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Abstract: The development of innovative materials, based on the modern technologies and processes,
is the key factor to improve the energetic sustainability and reduce the environmental impact of
electrical equipment. In particular, the modeling of magnetic hysteresis is crucial for the design and
construction of electrical and electronic devices. In recent years, additive manufacturing techniques
are playing a decisive role in the project and production of magnetic elements and circuits for
applications in various engineering fields. To this aim, the use of the deep learning paradigm,
integrated with the most common models of the magnetic hysteresis process, has become increasingly
present in recent years. The intent of this paper is to provide the features of a wide range of
deep learning tools to be applied to magnetic hysteresis context and beyond. The possibilities of
building neural networks in hybrid form are innumerable, so it is not plausible to illustrate them in
a single paper, but in the present context, several neural networks used in the scientific literature,
integrated with various hysteretic mathematical models, including the well-known Preisach model,
are compared. It is shown that this hybrid approach not only improves the modeling of hysteresis
by significantly reducing computational time and efforts, but also offers new perspectives for the
analysis and prediction of the behavior of magnetic materials, with significant implications for the
production of advanced devices.

Keywords: deep learning; LSTM architectures; hybrid neural networks architectures; magnetic
hysteresis; Preisach model; numerical methods; global optimization; gradient methods

MSC: 68T07; 68T99; 78A25; 78A99; 65K05; 90C52

1. Introduction

Magnetic hysteresis is a fundamental phenomenon in electromagnetism describing
the non-linear behavior of ferromagnetic materials [1–3]. There are several mathematical
models to represent the trend. The Jiles–Atherton model [4–8], for example, describes the
phenomenon using a physical approach based on energy considerations and magnetization
theory. It is particularly known for its ability to model real magnetic materials with good
precision, when there is no significant complexity in the hysteresis processes. The Stoner–
Wohlfarth model [9,10] describes hysteretic behavior in ferromagnetic nanoparticles and
granules. It assumes that magnetization rotates consistently within a particle, making it
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particularly useful for small systems. The Prandtl–Ishlinskii model [11,12] is also used
for other types of hysteresis besides magnetic ones. It is known for its simplicity and
ability to model rate-independent hysteresis. Many other models can be mentioned, such
as those of Krasonsel’skii–Pokrovskii, Maxwell, Bouc–Wen, Dahl and so on [13], but of
all, certainly, the most used is the Preisach model (PM) [10,14,15] which represents one
of the most effective methods of describing hysteresis, using an overlap of elementary
operators to capture the complexity of such phenomena. Since its initial formulation,
various models have been developed to include other particular characteristics of the
process under analysis. We mention only some of the most relevant: (1) Non-linear
Generalized PM (GNP) [10,13,16–18] allows hysteresis to be described more flexibly, being
more accurate even when considering magnetic materials whose non-linear properties do
not satisfy the classic PM. (2) Time-dependent PM [10,16,19], by introducing the temporal
dependence, allows to describe phenomena of dynamic hysteresis, where the system
response depends on the rate of change in the applied field. (3) Stochastic PM [10,20,21]
includes random elements to represent uncertainty and variability in materials. This
extension is useful for modeling systems in which magnetic behavior presents intrinsic
noise or variability due to factors such as material imperfections, thermal fluctuations or
other forms of stochastic disturbances. (4) For PM with limited memory [10,21,22], only
part of the past history affects the current state of the system. This approach is particularly
relevant for systems with short-term memory. (5) Inverse PM [16,20] is used to identify
material characteristics from system response measurements. This approach is useful for
the characterization and experimental analysis of materials. (6) Vectorial PM [23,24] extends
the original model to include vector dependence, allowing to describe three-dimensional
systems and their response to magnetic fields applied in different directions. (7) PM
with Interaction between Hysterons [25–28] is an extension that introduces the interaction
between hysterons, making the model more realistic for materials in which the elementary
units of hysteresis are not independent but affect each other’s response.

1.1. Preisach Model

Among the mentioned hysteretic models, therefore, the Preisach model deserves par-
ticular attention. First, its conceptually simple but highly flexible nature makes it a powerful
tool for describing hysteresis in a wide range of materials and operating conditions. It is
based on the idea that hysteresis can be represented as the sum of elementary units called
hysterones, each of which responds to the magnetic field with a non-linear behavior. This
modular approach allows complex phenomena, such as material history dependence and
cyclic behavior, to be modeled with precision. Another aspect that makes it particularly
relevant is its ability to adapt to magnetic systems with different physical properties, with-
out requiring detailed knowledge of the microscopic processes involved, which makes it
ideal for practical applications, where materials can exhibit highly non-linear and variable
behavior, often difficult to capture with simpler physical models. Finally, the PM is distin-
guished by its computational flexibility. Due to its scalable nature, it can be implemented
in numerical simulations and control algorithms for complex magnetic systems, ensuring
a good compromise between accuracy and speed of calculation. Therefore, among the
various models of hysteresis that will be discussed in the present context, the Preisach
model represents a milestone in modeling this phenomenon and will continue to play a
central role both in theoretical research and engineering applications.

A hysteresis function represents the input/output connections with multi-branch
non-linearities, where the turning points of the hysteresis branches are affected by the
past minimum/maximum input values [1]. Such a definition outlines a key property
of the hysteresis phenomenon, namely, a sequential behavior in which the output must
be determined depending on both the input and internal states. PM can be used as a
mathematical tool to describe this process [15] and can be built as follows.
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Definition 1 (Preisach Model). Let input H(t), output M(H) be uniquely determined:

M(H) =
∫ ∫

ρ(Hmin, Hmax)ĜHmin ,Hmax (H(t))dHmindHmax

Ĝ =


+1 H ≥ Hmax
−1 H ≤ Hmin
Hprev Hmin < H < Hmax

(1)

where Hmin and Hmax are the switching values up and down input, ĜHmin ,Hmax is the finite set of
binary hysteresis operators useful as local memory, and ρ(Hmin, Hmax) are the hysterons distribution
(model coefficients by experimental data).

1.2. Artificial Neural Network Architectures

As in many other fields of pure and applied sciences, the use of deep learning (DL)
neural networks (NNs) is beneficial for the phenomenon of magnetic hysteresis as well.
In recent years, applications of artificial neural networks (ANNs) to hysteresis models
(basic or generalized) have shown considerable potential in improving the accuracy and
efficiency of modeling [6,23,25–42]. Neural architectures can obviously be of various types,
depending on the specifics of the problem to be treated and the objectives that are proposed,
but the common result is always to have a substantial gain in terms of computational
costs or memory allocation. Sometimes, this can be at the cost of better results in terms of
accuracy or error compared to traditional methods [25]. To cope with this, we also resort
to hybrid forms of ANN or combined forms of ANN and traditional models of hysteresis,
as in the examples we will see below. In any case, assessments must of course be made on
a case-by-case basis.

1.3. Methodology

In the following sections, we will show just a few of the several possible ANN, based
on the results obtained in the literature and comparing the advantages or limitations of the
various approaches. In particular, in Sections 2 and 3, we examine the use of feedforward
neural networks (FNNs) and recurrent neural networks (RNNs) [42] in the context of
modeling magnetic hysteresis by using the Preisach model. These peculiar neural networks
deserve special attention because they are the basis of a multitude of hybrid forms. They are
widely used in the literature for the characteristics which we will discuss in the following.
In Section 4, we will provide a list of additional architectures used, summarizing the
salient points. We will analyze the effectiveness of each type of network in predicting
hysteretic behavior, comparing their performance in terms of accuracy, convergence rate,
and generalization ability. The results show that the integration of neural networks with
the Preisach model not only improves the representation of hysteresis but also offers new
perspectives for the analysis and prediction of the behavior of magnetic materials. The
approach to this research has required the study of a wide range of articles concerning
neural networks both from a purely theoretical point of view and applied to the context
of interest. The paper that has been carried out from this aims to provide flexibility in
the choice of neural tools to be able to adapt them to the specific experiments while being
aware of the costs and benefits of each technique. Our research highlights the importance
of choosing the appropriate neural architecture for specific hysteresis applications, thus
providing guidelines for future studies and practical applications.

2. Feedforward Neural Network

The first article that we will take into consideration treats the usage of ANN to im-
plement the Preisach model for the modeling of magnetic cores [30]. Traditionally, this
process requires complex and computationally expensive mathematical models. The au-
thors propose instead to use the ANN to create a more flexible and adaptable model that
is useful to simulate complex multi-variable and time-dependent processes. Like other
neural networks, they can be used for specific cases as well as for general descriptions,
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being able to predict even random behaviors of the system as well as to respond to inputs
not belonging to the initial datasets. In FNN, among the most common NNs, information
moves in one only direction, from the input to the output phase, without cycles or loops.
The goal of the authors is that the network learns the complex relationship between the
applied magnetic field H and the consequent magnetic induction B in the material. Once
trained, neural networks are able to predict the behavior of the magnetic hysteresis cycle
for different operating conditions without the need for detailed mathematical models. This
approach offers a more efficient and flexible alternative to traditional methods.

Among the FNNs, in particular, the authors in [30] use the Radial Basis Function NN
(RBF-NN), employed for classification, approximation problems and strict interpolation in
multi-dimensional space [43–46]. They are preferred over multi-layer perceptron (MLP)
because they are faster in the learning phase. This is due to the fact that this type of
architecture does not require multi-layers but only one layer that includes the RBF, each of
which depends on the respective centers c and amplitude r. The number of centers (and
therefore of the respective connected neurons) can be high and the choice random, and
this would imply high computational complexity and cause numerical ill-conditioning.
To avoid this, the type of RBF and the type of centers should be carefully chosen. They are
usually chosen from the points of the dataset (xi), but this does not guarantee a complete
mapping of the sample; instead, the approach used in [46], based on the Orthogonal Least
Square (OLS) method, ensures better performance and the ability of the network to achieve
the results of an MLP despite its two layers. The technique is based on the fact that RBFs
are seen as special cases of a regression model

l(t) =
m

∑
k=1

pi(t)δi + ε(t) (2)

where l(t) is the desired output, δi are the parameters, pi(t) is the so-called regressors (fixed
functions of the input x(t)), and ε(t) is the error assumed to be uncorrelated with pi(t).
Through this formulation, in our context, a fixed center ci with a non-linear activation
function ϕi corresponds to a regressor pi(t) and the problem of how to select an appropriate
set of RBF centers corresponds to the selection of considerable regressors from a given
candidate set (OLS method). The iteration ends at step Ms :

(
1 − ∑Ms

k=1 εk

)
< ρ, with ρ ∈

(0, 1) as a chosen tolerance. In Figure 1a, a comparison is made between a classical MLP
scheme and an RBF scheme.

(a) MLP scheme. (b) RBF scheme.

Figure 1. Comparison through (a) MPL and (b) RBF layers schemes.

Despite having a similar structure composed of input, hidden, and output layers,
the activation functions are the radial basis, and therefore typically Gaussian, spline, multi-
quadratic, or multi-quadratic inverse, instead of typically sigmoid. The included two
parameters, c and r, associated with RBF neurons, are similar to hidden layer weights and
biases in MLP. Finally, the output returns a weighted sum of its inputs using the appropriate
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weights ω. The network training consists largely of what has been illustrated so far, namely,
finding an adequate number of these parameters and associated neurons and calculating
their weights through various algorithms. The OLS method to minimize the errors between
the desired output and that predicted by the neural network is used by the authors in [30].
The expression for the processing of the input through function of activation and the
restitution of the relative outputs has the standard form for the neural nets

f (x1, . . . , xn) =
m

∑
k=1

wkϕ(|| xk − ck ||), ϕ(x − c) = exp
(
(x − c)2

r2

)
. (3)

where ϕ is the activation function, in this case, of the Gaussian type, and wk is the weights.
The correspondence with Equation (2) is evident. At this point, reconstruction of the
Preisach model is obtained by using normalized hysteresis cycles data for the square
Permalloy 80 at various frequencies.

The NN efficiency criteria are usually based on the number of epochs, training time,
network size, dataset, loss function, and accuracy. For hysteresis modeling, the major
criterion of interest is the accuracy. In [30], comparisons are made between experimental
data and network output. To measure the error index, the Mean Square Error (MSE) of the
normalized hysteresis modeling from the standard deviation of the experimental data (also
called non-dimensional index error (NDIE)) is used. Error indices vary from 4.09% to 5.56%
with an average NDIE of 4.63% (a comparison between the results obtained through the
experimental data and the RBF outputs is shown in [30], Figure 3).

3. Hybrid Architectures—FNN and RNN

Also in [25,26,28], the authors use FNNs and PM to simulate hysteresis cycles in
different materials, as well as hybrid models that will be discussed below (in such hybrid
models, FNNs are used to calculate the memory-free relationship between input and
output, while to take into account the memory effect, which is typical of hysteretic behavior,
a hysteron-based model is adopted. This is to deal with the problem of the formulation
of adequate dependence on the memory of the output model depending on the hysteretic
behavior of magnetic materials. Instead of hybrid techniques, also approaches that are full
network-based can be used, such as recurrent neural network architectures (RNNs), having
an intrinsically recursive memory, as we will see in Section 4.1.). In particular, in [25], soft
ferromagnetic materials (commercial iron-silicon NGO), subjected to sinusoidal and non-
sinusoidal magnetic induction waveforms, are considered. The latter can lead to strongly
distorted hysteresis cycles and, therefore, the design of the relative devices can be difficult.
The proper selection of materials to be used for specific applications can be finalized using
proper tools. Typically, designers rely on Finite Element Method (FEM) approaches, which
are able to provide reliable predictions of the material performance when they work under
given working conditions. In this analysis, the authors use PM to generate a larger dataset
consisting of a family of first-order inversion curves (FORCs), suitable for NN training.
The hysteresis model thus generated has the ability to also detect sub-loops in the cycles.
The comparison between PM and NN is extended also to other measurements; in particular,
several hysteresis cycles, taken for different kinds of excitation, are considered. Also in
these cases, NN performs surprisingly well from the computational efforts and memory
request sides. It should also be noted that the proposed method allows the reversal of
the problem (B ↔ H) and therefore the comparison with the FEM (open problem). In the
article, a first overview of the hysteresis models usually used is also proposed. In addition
to the PM then used for comparisons, the play model, stop model, and those derived from
Stoner and Wohlfarth are also considered, all very accurate but computationally expensive
models. Conversely, models such as the Jiles–Atherton model are inexpensive but not as
accurate. Unlike what is shown in [30], the optimization model for the output layer of the
FNN used in [28] is the Levenberg–Marquardt algorithm [47]. The FNNs thus obtained are
usable for sinusoidal magnetization processes as well as other kinds of waveforms, with the
limitation related to the impossibility about the reproduction of sub-loops, for which a
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technique called “transplantation” [48] is considered. As explained in [49], this algorithm
is able to close a sub-loop operating a transplantation of the points in one branch of the
sub-loop. An example is provided in Figure 2, where the blue branch is obtained from the
corresponding points in the green branch.

Figure 2. Transplantation technique. Blue branch is obtained from the corresponding points in the
green branch.

To conclude, approaches based on NN are able to recognize and associate the proper
hysteresis cycle to the specific analyzed sample.

Considering, therefore, the PM, there is the possibility to derive an analytical expres-
sion for the Preisach distribution by solving the Everett integral [10,50] numerically through
various numerical methods ([51,52]), or by approximating with suitable probability density
functions. To reduce the number of parameters required by the model, in [25] a formu-
lation related to the Lorentzian probability density function approximation is proposed
(in Figure 3, Gauss and Lorentz distributions are compared; the latter is chosen because
of its slower diffusion). Recall that the Everett integral is known in the following form
M(t) =

∫∫
T P(U, V)dUdV −

∫∫
−T P(U, V)dUdV, where M(t) is the sum of the hysterons

magnetization, and T and −T are the positive and negative domains of the Preisach tri-
angle, where hysterons contribute positively or negatively to the overall time-dependent
magnetization [53].

Lorentzian

Gaussian
-5 5

0.05

0.10

0.15

Figure 3. Comparison between Lorentzian and Gaussian distributions.



Mathematics 2024, 12, 3363 7 of 23

The couple Hi, u (interaction field and coercive field, respectively) identifies the hys-
terons which must be distributed in relation to both. The distribution function P(Hi, u) can
be written by using the principle of variables separation, thus obtaining

P(Hi, u) =
σHσu

π2(H2
1 + σ2

H)[(u − u0)2 + σ2
u ]

(4)

with σH , σu parameters of the control of emissions Hi and u, u0 being the most likely coercive
field of hysterons (related to the material coercive field). An optimized array, structured
according to specific rules, drives the disposition of hysterons on the magnetic field axis
and their corresponding u values. The main problem related to this model is that many
hysterons are required to reliably predict the hysteresis loops (Nhyst ≃ 1.3 · 106). Equation
(4) allows instead to reduce the parameters of the model to only three (σH , σu, u0). Another
important advantage is that, using proper algorithms, there is the possibility to identify
the model parameters with a reduced number of measurements (just a limited amount
of hysteresis loops is required). In the work, in particular, the authors use four cycles of
sinusoidal hysteresis for the identification of the PM. The error function f = 1

3 ( f 2
1 + f 2

2 + f 2
3 )

which must be minimized consists of three contributions:

1. MSE error, normalized sample by sample, is evaluated considering the measured and
calculated B values of the main cycle (nl), with ns = 500,

f1 =
1
ns

ns

∑
k=1

(
Bnl

m (k)− Bnl
c (k)

Bnl
m (k)

)2

(5)

where Bj
m,c(k) is the kth element of the jth sequence of the measured and evaluated B

fields.
2. The second term is the normalized MSE of the error between the measured value

maximum and calculated value of the magnetic induction in the vertices of the cycles:

f2 =
1
nl

nl

∑
k=1

(
max(Bk

m)− max(Bk
c )

max(Bk
m)

)2

(6)

3. The last term is introduced to improve the accuracy of the model by introducing cycle
areas for the calculation of hysteresis losses

f3 =
1
nl

nl

∑
k=1

(
Ak

m − Ak
c

Ak
m

)2

(7)

with Aj
m,c areas of the jth calculated and measured hysteresis cycles.

The calculation of the distribution of hysterons can have, in general, more solutions
and consists of two stages. Many hours are requested for the first one since lots of parameter
combinations need to evaluated with a cost function. Using the previously defined function,
the probability of obtaining a local minimum cost function is significantly reduced, thus
accelerating the next step that involves the optimization algorithm. The identification
procedure is quite expensive from the computational point of view, especially if Nhyst is
great; however, it must be considered for each material. In Figure 4, the family of the 20
normalized FORCs considered for the training of NN is reported.
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Figure 4. FORCs considered to train the NN. Bn is the normalized magnetic induction.

The hysteresis model based on NN is divided into two steps: firstly, the development
of a standard FNN able to reproduce the natural memory of magnetic hysteresis but char-
acterized by a limit in the reproduction of hysteresis loops. Secondly, the usage of specific
approaches to stabilize the magnetic accommodation, with the consequent advantage of
accurately reproducing the sub-loops. In this way, the resulting model gains considerably
more generality, with the possibility to be applied for a large variety of cases. Basically,
the model is built as an FNN (structured with two hidden layers each containing 7 neurons
(see Figure 5)) which takes in as input the magnetic field and the magnetic induction at the
instant k − 1 and provides as output the differential permeability at the k instant. A sigmoid
activation function (or hyperbolic tangent) is applied to the hidden layers’ neurons, and a
linear transfer function is applied to the output layer. The hyperparameters are experi-
mentally optimized. From the diagram, it is possible to see that the insertion properties of
past data are included in the last step; this process is not intrinsically included in the FNN.
The value of the magnetic induction at the k instant is evaluated as B(k) = dB(k) + B(k− 1).
As stated in the previous lines, the FNN provides the value of the differential permeability
at the k instant (µ(k) = dB(k)/dH(k)). The differential increment of the magnetic field
(dH(k)) can be easily obtained using the previous and the actual value of the magnetic field.
Finally, B(k) = µ(k)dH(k) + B(k − 1). Weights (70), neuron biases (15), and the training
set (the family of 20 Figure 4) are the only elements influencing the net, which is identified
only once for each material. The maximum number of epochs considered is 15 × 103, while
the performance evaluation is based on MSE. The network is trained six times, and its
robustness is tested, each time simulating 20 FORCs, derived as under sampling (with a
factor 8) those applied for training. This procedure is adopted to avoid the local minima of
MSE, which could be found as a consequence of the training set identification. The best
NN obtains an MSE = 1.88 × 10−3. The entire procedure is completed within 30 min.
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Figure 5. Final NN-based hysteresis model.

If the input CM is characterized by oscillations between H1 and H2 (two chosen ends),
and the neural network starts from an arbitrary magnetized state, several periods are neces-
sary to reach a stable magnetization cycle. This feature is called ’accommodation’, and it is
typical of just some kinds of materials. For example, it does not affect electrical steel, where
sub-loops are practically stable and a simple neural system is sufficient, but where present,
it requires a high numerical cost. The network used offers a considerable computational
advantage thanks to the previously mentioned transplantation technique. Ultimately, the
PM is used to create a FORC dataset to be used as a dataset for the neural network, and it
has been proven that the implemented neural model is able to replicate the behavior of the
PM asking for lower computation effort and reduced memory storage request.

Figure 6 shows the predictions of hysteresis loops, including short loops evaluated
with the transplantation technique, comparing a NN-based model and a neural system
alone. Different sets of experiment data are used for the simulations. Computations and
experiments are shown in Figure 7, considering the hysteresis cycles of one of the analyzed
sets. Figure 7a,b show hysteresis loops evaluated imposing a B made by a sinusoidal
fundamental waveform, with the superposition of a fifth harmonic. The presence of
multiple harmonics in the B waveform generates sub-loops in the resulting hysteresis loop.
In particular, a multiple harmonic starts to cause sub-loops when its amplitude reaches a
certain fraction of the fundamental harmonic amplitude. A harmonic ratio (hr) coefficient
is defined to quantify this aspect, and as a generic criterion, sub-loops start to be visible
when hr = 0.4. Obviously, the higher hr is, the more evident the sub-loops are in the
hysteresis loop. Figure 7a shows the hysteresis loop when hr > 0.5, and Figure 7b shows
that when hr = 0.75. Consistent with what is written in the previous lines, sub-loops
are bigger in Figure 7b. Relative to this comparison, it is important point out that the
NN-based model performs worse than PM. Indeed, the maximum percentage error from
the experimental reference is 18% for the NN model and 11% for the PM. The origin of
this inaccuracy is mainly related to a little phase error between the simulated B(t) and
the applied input magnetic field H(t). In fact, a phase change in the waveform of the
magnetic field is enough to match the experimental cycle. The phase error is always under
10 degrees, and it can be associated (at least partially) with the accuracy in the measurement
of the magnetic field. As it can be seen, an error about the positioning of the sub-loops
is committed, even if the resulting area is quite similar. This is because the power losses
due to the hysteresis evaluated with the two models (NN and PM) agree in a quite good
way with the measurements. This result, together with the computational advantages, still
makes the method worth considering.
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(a) (b)

Figure 6. Predictions of hysteresis loops, including short loops evaluated with the transplantation
technique. Comparison of the NN-based model and neural system alone in the prediction of the
hysteresis loop under non-sinusoidal excitation. (a) Comparison of the NN-based model and neural
system alone; (b) sub-loop.

(a) Hysteresis loop when hr > 0.5. (b) Hysteresis loop when hr > 0.75.

Figure 7. Comparison of PM and NN-based models with experimental data in the prediction of
the hysteresis loop. The NN-based model is characterized by a higher max percentage error with
experimental data compared with PM (18% against 11%).

Moreover, it should be noted that since the FNN provides as output the relative
differential permeability, the NN-based model can also work in a reversed way (taking B as
input and giving H as output), which is exactly what FEM solvers do.

4. Further Neural Architectures

As highlighted in the introductory section, the NN can be varied and in turn combined,
depending on the proposed objectives. Within the four macro-areas of action (classifica-
tion, regression, clustering, and anomaly detection), it is possible to have supervised or
unsupervised input and predictive or descriptive logic. Within these, the choices of the
hyperparameters, hidden layers, activation functions, or metrics to calculate the error give
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rise to infinite possibilities, not least the additions of reinforcement, self-supervised, or
contrastive learning techniques. The DL can also work in combination with the ML or,
as seen in the previous sections, with known numerical methods. It is clear that they are
compatible with PM, extended PM, or other models of magnetic hysteresis. It is therefore
not possible to give an exhaustive framework of the possibilities, but the following is
limited to listing some papers belonging to some of the main categories already mentioned.

4.1. Recurrent NN, Diagonal RNN, and LSTM

Another important family of neural networks is that of the aforementioned recur-
ring neural networks [54]. They are designed to work with sequential or temporal data,
as they contain loops that allow them to maintain information about past events. They
are used when data have a temporal or sequential structure, as in the case of time series.
Among these, of particular interest are the Long Short-Term Memory (LSTM) (see [55]
and Refs. therein) and the Gated Recurrent Unit (GRU) [56]. These types of architectures
are designed to better manage long-term dependencies in sequential data than traditional
RNNs. They are often used in applications where it is necessary to capture long-term
dependencies, such as modeling complex time series. The “diagonal RNN” (dRNN) [32] is
a specific type of RNN also used for temporal sequences but, unlike the one in which each
recurring unit receives in input its previous outputs and the outputs of the other recurring
units in the same temporal passage, dRNN introduces a particular structure in which each
recurring unit receives only in input its previous outputs and not the outputs of the other
recurring units. This means that recurring connections across time are limited to a diagonal
of the connection matrix instead of involving all units. This design simplifies the network
structure, reducing the number of connections needed and improving the computational
efficiency. They are particularly useful when the long-term relationships between distant
time positions are not as relevant as short-term relationships.

An example of such a network’s application to the hysteresis process is given by [32].
Here, too, PM is used, but the authors demonstrate that the rate-independent (RI) PM is
in fact a dRNN in which the activation function is a binary step. The black box technique
is not used, but the used activation function is a manipulated tanh. It is also shown that
dRNN is also a versatile rate-dependent (RD) hysteresis system under detailed conditions.
Relationships are established through the direction, shape, symmetry and rate dependency
of hysteresis cycles and dRNN parameters so that the former can be interpreted through
the latter. dRNN formulated in this way can also model RD hysteresis, which is more
precise than simple PM because no additional parameters and changes are introduced to
the classic dRNN. The model is trained using experimental data of materials with hysterical
behavior, and the accuracy is assessed by comparing model predictions with experimental
measurements. The training time can be reduced considerably, and machine learning
frameworks such as PyTorch can be used. Moreover, the method is general, unlike the
various adaptations to the various types of hysteresis that are specific to each experiment.
The classic NNs are used for both RI and RD hysteresis models but generally include a single
activation function (as we saw in the previous sections, e.g., sigmoid, tanh, and Gaussian),
while hysteresis is a multi-valued phenomenon. The authors, through the use of dRNNs,
avoid the common use of the enlargement technique of the input space (e.g., in FNN)
to expand the action of the model (incorporating, for example, Preisach-type hysterons
or other coupling variables, for example, of the historical type), and do not use RBF-
type functions with multiple inputs (common to capture non-linear relationships between
historical and current variables). This approach reduces computational complexity and
gives to the network the ability to learn time dynamics on its own. The dRNN architecture
is more effective while maintaining the possibility to model non-linear behaviors such as
magnetic hysteresis.

In [33], a Preisach–RNN model is provided to forecast the dynamic hysteresis in
ARMCO pure iron, the fundamental soft magnetic material used in particle accelerator
magnets, without requiring prior knowledge of the material and its microstructural be-
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havior. The dynamic aspect includes the dependence of the hysteresis cycle on the rate
of change due to the interaction between electric and magnetic fields. A novel validation
method is suggested to identify the model’s parameters through a RNN coupled with
Preisach play operators. In general, a RNN consists, like the aforementioned NN, of an
input layer, a hidden layer, and an output layer. The input and output layers involve
feed-forward connections, and the hidden layer, recurrent ones. The input vector named
v(t) is processed at the input layer at each time step t. Later, v(t) is summed to the bias
vector b1 and multiplied for w1, the input weight matrix. Equally, the internal state z(t),
slowed down by a number of time instants d, is multiplied by the gain factor wh and added
to the input state according to the formula

z(t) = fh[w1 · v(t) + b1 + wh(z(t − d))] (8)

with the fh(x) activation function (here tanh). The internal state z(t) is then added with
bias b2, multiplied by the weight w2, and the result is passed through a linear activation
function f0(x) as follows:

y(t) = f0[w2 · z(t) + b2]. (9)

where y(t) is the predicted output at time t. The layers scheme can be seen in Figure 8.
Here, too, the Levenberg–Marquardt algorithm is used as an optimization model for the
output layer. It is a non-linear least squares optimization algorithm incorporated into the
backpropagation algorithm for training NN [57]. If y(t) is the real datum, the algorithm
aims to optimize the output through the formula

g(t) =
1
2
(y(t)− y(t))T(y(t)− y(t)). (10)

It leads to updating the weights according to the following

wk(t + 1) = wk(t) + η

(
−∂g

∂t

)
, (11)

with η ∈ Z+ representing the learning rate.

Figure 8. PM-RNN scheme.

By training with only six different hysteresis loops at three frequencies, the proposed
model is able to predict the magnetic flux density of ARMCO pure iron with a NRMSE
better than 0.7% and can predict dynamic behavior for both the main and sub-cycles.
The model’s accuracy in predicting data that have not been measured is demonstrated
through its evaluation using ramp rates that are not utilized in the training procedure.
In the field of materials science, the Preisach model, based on a RNN, is shown to accurately
describe ferromagnetic dynamic hysteresis also when trained with a limited amount of data.
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In [38], the authors exhibit the ability of an LSTM network to capture the intricate
hysteretic dynamics of piezoelectric actuators (PEAs). The network is established to repre-
sent the sophisticated motion of PEAs, which incorporates static hysteresis or high-order
dynamics. By using datasets of input/output pairs obtained experimentally, excitations of
various frequencies and amplitudes, the network is trained and evaluated. The prelimi-
nary findings indicate that the LSTM network can provide adequate precision in a wide
frequency range, even for the simplest topology, such as a single layer with one cell. Thus,
LSTM networks may offer a novel approach to approximate the dynamics also in complex
engineering systems (see [55] for more details on the LSTM scheme and mathematical
model).

In [58], ordinary differential equations are employed by the authors to model and
quantify hysteresis, which is manifested in sequentiality and historical dependence. They
propose a neural oscillator, "HystRNN", which is inspired by coupled oscillatory RNN
and phenomenological hysteresis models to update the hidden states (HSs). The perfor-
mance is measured for the purpose of predicting generalized scenarios, which involve
first-order reversal curves and minor loops. The results exhibit the capability of HystRNN
to generalize its performance to untrained parts (essential feature for hysteresis models),
as it has been discussed extensively. The paper draws attention to the advantage of neural
oscillators over the common RNN-based methods in detecting complex hysteresis patterns
in magnetic materials, where traditional RD methods are not sufficiently efficient to catch
intrinsic non-linearities. The methodology uses a structure similar to that of RNN with a
difference included in the HS upgrade. Indeed, HystRNN applies ODEs for updating them.
The procedure engages two inputs, H and B−1, which are mapped to B. The modeling
process collects a number ne of experimental data points and the number of training points
is N = ne − 1. The technique shares some analogies with the FNN architectures used for
modeling hysteresis but differs by including a recurrent affinity capturing longer-time
dynamics and output dependencies. The cited ODE is a second-order ODE

y′′ = f1

(
w1y + w1

1y′ + v1u + b1

)
+ f2

(
w2 | y |2 +w2

2 | y′ |2 +v2 | u |2 +b2

)
, (12)

with y = y(t) ∈ Rm denoting the HS of the HystRNN, y′ the time derivative, y′′ the
second-order time derivative, and w1,2, w1,2

1,2 ∈ Rm×m and v1,2 ∈ Rm×n the weights matrices.
n = N × 2. The aggregated training data correspond to the time t. u = u(t) ∈ Rn is the
input, b1,2 ∈ Rm the bias vector, and f1,2 = tanh(u) the activation functions. The authors
here introduce a reduction of the differential order by using the auxiliary variable z =
y′(t) ∈ Rm and obtaining the first-order system{

y′ = z
z′ = f1

(
w1y + w1

1z + v1u + b1
)
+ f2

(
w2 | y |2 +w2

2 | z |2 +v2 | u |2 +b2
) . (13)

They then use an explicit scheme to discretize the system for 0 < ∆t < 1. The output
obtained is finally calculated for each recurring unit. The method is evaluated using
four metrics: (1) “L2-norm” for the measure of the Euclidean distance between predicted
and real values; (2) “explained variance score” denotes prediction accuracy, catching
variance proportion; (3) “maximum error” discovers important prediction discrepancies
as potential outliers; (4) “mean absolute error” evaluates the mean differences between
predictions and real values for general precision. Error types 1, 3, and 4, together with
the higher explained variance, imply enhanced performance. The trained architecture is
tested in two different eventualities concerning the prediction of two FORCs and two minor
loops. For the FORC prediction, two different lengths of sequence (199 and 399) are tested.
For minor loops prediction, a sequence with a length of 399 each is used. As with network
learning, sequence length tests also depend on the data generated by the PM to evaluate the
model. HystRNN is confirmed by predicting first-order reversal curves and minor loops,
after training the model only with major loop data. The results emphasize the primacy
of HystRNN in ably catching intricate non-linear dynamics, out-performing conventional
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RNN architectures such as LSTM or GRU on various metrics. This result is imputable to
its faculty to comprehend sequential information, historical dependencies, and hysteretic
features, finally reaching generalization competences.

4.2. Convolutional NNs and Temporal CNNs

Convolutional neural networks (CNNs) are an advanced class of artificial neural
networks designed for the processing and analysis of structured data in matrix form
as images, audio and video. Introduced in [59] in the 1990s, CNN revolutionized the field
of artificial vision by their ability to automatically learn relevant features from raw data.
They consist of a convolutional layer, the heart of the architecture, composed of several
layers, in which a series of filters (or kernels) is applied to the input images, generating
feature maps [55,60]. These filters are able to capture various local features such as edges,
corners and textures, essential for understanding the image. After each convolution layer,
a pooling layer (usually max pooling) reduces the spatial dimension of the feature maps,
keeping the most important information and reducing the computational complexity. This
process makes the model more robust under variations and translations of the image.
Finally, fully connected layers are composed in the same way as those in traditional NN.
These layers combine the characteristics learned during the convolutions to carry out the
final classification or other recognition activities [55]. They have been successfully used
in a wide range of applications, including image recognition or semantic segmentation.
CNNs learn to extract features at different levels of abstraction, from edge detection to
complex shapes, and share weights, drastically reducing the number of parameters to
learn and improving the computational efficiency but requiring large amounts of labeled
data for effective training. The training also requires a considerable computational cost or
specialized hardware such as a GPU. The high flexibility of the CNN can be adapted for
the analysis of multi-dimensional data, such as magnetic hysteresis data.

In [35], the authors analyze the temperature variation modifying the magnetic behav-
ior of ferromagnetic cores, which can have impact on the performance of electrical devices.
To build a temperature-dependent hysteresis model to accurately calculate the electromag-
netic features, in this case , it can have a significant impact. A temporal convolutional
network (TCN) in combination with the play operator method is developed in the paper.
To introduce the temperature effect, the suggested model uses the temperature-dependent
spontaneous magnetization intensity as an input. The classical play model is history de-
pendent and rate independent and designed for static magnetic hysteresis calculations. It
can be represented by Equation (14), in which a series of operators is integrated under the
action of a rate-independent shape function fz

H = P(B) =
∫ Bs

0
fz(pz(B))dz (14)

where Bs is the saturation magnetic flux density, and pz is the play operator expressed as
follows:

pz(B) = max
(

min
(

p0
z , B + z

)
, B − z

)
(15)

with p0
z as the value of the previous moment. Such a rate-independent model struggles

to predict the dynamic loss accurately. However, the history-dependent play model in-
tegrated with TCN is transformed into a dynamic, rate-dependent magnetic hysteresis
model. The performance indicator employed to quantify the error between the model
and experimental measurements is the Normalized Root Mean Square Error (NRMSE).
The process of model validation involves selecting the suitable model hyperparameters and
making sure that the model is robust to new data. The Bayesian optimization algorithm is
employed to optimize the hyperparameters and improve the accuracy of the model training
outcomes. The results exhibit that the provided model can accurately forecast the hysteresis
features of materials, both under varying temperature and frequency conditions.
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In [36], the problem of how the output force of the pneumatic blow-off actuators is
critical for their applications is addressed. Its force control poses a great challenge due
to the strong asymmetric hysteresis posed by its material’s hyperelasticity and air’s high
compressibility. The author proposes a hybrid model named the CNN-AUPI (amplitude-
dependent unparallel Prandtl–Ishlinskii (PI))-based force–position hysteresis modeling
method for soft actuators. AUPI is a modified model built on the traditional PI, which is a
weighted superposition of the multiple play operators as illustrated in the following:

Fki
(u(t)) = max

{
u(t)− ki, min

{
u(t) + ki, Fki

(u(t−))
}}

, t− = t + 0+. (16)

A single play operator is a time-varying equation. The PI superimposed by multiple
play operators can only fit symmetric hysteresis curves because of the symmetry of the play
operator. Built on PI, a UPI (Unparallel PI) is considered to model asymmetric hysteresis.
The mathematical formulation is

Fki ,ai
(u(t)) = max

{
u(t)− ki, min

{
ai(u(t) + ki), Fki ,ai

(u(t−))
}}

, t− = t + 0+ (17)

describing the asymmetric event of the hysteresis loop by multiplying a factor ai on the
falling edge of the play operator. The UPI model for the soft joint actuator accurately
depicts the asymmetric hysteretic behavior at a specific inflation pressure but develops
into being unreliable at varied inflation pressures. It is incorporated such that the soft joint
actuator’s maximum rotation angle “A” is introduced at each inflation pressure [61] to
assure that the model is able to forecast hysteresis at diverse air pressures. The AUPI model
includes various weighted UPI operators and the constant term

y =

(
Nr

∑
l=0

wl Fkl ,al
(u(t))

)
+ b, (18)

where y is the AUPI model output and b is a constant to be identified, introduced to
represent the actuator hysteresis curve features at the starting point. The number of UPI
operators, experimentally set, is Nr, and wi is the density coefficient of the UPI operators.
wi is included to describe a segmented form involving the loading and unloading process
of the hysteresis curve, respectively. Furthermore, two non-linear functions frequently
used in hysteresis modeling, as density coefficient functions, are applied to AUPI. Al-
though the AUPI model has the capability to represent the asymmetric hysteresis event
and generalize the results, its fitting accuracy is not strong enough under the inflation
pressure independent of the training data. For this aim and to further improve the accuracy
and generalization model capability, a CNN is matched. The CNN mechanism obtains
the general characteristics of hysteresis information, avoids overfitting, and dramatically
enhances the composite model’s accuracy and generalization ability. The ReLU activation
function provides advantages such as fast convergence and a lack of gradient saturation or
disappearance (with respect to common sigmoid and tanh functions). Since the convolution
layer only draws the links between local characteristic nodes, the combination of the CNN
with an AUPI model obtains the general relationships between the individual nodes of
the feature map. The MAE, MSE, maximum relative error, mean output force error, and
R-square quality of fit are used to quantitatively describe the advantages of the models.
Experimentally, it is shown that the CNN-AUPI model has brilliant hysteresis fitting for
soft joint actuators, with a maximum relative error of only 6.1% and a quality of fit of more
than 0.99. Other hysteresis models such as classical PI and improved PI have been com-
pared, and the results show that the CNN-AUPI mode has a strong modeling accuracy and
high prediction ability, thus providing an encouraging method for soft actuator hysteresis
modeling. Furthermore, it is generalizable and suitable to model asymmetric hysteresis for
different kinds of soft actuators.
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4.3. Generative Adversarial Networks (GANs)

Generative neural networks, e.g., generative adversarial networks (GANs), are used
to generate new synthetic data which follow the same distribution of input data. They
are among the most intriguing ideas in computer science today. An adversarial process is
employed to train two models simultaneously. A generator (“the artist”) learns to create
images that look real, while a discriminator (“the art critic”) learns to tell real images
apart from fakes [37]. As training progresses, the generator improves its ability to create
images that appear real, while the discriminator improves its ability to distinguish them.
The process reaches equilibrium when the discriminator can no longer distinguish real
images from fakes. This process trains the GAN to generate real images that may not be
found in the original dataset. This approach can be useful to generate additional data to
train NN models or to explore the hidden features of magnetic hysteresis data.

In [62], GAN is discussed as a tool to predict magnetic field values at random points in
space using point measurements. Obtaining high-resolution magnetic field measurements
may be difficult or impractical, which is why this technique is particularly useful for
scientific and real-world applications. The implemented GAN consists of two main neural
networks: a generator, which predicts missing magnetic field values, and a critic, which
calculates the statistical distance between real magnetic field distributions and the generated
field. The architecture is shown in Figure 9 and consists of an input, 3D magnetic field
(measured in a 2D rectangular area), and an output (an inter- or extrapolated 3D magnetic
field in this region). The fields are multiplied for a binary mask m during the training,
according to the following (we recall that ⊙ is traditionally the symbol for the Hadamard
product):

Bsp = B ⊙ (1 − m). (19)

The two-step generating process is designed in the style of residual learning [63]:

Bc = Gc(Bsp, m), B̃ = G f (Bc ⊙ m + Bsp, m). (20)

Figure 9. GAN architecture. A two-step generation process with down/up-sampling across multiple
convolutional layers. It provides missing field values of a masked input magnetic field. The results,
calculated by local and global critic, consist of several convolutional layers. Error functions L{... } are
evaluated for updating the parameters of the generator networks in order to minimize the general
loss function.

The generator network Gc generates a coarse prediction by applying a sequence
of convolutional layers on Bsp and the applied mask m. At the start, the input field is
reduced to a lower resolution with an increased number of channels. This approach ensures
that the same quantity of information is preserved while making successive convolutions
computationally less intensive. Later, to enhance the model’s field of view and enable
encoding at multiple scales, many convolutions with different scaled filters are executed
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on the down-sampled image. Lastly, the data are up-sampled with interpolations to the
original size, providing a coarse forecasting Bc. Another generator network G f takes Bc

and Bsp as input and provides B̃ in similar way to Gc. Along with that, the magnetic field
is split up into small patches of 3 × 3 pixels in a second branch. The reconstruction is
improved by calculating the corresponding importance between these patches and missing
pixels. The purpose of this kind of contextual attention is to overthrow localization in
the convolutional layers and enhance it with a comprehensive flow of information from
field pixels that are magnetically distant. The convolution and attention branch are linked
before up-sampling to the original resolution. On B̃, the losses LM, Lm , Ld, and Lcu can
directly be evaluated. For the adversarial loss Lw, we necessitate the employment of a critic
NN. It needs to split the critic into a global critic network to evaluate the whole image,
and a local critic network to determine the quality of the filled-in regions. The model can
predict missing magnetic field values by training the generator to minimize this statistical
distance, as well as minimizing reconstruction and physical losses based on Maxwell’s
equations. The average reconstruction error is 5.14% with a consistent region of field points
and 5.86% when only a few spot measurements are available. These results prove that
the technique can be used effectively to reconstruct missing magnetic fields and could
have applications in various fields requiring the measurement and the analysis of magnetic
fields. This novel method is not able to perform painting taskswhere large parts of the
magnetic field, calculated relative to the general measurement area, are missing. Moreover,
the physics-informed learning-based method produces better performance results when
compared to the other common methods. Furthermore, when regions (16 × 16 pixels) of
measurements are given (instead of only (1 × 1 pixel)), the Gaussian processes outperform
the procedure but with the inference time of magnetic field forecasting being two orders
of magnitude higher. In certain applications, such as the simultaneous mapping and
localization performed in robotics, the paradigm could be a compromise between accuracy
and computational time. The authors suggest that it would be very attractive to make use
of the fact that closed Poisson problems could be solved from the boundary values around
the missing field information. Hence, the generator neural network could be trained to
predict missing field measurements from only these values in the input layer.

4.4. FNN and Extended PM

As mentioned in the introductory section, various mathematical models and their
variants can be exploited to reproduce the hysterical behavior of the ferromagnetic materi-
als to be considered. Artificial neural networks, as the usual NNs, involving time-delay,
multi-layer perceptron, and RNN, sometimes are inadequate for learning entirely hys-
teretic behaviors. Appropriate memory to deal with hysteresis as a non-unique non-linear
event [64] is lacking. Based on PM and PI hysteresis models, built on hysteresis operators
relay, play and stop, in [65], the authors suggest a novel NN, the Prandtl neural network
(PINN). It provides only one hidden layer with stop neurons. It is a linear combination
of many stop operators as in the PI model. The model can be applicable to the hysteresis
following Masing rules [66]. In [67], the same authors extend PINN by inserting an ex-
tra hidden layer with sigmoidal neurons to non-Masing hysteresis based on the Preisach
neural network (PMNN). Here, the stop neurons in the first hidden layer are mapped
into the output layer through a non-linear mapping by the second hidden layer, like in
the PM. Further extension provides a novel hysteresis operator by putting together stop
and play operators and using it in a NN called the generalized Prandtl neural network
(GPINN), by which non-congruent hysteresis comportment can be mocked. Both PMNN
and GPINN are diverse extensions of PNN. In [34], these extensions are joined into a new
NN called the Extended Preisach Neural Network (EPNN). Furthermore, it is improved
for the RD hystereses that the previous extensions lack. It includes one input layer, one
output layer and two hidden layers. The input and output layers consist of linear neurons;
the first hidden layer, different from the PMNN, involves Normalized Decaying Stop (NDS)
neurons, whose activation mechanism is constructed after the decaying stop processor
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with a unit threshold (r = 1). This kind of operator can generate non-congruent hysteresis
loops. In the input layer, it includes x(t) input data and ẋ(t), the rate at which x(t) changes,
in order to provide to EPNN the ability of learning RD hysteresis loops. In the second
hidden layer, sigmoidal neurons are included. They help the NN learn non-Masing and
asymmetric hysteresis loops very smoothly. The envisaged technique allows the simulation
of both RI and RD hystereses with either congruent or non-congruent loops and symmetric
or asymmetric loops. For the EPNN training, a novel hybridized algorithm is adopted,
built on a combination of GA and the optimization method of sub-gradient with space
dilatation. By applying the proposed model to different hysteresis processes, from various
engineering areas, with different features, the generality of the model is evaluated. Results
indicate the success of the model in the identification of the examined hysteresis and the
arrangement with experimental data.

4.5. Deep Operator Networks

Deep Operator Networks (DeepONets) [68] are a type of neural network designed to
learn non-linear operators, mapping from one functional space to another. This makes them
particularly suitable to model the constitutive laws governing complex phenomena such
as magnetic hysteresis. In a DeepONet, the input is not a single vector as in a traditional
FNN but a function. The architecture is designed to manage these functions as inputs, thus
allowing to directly learn the non-linear relationships between entire functional spaces.
The architecture includes three main sections: the Branch Network, which acquires a
function as the input and extracts its characteristics; the Trunk Network, which captures
the coordinates in the target space and transforms them into a representation that can be
combined with the output of the Branch Network; and the Combining Mechanism, in
which the output of the two networks is combined to produce the final map between the
input function and the target. The structure follows a mathematical model reported in the
following Theorem [68].

Theorem 1 (Universal Approximation Theorem for Operator). Suppose that σ is a continuous
non-polynomial function, X is a Banach space, K1 ⊂ X and K2 ⊂ Rd are two compact sets in X
and Rd, respectively, V is a compact set in C(K1), and G is a non-linear continuous operator, which
maps V into C(K2). Then, for any ε > 0, there exist constants ck

i , ξk
i,j, θk

i , ζk ∈ R, xj ∈ K1 with
i = 1, ṅ, k = 1, ṗ, j = 1, ṁ, n, p, m ∈ Z+ such that∣∣∣∣∣∣∣∣∣∣

G(u)(y)−
p

∑
k=1

n

∑
i=1

ck
i σ

(
m

∑
j=1

ξk
i,ju(xj) + θk

i

)
︸ ︷︷ ︸

Branch

σ(wk · y + ζk)︸ ︷︷ ︸
Trunk

∣∣∣∣∣∣∣∣∣∣
< ε, ∀u ∈ V, y ∈ K2. (21)

This approximation theorem indicates the potential application of NN to learn non-
linear operators from data, in the same way as ordinary NNs, where we learn functions from
data but do not obtain information on how to learn efficiently. The key point is that the new
operator G is like a neural network that is able to infer useful information from known and
unknown data. The general accuracy of NNs can be described by separating the global error
into three main types: approximation, optimization, and generalization errors (see [68] and
the Refs. therein). But Theorem 1 guarantees a small approximation error for an adequately
significant network, and it does not consider the critical optimization and generalization
errors at all, which are often preponderant contributions to the total error in effect. Useful
NNs should be simple to train, which means to exhibit small optimization errors and
generalize well to unknown data (namely with irrelevant generalization errors). To prove
the ability and efficacy of learning non-linear operators by NN, the problem is considered
as generally as possible by using the weakest acceptable restriction on the sensors and
training dataset. The DeepONet structure makes it possible to achieve small total error
and model complex processes involving whole functions, overcoming the limitations of
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traditional neural networks when it comes to generalizing new inputs. Applications are in
several fields, including the modeling of magnetic hysteresis.

The limits of traditional neural architectures, including RNN and appropriate variants
(Gru, LSTM, and so on), occur from their capability to learn only fixed-dimensional map-
pings between magnetic fields. Such networks cannot model mappings between functions
in continuous domains [69,70]. In [39], the authors propose neural operators (NOs) to
model the hysteresis relationship between magnetic fields to deal with these challenges.
Common NNs learn fixed-dimensional mappings, while NOs approximate the underlying
operator, building a mapping between H and B fields, to predict the material responses (B
fields) for new H fields. Precisely, NOs can approximate continuum mappings even when
used on discrete data, permitting them to generalize to new H fields. More particularly,
two notable neural operators, DeepONet and Fourier NO (see Figures 10 and 11 and [39]
for each detail), are employed to predict new first-order reversal curves and minor loops
(new means that they do not belong to the training dataset). Furthermore, an RI Fourier
NO is proposed to forecast material responses at sampling rates diverse from those utilized
during training to incorporate the RI features of magnetic hysteresis. The numerical experi-
ments presented demonstrate that NO adequately models magnetic hysteresis, overcoming
the conventional neural recurrent techniques on different metrics and generalizing to new
magnetic fields. The observations underline the benefits of using neural operators for
modeling hysteresis under varying magnetic conditions, highlighting their importance in
characterizing the magnetic material of devices.

Figure 10. DeepONet architecture composed by 2 different FNNs, branch and trunk net, whose
outputs are matched using a dot product to approximate the B fields.
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Figure 11. Fourier neural operator architecture (FNO). The input is X := [hi, tsample] (for RD-FNO
it is X := hi). The input is passed through the projection tensor (P) and the Fourier layers, and, at
the end, is downscaled (Q) to approximate the B field. In light blue Fourier layers, parameterized by
learnable tensors W and R.

5. Conclusions

This paper examines a wide range of neural network approaches to model magnetic
hysteresis, pointing out how different architectures can be used effectively to capture and
predict the complex behavior of ferromagnetic materials. From the use of convolutional
and recurrent neural networks for GAN- or DeepONet-based models, each approach has
demonstrated its strengths in addressing specific aspects of the dynamics under considera-
tion. The analysis clearly shows that neural networks, thanks to their deep learning and
generalization capabilities, are powerful tools for modeling magnetic hysteresis, regard-
less of the mathematical model used for the latter. In particular, RNN and CNN models
have proved effective at predicting hysteresis dynamics even without the need for prior
knowledge of the material details. GAN has shown considerable potential in reconstructing
missing magnetic fields. DeepONet generalizes models essential for scenarios where prior
training on varying magnetic fields is impractical, among other things. These results not
only broaden the understanding of magnetic hysteresis but also offer new perspectives for
the practical application of these models in various industrial and scientific fields. The deep
learning techniques analyzed, with further optimizations and validations, can lead to
significant improvements in the design and management of advanced magnetic devices.
Last but not least, although each methodology has specific advantages, it is clear that a
combination of different neural network (hybrid models) approaches could offer a more
robust and accurate solution for magnetic hysteresis modeling. The integration of deep
learning techniques with knowledge of underlying physical phenomena continues to be a
promising direction for future research and applications. The possibilities of creating hybrid
forms of neural networks are very wide. This overview is a starting point for developing
many other neural network architectures, building upon the successes already achieved
and avoiding their limitations. These networks must first be developed and tested from
a theoretical point of view, and then applied to the various experiments. Only at the end
of a comparison between the theoretical and practical results can the actual advantage in
choosing one methodology over another be established.

As a concluding remark, the authors are engaged in developing the appropriate neural
networks that can boost the technology of the additive manufacturing of soft magnetic
components, with particular attention given to the modeling of the magnetization processes
and the simulation of the electrical equipment when complex geometries and sophisticated
shapes are required for magnetic components. The analysis proposed in the present context
has provided additional tools to optimize the prediction of magnetic hysteresis processes
and thus be able to intervene in advance in the experimental phase, thereby reducing costs
and time considerably. The expected results may thus contribute to a reduction in the
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waste materials and energy consumption in the production and lifecycle of the magnetic
components involved in electrical machines, actuators, and power converters.
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