks in the flux mass matrix are associated with mesh vertices and the resulting system for the potential variable, after local
lux elimination, is of finite volume type with one constant value per element. The method is first order accurate in the 𝐿2-norm
nd it is related to the multipoint flux approximation (MPFA) method [28,29]. A similar mass-lumping approach is studied in [30]

and an alternative formulation based on a broken 𝑅𝑇0 velocity space is developed in [31]. The MFMFE methodology is extended to
3D hexahedral grids in [32,33], to higher order spaces in [34,35], and to the Stokes equations using a vorticity–velocity–pressure
formulation in [36].

In our method we utilize the second order MFMFE methodology on triangular grids developed in [35,37], which is based on the
𝑅𝑇1 flux space and a quadrature rule that samples the functions at the degrees of freedom, which are the normal components at each
edge evaluated at the two edge endpoints and the vector evaluated at the element center of mass. We employ this approach in both
he predictor and the projection problems. In the predictor problem, we split the momentum equation into two separate equations for

the 𝑥- and 𝑦-components of the predicted velocity. In each sub-problem, we locally eliminate the viscous stress component and obtain
 sparse symmetric and positive definite system for the predicted velocity component. Similarly, in the projection problem, we locally
liminate the corrected velocity and we solve a sparse symmetric and positive definite system for the pressure. All three systems
nvolve three unknowns per element describing the linear variation within the element. The global stencil couples each element with
2 
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all elements that share a vertex with it. The viscous stress and corrected velocity are easily computed by local postprocessing. The
resulting method is highly computationally efficient, involving the solution of three sparse symmetric and positive definite systems
er time step, which is done with the preconditioned conjugate gradient method.

We remark that in physical problems, including transport processes, fluid–structure interaction, free fluid–porous medium
interface transfer, or turbulence modeling, the second order accuracy of the velocity and pressure would allow for a higher physical
fidelity in the approximation. In this sense, the present paper could also be regarded as the seed of further extensions where more
terms are included in the governing momentum equations, e.g., convective inertia or Brinkman term or coupling with transport or
thermal effects, as in [13–15].

The paper is organized as follows. In Section 2 we present the governing equations and the numerical method. Stability and
time discretization error analysis is performed in Section 3. The second order multipoint flux mixed finite element method on
triangular grids is developed in Section 4. In Section 5 we report the results of a series of numerical experiments that illustrate
he performance of the method. These include verification of the second order convergence in space and first order convergence in
ime, two benchmark problems, where the results of the method are compared to numerical and analytical solutions provided in

the literature, and a challenging application with a strongly irregular computational domain. We end with conclusions in Section 6.

2. Governing equations and numerical method

We assume a Newtonian, single-phase, incompressible fluid with density 𝜌. Let 𝛺 ⊂ 𝐑𝑑 , 𝑑 = 2, 3, be the computational domain.
The unsteady Stokes equations are

𝜕𝐮
𝜕 𝑡 − 𝜈 𝛥𝐮 + ∇𝛹 = 0 in 𝛺 × (0, 𝑇 ], (2.1a)

∇ ⋅ 𝐮 = 0 in 𝛺 × (0, 𝑇 ], (2.1b)

where 𝑇 is the final time, 𝐮 is the fluid velocity vector, 𝛹 = 𝑝
𝜌 is the kinematic pressure, 𝜈 = 𝜇

𝜌 is the kinematic fluid viscosity and
the dynamic fluid viscosity. Let 𝛤 be the boundary of 𝛺, with a unit outward normal vector 𝐧. Two types of boundary conditions

re assigned over 𝛤 = 𝛤𝑑 ∪𝛤𝑛, where 𝛤𝑑 and 𝛤𝑛 are the portions of 𝛤 where we assign the velocity vector and the normal component
of the stress, respectively. The problem is complemented with initial conditions for the velocity and pressure. The boundary and
nitial conditions are:

𝐮 = 𝐮𝑏 on 𝛤𝑑 , 𝑡 ∈ [0, 𝑇 ], (2.2a)

(−𝜈∇𝐮 + 𝛹 𝐈)𝐧 = 𝜮𝑏 on 𝛤𝑛, 𝑡 ∈ [0, 𝑇 ], (2.2b)

𝐮 = 𝐮0 with ∇ ⋅ 𝐮0 = 0, 𝛹 = 𝛹0 in 𝛺 , 𝑡 = 0, (2.2c)

where 𝐈 the identity matrix.

2.1. Time discretization

We discretize the time interval [0, 𝑇 ] by a partition with 𝑁 sub-intervals of length 𝛥𝑡 = 𝑇 ∕𝑁 with vertices 𝑡𝑛, 𝑛 = 0,… , 𝑁 ,
𝑡𝑛 = 𝑛𝛥𝑡. We denote by 𝜑𝑛 the value of variable 𝜑 computed at time 𝑡𝑛. System (2.1) is solved at each discrete time 𝑡𝑛+1 by applying
an incremental pressure correction scheme [11], where a predictor and a projection problem are solved sequentially, such that the
ime-discretization form of (2.1a) splits into

𝐮̃𝑛+1 − 𝐮𝑛
𝛥𝑡

− 𝜈 𝛥𝐮̃𝑛+1 + ∇𝛹 𝑛 = 0, (2.3a)

𝐮𝑛+1 − 𝐮̃𝑛+1
𝛥𝑡

+ ∇ (

𝛹 𝑛+1 − 𝛹 𝑛) = 0, (2.3b)

where (2.3a) is the predictor problem and (2.3b) is the projection problem.

2.2. Space discretization

The space discretization is based on a mixed variational formulation of the system (2.3). For this purpose we introduce the
ariables

𝝈 = −𝜈∇𝐮, 𝐪 = ∇𝛹 .
Here 𝝈 is the viscous pseudostress, a 𝑑 × 𝑑 tensor with rows 𝜎𝑇𝑖 , 𝜎𝑖 = ∇𝑢𝑖, 𝑖 = 1,… , 𝑑, where 𝑢𝑖 is the 𝑖th component of the velocity
𝐮. With this notation the predictor problem (2.3a) can be written as

𝐮̃𝑛+1 − 𝐮𝑛
𝛥𝑡

+ ∇ ⋅ 𝝈𝑛+1 + 𝐪𝑛 = 0. (2.4)

In the variational formulation of (2.3) we will use the space 𝐻(div, 𝛺), with
{ }
𝐻(div, 𝛺) = 𝐯 ∈ (𝐿2 (𝛺))𝑑 ∶ ∇ ⋅ 𝐯 ∈ 𝐿2 (𝛺) , (2.5)

3 
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and define

𝐕 = 𝐻(div, 𝛺), 𝐕0,𝛤𝑠 =
{

𝐯 ∈ 𝐕 ∶ 𝐯 ⋅ 𝐧 = 0 on 𝛤𝑠
}

, 𝑠 ∈ {𝑑 , 𝑛}, 𝑊 = 𝐿2(𝛺). (2.6)

For a domain 𝐷 ⊂ 𝐑𝑑 , the symbol (⋅, ⋅)𝐷 marks the 𝐿2(𝐷)-inner product and ‖ ⋅ ‖𝐷 denotes the 𝐿2(𝐷)-norm for scalar, vector, and
tensor valued functions. We also use the standard Hilbert space notation 𝐻𝑟(𝐷) with a norm ‖ ⋅ ‖𝑟,𝐷, where 𝑟 is a positive integer.
We will omit the subscript D if 𝐷 = 𝛺. For 𝑆 ∈ 𝐑𝑑−1 we denote by ⟨⋅, ⋅ ⟩𝑆 the 𝐿2(𝑆) inner product or duality pairing.

We discretize 𝛺 by a geometrically conforming partition 𝑇ℎ (also called grid or mesh) made of 𝑁𝑇 non-overlapping triangles 𝐸
called (computational) elements or cells. Two neighboring elements share a common side (or interface) 𝑒. Let S𝑇 be the number of
edges.

Let 𝐕ℎ ×𝑊ℎ ⊂ 𝐕×𝑊 be either the Raviart–Thomas (RT) or the Brezzi–Douglas–Marini (BDM) pairs of spaces [12] on 𝑇ℎ. These
are pairs of inf-sup stable mixed finite element spaces with the property

∇ ⋅ 𝐕ℎ = 𝑊ℎ. (2.7)

Let (𝐕ℎ)𝑑 denote the tensor-valued space where each row is an element of 𝐕ℎ. Let 𝑄ℎ ∶ 𝐿2(𝛺) → 𝑊ℎ and 𝑸ℎ ∶ (𝐿2(𝛺))𝑑 → 𝐕ℎ be
he 𝐿2-orthogonal projection operator onto 𝑊ℎ, such that for any 𝑤 ∈ 𝐿2(𝛺),

(𝑄ℎ𝑤 −𝑤, 𝑤ℎ) = 0 ∀𝑤ℎ ∈ 𝑊ℎ. (2.8)

Let 𝑄𝛤
ℎ ∶ 𝐿2(𝛤 ) → 𝐕ℎ ⋅𝐧 and 𝑸𝛤

ℎ ∶ (𝐿2(𝛤 ))𝑑 → (𝐕ℎ)𝑑 𝐧 be the 𝐿2-orthogonal projection operators onto 𝐕ℎ ⋅𝐧 and (𝐕ℎ)𝑑 𝐧, respectively,
such that for any 𝜑 ∈ 𝐿2(𝛤 ) and any 𝐯 ∈ (𝐿2(𝛤 ))𝑑 ,

⟨𝜑 −𝑄𝛤
ℎ 𝜑, 𝐯ℎ ⋅ 𝐧⟩𝛤 = 0 ∀𝐯ℎ ∈ 𝐕ℎ,

⟨𝐯 −𝑸𝛤
ℎ 𝐯, 𝝉ℎ 𝐧⟩𝛤 = 0 ∀𝝉ℎ ∈ (𝐕ℎ)𝑑 .

We will also use the mixed interpolant 𝜫ℎ ∶ (𝐻1(𝛺))𝑑 → 𝐕ℎ [12] satisfying for all 𝐯 ∈ (𝐻1(𝛺))𝑑 ,

(∇ ⋅ (𝜫ℎ𝐯 − 𝐯), 𝑤ℎ) = 0 ∀𝑤ℎ ∈ 𝑊ℎ, (2.9)

⟨(𝜫ℎ𝐯 − 𝐯) ⋅ 𝐧, 𝐯ℎ ⋅ 𝐧⟩𝛤 = 0 ∀𝐯ℎ ∈ 𝐕ℎ. (2.10)

We will also utilize the vector version of 𝑄ℎ, 𝑄𝑑
ℎ ∶ (𝐿2(𝛺))𝑑 → (𝑊ℎ)𝑑 and the tensor version of 𝜫ℎ, 𝜫𝑑

ℎ ∶ (𝐻1(𝛺))𝑑×𝑑 → (𝐕ℎ)𝑑 .

2.3. The mixed finite element projection method

The numerical algorithm is as follows.

• Initialization: Let 𝐮0ℎ = 𝜫ℎ𝐮0, 𝛹 0
ℎ = 𝑄ℎ𝛹0, 𝐪0ℎ = 𝑄𝑑

ℎ ∇𝛹0, 𝛹 0
𝑏 = 𝛹 0

|𝛤 .

For 𝑛 = 0,… , 𝑁 − 1:

• Predictor problem (MFE discretization of (2.4)):
Find 𝝈𝑛+1

ℎ ∈ (𝐕ℎ)𝑑 ∶ 𝝈𝑛+1
ℎ 𝐧 = 𝑸𝛤

ℎ (Σ
𝑛+1
𝑏 − 𝛹 𝑛

𝑏 𝐧) on 𝛤𝑛 and 𝐮̃𝑛+1ℎ ∈ (𝑊ℎ)𝑑 , such that
(

𝜈−1𝝈𝑛+1
ℎ , 𝝉ℎ

)

−
(

𝐮̃𝑛+1ℎ ,∇ ⋅ 𝝉ℎ
)

= −⟨𝐮𝑛+1𝑏 , 𝝉ℎ 𝐧⟩𝛤𝑑 ∀𝝉ℎ ∈ (𝐕ℎ,0,𝛤𝑛 )
𝑑 , (2.11a)

(

𝐮̃𝑛+1ℎ − 𝐮𝑛ℎ
𝛥𝑡

, 𝝃𝒉

)

+
(

∇ ⋅ 𝝈𝑛+1
ℎ , 𝝃𝒉

)

+
(

𝐪𝑛ℎ, 𝝃𝒉
)

= 0 ∀𝝃𝒉 ∈ (𝑊ℎ)𝑑 . (2.11b)

• Compute 𝛹 𝑛+1
𝑏 on 𝛤𝑛:

𝛹 𝑛+1
𝑏 =

(

Σ𝑛+1
𝑏 + 𝜈∇𝐮̃𝑛+1ℎ 𝐧

)

⋅ 𝐧 on 𝛤𝑛.

• Projection problem (MFE discretization of (2.3b)):
Find 𝐮𝑛+1ℎ ∈ 𝐕ℎ ∶ 𝐮𝑛+1ℎ ⋅ 𝐧 = 𝑄𝛤

ℎ
(

𝐮𝑏 ⋅ 𝐧
)

on 𝛤𝑑 and 𝛹 𝑛+1
ℎ ∈ 𝑊ℎ such that

(𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ
𝛥𝑡

, 𝐯ℎ
)

− (𝛹 𝑛+1
ℎ − 𝛹 𝑛

ℎ ,∇ ⋅ 𝐯ℎ) = −⟨𝛹 𝑛+1
𝑏 − 𝛹 𝑛

𝑏 , 𝐯ℎ ⋅ 𝐧⟩𝛤𝑛 ∀𝐯ℎ ∈ 𝐕ℎ,0,𝛤𝑑 , (2.12a)
(

∇ ⋅ 𝐮𝑛+1ℎ , 𝑤ℎ
)

= 0 ∀𝑤ℎ ∈ 𝑊ℎ. (2.12b)

• Update the pressure gradient: Find 𝐪𝑛+1ℎ ∈ (𝑊ℎ)𝑑 such that
(

𝐪𝑛+1ℎ , 𝝃ℎ
)

=
(

𝐪𝑛ℎ, 𝝃ℎ
)

−

(

𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ
𝛥𝑡

, 𝝃ℎ

)

∀𝝃ℎ ∈ (𝑊ℎ)𝑑 . (2.13)

• Go to the next time step.
4 
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Remark 2.1. The predictor problem (2.11) accounts for the viscous effects. It uses the pressure gradient 𝐪𝑛 computed at the
previous time step. The intermediate velocity 𝐮̃𝑛+1ℎ ∈ (𝑊ℎ)𝑑 computed after the predictor problem is discontinuous. The problem
also provides 𝐻(div)-conforming viscous pseudostress 𝝈𝑛+1

ℎ ∈ (𝐕ℎ)𝑑 .
The projection problem (2.12) computes the new pressure 𝛹 𝑛+1

ℎ ∈ 𝑊ℎ and corrects the velocity, resulting in 𝐻(div)-conforming
nd pointwise divergence free 𝐮𝑛+1ℎ ∈ 𝐕ℎ. In particular, due to (2.7), (2.12b) implies

∇ ⋅ 𝐮𝑛+1ℎ = 0. (2.14)

We note that for both the RT and BDM pairs, it holds that

𝐮𝑛+1ℎ ∈ (𝑊ℎ)𝑑 . (2.15)

The above property is true for the BDM pairs, since 𝐕ℎ and 𝑊ℎ contain polynomials of the same degree. It also holds for the RT
airs, due to (2.14) and [12, Corollary 2.3.1].

The update on 𝐪𝑛+1ℎ (2.13) provides an approximation of ∇𝛹 (𝑡𝑛+1), since, together with (2.15) and (2.12a), it implies

𝐪𝑛+1ℎ = 𝐪𝑛ℎ −
𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ

𝛥𝑡
≃ ∇𝛹 (𝑡𝑛) + ∇(𝛹 (𝑡𝑛+1) − 𝛹 (𝑡𝑛)

)

= ∇𝛹 (𝑡𝑛+1).

3. Stability and time discretization error analysis

In this section we establish unconditional stability and first order accuracy in time for the projection method (2.11)–(2.13). In
the analysis we focus on the case of homogeneous Dirichlet boundary conditions 𝐮 = 0 on 𝛤 . We will use the notation

𝐕0 = {𝐯 ∈ 𝐕 ∶ 𝐯 ⋅ 𝐧 = 0 on 𝜕 𝛺} .

In this case, in order to have uniqueness of the pressure 𝛹 , its space is restricted to
𝑊0 =

{

𝑤 ∈ 𝑊 ∶ ∫𝛺
𝑤 = 0

}

.

The corresponding mixed finite element spaces are denoted by 𝐕ℎ,0 and 𝑊ℎ,0. We note that for this choice of spaces, it holds that

∇ ⋅ 𝐕ℎ,0 = 𝑊ℎ,0. (3.1)

With this choice of boundary conditions, the algorithm (2.11)–(2.13) takes the form

• Predictor problem: Find 𝝈𝑛+1
ℎ ∈ (𝐕ℎ)𝑑 and 𝐮̃𝑛+1ℎ ∈ (𝑊ℎ)𝑑 , such that

(

𝜈−1𝝈𝑛+1
ℎ , 𝝉ℎ

)

−
(

𝐮̃𝑛+1ℎ ,∇ ⋅ 𝝉ℎ
)

= 0 ∀𝝉ℎ ∈ (𝐕ℎ)𝑑 , (3.2a)
(

𝐮̃𝑛+1ℎ − 𝐮𝑛ℎ
𝛥𝑡

, 𝝃𝒉

)

+
(

∇ ⋅ 𝝈𝑛+1
ℎ , 𝝃𝒉

)

+
(

𝐪𝑛ℎ, 𝝃𝒉
)

= 0 ∀𝝃𝒉 ∈ (𝑊ℎ)𝑑 . (3.2b)

• Projection problem: Find 𝐮𝑛+1ℎ ∈ 𝐕ℎ,0 and 𝛹 𝑛+1
ℎ ∈ 𝑊ℎ,0 such that

(𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ
𝛥𝑡

, 𝐯ℎ
)

− (𝛹 𝑛+1
ℎ − 𝛹 𝑛

ℎ ,∇ ⋅ 𝐯ℎ) = 0 ∀𝐯ℎ ∈ 𝐕ℎ,0, (3.3a)
(

∇ ⋅ 𝐮𝑛+1ℎ , 𝑤ℎ
)

= 0 ∀𝑤ℎ ∈ 𝑊ℎ,0. (3.3b)

• Update the pressure gradient: Find 𝐪𝑛+1ℎ ∈ (𝑊ℎ)𝑑 such that
(

𝐪𝑛+1ℎ , 𝝃ℎ
)

=
(

𝐪𝑛ℎ, 𝝃ℎ
)

−

(

𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ
𝛥𝑡

, 𝝃ℎ

)

∀𝝃ℎ ∈ (𝑊ℎ)𝑑 . (3.4)

Remark 3.1. Due to (3.1), (3.3b) implies that (2.14) still holds.

3.1. Stability analysis

In the analysis, we will utilize the algebraic identity

𝑎(𝑎 − 𝑏) = 1
2
(

𝑎2 − 𝑏2 + (𝑎 − 𝑏)2
)

. (3.5)

Let 𝐕0 = {𝐯 ∈ 𝐕 ∶ ∇ ⋅𝐯 = 0} denote the divergence-free subspace of 𝐕, with a similar notation for 𝐕0
ℎ and 𝐕0

ℎ,0. We have the following
seful orthogonality property.

Lemma 3.1. For 𝐪𝑛+1ℎ computed in (3.4), it holds that

(𝐪𝑛+1ℎ , 𝐯ℎ) = 0 ∀𝐯ℎ ∈ 𝐕0
ℎ,0. (3.6)
5 
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Proof. Recalling the argument for (2.15), we have that 𝐕0
ℎ ⊂ (𝑊ℎ)𝑑 , so we can test (3.4) with 𝝃ℎ = 𝐯ℎ ∈ 𝐕0

ℎ,0, which, together with
(3.3a), implies

(𝐪𝑛+1ℎ , 𝐯ℎ) = (𝐪𝑛ℎ, 𝐯ℎ) = ⋯ = (𝐪0ℎ, 𝐯ℎ) = (𝑄𝑑
ℎ ∇𝛹0, 𝐯ℎ) = (∇𝛹0, 𝐯ℎ) = −(𝛹0,∇ ⋅ 𝐯ℎ) + ⟨𝛹0, 𝐯ℎ ⋅ 𝐧⟩𝛤 = 0. □

We next establish a stability bound for the projection method.

Theorem 3.1. For the method (3.2)–(3.4), there exists a constant 𝐶 independent of 𝛥𝑡 and ℎ such that

𝛥𝑡
𝑁−1
∑

𝑛=0
𝜈−1‖𝝈𝑛+1

ℎ ‖

2 + 1
2
‖𝐮𝑁ℎ ‖

2 + 1
2

𝑁−1
∑

𝑛=0
‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2 + 𝛥𝑡2

2
‖𝐪𝑁ℎ ‖

2 ≤ 1
2
‖𝐮0ℎ‖

2 + 𝛥𝑡2

2
‖𝐪0ℎ‖

2. (3.7)

Proof. We start by taking test functions (𝝉ℎ, 𝝃ℎ) = (𝝈𝑛+1
ℎ , 𝐮̃𝑛+1ℎ ) in (3.2), combining the equations, using (3.5), and multiplying by

𝑡, to obtain

𝛥𝑡 𝜈−1‖𝝈𝑛+1
ℎ ‖

2 + 1
2
‖𝐮̃𝑛+1ℎ ‖

2 − 1
2
‖𝐮𝑛ℎ‖

2 + 1
2
‖𝐮̃𝑛+1ℎ − 𝐮𝑛ℎ‖

2 + 𝛥𝑡 (𝐪𝑛ℎ, 𝐮̃
𝑛+1
ℎ ) = 0. (3.8)

Next, we take 𝐯ℎ = 𝐮𝑛+1ℎ in (3.3a) and use (3.5) and (2.14) to obtain
1
2
‖𝐮𝑛+1ℎ ‖

2 − 1
2
‖𝐮̃𝑛+1ℎ ‖

2 + 1
2
‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2 = 0. (3.9)

Taking 𝝃ℎ = 𝐪𝑛+1ℎ , using (3.5) and multiplying by 𝛥𝑡2 results in
𝛥𝑡2

2
(

‖𝐪𝑛+1ℎ ‖

2 − ‖𝐪𝑛ℎ‖
2 + ‖𝐪𝑛+1ℎ − 𝐪𝑛ℎ‖

2) = −𝛥𝑡(𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ,𝐪𝑛+1ℎ ) = 𝛥𝑡(𝐮̃𝑛+1ℎ ,𝐪𝑛+1ℎ ), (3.10)

where we used (3.6) in the last equality. Summing (3.8)–(3.10), we obtain

𝛥𝑡 𝜈−1‖𝝈𝑛+1
ℎ ‖

2 + 1
2
(

‖𝐮𝑛+1ℎ ‖

2 − ‖𝐮𝑛ℎ‖
2) + 1

2
(

‖𝐮̃𝑛+1ℎ − 𝐮𝑛ℎ‖
2 + ‖𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ ‖

2)

+ 𝛥𝑡2

2
(

‖𝐪𝑛+1ℎ ‖

2 − ‖𝐪𝑛ℎ‖
2 + ‖𝐪𝑛+1ℎ − 𝐪𝑛ℎ‖

2) = 𝛥𝑡 (𝐪𝑛+1ℎ − 𝐪𝑛ℎ, 𝐮̃
𝑛+1
ℎ ). (3.11)

For the term on the right hand side above, using (3.6) and Young’s inequality 𝑎𝑏 ≤ 𝜖
2𝑎

2 + 1
2𝜖 𝑏

2 for any 𝜖 > 0, we write

𝛥𝑡 (𝐪𝑛+1ℎ − 𝐪𝑛ℎ, 𝐮̃
𝑛+1
ℎ ) = 𝛥𝑡 (𝐪𝑛+1ℎ − 𝐪𝑛ℎ, 𝐮̃

𝑛+1
ℎ − 𝐮𝑛ℎ) ≤

𝛥𝑡2

2
‖𝐪𝑛+1ℎ − 𝐪𝑛ℎ‖

2 + 1
2
‖𝐮̃𝑛+1ℎ − 𝐮𝑛ℎ‖

2. (3.12)

Bound (3.7) follows by combining (3.11)–(3.12) and summing over 𝑛 from 0 to 𝑁 − 1. □

3.2. Time discretization error analysis

In this section we establish a bound on the time discretization error in the projection method. For this purpose, we consider the
emi-discrete continuous-in-space formulation of the method (3.2)–(3.4) given below.

• Initialization: Let 𝐮0 = 𝐮0, 𝛹 0 = 𝛹0, 𝐪0 = ∇𝛹0.
For 𝑛 = 0,… , 𝑁 − 1:

• Predictor problem: Find 𝝈𝑛+1 ∈ (𝐕)𝑑 and 𝐮̃𝑛+1 ∈ (𝑊 )𝑑 , such that
(

𝜈−1𝝈𝑛+1, 𝝉
)

−
(

𝐮̃𝑛+1,∇ ⋅ 𝝉
)

= 0 ∀𝝉 ∈ (𝐕)𝑑 , (3.13a)
(

𝐮̃𝑛+1 − 𝐮𝑛
𝛥𝑡

, 𝝃
)

+
(

∇ ⋅ 𝝈𝑛+1, 𝝃
)

+ (𝐪𝑛, 𝝃) = 0 ∀𝝃 ∈ (𝑊 )𝑑 . (3.13b)

• Projection problem: Find 𝐮𝑛+1 ∈ 𝐕0 and 𝛹 𝑛+1 ∈ 𝑊0 such that
(

𝐮𝑛+1 − 𝐮̃𝑛+1
𝛥𝑡

, 𝐯
)

− (𝛹 𝑛+1 − 𝛹 𝑛,∇ ⋅ 𝐯) = 0 ∀𝐯 ∈ 𝐕0, (3.14a)
(

∇ ⋅ 𝐮𝑛+1, 𝑤)

= 0 ∀𝑤 ∈ 𝑊0. (3.14b)

• Update the pressure gradient: Find 𝐪𝑛+1 ∈ (𝑊 )𝑑 such that
(

𝐪𝑛+1, 𝝃
)

= (𝐪𝑛, 𝝃) −
(

𝐮𝑛+1 − 𝐮̃𝑛+1
𝛥𝑡

, 𝝃
)

∀𝝃 ∈ (𝑊 )𝑑 . (3.15)

As noted in Remark 3.1, (3.14b) implies that

∇ ⋅ 𝐮𝑛+1 = 0. (3.16)
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We next note that the solution to the model problem (2.1) with boundary condition 𝐮 = 0 on 𝛤 satisfies, for 𝑛 = 0,… , 𝑁 − 1,
(

𝜈−1𝝈(𝑡𝑛+1), 𝝉
)

−
(

𝐮(𝑡𝑛+1),∇ ⋅ 𝝉
)

= 0 ∀𝝉 ∈ (𝐕)𝑑 , (3.17)
(𝐮(𝑡𝑛+1) − 𝐮(𝑡𝑛)

𝛥𝑡
, 𝝃
)

+
(

∇ ⋅ 𝝈(𝑡𝑛+1), 𝝃
)

+
(

∇𝛹 (𝑡𝑛+1), 𝝃
)

= (𝑇𝑛+1(𝐮), 𝝃) ∀𝝃 ∈ (𝑊 )𝑑 , (3.18)

∇ ⋅ 𝐮(𝑡𝑛+1) = 0, (3.19)

where

𝑇𝑛+1(𝐮) =
𝐮(𝑡𝑛+1) − 𝐮(𝑡𝑛)

𝛥𝑡
− 𝜕𝐮

𝜕 𝑡 (𝑡𝑛+1).

Theorem 3.2. For the semi-discrete method (3.13)–(3.15), assuming that the true solution is sufficiently smooth in time, there exists a
onstant 𝐶 independent of 𝛥𝑡 such that

𝛥𝑡
𝑁−1
∑

𝑛=0
𝜈−1‖𝝈(𝑡𝑛+1) − 𝝈𝑛+1

‖

2 + ‖𝐮(𝑡𝑁 ) − 𝐮𝑁‖

2 + 𝛥𝑡2‖∇𝛹 (𝑡𝑁 ) − 𝐪𝑁‖

2 ≤ 𝐶 𝛥𝑡2. (3.20)

Proof. Let 𝑒𝑛𝝈 = 𝝈(𝑡𝑛) −𝝈𝑛, 𝑒𝑛𝐮̃ = 𝐮(𝑡𝑛) −𝐮̃𝑛, 𝑒𝑛𝐮 = 𝐮(𝑡𝑛) −𝐮𝑛, and 𝑒𝑛𝐪 = ∇𝛹 (𝑡𝑛) −𝐪𝑛. Subtracting (3.13a)–(3.13b), (3.16) from (3.17)–(3.19)
gives the error equations

(

𝜈−1𝑒𝑛+1𝝈 , 𝝉
)

−
(

𝑒𝑛+1𝐮̃ ,∇ ⋅ 𝝉
)

= 0 ∀𝝉 ∈ (𝐕)𝑑 , (3.21)
(

𝑒𝑛+1𝐮̃ − 𝑒𝑛𝐮
𝛥𝑡

, 𝝃

)

+
(

∇ ⋅ 𝑒𝑛+1𝝈 , 𝝃
)

+
(

𝑒𝑛𝐪, 𝝃
)

= (𝑇𝑛+1(𝐮), 𝝃) − (𝑆𝑛+1(∇𝛹 ), 𝝃) ∀𝝃 ∈ (𝑊 )𝑑 , (3.22)

∇ ⋅ 𝑒𝑛+1𝐮 = 0, (3.23)

where

𝑆𝑛+1(∇𝛹 ) = ∇𝛹 (𝑡𝑛+1) − ∇𝛹 (𝑡𝑛).

Taking (𝝉 , 𝝃) = (𝑒𝑛+1𝝈 , 𝑒𝑛+1𝐮̃ ) in (3.21)–(3.22), combining the equations, using (3.5), and multiplying by 𝛥𝑡, we obtain

𝛥𝑡 𝜈−1‖𝑒𝑛+1𝝈 ‖

2 + 1
2
‖𝑒𝑛+1𝐮̃ ‖

2 − 1
2
‖𝑒𝑛𝐮‖

2 + 1
2
‖𝑒𝑛+1𝐮̃ − 𝑒𝑛𝐮‖

2 + 𝛥𝑡 (𝑒𝑛𝐪, 𝑒𝑛+1𝐮̃ ) = 𝛥𝑡(𝑇𝑛+1(𝐮), 𝑒𝑛+1𝐮̃ ) − 𝛥𝑡(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐮̃ ). (3.24)

Next, we subtract and add 𝐮(𝑡𝑛+1) in (3.14a), take 𝐯 = 𝑒𝑛+1𝐮 , and use (3.23), to obtain

(𝑒𝑛+1𝐮 − 𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐮 ) = 𝛥𝑡(𝛹 𝑛+1 − 𝛹 𝑛,∇ ⋅ 𝑒𝑛+1𝐮 ) = 0,

which implies, using (3.5)
1
2
‖𝑒𝑛+1𝐮 ‖

2 − 1
2
‖𝑒𝑛+1𝐮̃ ‖

2 + 1
2
‖𝑒𝑛+1𝐮 − 𝑒𝑛+1𝐮̃ ‖

2 = 0. (3.25)

Next, subtracting and adding ∇𝛹 (𝑡𝑛+1), ∇𝛹 (𝑡𝑛), and 𝐮(𝑡𝑛+1) in (3.15), multiplying by 𝛥𝑡2, and taking 𝝃 = 𝑒𝑛+1𝐪 results in
𝛥𝑡2(𝑒𝑛+1𝐪 − 𝑒𝑛𝐪, 𝑒𝑛+1𝐪 ) + 𝛥𝑡(𝑒𝑛+1𝐮 − 𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 ) = 𝛥𝑡2(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐪 ). (3.26)

We observe that the argument for (3.6) implies

(𝐪𝑛, 𝐯) = 0 ∀𝐯 ∈ 𝐕0
0,

which, combined with

(∇𝛹 , 𝐯) = −(𝛹 ,∇ ⋅ 𝐯) + ⟨𝛹 , 𝐯 ⋅ 𝐧⟩𝛤 = 0 ∀𝐯 ∈ 𝐕0
0, (3.27)

implies

(𝑒𝑛𝐪, 𝐯) = 0 ∀𝐯 ∈ 𝐕0
0. (3.28)

Therefore, using that 𝑒𝑛+1𝐮 ∈ 𝐕0
0, cf. (3.23), (3.26) reduces to

𝛥𝑡2(𝑒𝑛+1𝐪 − 𝑒𝑛𝐪, 𝑒𝑛+1𝐪 ) − 𝛥𝑡(𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 ) = 𝛥𝑡2(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐪 ).

which, combined with (3.5), implies
𝛥𝑡2

2

(

‖𝑒𝑛+1𝐪 ‖

2 − ‖𝑒𝑛𝐪‖
2 + ‖𝑒𝑛+1𝐪 − 𝑒𝑛𝐪‖

2
)

− 𝛥𝑡(𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 ) = 𝛥𝑡2(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐪 ). (3.29)

The next step is to sum (3.24), (3.25), and (3.29). For the sum of the last terms on left hand sides of (3.24) and (3.29), using (3.28),
we write

− (𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 − 𝑒𝑛𝐪) = (𝑒𝑛𝐮 − 𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 − 𝑒𝑛𝐪). (3.30)
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Thus, summing (3.24), (3.25), and (3.29) and using (3.30) we arrive at

𝛥𝑡 𝜈−1‖𝑒𝑛+1𝝈 ‖

2 + 1
2
(

‖𝑒𝑛+1𝐮 ‖

2 − ‖𝑒𝑛𝐮‖
2 + ‖𝑒𝑛+1𝐮̃ − 𝑒𝑛𝐮‖

2 + ‖𝑒𝑛+1𝐮 − 𝑒𝑛+1𝐮̃ ‖

2) + 𝛥𝑡2

2

(

‖𝑒𝑛+1𝐪 ‖

2 − ‖𝑒𝑛𝐪‖
2 + ‖𝑒𝑛+1𝐪 − 𝑒𝑛𝐪‖

2
)

= −𝛥𝑡(𝑒𝑛𝐮 − 𝑒𝑛+1𝐮̃ , 𝑒𝑛+1𝐪 − 𝑒𝑛𝐪) + 𝛥𝑡(𝑇𝑛+1(𝐮), 𝑒𝑛+1𝐮̃ ) − 𝛥𝑡(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐮̃ ) + 𝛥𝑡2(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐪 ) =∶ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4. (3.31)

We proceed with bounding the four terms on the right hand side. For 𝐼1, using Young’s inequality, we have

|𝐼1| ≤
1
2
‖𝑒𝑛𝐮 − 𝑒𝑛+1𝐮̃ ‖

2 + 𝛥𝑡2

2
‖𝑒𝑛+1𝐪 − 𝑒𝑛𝐪‖

2. (3.32)

For 𝐼2, using Young’s inequality, we write

|𝐼2| = |𝛥𝑡(𝑇𝑛+1(𝐮), 𝑒𝑛+1𝐮̃ − 𝑒𝑛+1𝐮 ) + 𝛥𝑡(𝑇𝑛+1(𝐮), 𝑒𝑛+1𝐮 )| ≤ 𝛥𝑡2‖𝑇𝑛+1(𝐮)‖2 +
1
4
‖𝑒𝑛+1𝐮̃ − 𝑒𝑛+1𝐮 ‖

2 + 𝛥𝑡‖𝑇𝑛+1(𝐮)‖2 +
𝛥𝑡
4
‖𝑒𝑛+1𝐮 ‖

2. (3.33)

For 𝐼3, using (3.27) and (3.23), we have that (𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐮 ) = 0. Then, using Young’s inequality, we obtain

|𝐼3| = |𝛥𝑡(𝑆𝑛+1(∇𝛹 ), 𝑒𝑛+1𝐮̃ − 𝑒𝑛+1𝐮 )| ≤ 𝛥𝑡2‖𝑆𝑛+1(∇𝛹 )‖2 + 1
4
‖𝑒𝑛+1𝐮̃ − 𝑒𝑛+1𝐮 ‖

2. (3.34)

For 𝐼4, the use of Young’s inequality gives

|𝐼4| ≤ 𝛥𝑡‖𝑆𝑛+1(∇𝛹 )‖2 + 𝛥𝑡3

4
‖𝑒𝑛+1𝐪 ‖

2. (3.35)

Combining (3.31)–(3.35) gives

𝛥𝑡 𝜈−1‖𝑒𝑛+1𝝈 ‖

2 + 1
2
(

‖𝑒𝑛+1𝐮 ‖

2 − ‖𝑒𝑛𝐮‖
2) + 𝛥𝑡2

2

(

‖𝑒𝑛+1𝐪 ‖

2 − ‖𝑒𝑛𝐪‖
2
)

≤
(

𝛥𝑡2 + 𝛥𝑡
)

‖𝑇𝑛+1(𝐮)‖2 +
(

𝛥𝑡2 + 𝛥𝑡
)

‖𝑆𝑛+1(∇𝛹 )‖2 + 𝛥𝑡
4
‖𝑒𝑛+1𝐮 ‖

2 + 𝛥𝑡3

4
‖𝑒𝑛+1𝐪 ‖

2. (3.36)

It is straightforward to show for the time discretization and splitting errors that ‖𝑇𝑛+1(𝐮)‖ ≤ 𝐶 𝛥𝑡 and ‖𝑆𝑛+1(∇𝛹 )‖ ≤ 𝐶 𝛥𝑡, assuming
that the solution is smooth enough in time. Then (3.20) follows by summing (3.36) over 𝑛 from 0 to 𝑁 − 1, using that 𝑒0𝐮 = 0 and
𝑒0𝐪 = 0, and, assuming that 𝛥𝑡 ≤ 1, applying the discrete Gronwall inequality [38, Lemma 1.4.2] for the last two terms in (3.36). □

4. A second order multipoint flux mixed finite element method

We next describe our specific implementation of the mixed finite element projection method introduced in Section 2. It is based
on the next-to-the lowest order Raviart–Thomas spaces 𝑅𝑇1 on triangular grids [39], which results in a method with second order
accuracy in space. Moreover, we employ the multipoint flux mixed finite element methodology developed in [27] as a first order
method and extended in [35] to a second order method using the 𝑅𝑇1 spaces [39]. Applying a quadrature rule with nodes associated
with the degrees of freedom of 𝐕ℎ, we obtain mass lumping in both the predictor and projection problems. In the predictor problem,

e locally eliminate the viscous stress and solve a symmetric and positive definite system for each component of the predicted
elocity. In the projection problem, we locally eliminate the corrected velocity and we solve a symmetric and positive definite
ystem for the pressure. The viscous stress and corrected velocity are then easily computed by local postprocessing. The resulting
ethod is computationally very efficient. It provides a second order accurate 𝐻(div)-conforming velocity, which is linear on each

riangle and pointwise divergence free.

4.1. Mixed finite element spaces

We consider a partition 𝑇ℎ of the computational domain into non-overlapping triangles, where ℎ is the maximal element diameter.
et 𝐸̂ be the reference triangle with vertices 𝐫̂1 = (0, 0)𝑇 , 𝐫̂2 = (1, 0)𝑇 , and 𝐫̂3 = (0, 1)𝑇 . For any triangle 𝐸 ∈ 𝑇ℎ with counterclockwise

oriented vertices 𝐫𝑖, 𝑖 = 1, 2, 3, there exists a bijection linear mapping 𝐹𝐸 ∶ 𝐸̂ → 𝐸 such that 𝐹𝐸 (𝐫̂𝑖) = 𝐫𝑖, 𝑖 = 1, 2, 3, given by

𝐹𝐸 (𝐱̂) = 𝐫1 (1 − 𝑥̂ − 𝑦̂) + 𝐫2𝑥̂ + 𝐫3𝑦̂. (4.1)

We take the pair
{

𝐕ℎ ×𝑊ℎ
}

on 𝑇ℎ introduced in Section 2.2 to be the 𝑅𝑇1 spaces [39]. In the reference triangle 𝐸̂ these spaces are
efined as

𝐕(𝐸̂) = (

𝑃1(𝐸̂)
)2 + 𝐱𝑃1(𝐸̂), (4.2a)

𝑊 (𝐸̂) = 𝑃1(𝐸̂), (4.2b)

with 𝑃𝑘(𝐸̂) being the space of bivariate polynomials of degree ≤ 𝑘 on 𝐸̂. The dimension of 𝐕1(𝐸̂) is 8. On any triangle, we can take
two normal component degrees of freedom (DOFs) associated with each edge and two DOFs associated with the vector at the center
of mass [12]. On the reference triangle, we denote the center of mass as 𝐫̂4 = (1∕3, 1∕3)𝑇 . We choose the two DOFs associated to
each edge 𝑒 be the values of 𝐯 ⋅ 𝐧 at the two vertices of the edge [27]. This will allow us, through the use of a quadrature rule,
to localize the interaction of the edge DOFs around mesh vertices. For 𝑘 = 1, 2, 3, let 𝐧̂𝑘,𝑙, 𝑙 = 1, 2, denote the outward unit normal
vector to the two edges that share vertex 𝐫̂𝑘. For the center of mass 𝐫̂4, let 𝐧̂4,1 = (1 0)𝑇 and 𝐧̂4,2 = (0 1)𝑇 , see Fig. 1(a). For each of
he points 𝐫̂𝑖, 𝑖 = 1,… , 4, the two associated 𝑅𝑇1 basis functions 𝐯̂𝑖,𝑗 , 𝑗 = 1, 2, are defined by setting
𝐯̂𝑖,𝑗 (𝐫̂𝑘) ⋅ 𝐧̂𝑘,𝑙 = 𝛿𝑖𝑘𝛿𝑗 𝑙 , 𝑖, 𝑘 = 1,… , 4, 𝑗 , 𝑙 = 1, 2, (4.3)
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Fig. 1. Degrees of freedom of 𝐕(𝐸̂) and the associated basis functions.

where 𝛿𝛼 𝛽 = 1 if 𝛼 = 𝛽, 𝛿𝛼 𝛽 = 0 if 𝛼 ≠ 𝛽. The basis functions are listed in Fig. 1(b), see also [35], where in the second and third
column of the table we give their 𝑥 and 𝑦 components.

The 𝑅𝑇1 spaces on any element 𝐸 ∈ 𝑇ℎ are defined via the transformations

𝐯 ⟷ 𝐯̂ ∶ 𝐯 = 1
|

|

𝐉𝐸 ||
𝐉𝐸 𝐯̂, (4.4a)

𝑤 ⟷ 𝑤̂ ∶ 𝑤 = 𝑤̂, (4.4b)

where (4.4a) is known as the Piola transformation. Here 𝐉𝐸 =
[

𝐫21, 𝐫31
]

is the Jacobian matrix associated with the mapping (4.1),
with 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 . The determinant of the Jacobian matrix is |

|

𝐉𝐸 || = 2 |𝐸|, and |𝐸| is the area of triangle 𝐸. The Piola transformation
has the properties [12]

∇ ⋅ 𝐯 = 1
|

|

𝐉𝐸 ||
∇𝐱̂ ⋅ 𝐯̂, 𝐯 ⋅ 𝐧𝑒 =

1
|𝑒|

𝐯̂ ⋅ 𝐧̂𝑒, (4.5)

where 𝐹𝐸 ∶ 𝑒 → 𝑒, 𝐧𝑒 and 𝐧̂𝑒 are the unit normal vectors on the edges 𝑒 and 𝑒, respectively, and |𝑒| is the length of 𝑒. Since the Piola
ransformation preserves the normal components of the vector, it is suitable to enforce the continuity of 𝐯 ⋅𝐧 across any edge 𝑒 [12].

The 𝑅𝑇1 spaces are defined on 𝑇ℎ as

𝐕ℎ =
{

𝐯 ∈ 𝐕 ∶ 𝐯|𝐸 ⟷ 𝐯̂, 𝐯̂ ∈ 𝐕̂(𝐸̂) ∀𝐸 ∈ 𝑇ℎ
}

, (4.6a)

𝑊ℎ =
{

𝑤 ∈ 𝑊 ∶ 𝑤|𝐸 ⟷ 𝑤̂, 𝑤̂ ∈ 𝑊̂ (𝐸̂) ∀𝐸 ∈ 𝑇ℎ
}

, (4.6b)

where the transformations 𝐯 ⟷ 𝐯̂ and 𝑤 ⟷ 𝑤̂ are defined in (4.4). In Fig. 2 we show the mapping 𝐹𝐸 ∶ 𝐸̂ → 𝐸 with the DOFs
of the 𝑅𝑇1 spaces, where the DOFs for 𝑊ℎ, which is discontinuous piecewise linear, are the values at any three points within an
element 𝐸.

4.2. The quadrature rule

Given any pair of vector functions 𝐬, 𝐯 ∈ 𝐕ℎ, we define the quadrature rule

(𝐬, 𝐯)𝑄 =
∑

𝐸∈𝑇ℎ

(𝐬, 𝐯)𝑄,𝐸 =
∑

𝐸∈𝑇ℎ

|𝐸|

4
∑

𝑖=1
𝜔𝑖 𝐬

(

𝐫𝑖
)

⋅ 𝐯
(

𝐫𝑖
)

, (4.7)

where the quadrature weights are 𝜔𝑖 = 1∕12, 𝑖 = 1, 2, 3, and 𝜔4 = 3∕4. This quadrature rule is proposed in [35] and it is second
rder accurate. The vertex vector 𝐯(𝐫𝑖), 𝑖 = 1, 2, 3, can be uniquely obtained from the degrees of freedom 𝐯(𝐫𝑖) ⋅ 𝐧𝑖,1 and 𝐯(𝐫𝑖) ⋅ 𝐧𝑖,2,
.e., its normal components to the two edges sharing vertex 𝐫𝑖. Similarly, the vector at the center of mass 𝐫4 can be obtained from
he degrees of freedom 𝐯(𝐫4) ⋅ 𝐧4,1 and 𝐯(𝐫4) ⋅ 𝐧4,2.

We apply the quadrature rule to the bilinear form (𝜈−1𝝈𝑛+1
ℎ , 𝝉ℎ) in (2.11a) in the prediction problem, and to the bilinear form

𝐮𝑛+1ℎ −𝐮̃𝑛+1ℎ
𝛥𝑡 , 𝐯ℎ

)

in (2.12a) in the projection problem. Since the quadrature rule (4.7) couples only the two basis functions associated

with the quadrature point 𝐫𝑖, see [27] for more details, the viscous stress 𝝈𝑛+1
𝑥(𝑦),ℎ and the velocity 𝐮𝑛+1ℎ can be locally eliminated,

esulting in symmetric and positive definite systems for 𝐮̃𝑘+1ℎ in (2.11) and 𝛹 𝑛+1
ℎ in (2.12), respectively.

4.3. Predictor problem

We solve separately for the 𝑥 and 𝑦 components of (2.11). Let 𝝈𝑛+1
𝑥,ℎ and 𝝈𝑛+1

𝑦,ℎ denote the first and second rows of 𝝈𝑛+1
ℎ , respectively.

Let 𝑢̃𝑛+1𝑥,ℎ and 𝑢̃𝑛+1𝑦,ℎ denote the 𝑥 and 𝑦 components of 𝐮̃𝑛+1ℎ , with a similar notation for 𝑞𝑛𝑥,ℎ and 𝑞𝑛𝑦,ℎ. For the boundary data, let
𝜮 = (𝛴 , 𝛴 )𝑇 and 𝐮 = (𝑢 , 𝑢 )𝑇 . For brevity, we present our method only for the 𝑥-component.
𝑏 𝑥,𝑏 𝑦,𝑏 𝑏 𝑥,𝑏 𝑦,𝑏
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Fig. 2. Mapping from the reference triangle 𝐸̂ to a computational triangle E with DOFs of 𝑅𝑇1 in 𝐸̂ and E.

Fig. 3. Interaction of the DOFs of 𝝈𝑛+1
𝑥,ℎ for a vertex (left) and a center of mass (center). Stencil of the reduced system for 𝐮̃𝑛+1ℎ (right).

With the quadrature rule introduced in (4.7), the 𝑥-component of problem (2.11) becomes: find 𝝈𝑛+1
𝑥,ℎ ∈ 𝐕ℎ ∶ 𝝈𝑛+1

𝑥,ℎ ⋅ 𝐧 =
𝑄𝛤

ℎ (𝛴
𝑛+1
𝑥,𝑏 − 𝛹 𝑛

𝑏 𝑛𝑥) on 𝛤𝑛 and 𝑢̃𝑛+1𝑥,ℎ ∈ 𝑊ℎ, such that
(

𝜈−1𝝈𝑛+1
𝑥,ℎ , 𝝉ℎ

)

𝑄
−
(

𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉ℎ
)

= −⟨𝑢𝑛+1𝑥,𝑏 , 𝝉ℎ ⋅ 𝐧⟩𝛤𝑑 ∀𝝉ℎ ∈ 𝐕ℎ,0,𝛤𝑛 , (4.8a)
(

𝑢̃𝑛+1𝑥,ℎ − 𝑢𝑛𝑥,ℎ
𝛥𝑡

, 𝜉ℎ
)

+
(

∇ ⋅ 𝝈𝑛+1
𝑥,ℎ , 𝜉ℎ

)

+
(

𝑞𝑛𝑥,ℎ, 𝜉ℎ
)

= 0 ∀𝜉ℎ ∈ 𝑊ℎ. (4.8b)

4.3.1. Local stress elimination in the predictor problem
In this subsection we describe the local elimination of the viscous stress 𝝈𝑛+1

𝑥,ℎ in the predictor problem (4.8) in terms of the
𝑥-velocity 𝑢̃𝑛+1𝑥 .

4.3.1.1. The case of any vertex. Consider first an interior vertex 𝐫 shared by  edges and  elements, see Fig. 3 (left), where  = 5.
Let 𝐸𝑖 and 𝑒𝑖, 𝑖 = 1,… ,, be, respectively, the elements and edges sharing 𝐫. Let 𝝉 𝑖 ∈ 𝐕ℎ be the basis functions on the edges 𝑒𝑖
ssociated with vertex 𝐫, and let 𝜎𝑛+1𝑥,𝑖 be the associated DOFs of 𝝈𝑛+1

𝑥,ℎ .
Thanks to the properties of the quadrature rule discussed in Section 4.2, the bilinear form

(

𝜈−1⋅, ⋅
)

𝑄 localizes the interactions of
he DOFs of 𝝈𝑛+1

𝑥,ℎ . For example, taking 𝝉ℎ = 𝝉1 in (4.8a) couples 𝜎𝑛+1𝑥,1 only with 𝜎𝑛+1𝑥,2 and 𝜎𝑛+1𝑥,5 . In a similar way, 𝜎𝑛+1𝑥,2 is coupled
only with 𝜎𝑛+1𝑥,1 and 𝜎𝑛+1𝑥,3 , and so on. Therefore, taking 𝝉ℎ = 𝝉1,… , 𝝉 in (4.8a) results in a  ×  local linear system for the 𝜎𝑛+1𝑥,𝑖
unknowns, 𝑖 = 1,… ,:

𝑖+1
∑

𝜎𝑛+1𝑥,𝑗

(

(𝜈−1𝝉𝑗 , 𝝉 𝑖)𝑄,𝐸𝑖
+ (𝜈−1𝝉𝑗 , 𝝉 𝑖)𝑄,𝐸𝑖+1

)

= (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖)𝐸𝑖
+ (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖)𝐸𝑖+1

, 𝑖 = 1,… ,, (4.9)

𝑗=𝑖−1
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where we set 𝑖 − 1 ∶=  for 𝑖 = 1 and 𝑖 + 1 ∶= 1 for 𝑖 = .
We apply a 3-point Gaussian integration rule to compute (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉ℎ)𝐸 . It is exact for quadratic functions, and therefore it is

exact for (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉ℎ)𝐸 , since 𝑢̃𝑛+1𝑥,ℎ ∈ 𝑃1 (𝐸) and ∇ ⋅ 𝝉ℎ ∈ 𝑃1 (𝐸).
We write the local linear system (4.9) in a matrix–vector form as

𝐀Σ𝑥 = 𝐁𝑇𝐔𝑥, (4.10)

where

• 𝐀 is a ( ×) matrix with coefficients 𝐴𝑖,𝑗 =
(

𝜈−1𝝉𝑗 , 𝝉 𝑖
)

𝑄, 𝑖, 𝑗 = 1,… ,,
• Σ𝑥 is a ( × 1) vector with coefficients 𝜎𝑛+1𝑥,𝑖 , 𝑖 = 1,… ,,
• 𝐁𝑇 is a ( × 3) matrix, whose coefficients come from (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖)𝐸𝑖

+ (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖)𝐸𝑖+1
, 𝑖 = 1,… ,,

• 𝐔𝑥 is a (3 × 1) vector, whose coefficients are the three degrees of freedom of 𝑢̃𝑛+1𝑥,ℎ within each triangle 𝐸𝑖, 𝑖 = 1,… ,.

The ( ×) matrix 𝐀 is symmetric and positive definite, see [27], and therefore the local system (4.10) is solvable, which allows
us to express the  normal components of the viscous stress DOFs 𝜎𝑛+1𝑥,𝑖 , 𝑖 = 1,… , that share vertex 𝐫 in terms of the 3 DOFs of
̃𝑛+1𝑥,ℎ on the  triangles that share vertex 𝐫.

Next, consider a boundary vertex 𝐫. In this case the number of triangles that share it is − 1, so 𝐁𝑇 is a ( × 3( − 1)) matrix and
𝑥 is a (3( − 1) × 1) vector. If 𝐫 is on 𝛤 𝑑 , according to (4.8a), in the local system (4.10) we also have the contribution −⟨𝑢𝑛+1𝑥,𝑏 , 𝝉ℎ⋅𝐧⟩𝛤𝑑 .

This is computed by numerical integration over the boundary edge(s) 𝑒𝑖 on 𝛤𝑑 that share 𝐫 and system (4.8) changes accordingly to
𝐀Σ𝑥 = 𝐁𝑇𝐔𝑥 +𝐆𝑑 ,𝑥, (4.11)

where 𝐆𝑑 ,𝑥 is a ( × 1) vector with nonzero coefficients only for the rows corresponding to the boundary edge(s) on 𝛤𝑑 sharing 𝐫. If
is a boundary vertex on 𝛤 𝑛, then the system (4.8) is modified accordingly to incorporate the essential stress boundary condition,

resulting in a system of type

𝐀̃Σ𝑥 = 𝐁̃𝑇𝐔𝑥 +𝐆𝑛,𝑥, (4.12)

where 𝐆𝑛,𝑥 is a ( × 1) vector.

4.3.1.2. The case of any center of mass. We now consider any center of mass 𝐫 in triangle E, see Fig. 3 (center). Let 𝝉 𝑖 ∈ 𝐕ℎ, 𝑖 = 1, 2,
be the basis functions of 𝝈𝑛+1

𝑥,ℎ associated with 𝐫. Let 𝜎𝑛+1𝑥,1 and 𝜎𝑛+1𝑥,2 be the two DOFs of 𝝈𝑛+1
𝑥,ℎ associated with 𝐫, see (4.3). Let 𝑢̃𝑛+1𝑥,𝑙 ,

𝑙 = 1,… , 3, be the three DOFs of 𝑢̃𝑛𝑥,ℎ in 𝐸. We recall that, due to the localization property of the quadrature rule
(

𝜈−1⋅, ⋅
)

𝑄, 𝜎𝑛+1𝑥,1
and 𝜎𝑛+1𝑥,2 are coupled only with each other. Therefore, taking 𝝉ℎ = 𝝉1 and 𝝉 = 𝝉2 in (4.8a), we obtain a 2 × 2 linear system for 𝜎𝑛+1𝑥,1
and 𝜎𝑛+1𝑥,2 :

∑

𝑗=1,2
𝜎𝑛+1𝑥,𝑗

(

𝜈−1𝝉𝑗 , 𝝉 𝑖
)

𝑄,𝐸 =
(

𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖
)

𝐸
𝑖 = 1, 2. (4.13)

We write the local linear system in a matrix–vector form as 𝐀Σ𝑥 = 𝐁𝑇𝐔𝑥, where

• 𝐀 is a (2 × 2) matrix with coefficients 𝐴𝑖,𝑗 =
(

𝜈−1𝝉𝑗 , 𝝉 𝑖
)

𝑄, 𝑖, 𝑗 = 1, 2,
• Σ𝑥 is a (2 × 1) vector with coefficients 𝜎𝑛+1𝑥,𝑖 , 𝑖 = 1, 2,
• 𝐁𝑇 is a (2 × 3) matrix, whose coefficients come from (𝑢̃𝑛+1𝑥,ℎ ,∇ ⋅ 𝝉 𝑖)𝐸 , 𝑖 = 1, 2,
• 𝐔𝑥 is a (3 × 1) vector, whose coefficients are the velocity components 𝑢̃𝑛+1𝑥,𝑙 , 𝑙 = 1,… , 3.

As in the case of a vertex, the matrix 𝐀 is symmetric and positive definite. Solving the 2 × 2 system allows to express the two
tress DOFs 𝜎𝑛+1𝑥,1 and 𝜎𝑛+1𝑥,2 that share 𝐫 in terms of the three velocity DOFs on 𝐸, 𝑢̃𝑛+1𝑥,𝑙 , 𝑙 = 1,… , 3.

4.3.2. Reduction of the predictor problem to a system for 𝑢̃𝑥 and its solution
With the local stress elimination presented in Section 4.3.1, the MFMFE method in the predictor problem can be reduced to a

system for 𝑢̃𝑛+1𝑥,ℎ with three DOFs per element. We briefly describe this procedure. The algebraic system arising from (4.8) is
(

A − B𝑇

B D

) (
𝛴𝑥
U𝑥

)

=
(

G𝑥
Q𝑥 + F𝑥

)

, (4.14)

where

• A is a (K × K) block diagonal matrix, with K = 2 ×S𝑇 + 2 ×𝑁𝑇 , S𝑇 is the total number of the edges and 𝑁𝑇 is the total number
of triangles, as specified in Section 2, which is obtained by assembling the local block matrices 𝐀, described in 4.3.1.1 and
4.3.1.2,

• 𝛴𝑥 is a (K × 1) vector with coefficients the DOFs of 𝝈𝑛+1
𝑥,ℎ , given by assembling the local vectors Σ𝑥, defined in 4.3.1.1 and

4.3.1.2,
• B𝑇 is a (

K × 3𝑁𝑇
)

matrix, given by assembling the block local matrices 𝐁𝑇 , defined in 4.3.1.1 and 4.3.1.2,
• D is a (

3𝑁 × 3𝑁 )

block diagonal matrix, with blocks associated with 1
(

𝑢̃𝑛+1, 𝜉
)

,
𝑇 𝑇 𝛥𝑡 𝑥,ℎ ℎ 𝐸

11 
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• U𝑥 is a (

3𝑁𝑇 × 1) vector with coefficients the DOFs of 𝑢̃𝑛+1𝑥,ℎ ,
• G𝑥 is a (K × 1) vector, given by assembling the local vectors 𝐆𝑑 ,𝑥 and 𝐆𝑛,𝑥, defined in 4.3.1.1,
• Q𝑥 and F𝑥 are

(

3𝑁𝑇 × 1) vectors corresponding to −
(

𝑞𝑛𝑥,ℎ, 𝜉ℎ
)

and 1
𝛥𝑡

(

𝑢𝑛𝑥,ℎ, 𝜉ℎ
)

, respectively.

Remark 4.1. Similarly to the integrals in B, we use a 3-point Gaussian quadrature rule for computing the integrals in D, Q𝑥,
nd F𝑥. All components in the associated bilinear forms are linear, recall (2.15), thus the integrands are quadratic. Therefore the

computation of all integrals is exact.

The stress unknown 𝛴𝑥 in (4.14) can be eliminated by inverting the matrix A, which involves solving small local systems
ssociated with the diagonal blocks of A, as described in 4.3.1.1 and 4.3.1.2. This leads to a (

3𝑁𝑇 × 3𝑁𝑇
)

system for U𝑥:
(

D + B A−1 B𝑇 )U𝑥 = Q𝑥 + F𝑥 + BA−1G𝑥, (4.15)

where the three DOFs of 𝑢̃𝑛+1𝑥,ℎ within each triangle 𝐸 are coupled with the three DOFs of all triangles that share a vertex with 𝐸,
see Fig. 3 (right).

The matrix in (4.15) is symmetric and positive definite [27]. The system is solved applying a preconditioned conjugate gradient
method with incomplete Cholesky factorization [40], resulting in a very efficient and fast procedure. The coefficients of the system
matrix depend only on geometrical quantities, as well as on the fluid viscosity 𝜈 and the time step size 𝛥𝑡. Therefore the matrix is
factorized only once, before the beginning of the time loop, saving a lot of computational effort.

We proceed in the same way along the 𝑦 direction, solving a system with the same matrix in (4.15).
At the end of the predictor problem we obtain the predicted velocity vector 𝐮̃𝑛+1ℎ |𝐸 ∈ (𝑃1(𝐸))2. The normal flux continuity at the

element interfaces is lost.

4.4. Computation of 𝛹 𝑛+1
𝑏 on 𝛤𝑛

We compute the kinematic pressure 𝛹 𝑛+1
𝑏 on any edge 𝑒 ∈ 𝛤𝑛 as

𝛹 𝑛+1
𝑏 |𝑒 =

(

𝜮𝑛+1
𝑏 |𝑒 + 𝜈∇𝐮̃𝑛+1ℎ |𝑒 𝐧

)

⋅ 𝐧,

where the tensor ∇𝐮̃𝑛+1ℎ is computed on the element 𝐸 with edge 𝑒. We note that, since 𝐮̃𝑛+1ℎ ∈ (𝑃1(𝐸))2, ∇𝐮̃𝑛+1ℎ is constant on 𝐸.

4.5. Projection problem

Using the quadrature rule in (4.7), the discrete variational formulation of the projection problem in (2.12) is: find 𝐮𝑛+1ℎ ∈ 𝐕ℎ ∶
𝐮𝑛+1ℎ ⋅ 𝐧 = 𝑄𝛤

ℎ
(

𝐮𝑏 ⋅ 𝐧
)

on 𝛤𝑑 and 𝛹 𝑛+1
ℎ ∈ 𝑊ℎ such that

(𝐮𝑛+1ℎ − 𝐮̃𝑛+1ℎ
𝛥𝑡

, 𝐯ℎ
)

𝑄
− (𝛹 𝑛+1

ℎ − 𝛹 𝑛
ℎ ,∇ ⋅ 𝐯ℎ) = −⟨𝛹 𝑛+1

𝑏 − 𝛹 𝑛
𝑏 , 𝐯ℎ ⋅ 𝐧⟩𝛤𝑛 ∀𝐯ℎ ∈ 𝐕ℎ,0,𝛤𝑑 ,

(

∇ ⋅ 𝐮𝑛+1ℎ , 𝑤ℎ
)

= 0 ∀𝑤ℎ ∈ 𝑊ℎ.

The method is the same as the predictor problem method for 𝝈𝑛+1
𝑥,ℎ ∈ 𝐕ℎ and 𝑢̃𝑛+1𝑥,ℎ ∈ 𝑊ℎ in (4.8). We apply the same local elimination

rocedure as described in Sections 4.3.1 and 4.3.2, this time for the velocity 𝐮𝑛+1ℎ , which results in a symmetric and positive system
for 𝛹 𝑛+1

ℎ of type (4.15), where the three DOFs of 𝛹 𝑛+1
ℎ within each triangle 𝐸 are coupled with the three DOFs of all triangles that

share a vertex with 𝐸. After solving the system, the velocity 𝐮𝑛+1ℎ is easily recovered by local postprocessing.

4.6. Pressure gradient upgrade

The last step is the pressure gradient update (2.13). Since 𝐪𝑛+1ℎ and the test function 𝝃ℎ are in the same discrete space (𝑊ℎ)𝑑 ,
this involves a simple update of the DOFs of 𝐪𝑛+1ℎ . In particular, for any degree of freedom point 𝐫,

𝐪𝑛+1ℎ (𝐫) = 𝐪𝑛ℎ(𝐫) −
𝐮𝑛+1ℎ (𝐫) − 𝐮̃𝑛+1ℎ (𝐫)

𝛥𝑡
.

Remark 4.2. The method presented above requires solving at each time step three symmetric positive definite systems, two for the
components of the predicted velocity in the predictor step, and one for the pressure in the projection step. Due to the local elimination
of the viscous stress and the corrected velocity, the systems have only three unknowns per element, which is a significant reduction
from the original saddle point systems. The resulting algorithm is computationally very efficient and obtains exactly divergence free
velocity.
12 
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Fig. 4. Test 1. Coarse computational grids and BCs: MDG and BCs scenario 1 (left), BDG and BCs scenario 2 (center). Right: Zoom of the BDG at the 5th
refinement level.

5. Numerical tests

We present four tests to illustrate the behavior of the presented method. In the first test we study the convergence order in both
space and time, under different boundary conditions (BCs) settings, considering both mildly and strongly distorted computational
grids. The second test deals with the lid-driven cavity problem for several scenarios of the assigned BCs, where we compare our
results with a solution provided in the recent literature. In the third test, we simulate Stokes flows in a confined channel with a
variable geometry and compare the results with reference literature solutions obtained by applying the lubrication theory. In the last
test, we investigate the capabilities of the proposed method in a ‘‘real-world’’ application with a strongly irregular computational
domain.

The computational grids of the presented tests have been created by the open-source software Netgen [41]. An in-house code
has been used to implement the method, and the open-source software Paraview [42] has been used to visualize the results.

The problems presented in tests 2–4 are made dimensionless using the scales for length and velocity equal to the characteristic
size of the domain and velocity, 𝐿0 and 𝑈0, respectively, and adopting the scales for kinematic pressure 𝛹0 and time 𝑇0 as

𝛹0 =
𝜈 𝑈0
𝐿0

, 𝑇0 =
𝐿2
0
𝜈
. (5.1)

These scales are specified for each test in its corresponding section.

5.1. Test 1: convergence order in space and time

We consider the (dimensionless) square domain [−0.5, 0.5] × [−0.5, 0.5] and the analytical (dimensionless) solution

𝑢𝑥 = − cos(𝑥) sin(𝑦) sin(2𝜋 𝑡)2, (5.2a)

𝑢𝑦 = − sin(𝑥) cos(𝑦) sin(2𝜋 𝑡)2, (5.2b)

𝛹 =
cos(2𝑥) + cos(2𝑦)

4
sin(2𝜋 𝑡)2. (5.2c)

The kinematic fluid viscosity is assumed to be 1. We consider the coarse mildly and badly distorted grids shown in Fig. 4,
denoted by MDG and BDG, respectively. MDG has 85 vertices and 136 triangles, while BDG has 81 vertices and 128 triangles. For
any triangle 𝐸 of the grids, we consider the dimensionless quantity 𝐴𝑟,

𝐴𝑟 =
ℎ𝑚𝑖𝑛
𝐿𝑚𝑎𝑥

2
√

3
,

where ℎ𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 are the minimum value of the heights and the maximum value of the lengths of 𝐸, respectively, ℎ𝑚𝑖𝑛
𝐿𝑚𝑎𝑥

is the

aspect ratio of 𝐸, and
√

3
2 is the aspect ratio of the equilateral triangle. The number 𝐴𝑟, which is in the range [0, 1], represents the

deviation of the aspect ratio of 𝐸 from the ideal value of an equilateral triangle. Dividing the interval [0, 1] into 19 sub-intervals
with equal length, Fig. 5 shows the number of triangles of MDG and BDG falling within each of the sub-intervals. As expected, for
the MDG, the number of triangles is higher for the sub-ranges with higher values of 𝐴𝑟, compared to the BDG. The minimum values
of 𝐴𝑟 are 0.36 and 0.21 for MDG and BDG, respectively.

Starting from the coarse MDG and BDG, we operate five refinements by halving each edge. At each grid refinement, the number
of triangles within each aspect ratio sub-interval in Fig. 5 is multiplied by four. Below, the coarsest MDG and BDG are denoted as
‘‘refinement level 0’’.

We consider two sets of BCs as depicted in Fig. 4. In the first case, there are alternating sections of 𝛤𝑑 and 𝛤𝑛, while in the second
case only one boundary edge is on 𝛤 . Below, the two cases are denoted as ‘‘BCs scenario 1’’ and ‘‘BCs scenario 2’’, respectively. The
𝑛

13 
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Fig. 5. Test 1. Number of triangles of the coarse MDG and BDG falling in each sub-range of the interval [0, 1].

Table 1
Test 1. 𝐿2-norms of errors and convergence orders in space: MDG, BCs scenario 1.
Ref. level 𝑙 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹ℎ 𝑟𝑢𝑥ℎ 𝑟𝑢𝑦ℎ
0 1.142E−02 2.996E−04 2.972E−04
1 2.865E−03 7.606E−05 7.582E−05 1.995E+00 1.978E+00 1.971E+00
2 7.187E−04 1.923E−05 1.909E−05 1.995E+00 1.984E+00 1.990E+00
3 1.796E−04 4.831E−06 4.802E−06 2.000E+00 1.993E+00 1.991E+00
4 4.505E−05 1.212E−06 1.204E−06 1.995E+00 1.995E+00 1.995E+00
5 1.148E−05 3.106E−07 3.087E−07 1.972E+00 1.964E+00 1.964E+00

second case is a way to implement full Dirichlet boundary condition, where the pressure is fixed at one edge to ensure uniqueness
of the solution.

To analyze the convergence order in space, we choose a small (dimensionless) time step size, 𝛥𝑡 = 1 ⋅ 10−4, and for each grid
refinement level we compute the 𝐿2-norms of the errors of the velocity components and kinematic pressure as

𝐿𝑞
2 = max

1≤𝑛≤𝑁
‖𝑞(𝑡𝑛) − 𝑞𝑛ℎ‖, 𝑞 = 𝑢𝑥, 𝑢𝑦, 𝛹 . (5.3)

Let ℎ𝑙 be the grid size of the 𝑙th refinement level. If we assume that the error of variable 𝑞 associated with the 𝑙th grid refinement
level is 𝑒𝑟𝑟𝑞𝑙 ∼ ℎ

𝑟𝑞ℎ
𝑙 , the associated rate of convergence 𝑟𝑞ℎ is obtained by comparing the errors of the two consecutive refinement level

grids with sizes ℎ𝑙−1 and ℎ𝑙:

𝑟𝑞ℎ =
log

(

𝑒𝑟𝑟𝑞𝑙−1
𝑒𝑟𝑟𝑞𝑙

)

log
(

ℎ𝑙−1
ℎ𝑙

) .

In Tables 1–4 we list the 𝐿2 norms of the errors and the associated convergence order. The values of the errors obtained for the
MDG are similar for the two scenarios of BCs. As expected, 𝐿𝑢𝑥

2 and 𝐿
𝑢𝑦
2 are slightly smaller for BCs scenario 2, where all but one

of the boundary edges are on 𝛤𝑑 , while 𝐿𝛹
2 is slightly higher in BCs scenario 2 than in BCs scenario 1. The convergence order is

2 both all three variables, 𝐿𝛹
2 and 𝐿𝑢𝑥

2 and 𝐿
𝑢𝑦
2 , see Tables 1–2. The errors on the BDG, reported in Tables 3–4, are generally 2

orders of magnitude higher than on the MDG. The order of convergence for the pressure is 2 and it is just below 2 for the velocity
components on the finest grid levels.

To study the convergence order in time, we use the finest grid (5-th refinement level) and a (dimensionless) time step size 𝛥𝑡 in
the range

[

1 ⋅ 10−1, 1 ⋅ 10−4
]

. Again, we compute the 𝐿2-norms of the errors as in (5.3), and the convergence rates as

𝑟𝑞𝛥𝑡 =
log

(

𝑒𝑟𝑟𝑞𝑙−1
𝑒𝑟𝑟𝑞𝑙

)

log
(

𝛥𝑡𝑙−1
𝛥𝑡𝑙

) ,

where 𝛥𝑡𝑙−1 and 𝛥𝑡𝑙 are two consecutive values of the time step size in the selected range. Tables 5–8 show the computed errors and
convergence rates. The convergence rate is 1 for all variables, with slightly higher errors on the MDG. These results are consistent
with the theoretical first order convergence for the time discretization error established in Theorem 3.2. In addition, the results from
all tables illustrate the unconditional in time and space stability of the method established in Theorem 3.1, as well as its robustness
for highly distorted grids.
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Table 2
Test 1. 𝐿2-norms of errors and convergence orders in space: MDG, BCs scenario 2.
Ref. level 𝑙 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹ℎ 𝑟𝑢𝑥ℎ 𝑟𝑢𝑦ℎ
0 1.188E−02 2.402E−04 2.546E−04
1 2.981E−03 6.137E−05 6.518E−05 1.995E+00 1.970E+00 1.966E+00
2 7.457E−04 1.547E−05 1.631E−05 1.999E+00 1.992E+00 1.998E+00
3 1.861E−04 3.867E−06 4.092E−06 1.999E+00 1.994E+00 1.994E+00
4 4.659E−05 9.662E−07 1.027E−06 2.000E+00 2.000E+00 1.993E+00
5 1.163E−05 2.476E−07 2.634E−07 1.999E+00 1.964E+00 1.963E+00

Table 3
Test 1. 𝐿2-norms of errors and convergence orders in space: BDG, BCs scenario 1.
Ref. level 𝑙 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹ℎ 𝑟𝑢𝑥ℎ 𝑟𝑢𝑦ℎ
0 1.758E+01 1.955E−01 1.939E−01
1 4.423E+00 2.126E−02 2.138E−02 1.990E+00 3.201E+00 3.181E+00
2 1.107E+00 3.123E−03 3.122E−03 1.999E+00 2.767E+00 2.775E+00
3 2.770E−01 8.013E−04 8.017E−04 1.998E+00 1.963E+00 1.962E+00
4 6.544E−02 2.089E−04 2.098E−04 2.082E+00 1.939E+00 1.934E+00
5 1.640E−02 5.586E−05 5.617E−05 1.997E+00 1.903E+00 1.901E+00

Table 4
Test 1. 𝐿2-norms of errors and convergence orders in space: BDG, BCs scenario 2.
Ref. level 𝑙 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹ℎ 𝑟𝑢𝑥ℎ 𝑟𝑢𝑦ℎ
0 2.389E+01 2.021E−01 1.976E−01
1 6.709E+00 2.657E−02 2.609E−02 1.832E+00 2.927E+00 2.921E+00
2 1.489E+00 3.604E−03 3.477E−03 2.171E+00 2.882E+00 2.908E+00
3 3.765E−01 9.022E−04 8.801E−04 1.984E+00 1.998E+00 1.982E+00
4 9.428E−02 2.350E−04 2.291E−04 1.998E+00 1.941E+00 1.941E+00
5 2.363E−02 6.251E−05 6.099E−05 1.996E+00 1.910E+00 1.910E+00

Table 5
Test 1. 𝐿2-norms of errors and convergence order in time: MDG, BCs scenario 1.
𝛥𝑡 [–] 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹𝛥𝑡 𝑟𝑢𝑥𝛥𝑡 𝑟𝑢𝑦𝛥𝑡
1.E-01 1.117E−02 3.081E−04 3.017E−04
1.E-02 1.130E−03 3.088E−05 3.053E−05 9.95E−01 9.99E−01 9.95E−01
1.E-03 1.140E−04 3.095E−06 3.053E−06 9.96E−01 9.99E−01 1.00E+00
1.E-04 1.148E−05 3.106E−07 3.087E−07 9.97E−01 9.98E−01 9.95E−01

Table 6
Test 1. 𝐿2-norms of errors and convergence orders in time: MDG, BCs scenario 2.
𝛥𝑡 [–] 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹𝛥𝑡 𝑟𝑢𝑥𝛥𝑡 𝑟𝑢𝑦𝛥𝑡
1.E-01 1.156E−02 2.436E−04 2.603E−04
1.E-02 1.158E−03 2.436E−05 2.609E−05 9.991E−01 1.000E+00 9.990E−01
1.E-03 1.162E−04 2.460E−06 2.603E−06 9.986E−01 9.956E−01 1.001E+00
1.E-04 1.165E−05 2.477E−07 2.634E−07 9.988E−01 9.971E−01 9.948E−01

Table 7
Test 1. 𝐿2-norms of errors and convergence orders in time: BDG, BCs scenario 1.
𝛥𝑡 [–] 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹𝛥𝑡 𝑟𝑢𝑥𝛥𝑡 𝑟𝑢𝑦𝛥𝑡
1.E-01 1.588E+01 5.444E−02 5.461E−02
1.E-02 1.591E+00 5.456E−03 5.471E−03 9.991E−01 9.990E−01 9.992E−01
1.E-03 1.612E−01 5.524E−04 5.544E−04 9.943E−01 9.947E−01 9.942E−01
1.E-04 1.640E−02 5.586E−05 5.617E−05 9.926E−01 9.952E−01 9.943E−01

5.2. Test 2: lid-driven cavity

Stokes flow in closed rectangular cavities is a useful approximation for many applications, such as ceramics casting, polymer
processing, roll coating, etc., see, e.g., [43,44]. We consider the classical lid-driven cavity test case in a square cavity 0, 𝐿 × 0, 𝐿 ,
[ ] [ ]
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Table 8
Test 1. 𝐿2-norms of errors and convergence orders in time: BDG, BCs scenario 2.
𝛥𝑡 [–] 𝐿𝛹

2 𝐿𝑢𝑥
2 𝐿𝑢𝑦

2 𝑟𝛹𝛥𝑡 𝑟𝑢𝑥𝛥𝑡 𝑟𝑢𝑦𝛥𝑡
1.E-01 2.288E+01 6.106E−02 5.938E−02
1.E-02 2.294E+00 6.119E−03 5.947E−03 9.989E−01 9.991E−01 9.993E−01
1.E-03 2.323E−01 6.187E−04 6.025E−04 9.944E−01 9.951E−01 9.943E−01
1.E-04 2.363E−02 6.251E−05 6.099E−05 9.926E−01 9.956E−01 9.947E−01

Fig. 6. Test 2. Sketch of the domain and assigned BCs.

Fig. 7. Test 2. Computed solution on the 2nd refinement level of the BDG, case 𝑠 = 0. Left: velocity field. Center: streamline contours. Right: pressure field.

as sketched in Fig. 6. The initial conditions (ICs) are zero velocity and pressure, while the BCs are assigned as in Fig. 6, where
the upper wall moves along the 𝑥−direction with assigned velocity 𝑢0,𝑥 and 𝑠 is the horizontal velocity component assigned at the
bottom wall. We consider the cases 𝑠 = 𝑢0,𝑥, 𝑠 = 0, and 𝑠 = −𝑢0,𝑥. To make the results dimensionless, the scales for length and
velocity are set 𝐿0 = 𝐿 and 𝑈0 = 𝑢0,𝑥, and we assume 𝜈 = 1 m2∕s. The computational grids are the same mildly and badly distorted
ones (MDG and BDG) used in Test 1, presented in Section 5.1 and the (dimensionless) time step size is 1 ⋅ 10−1. A pressure BC 𝛹 = 0
is assumed at the bottom-left corner, to fix the pressure values.

In Fig. 7 we plot the solution computed on the 2nd refinement grid level of the BDG assuming 𝑠 = 0 (fixed bottom wall). Very
similar results have been obtained with the MDG and for brevity are not shown. The results are qualitatively in very good agreement
with the literature, see [45, Figure 10 (left)] and [43, Figure 3.8 a,b]. In [45], the authors use a multiscale hybrid-mixed method,
while in [43], the author presents a regularized solution of the Stokes equations, where a cut-off blob function replaces the classical
delta-Dirac one. In Fig. 8 we plot the computed profiles with both MDG and BDG of the velocity components and pressure along
the vertical and horizontal mid-lines of the domain, in the case of 𝑠 = 0. The grid distortion does not seem to affect the results. The
𝑢𝑥 profiles along the vertical mid-line match very well the solution provided in [43].

The velocity streamlines, computed over the 2nd refinement of the BDG, are in very good agreement with the solution provided
in [44], for the cases of 𝑠 = 𝑢0,𝑥 and 𝑠 = −𝑢0,𝑥, as shown in Fig. 9. In [44], the authors solve the steady part of the Stokes flows problem
using boundary element methods, while the time derivative is approximated by the finite difference method. The streamlines on
the MDG and finer grids are very similar, and for brevity are not shown. Both velocity components computed along the vertical and
horizontal mid-lines in the cases of 𝑠 = 𝑢0,𝑥 and 𝑠 = −𝑢0,𝑥 fit very well the results provided in [44], see Figs. 10 and 11.

Overall, we conclude that the results from the presented method for this benchmark problem match very well literature solutions.
Moreover the results are robust with respect to grid distortion.
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Fig. 8. Test 2. Computed solution on the 2nd and 4th refinements of the MDG and BDG case 𝑠 = 0: (a) profile of 𝑢𝑥 along the vertical mid-line, (b) profile of 𝑢𝑥
along the horizontal mid-line, (c) profile of 𝑢𝑦 along the horizontal mid-line, (d) profile of 𝛹 along the horizontal mid-line. ‘‘Ref.’’ marks the solution provided
in [43].

Fig. 9. Test 2. Computed velocity streamlines on the 2nd refinement of BDG. Top row: case 𝑠 = 𝑢0,𝑥; left: our solution, right: literature results in [44]. Bottom
row: case 𝑠 = −𝑢0,𝑥; left: our solution, right: literature results in [44].
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Fig. 10. Test 2. Computed profiles of the velocity components and pressure on the 2nd refinement of BDG, case 𝑠 = 𝑢0,𝑥. Top: 𝑢𝑥 along the vertical mid-line
with ‘‘Ref.’’ showing the results in [44]. Bottom row: data along the horizontal mid-line; left: 𝑢𝑥, right: 𝛹 .

Fig. 11. Test 2. Computed profiles of the velocity components and pressure over the 2nd refinement BDG, case 𝑠 = −𝑢0,𝑥. Left: 𝑢𝑥 along the vertical mid-line
with ‘‘Ref.’’ showing the results in [44]. Right: 𝑢𝑦 along the horizontal mid-line.

5.3. Test 3: Stokes flow in a channel with smoothly changing width

Stokes flows in confined channel with variable geometries is encountered in many industrial, biomedical, and biological systems,
such as microfluidics, flow driven by contracting channel walls, lab-chip technologies, drug carrying micro-devices, etc., see [46].
We consider the channel in Fig. 12, with characteristic length and depth 𝐿0 and ℎ0, respectively, and set 𝛿 = ℎ0

𝐿0
= 1. The ICs are

zero velocity and pressure, and the BCs are assigned as in Fig. 12, with parabolic Poiseuille inflow velocity profile, no-slip BCs on
the upper and lower channel walls, and zero pressure at the downstream channel end. To make the results dimensionless, the length
scale is set equal to 𝐿0 = ℎ0 and the velocity scale is set equal to the mean inflow velocity, 𝑈0 = 𝑈̄ . Following the experiments
in [46], we set 𝐿0 = ℎ0 = 0.005 m, 𝑈̄ = 5.76 ⋅ 10−4 m∕s and 𝜈 = 2.89 ⋅ 10−3 m2∕s, resulting in Reynolds number 𝑅𝑒 = 𝑈̄ 𝐿0

𝜈 ≃ 1 ⋅ 10−3.
We also introduce the following (dimensionless) variables,

𝑋 = 𝑥
𝐿0

, 𝑌 =
𝑦
𝐿0

, 𝐻 = ℎ
𝐿0

,

where ℎ is the distance of the top channel wall from the bottom (see Fig. 12). The equation for the (dimensionless) restriction of
the channel width between 𝑋 = −1 and 𝑋 = 1 is [46,47]

𝜆
𝐻(𝑋) = 1 −
2
(1 + cos(𝜋 𝑋)) , 0 ≤ 𝜆 < 1, (5.4)
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Table 9
Test 3. Number of triangles and vertices for the coarse and fine grids.
𝜆 Coarse grids Fine grids

𝑁𝑇 𝑁 𝑁𝑇 𝑁

0.2 17 306 9149 64 079 32 705
0.5 16 257 8624 61 429 31 382
0.8 15 648 8320 57 090 29 212

Fig. 12. Test 3. Channel geometry and assigned BCs.

Fig. 13. Test 3. Computed (dimensionless) solution for 𝜆 = 0.8. Top row: velocity field and velocity magnitude contours (left) and zoom in the restriction area
(right). Bottom row: computed pressure field.

where 𝜆 is the maximum (dimensionless) width contraction. The (dimensionless) inflow Poiseuille velocity profile is
𝐮 (𝑌 ) =

(

6
(

𝑌 − 𝑌 2) , 0
)𝑇 . (5.5)

In the presented simulations we set 𝜆 = 0.2, 0.5, 0.8. We run our simulations over a set of coarse and fine grids, whose number of
simplices 𝑁𝑇 and vertices 𝑁 are listed in Table 9. The dimensionless time step size is 1 ⋅ 10−2. We also ran other simulations using
smaller and larger time step sizes, but the results did not change significantly.

In Fig. 13 we show the (dimensionless) computed velocity and pressure fields with 𝜆 = 0.8. In [46], the same problem is solved
by the lubrication theory, considering the higher-order terms coming from the perturbation theory, accounting for values of 𝛿 ≃ 1,
see also [47]. The authors of [46] provide an analytical expression of the (dimensionless) pressure drop 𝛥𝛹 from 𝑋 = −1 to 𝑋 = 1
as function of the restriction parameter 𝜆, shown in Fig. 14, and confirmed by the experimental results in [46]. The scatter between
the analytical data given by the lubrication theory and the experiments can be justified by the 3D flow effects not accounted in the
2D lubrication theory. These 3D effects generally tend to disappear as the value of 𝜆 increases and the channel becomes narrower.
In the same Fig. 14 we also plot the dimensionless pressure drops computed by the present method on the coarse and fine grids.
Our results fit very well the reference data for the three investigated values of 𝜆, and the mesh size does not affect significantly the
pressure drop.
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Fig. 14. Test 3. Computed (dimensionless) pressure drop from 𝑋 = −1 to 𝑋 = 1 for different values of 𝜆. Nomenclature. ‘‘Analytical’’: data from the lubrication
theory including the higher order terms [46]. ‘‘Experiments’’: experimental data provided in [46]. ‘‘MFMFE fine grids’’ and ‘‘MFMFE coarse grids’’: results from
the present method.

Table 10
Test 4. Values of the significant geometrical, kinematic and rheological variables.
𝑅 [m] 0.0004
𝜙0 [rad] 𝜋∕12
𝐿𝑎 [m] 𝑅 𝜋
𝐿𝐵 [m] 2 𝑅 t an𝜙0
𝐻 [m] 𝑅

sin𝜙0

𝑅𝑖 [m] 𝑅
2.5 𝐷2 sin𝜙0

𝑎 [–] 0.7
𝑛 [–] 11
𝑈𝑚𝑎𝑥 [m/s] 0.0005
𝜈 [m2/s] 6.7 ⋅ 10−6

5.4. Test 4: pulsatile Stokes flow within a highly irregular domain

The purpose of the test in this section is to investigate the capability of the proposed method to simulate pulsatile Stokes flows
within very irregular domains, which find several industrial and biomedical applications, e.g., hydrodynamics in micro and mini
coiling systems, vascular hemodynamics in small vessels, and peristaltic flows. We consider flow in a duct with a central elliptic
expansion and a wavy-shaped inner solid obstacle with mean radius 𝑅𝑖, see the geometry in Fig. 15, where the equation of the
elliptic-shape expansion of the duct is also shown. We assign a pulsatile inflow Poiseuille velocity profile at the upstream end,
pressure condition 𝛹 = 0 at the downstream end, and zero velocity on the remaining boundaries of the external duct and on the
surface of the inner obstacle. We make the problem dimensionless considering the scales for lengths 𝐿0 = 𝐷 and velocity 𝑈0 = 𝑈𝑚𝑎𝑥,
where 𝑈𝑚𝑎𝑥 is the maximum value of the Poiseuille assigned inflow velocity profile and 𝐷 = 2𝑅 is the diameter of the duct at
the upstream end. The significant geometrical, kinematic and rheological variables are listed in Table 10. The Reynolds number is
𝑅𝑒 = 𝑈𝑚𝑎𝑥𝐷

𝜈 ≃ 0.059. The wavy profile of the inner obstacle is similar to the one used in test 4 in [14],

𝑥 = 𝑟𝑖 sin𝜙, 𝑦 = 𝑟𝑖 cos𝜙, 𝑟𝑖 = 𝑅𝑖 + 𝑎 cos 𝑛𝜙, 0 ≤ 𝜙 ≤ 2𝜋 , (5.6)

with 𝑎 and 𝑛 listed in Table 10. The inflow (dimensionless) pulsatile Poiseuille velocity is

𝑢𝑥 (𝑟, 𝑡) = 𝑈̂𝑚𝑎𝑥 (𝑡)

(

𝑅2 − 𝑑2𝑟
)

𝑅2
, 𝑈̂𝑚𝑎𝑥 (𝑡) =

𝑈𝑚𝑎𝑥
𝑈0

cos
(

2𝜋
𝑡0

𝑡
)

, 𝑢𝑦 = 0, ∀𝑡 ≥ 0, (5.7)

where 𝑑𝑟 is the distance of any point 𝑟 of the inflow section from its center, 𝑡0 is the period of the pulsation, and the other symbols
are specified in Fig. 15.

We set 𝑡0 = 1 [s] and the associated Womersley number [48] 𝛼 = 𝑅
√

1
𝑡0𝜈

≃ 0.155. The computational grid has 59 949 triangles
and 31 831 vertices, and in Fig. 16 we plot a zoom of the grid discretizing the inner portions of the obstacle. The (dimensionless)
grid size ranges between 0.05 and 0.0015, and the (dimensionless) time step size is set to 𝑡0

𝑇0⋅160
, with 𝑇0 the time scale defined in

Eq. (5.1).
In Fig. 17 we plot the radial profiles of the (dimensionless) horizontal velocity component close to the inflow section every

quarter of period. The vertical velocity component is approximately 3–4 magnitude orders smaller than the absolute value of 𝑢𝑥.
Fig. 18 shows the velocity and pressure fields every quarter of period, and Fig. 19 shows the zooms of the velocity field close
to the inner invested obstacle at the same simulation times. Complex vortical structures, composed of four or more vortices with
alternating flow direction, can be observed between the waves of obstacle perimeter.
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Fig. 15. Test 4. Channel geometry and assigned BCs. Values of the variables are listed in Table 10.

Fig. 16. Test 4. Zoom of the computational grid.

Fig. 17. Test 4. Radial profiles of the (dimensionless) 𝑢𝑥 close to the inflow section. Nomenclature: 𝑑 is the (dimensionless) radial distance from the mid-line
of the duct section. Values of 𝑢𝑥 for 𝑡 = 0 and 𝑡 = 𝑡0∕2 on the primary axes. Values of 𝑢𝑥 for 𝑡 = 𝑡0∕4 and 𝑡 = 3𝑡0∕4 on the secondary axes.

We compute the forces of the fluid on the perimeter of the obstacle. The total force 𝐅 is the sum of the kinematic pressure force,
𝐅 , and the viscous force, 𝐅 . We divide the perimeter in 𝑁 parts (edges) and set
𝛹 𝜈 𝑝

𝐅 = 𝐅𝛹 + 𝐅𝜈 =
𝑁𝑝
∑

𝑖=1

(

𝐅𝛹 ,𝑖 + 𝐅𝜈 ,𝑖
)

. (5.8)21 
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Fig. 18. Test 4. Dimensionless velocity and pressure fields every quarter-period. The arrow shows the mean flow direction.

Fig. 19. Test 4. Zoom of the velocity vectors close to the invested obstacle every quarter-period.
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Fig. 20. Test 4. Viscous forces acting on the perimeter of the obstacle every quarter-period.

The force 𝐅𝛹 on the 𝑖th edge of the obstacle perimeter is computed as

𝐅𝛹 = |𝑒𝑖|
𝛹1 + 𝛹2

2
𝐧𝑖, (5.9)

where |𝑒𝑖| is the length of the 𝑖th edge, 𝛹1 and 𝛹2 are the kinematic pressure values computed at the two vertices of the edge 𝑒𝑖,
and 𝐧𝑖 is the unit normal vector to 𝑒𝑖, pointing outward from the fluid region. The two values 𝛹1 and 𝛹2 are computed according to
the 𝑃1 approximation of 𝛹 within the triangle 𝐸 sharing edge 𝑒𝑖 with the perimeter of the solid obstacle. The 𝑥- and 𝑦-components
of the viscous force acting on 𝑒𝑖 are computed as

𝐹𝑥,𝜈 ,𝑖 = 𝜈∇𝑢𝑥 ⋅ 𝐧𝑖|𝑒𝑖|, 𝐹𝑦,𝜈 ,𝑖 = 𝜈∇𝑢𝑦 ⋅ 𝐧𝑖|𝑒𝑖|, (5.10)

where ∇𝑢𝑥 and ∇𝑢𝑦 are the gradient vectors of the velocity components computed within the triangle 𝐸 sharing edge 𝑒𝑖 with the
obstacle. These gradient vectors are computed according to the linear variation of the velocity components within 𝐸.

Figs. 20 and 21 show the vectors 𝐅𝜈 and 𝐅, respectively, computed every quarter-period. The values of 𝐅𝜈 and 𝐅 in Figs. 20 and
21 are multiplied by the non-dimensionalizing coefficient 1

𝜈 𝑈𝑚𝑎𝑥
. Observe the alternating direction of the vectors at time 0 and 𝑡0∕2,

as well as at times 𝑡0∕4 and 3 𝑡0∕4, respectively, due to the periodicity of the process. The changes of the direction of 𝐅𝜈 on the
boundary of the obstacle at any investigated time are due to the vortical structures within the waves of the perimeter, as discussed
before.

Overall the presented results illustrate the ability of our method to simulate flows in highly complex geometries in a numerically
stable and accurate manner.

6. Conclusions

We have developed 𝐻(div)-conforming mixed finite element methods for the unsteady incompressible Stokes equations. We
applied a projection method in the framework of the incremental pressure correction methodology, where a predictor and a
projection problems are sequentially solved, accounting for the viscous effects and incompressibility, respectively. The predictor
problem is based on a stress–velocity mixed formulation, while the projection problem uses a velocity–pressure mixed formulation.
We established unconditional stability and first order in time accuracy. We then developed a specific method of the family on
generally unstructured triangular grids, using the multipoint flux mixed finite element methodology. We used the 𝑅𝑇 mixed finite
1
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Fig. 21. Test 4. Total forces acting on the perimeter of the obstacle every quarter of period.

element pair and applied an inexact numerical integration to obtain mass lumping and local stress or flux elimination in both the
prediction and projection problems. The resulting algebraic systems, which are sparse symmetric and positive definite with only three
unknowns per element, are solved efficiently by the preconditioned conjugate gradient method. The scheme results in pointwise
divergence-free velocity computed at the end of each time step. The computed velocity and pressure are second order accurate in
space. The presented numerical experiments illustrate the accuracy and efficiency of the method for several benchmark problems
and a challenging problem with highly complex geometry.

The proposed methodology could be straightforwardly extended to 3D problems. In this sense, the good performance obtained
over the badly distorted grids, see Section 5.1, is encouraging for further applications to 3D tetrahedral grids, where an optimal
aspect ratio is difficult to achieve. Furthermore, as mentioned in the introduction, the proposed methodology could be regarded as
the seed of further extensions, e.g., coupled flow and transport problems and fluid–structure interaction. In particular, due to the
good performance and robustness shown by the multipoint flux mixed finite element method proposed in [27] for Darcy flow with
heterogeneous and discontinuous full tensor permeability, a natural extension of the presented algorithm would be to include the
Brinkman term in the momentum equations to simulate the interaction between a free fluid and a porous medium, see [15].
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