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Abstract. This research study presents a novel high-order accurate computational framework for 

thermal fluid-structure interaction problems. The framework is based on the use of block-

structured Cartesian grids where level set functions are employed to define both the fluid and the 

solid regions. This leads to a mesh that consists of a collection of standard d-dimensional 

rectangular elements and a relatively smaller number of irregular elements at the fluid-solid 

interface. The embedded boundaries are resolved with high-order accuracy thanks to the use of 

high-order accurate quadrature rules for implicitly-defined regions. 

The fluid is assumed compressible and governed by the inviscid Navier-Stokes equations, whilst 

the solid region obeys the equations of thermo-elasticity within the small-strain regime. 

Numerical examples are provided to assess the capability of the proposed approach. 

Introduction 

The interest in developing reliable, sustainable and reusable transportation systems that are 

capable of flying at Mach numbers ranging from 0 to 12 is continuously growing. It is well-

known that, within such a wide flight regime, the aircraft structure must endure extreme 

conditions in terms of pressure and temperature loads. These loads induce a complex thermo-

elastic interaction that is generally resolved via the aid of numerical methods as analytical 

solutions exist for very special combinations of boundary conditions and material properties. 

In the context of computational methods, the Finite Volume (FV) method is the industry-

standard numerical approach to fluid mechanics problems and is found in many open-source and 

commercial software libraries; on the other hand, thermo-mechanical problems are very often 

tackled by the Finite Element (FE) method. Both the FV and the FE methods are extremely 

robust and widely employed in science and engineering; however, their coupling may become 

involved and may represent the bottleneck for fluid-structure interaction simulations. 

Among the various alternatives to FV- or FE-based approaches, the discontinuous Galerkin 

(DG) method has proved a powerful numerical technique for both fluid- and solid-mechanics; 

see, e.g., [1], among several recent contributions. With respect to other techniques, DG-based 

formulations use spaces of discontinuous basis functions to approximate the solution fields; this 

naturally enables high-order accuracy with generally shaped mesh elements, block-structured 

mass matrices and massive parallelization. Additionally, as DG methods enforce both boundary 

and interface conditions in a weak sense, the coupling between different formulations for the 

same or for different sets of partial differential equations is significantly simplified. This includes 

the coupling between different DG formulations or between a DG formulation and a FVM 

scheme, see Ref.[2]. 



 

  

This study introduces a novel formulation for unsteady thermal fluid-structure interaction 

problems coupling a shock-capturing FV scheme and a high-order DG scheme. Numerical tests 

are presented for a thermo-elastic cylinder moving at supersonic speed in an inviscid gas. 

Geometry representation and discretization 

The coupled thermal fluid-structure interaction problem involves the modeling of two regions 

consisting of a fluid domain and a solid domain. Here, the geometry is represented via a level set 

function 𝜑 defined in a rectangular domain ℛ ⊂ ℝ𝑑, such that the fluid domain 𝒟𝑔 and the solid 

domain 𝒟𝑠 are identified by the points belonging to ℛ where 𝜑 is negative and where 𝜑 is 

positive, respectively. It follows that the interface 𝒥 between the fluid and the solid domains is 

identified by {𝒙 ∈ ℛ ∶  𝜑(𝑥) = 0}. To illustrate, Fig.(1a) shows a level set function defining a 

circle in a square domain, whilst Fig.(1b) shows the corresponding fluid and solid regions. 

The fluid and the solid domains are eventually discretized. Here, we use the implicitly-defined 

mesh approach developed in Refs.[2,3,4], which is based on intersecting a structured grid with 

the zero-contour of the level set functions and allows resolving the curved boundaries with high-

order accuracy. Fig.(1c) shows the implicitly defined mesh for the geometry shown in Fig.(1b); 

in the figure, the darker elements represent the extended elements that prevent the presence of 

overly small elements in the mesh. See Refs.[2,3,4] for further detail on this meshing strategy. 

 
Fig. 1: (a). Level set function defined in a two-dimensional square and (b) corresponding fluid and solid 

regions identified by the sign of the level set function. (c) Implicitly defined mesh. 

Fluid dynamics model 

The considered fluid is a compressible gas assumed to obey the Euler equations, which are 

expressed as the following conservation law: 

𝜕𝑼𝑔

𝜕𝑡
+

𝜕𝑭𝑘
𝑔

𝜕𝑥𝑘
= 0, (1) 

where 𝑡 is time, 𝑥𝑘 is the k-th spatial component, and 𝑼𝑔 and 𝑭𝑘
𝑔
 denote the (𝑑 + 2)-dimensional 

vectors of the conserved variables and the flux in the k-th direction, respectively; these are 

𝑼𝑔 ≡ (

𝜌𝑔

𝜌𝑔𝒗𝑔

𝜌𝑔𝑒0

)  and 𝑭𝑘
𝑔

≡ (

𝜌𝑔𝑣𝑘
𝑔

𝜌𝑔𝑣𝑘
𝑔

𝒗𝑔 + 𝑝𝜹𝑘

(𝜌𝑔𝑒0 + 𝑝)𝑣𝑘
𝑔

), (2) 

where 𝜌𝑔 is the fluid density, 𝒗𝑔 ≡ (𝑣1
𝑔

, … , 𝑣𝑑
𝑔

)
T
 is the gas velocity vector, 𝑒0 is the gas total 

energy and 𝑝 is the gas pressure. The governing equations are closed by the ideal-gas equation of 

state with ratio 𝛾 of specific heats. In Eq.(1) and in the remainder of the paper, Latin indices will 

take value in {1,…,d} and, when repeated, imply summation. 



 

  

Thermo-mechanical model 

The thermo-mechanical model considered here is based on the theory of linear elasticity and 

Fourier’s law of heat conduction. In absence of external sources, it is possible to show that the 

governing equations of coupled, unsteady thermo-elasticity may be written as: 

𝜕𝑼𝑠

𝜕𝑡
−

𝜕

𝜕𝑥𝑘
(𝑸𝑘𝑙

𝜕𝑼𝑠

𝜕𝑥𝑙
+ 𝑹𝑘𝑼𝑠) + 𝑹𝑘

∗ 𝜕𝑼𝑠

𝜕𝑥𝑘
+ 𝑺𝑼𝑠 = 𝟎, (3) 

where 

𝑼𝑠 ≡ (
𝒖𝑠

𝒗𝑠

𝜗
) ,  𝑸𝑘𝑙 ≡ (

𝟎 𝟎 𝟎
𝒄𝑘𝑙

𝜌𝑠 𝟎 𝟎

𝟎 𝟎
𝜅𝑘𝑙

𝑐𝑠

) ,  𝑹𝑘 ≡ (

𝟎 𝟎 𝟎

𝟎 𝟎 −
𝒎𝑘

𝜌𝑠

𝟎 𝟎 0

) ,  𝑹𝑘
∗ ≡ (

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

𝟎
𝑇0 𝒎𝑘

T

𝑐𝑠 0
) (4a) 

and 

 𝑺 ≡ (
𝟎 −𝐈𝑑 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 0

). (4b) 

In Eq.(4), 𝒖𝑠 ≡ (𝑢1
𝑠, … , 𝑢𝑑

𝑠 )T is the solid displacement vector, 𝒗𝑠 ≡ (𝑣1
𝑠, … , 𝑣𝑑

𝑠)T is the solid 

velocity vector, 𝜗 ≡ 𝑇𝑠 − 𝑇0 represents the variation of the solid temperature field 𝑇𝑠 with respect 

to a reference temperature 𝑇0, 𝜌𝑠 and 𝑐𝑠 are the density and the heat capacity per unit volume, 

respectively, of the solid domain, 𝒄𝑘𝑙 is a 𝑑 × 𝑑 matrix collecting subsets of elastic coefficients, 

see, e.g., Refs.[5], 𝜅𝑘𝑙 is the 𝑘𝑙-th entry of thermal conductivity tensor, 𝒎𝑘 is the 𝑑-dimensional 

vector containing components of the thermo-elasticity tensor, and 𝐈𝑑 is the 𝑑 × 𝑑 identity matrix. 

It is noted that the thermo-elastic properties of the solid are assumed temperature independent. 

Thermal fluid-structure coupling 

The coupling between the gas region and the solid region occurs at the interface between the two 

domains, i.e. at 𝒥 shown in Fig.(1b). Recalling that the solid is assumed to undergo small 

deformations, its interface with the gas do not change with time and, as such, behaves like a 

fixed wall for the gas dynamics equations. Additionally, as the gas is assumed inviscid and non-

conducting, its temperature 𝑇𝑔 is determined by the equation of state. 

The thermal fluid-structure coupling problem is then solved as follows: the conserved 

variables of Eq.(1) are updated from the time instant 𝑡 to the time instant 𝑡 + d𝑡 using an explicit 

time-integration algorithm; then, at the time 𝑡 + d𝑡, the computed values of the gas pressure and 

temperature provide the required boundary conditions at the gas-solid interface to solve the 

unsteady thermo-elastic problem. 

Discontinuous Galerkin formulation 

The governing equations of the gas domain, i.e. Eq.(1), are numerically solved via the time-

explicit Runge-Kutta discontinuous Galerkin formulation coupled to a shock-capturing second-

order FV scheme [2,4]. On the other hand, the equations governing the thermo-elastic solid are 

solved by extending the DG formulation for elliptic PDEs developed in Refs.[5] with suitably-

defined terms accounting for the temporal derivatives in Eq.(3). See Ref.[6] for further detail. 

Results 

Numerical results are presented for a cylinder with radius 𝑟 = 0.2 m moving at a Mach number 

M∞ = 2 at an altitude ℎ = 10 km; the geometry and the boundary conditions of the problem are 

sketched in Fig.(2a). The final time of simulation is 𝐼𝑡 = 3 ms. The gas is assumed perfect with 



 

  

𝛾 = 1.4, while the solid is assumed isotropic with properties: density 2700 kg/m3, Young’s 

modulus 70 GPa, Poisson’s ratio 0.33, thermal conductivity coefficient 210 W/(m K), thermal 

expansion coefficient 24 × 10−6 1/K and volumetric heat capacity 2.43 × 106 J/(m3 K).  

 
Fig. 2: (a) Geometry and boundary conditions. (b) Mach number. (c) Temperature. (d) Displacement 

magnitude (the dashed line denotes the undeformed shape). 

Fig.(2b) shows the distribution of the Mach number, while Fig.(2c) shows the temperature 

distribution within both the gas and the solid. The figures confirm the ability of the formulation 

to capture the shock wave as well as the thermal loads induced by the fluid flow. 

Conclusions 

A novel formulation for unsteady thermal fluid-structure interaction problems has been 

presented. The formulation uses a high-order accurate represented of embedded geometries, a 

shock-capturing FV scheme to resolve flow discontinuities, and a high-order accurate DG 

scheme for the thermo-elastic problem. Numerical results have been presented for a thermo-

elastic cylinder moving at M = 2 and have showed the capability of the proposed approach. 
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