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Abstract. We consider a parametric nonlinear Robin problem driven by a nonhomo-
geneous differential operator. The reaction is a Carathéodory function which is only
locally defined (that is, the hypotheses concern only its behaviour near zero). The
conditions on the reaction are minimal. Using variational tools together with trunca-
tion, perturbation and comparison techniques and critical groups, we show that for all
small values of the parameter λ > 0, the problem has at least three nontrivial smooth
solutions, two of constant sign and the third nodal.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following nonlinear parametric Robin problem

(Pλ)

−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λf(z, u(z)) in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, λ > 0, 1 < p < +∞.

In this problem a : RN → RN is a continuous and strictly monotone map (thus a(·) is
maximal monotone too), which satisfies certain other regularity and growth conditions
listed in hypotheses H(a) below. These hypotheses form a general framework, which
incorporates many differential operators of interest (see the Examples in Section 2).
The potential function ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω. In the reaction (right hand
side of (Pλ)), λ > 0 is a parameter and f(z, x) is a Carathéodory function (that is, for
all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x→ f(z, x) is continuous). The
distinguishing feature of our work, is that we do not impose any global growth condition
on f(z, ·). We only assume that f(z, ·) is (q− 1)-superlinear near 0 with 1 < q < p and
also that f(z, ·) is locally L∞(Ω)-bounded. Hence the conditions on f(z, ·) are minimal

and so the setting of problem (Pλ) is general. In the boundary condition,
∂u

∂na
denotes

the conormal derivative corresponding to the map a(·). The boundary condition is
interpreted via the nonlinear Green’s identity (see Gasiński-Papageorgiou [2], p. 210)
and if u ∈ C1(Ω), then

∂u

∂na
= (a(∇u), n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β ∈ C0,α(∂Ω)
with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω. The case β ≡ 0 which corresponds to the
Neumann problem, is also included in our setting.
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2010 Mathematics Subject Classification: 35J20, 35J60, 58E05.
Corresponding author: Francesca Vetro (francescavetro@tdtu.edu.vn).

1



2 NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

Under these general conditions on the data of the problem, we show that for all
λ > 0 small, problem (Pλ) has at least three nontrivial smooth solutions, all with
sign information (two solutions have constant sign and the third is nodal (that is, the
solution is sign changing). Our work here complements those of Papageorgiou-Winkert
[17] and of Guarnotta-Marano-Papageorgiou [6], which have a nonparametric reaction
of arbitrary growth with two zeros of constant sign. So, the reaction f(z, ·) is forced
to have an oscillatory behavior near zero. No such condition is used in this work. We
also mention the recent work of Papageorgiou-Rǎdulescu-Repovš [15], who impose a
symmetry condition on f(z, ·) and produce a whole sequence of distinct nodal solutions
converging to zero in C1(Ω).

2. Mathematical Background - Hypotheses

The main spaces that we will use in the analysis of problem (Pλ) are the Sobolev
space W 1,p(Ω), the Banach space C1(Ω) and the “boundary” Lebesgue spaces Ls(∂Ω),
1 ≤ s ≤ +∞. By ‖ · ‖ we denote the norm of W 1,p(Ω) defined by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈ W 1,p(Ω).

The Banach space C1(Ω) is ordered with positive cone C+ = {u ∈ C1(Ω) : u(z) ≥
0 for all z ∈ Ω}. This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure on ∂Ω, we can define in the usual way the Lebesgue spaces Ls(∂Ω), 1 ≤ s ≤
+∞. From the theory of Sobolev spaces, we know that there exists a unique continuous
linear map γ0 : W 1,p(Ω)→ Lp(∂Ω), known as the “trace map”, such that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈ W 1,p(Ω) ∩ C(Ω).

The trace map is not surjective. In fact im γ0 = W
1
p′ ,p(∂Ω) with

1

p′
+

1

p
= 1 and

ker γ0 = W 1,p
0 (Ω). Moreover, the trace map γ0(·) is compact into Ls(∂Ω) for all 1 ≤ s <

(N − 1)p

N − p
if p < N and into Ls(∂Ω) for all 1 ≤ s < +∞ if p ≥ N . In what follows, for

the sake of notational economy, we drop the use of the trace map γ0(·). All restrictions
of Sobolev functions on ∂Ω, are understood in the sense of traces.

Now let l ∈ C1(0,+∞) which satisfies

(1) 0 < ĉ ≤ tl′(t)

l(t)
≤ c0 and c1t

p−1 ≤ l(t) ≤ c2[ts−1 + tp−1]

for all t > 0, some c1, c2 > 0 and 1 ≤ s < p.
The hypotheses on the map a(·), are the following:

H(a): a(y) = a0(|y|)y for all y ∈ RN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t→ ta0(t) is strictly increasing on (0,+∞), limt→0+ ta0(t) = 0

and limt→0+
ta′0(t)

a0(t)
> −1;

(ii) |∇a(y)| ≤ c3
l(|y|)
|y|

for all y ∈ RN \ {0}, some c3 > 0;
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(iii) (∇a(y)ξ, ξ)RN ≥
l(|y|)
|y|
|ξ|2 for all y ∈ RN \ {0}, all ξ ∈ RN ;

(iv) if G0(t) =
∫ t

0
a0(s)sds, t > 0, then there exist 1 < τ < q < p such that

c4t
p ≤ a0(t)t2 − τG0(t) for all t > 0, some c4 > 0,

lim sup
t→0+

qG0(t)

tq
≤ c∗ < +∞.

Remark 1. Hypotheses H(a) (i), (ii), (iii) are dictated by the nonlinear regularity theory
of Lieberman [8] and the nonlinear maximum principle of Pucci-Serrin [18]. Hypothesis
H(a) (iv) serves the needs of our problem. It is mild and it is satisfied in all cases of
interest (see the examples below).

From these hypotheses we see that G0(·) is strictly increasing and strictly convex.
We set G(y) = G0(|y|) for all y ∈ RN . Evidently G(·) is convex and we have

∇G(y) = G′0(|y|) y
|y|

= a0(|y|)y = a(y) for all y ∈ RN \ {0}.

The convexity of G(·) and since G(0) = 0, imply that

(2) G(y) ≤ (a(y), y)RN for all y ∈ RN .

From (1) and hypotheses H(a), we easily deduce the following lemma which summa-
rizes the main properties of the map a(·) (see Papageorgiou-Rǎdulescu [11]).

Lemma 1. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) a(·) is continuous and strictly monotone (hence maximal monotone too);
(b) |a(y)| ≤ c5[|y|s−1 + |y|p−1] for all y ∈ RN , some c5 > 0;

(c) (a(y), y)RN ≥
c1

p− 1
|y|p for all y ∈ RN .

This lemma and (2) lead to the following growth estimates for the primitive G(·).

Corollary 1. If hypotheses H(a) (i), (ii), (iii) hold, then
c1

p(p− 1)
|y|p ≤ G(y) ≤ c6[1 +

|y|p] for all y ∈ RN , some c6 > 0.

The examples that follow show that the framework provided by hypotheses H(a) is
general and includes many cases of interest.

Examples 1. Let a : RN → RN be given as:

(a) a(y) = |y|p−2y, 1 < p < +∞. This map corresponds to the well-known p-Laplace
differential operator ∆pu = div (|∇u|p−2∇u) for all u ∈ W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y, 1 < q < p < +∞. This map corresponds to the
(p, q)-Laplace differential operator ∆pu+ ∆qu for all u ∈ W 1,p(Ω).

Such operators arise in the mathematical models of various physical processes.
Recently there have been several existence and multiplicity results for such equa-
tions. An informative survey of these results with several relevant references can
be found in the paper of Marano-Mosconi [9].

(c) a(y) = [1 + |y|2]
p−2
2 y, 1 < p < +∞. This map corresponds to the extended

capillary differential operator.
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(d) a(y) = |y|p−2y

[
1 +

1

1 + |y|p

]
, 1 < p < +∞. This map corresponds to the

differential operator u→ ∆pu+div
(

1
1+|∇u|p |∇u|

p−2∇u
)

which arises in problems

of plasticity theory (see Fuchs-Li [1]).

The hypotheses on the potential function ξ(·) and the boundary coefficient are the
following:

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω.
H(β): β ∈ C0,α(∂Ω) for some α ∈ (0, 1), β(z) ≥ 0 for all z ∈ ∂Ω.

H0: ξ 6≡ 0 or β 6≡ 0.

Remark 2. These hypotheses include also the Neumann problem, which corresponds to
the case β ≡ 0.

Consider the C1-functional γ : W 1,p(Ω)→ R defined by

γ(u) =

∫
Ω

pG(∇u)dz +

∫
Ω

ξ(z)|u|pdz +

∫
∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω).

Using Lemma 4.11 of Mugnai-Papageorgiou [10] (for the case ξ 6≡ 0) and Proposition
2.4 of Gasiński-Papageorgiou [5] (for the case β 6≡ 0), together with Corollary 1, we
infer that

(3) γ(u) ≥ c7‖u‖p for some c7 > 0, all u ∈ W 1,p(Ω).

Let A : W 1,p(Ω)→ W 1,p(Ω)∗ be the nonlinear operator defined by

〈A(u), h〉 =

∫
Ω

(a(∇u),∇h)RNdz for all u, h ∈ W 1,p(Ω).

From Gasiński-Papageorgiou [3] (Proposition 3.5), we have:

Proposition 1. If hypotheses H(a) (i), (ii), (iii) hold, then A : W 1,p(Ω)→ W 1,p(Ω)∗ is

continuous, monotone (hence maximal monotone too) and of type (S+), that is, un
w−→ u

in W 1,p(Ω) and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply un → u in W 1,p(Ω).

Let X be a Banach space and ϕ ∈ C1(X,R), c ∈ R. We introduce the following sets:

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

ϕc = {u ∈ X : ϕ(u) ≤ c} (the c-sublevel set of ϕ).

Given a topological pair (Y1, Y2) such that Y2 ⊆ Y1 ⊆ X, by Hk(Y1, Y2), k ∈ N0, we
denote the kth-relative singular homology group with integer coefficients. Let u ∈ Kϕ

be isolated and ϕ(u) = c. Then, the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

with U being a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u} (isolating neighbor-
hood of u). The excision property of singular homology implies that this definition is
independent of the choice of the isolating neighborhood U .

Next let us introduce the basic notation used in this paper. For every x ∈ R, we set
x± = max{±x, 0}. Then given u ∈ W 1,p(Ω), we define u±(z) = u(z)± for all z ∈ Ω. We
know that

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Given a measurable function k : Ω×R→ R (for example, a Carathéodory function),
by Nk(·) we denote the Nemytskii (superposition) operator corresponding to k, defined
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by Nk(u)(·) = k(·, u(·)). Evidently z → Nk(u)(z) is measurable on Ω. If u, v ∈ W 1,p(Ω)
and u ≤ v, then by [u, v] we denote the order interval in W 1,p(Ω) defined by

[u, v] = {h ∈ W 1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω}.
Now we introduce the hypotheses on the reaction f(z, x).

H(f): f : Ω× R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| ≤ aρ(z) for

a.a. z ∈ Ω, all |x| ≤ ρ;

(ii) with q ∈ (τ, p) as in hypothesis H(a) (iv), we have limx→0
f(z, x)

|x|q−2x
= +∞

uniformly for a.a. z ∈ Ω;
(iii) with τ ∈ (1, q) as in hypothesis H(a) (iv) and F (z, x) =

∫ x
0
f(z, s)ds, we

have 0 ≤ lim infx→0
τF (z, x)− f(z, x)x

|x|p
uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function

x→ f(z, x) + ξ̂ρ|x|p−2x is nondecreasing on [−ρ, ρ].

Remark 3. We stress that no global growth condition is imposed on f(z, ·). Also, note
that no sign condition is assumed.

3. Solutions of Constant Sign

In what follows by L+ (resp. L−) we denote the set of all parameters λ > 0 such
that problem (Pλ) admits positive (resp. negative) solutions. Also by S+

λ (resp. S−λ )
we denote the corresponding set of positive (resp. negative) solutions of problem (Pλ).

Proposition 2. If hypotheses H(a), H(ξ), H(β), H0 and H(f) hold, then

(a) L+ 6= ∅, L− 6= ∅ and S+
λ ⊆ D+, S−λ ⊆ −D+;

(b) If λ ∈ L+ (resp. λ ∈ L−), 0 < η < λ and uλ ∈ S+
λ (resp. vλ ∈ S−λ ), then η ∈ L+

(resp. η ∈ L−) and there exists uη ∈ S+
η (resp. vη ∈ S−η ) such that uη ≤ uλ

(resp. vλ ≤ vη).

Proof. (a) We start by considering the following auxiliary nonlinear Robin problem

(4)

−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = 1 in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, u > 0.

On account of (3) and using the nonlinear regularity theory of Lieberman [8] and the
nonlinear maximum principle of Pucci-Serrin [18], problem (4) admits a unique solution
ũ ∈ D+.

Let λ̃+ =
1

‖Nf (ũ)‖∞
(see hypothesis H(f) (i)). Then we have

(5) −div a(∇ũ(z)) + ξ(z)ũ(z)p−1 = 1 ≥ λ̃+f(z, ũ(z)) for a.a. z ∈ Ω

(see Papageorgiou-Rǎdulescu [12]).

We introduce the Carathéodory function k̃+(z, x) defined by

(6) k̃+(z, x) =

{
λ̃+f(z, x+) if x ≤ ũ(z),

λ̃+f(z, ũ(z)) if ũ(z) < x.
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We set K̃+(z, x) =
∫ x

0
k̃+(z, s)ds and consider the C1-functional ψ̃+ : W 1,p(Ω) → R

defined by

ψ̃+(u) =
1

p
γ(u)−

∫
Ω

K̃+(z, u)dz for all u ∈ W 1,p(Ω).

From (3) and (6) it is clear that ψ̃+(·) is coercive. Also, using the Sobolev embedding

theorem and the compactness of the trace map, we see that ψ̃+(·) is sequentially weakly
lower semicontinuous. So, by the Weierstrass-Tonelli theorem we can find u0 ∈ W 1,p(Ω)
such that

(7) ψ̃+(u0) = inf[ψ̃+(u) : u ∈ W 1,p(Ω)].

Fix u ∈ D+ with ‖u‖q = 1. On account of hypotheses H(a) (iv), H(f) (ii), given
c∗0 > c∗ and η > c∗0‖∇u‖qq, we can find δ ∈ (0,minΩ ũ) (recall that ũ ∈ D+) such that

(8) G(y) ≤ c∗0
q
|y|q for all |y| ≤ δ and λ̃+F (z, x) ≥ η

q
xq for a.a. z ∈ Ω, all 0 ≤ x ≤ δ.

Choose t ∈ (0, 1) small such that

(9) t|∇u(z)| ≤ δ and 0 < tu(z) ≤ δ for all z ∈ Ω.

Using (8) and (9) and since ‖u‖q = 1, we have

ψ̃+(tu) ≤ c∗0t
q

q
‖∇u‖qq −

ηtq

q
=
tq

q

[
c∗0‖∇u‖qq − η

]
< 0,

⇒ ψ̃+(u0) < 0 = ψ̃+(0) (see (7)),

⇒ u0 6= 0.

From (7) we have

ψ̃′+(u0) = 0,

⇒ 〈A(u0), h〉+

∫
Ω

ξ(z)|u0|p−2u0hdz +

∫
∂Ω

β(z)|u0|p−2u0hdσ =

∫
Ω

k̃+(z, u0)hdz(10)

for all h ∈ W 1,p(Ω).
In (10) first we choose h = −u−0 ∈ W 1,p(Ω). Using (3) and (6), we obtain

c7‖u−0 ‖p ≤ 0,

⇒ u0 ≥ 0, u0 6= 0.

Next in (10) we choose h = (u0 − ũ)+ ∈ W 1,p(Ω). We have

〈A(u0), (u0 − ũ)+〉+

∫
Ω

ξ(z)up−1
0 (u0 − ũ)+dz +

∫
∂Ω

β(z)up−1
0 (u0 − ũ)+dσ

=

∫
Ω

λ̃+f(z, ũ)(u0 − ũ)+dz (see (6))

≤ 〈A(ũ), (u0 − ũ)+〉+

∫
Ω

ξ(z)ũp−1(u0 − ũ)+dz +

∫
∂Ω

β(z)ũp−1(u0 − ũ)+dσ (see (5)),

⇒ u0 ≤ ũ.

So, we have proved that

(11) u0 ∈ [0, ũ], u0 6= 0.
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From (6), (10), (11) it follows that u0 is a positive solution of problem (Pλ̃+) and we
have

(12) −div a(∇u0(z)) + ξ(z)u0(z)p−1 = λ̃+f(z, u0(z)) for a.a. z ∈ Ω (see [12]).

From Proposition 7 of Papageorgiou-Rǎdulescu [13], we have u0 ∈ L∞(Ω). Then the
nonlinear regularity theory of Lieberman [8] implies that u0 ∈ C+ \ {0}. Let ρ = ‖u0‖∞
and let ξ̂ρ > 0 be as postulated by hypothesis H(f) (iv). We have

(13) λ̃+[f(z, x) + ξ̂ρx
p−1] ≥ 0 for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ.

From (12) and (13), we obtain

div a(∇u0(z)) ≤ [‖ξ‖∞ + λ̃+ξ̂ρ]u0(z)p−1 for a.a. z ∈ Ω,

⇒ u0 ∈ D+ (see Pucci-Serrin [18] (pp. 111, 120)).

So, we conclude that λ̃+ ∈ L+, that is, L+ 6= ∅ and S+
λ ⊆ D+ for all λ ∈ L+.

For the negative solution we consider the auxiliary problem (4) with −1 as forcing
term (instead of 1). Evidently ṽ = −ũ ∈ −D+ is the unique solution of this new
auxiliary nonlinear Robin problem. Using ṽ ∈ −D+ and reasoning as above with

λ̃− =
1

‖Nf (ṽ)‖∞
, we produce a negative solution v0 ∈ W 1,p(Ω) of problem (Pλ̃−). In

fact we have v0 ∈ [ṽ, 0] ∩ (−D+).

Therefore we have λ̃− ∈ L−, hence L− 6= ∅ and S−λ ⊆ −D+ for all λ ∈ L−.

(b) Now let λ ∈ L+, 0 < η < λ and uλ ∈ S+
λ ⊆ D+. For ρ = ‖uλ‖∞, let ξ̂ρ > 0 be as

postulated by hypothesis H(f) (iv). We introduce the Carathéodory function e+
η (z, x)

defined by

(14) e+
η (z, x) =

{
η[f(z, x+) + ξ̂ρ(x

+)p−1] if x ≤ uλ(z),

η[f(z, uλ(z)) + ξ̂ρuλ(z)p−1] if uλ(z) < x.

We set E+
η (z, x) =

∫ x
0
e+
η (z, s)ds and consider the C1-functional ϕ̂+

η : W 1,p(Ω) → R
defined by

ϕ̂+
η (u) =

1

p
γ(u) +

ηξ̂ρ
p
‖u‖pp −

∫
Ω

E+
η (z, u)dz for all u ∈ W 1,p(Ω).

From (3) and (14) it is clear that ϕ̂+
η (·) is coercive. Also, it is sequentially weakly lower

semicontinuous. So, as before by minimization, we produce uη ∈ W 1,p(Ω) a minimizer
of ϕ̂+

η (·) such that

uη ∈ [0, uλ], uη 6= 0,

⇒ uη ∈ S+
η ⊆ D+ and so η ∈ L+ and uη ≤ uλ.

In a similar fashion, if λ ∈ L−, η ∈ (0, λ) and vλ ∈ S−λ ⊆ −D+, then we show that
η ∈ L− and we produce vη ∈ S−η ⊆ −D+ such that vλ ≤ vη. �

Remark 4. Part (b) of the above proposition implies that L+,L− ⊆ (0,+∞) are inter-
vals, with left end 0 6∈ L+,L−.

From Papageorgiou-Rǎdulescu-Repovš [14] (see the proof of Proposition 7), we know
that S+

λ is downward directed (λ ∈ L+), that is, if u1, u2 ∈ S+
λ , then there exists u ∈ S+

λ

such that u ≤ u1, u ≤ u2 and S−λ is upward directed (λ ∈ L−), that is, if v1, v2 ∈ S−λ ,
then there exists v ∈ S−λ such that v1 ≤ v, v2 ≤ v.
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Next we prove the existence of extremal constant sign solutions for problem (Pλ),
that is, we will show the existence of a smallest positive solution uλ∗ ∈ D+ (uλ∗ ≤ u for
all u ∈ S+

λ ) and of a biggest negative solution vλ∗ ∈ −D+ (v ≤ vλ∗ for all v ∈ S−λ ). These
extremal solutions will be used in Section 4 to produce a nodal solution.

Proposition 3. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then for every λ ∈ L+

problem (Pλ) has a smallest positive solution uλ∗ ∈ D+ and for every λ ∈ L− problem
(Pλ) has a biggest negative solution vλ∗ ∈ −D+.

Proof. Let λ ∈ L+. The set S+
λ ⊆ D+ is downward directed. So, invoking Lemma 3.10,

p. 178, of Hu-Papageorgiou [7], we can find {un}n≥1 ⊆ S+
λ decreasing such that

inf S+
λ = inf

n≥1
un.

We have

(15) 〈A(un), h〉+

∫
Ω

ξ(z)up−1
n hdz +

∫
∂Ω

β(z)up−1
n hdσ =

∫
Ω

λf(z, un)hdz

for all h ∈ W 1,p(Ω), all n ∈ N,

(16) 0 ≤ un ≤ u1 ∈ D+ for all n ∈ N.

If in (15) we choose h = un ∈ W 1,p(Ω) and we use (13), (16) and hypothesis H(f) (i)
we infer that

(17) {un}n≥1 ⊆ W 1,p(Ω) is bounded.

Then from (15), (17) and Proposition 7 of Papageorgiou-Rǎdulescu [13], we can find
c8 > 0 such that

un ∈ L∞(Ω) and ‖un‖∞ ≤ c8 for all n ∈ N.
The nonlinear regularity theory of Lieberman [8] implies that there exist α ∈ (0, 1)

and c9 > 0 such that

(18) un ∈ C1,α(Ω) and ‖un‖C1,α(Ω) ≤ c9 for all n ∈ N.

Recalling that C1,α(Ω) is embedded compactly in C1(Ω), from (18) and the mono-
tonicity of {un}n≥1, we infer that

(19) un → uλ∗ in C1(Ω) as n→ +∞.
On account of hypothesis H(f) (ii), we can find δ > 0 such that

(20) λf(z, x) ≥ λxq−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ.

We consider the following auxiliary nonlinear Robin problem

(21)

−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λ|u(z)|q−2u(z) in Ω,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, u > 0.

Since q < p, we can easily see that for every λ > 0, problem (Pλ) has a unique solution
yλ ∈ D+.

Suppose that uλ∗ = 0 (see (19)). Then we can find n0 ∈ N such that

0 < un(z) ≤ δ for all z ∈ Ω, all n ≥ n0,

⇒ λf(z, un(z)) ≥ λun(z)q−1 for a.a. z ∈ Ω, all n ≥ n0 (see (20)).(22)
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We introduce the Carathéodory function ϑλ(z, x) defined by

(23) ϑλ(z, x) =

{
λ(x+)q−1 if x ≤ un(z),

λun(z)q−1 if un(z) < x,
with n ≥ n0.

Let Θλ(z, x) =
∫ x

0
ϑλ(z, s)ds and consider the C1-functional µλ : W 1,p(Ω)→ R defined

by

µλ(u) =
1

p
γ(u)−

∫
Ω

Θλ(z, u)dz for all u ∈ W 1,p(Ω).

As before using (3), (23) and the direct method of the calculus of variations we can
find ŷλ ∈ W 1,p(Ω) such that

µλ(ŷλ) = inf[µλ(u) : u ∈ W 1,p(Ω)] < 0 = µλ(0) (since q < p),

⇒ ŷλ 6= 0.

Also, we have

µ′λ(ŷλ) = 0,

⇒〈A(ŷλ), h〉+

∫
Ω

ξ(z)|ŷλ|p−2ŷλhdz +

∫
∂Ω

β(z)|ŷλ|p−2ŷλhdσ =

∫
Ω

ϑλf(z, ŷλ)hdz(24)

for all h ∈ W 1,p(Ω). In (24) first we choose h = −y−λ ∈ W 1,p(Ω). Then

c7‖y−λ ‖
p ≤ 0, (see (3) and (23)),

⇒ ŷλ ≥ 0, ŷλ 6= 0.

Also in (24) we choose h = (ŷλ − un)+ ∈ W 1,p(Ω). Then

〈A(ŷλ), (ŷλ − un)+〉+

∫
Ω

ξ(z)ŷp−1
λ (ŷλ − un)+dz +

∫
∂Ω

β(z)ŷp−1
λ (ŷλ − un)+dσ

=

∫
Ω

λuq−1
n (ŷλ − un)+dz (see (23))

≤
∫

Ω

λf(z, un)(ŷλ − un)+dz (see (22))

= 〈A(un), (ŷλ − un)+〉+

∫
Ω

ξ(z)up−1
n (ŷλ − un)+dz +

∫
∂Ω

β(z)up−1
n (ŷλ − un)+dσ

(since un ∈ S+
λ ),

⇒ ŷλ ≤ un for all n ≥ n0.

Therefore we have

ŷλ ∈ [0, un], n ≥ n0, ŷλ 6= 0,

⇒ ŷλ = yλ (see (23), (24)),

⇒ yλ ≤ un for all n ≥ n0,

⇒ yλ ≤ uλ∗ and so uλ∗ 6= 0,

which contradicts our hypothesis that uλ∗ = 0. Therefore uλ∗ 6= 0 and by passing to the
limit as n→ +∞ in (15) and using (19), we infer that

uλ∗ ∈ S+
λ ⊆ D+ and uλ∗ = inf S+

λ .
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A similar argument produces a maximal negative solution vλ∗ ∈ −D+. In this case
since S−λ ⊆ −D+ (λ ∈ L−) is upward directed, we can find an increasing sequence
{vn}n≥1 ⊆ S−λ ⊆ −D+ such that supn≥1 vn = supS−λ (see [7]). �

4. Nodal Solutions

In this section, we use the extremal constant sign solutions of Proposition 3, to
produce a nodal (sign changing) solution for problem (Pλ) (λ ∈ L+ ∩ L−). The idea is
simple. We focus on the order interval [vλ∗ , u

λ
∗ ] and we look for a nontrivial solution yλ

in that order interval. If yλ 6= uλ∗ , yλ 6= vλ∗ , then on account of the extremality of uλ∗ and
vλ∗ , the solution yλ will be nodal.

So, let λ ∈ L+∩L− and let uλ∗ ∈ D+ and vλ∗ ∈ −D+ be the two extremal constant sign

solutions from Proposition 3. We introduce the Carathéodory function f̂λ(z, x) defined
by

(25) f̂λ(z, x) =


λf(z, vλ∗ (z)) if x < vλ∗ (z),

λf(z, x) if vλ∗ (z) ≤ x ≤ uλ∗(z),

λf(z, uλ∗(z)) if uλ∗(z) < x.

Also we consider the positive and negative truncations of f̂λ(z, ·), that is, the Carathéodory
functions

(26) f̂+
λ (z, x) = f̂λ(z, x

+) and f̂−λ (z, x) = f̂λ(z,−x−).

We set F̂λ(z, x) =
∫ x

0
f̂λ(z, s)ds and F̂±λ (z, x) =

∫ x
0
f̂±λ (z, s)ds and then introduce the

C1-functionals ϕ̂λ, ϕ̂
±
λ : W 1,p(Ω)→ R defined by

ϕ̂λ(u) =
1

p
γ(u)−

∫
Ω

F̂λ(z, u)dz,

ϕ̂±λ (u) =
1

p
γ(u)−

∫
Ω

F̂±λ (z, u)dz for all u ∈ W 1,p(Ω).

Using (25), (26) and the fact that uλ∗ ∈ D+ and vλ∗ ∈ −D+ are the extremal constant
sign solutions of (Pλ) (λ ∈ L+ ∩ L−), we easily obtain the following result concerning
the critical sets of ϕ̂λ and of ϕ̂±λ .

Proposition 4. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ L+ ∩ L−,
then Kϕ̂λ ⊆ [vλ∗ , u

λ
∗ ] ∩ C1(Ω), Kϕ̂+

λ
= {0, uλ∗}, Kϕ̂−λ

= {0, vλ∗}.

Next we compute the critical groups of ϕ̂λ (λ ∈ L+ ∩ L−) at the origin. We will
use this computation to distinguish the solution we will produce from the trivial one.
Our result here extends Proposition 4.1 of Papageorgiou-Winkert [17] and Lemma 3.4
of Guarnotta-Marano-Papageorgiou [6]. Our proof is based on their proofs. The result
is in fact of independent interest, since it determines the critical groups of a functional
with general concave nonlinearity near zero.

In what follows let m̂λ = max{‖uλ∗‖∞, ‖vλ∗‖∞}.

Proposition 5. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ L+ ∩ L−,
then Ck(ϕ̂λ, 0) = 0 for all k ∈ N0.

Proof. Let r > p and η > 0. On account of hypotheses H(f) (i), (ii), we have

(27) F̂λ(z, x) ≥ λ[η|x|q − c10|x|r] for a.a. z ∈ Ω, all x ∈ [−m̂λ, m̂λ], some c10 > 0.
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Also from hypothesis H(a) (iv) and Corollary 1, we have

(28) G(y) ≤ c11[|y|q + |y|p] for all y ∈ RN , some c11 > 0.

Let u ∈ W 1,p(Ω), u 6= 0 and t > 0. Using (27) and (28), we have

ϕ̂λ(tu) ≤ c11

[
tq‖∇u‖qq + tp‖∇u‖pp

]
+
tp

p

∫
Ω

ξ(z)|u|pdz +
tp

p

∫
Ω

β(z)|u|pdσ

− ληtq‖u‖qq + λc10t
r‖u‖rr.

Since q < p and η > 0 is arbitrary, we can find t∗ ∈ (0, 1) such that

ϕ̂λ(tu) < 0 for all t ∈ (0, λ∗).

Let t̂1 = sup{t ∈ [0, 1] : ϕ̂λ(tu) < 0} and Cλ = {t ∈ [0, 1] : ϕ̂λ(tu) ≥ 0}. We set

(29) t̂2 =

{
inf Cλ if Cλ 6= ∅,
1 if Cλ = ∅.

We will show that t̂1 = t̂2. First we show that t̂1 ≤ t̂2. Arguing by contradiction
suppose that t̂2 < t̂1. From hypotheses H(f) (i), (iii), we see that given ε > 0, we can
find cε > 0 such that

(30)

τ F̂λ(z, x)− f̂λ(z, x) ≥ −ε|x|p − cε|x|r for a.a. z ∈ Ω, all x ∈ [−m̂λ, m̂λ] (see (25)).

Suppose that for some t0 ∈ (0, 1), we have ϕ̂λ(t0u) = 0. Then

t0
d

dt
ϕ̂λ(tu)

∣∣∣
t=t0

= 〈ϕ̂′λ(t0u), t0u〉 (by the chain rule)

= 〈ϕ̂′λ(t0u), t0u〉 − τϕ̂λ(t0u) (recall ϕ̂λ(t0u) = 0)

= 〈ϕ̂′λ(y), y〉 − τϕ̂λ(y) (with y = t0u)

≥ [c12 − ε]‖y‖p − ĉε‖y‖r for some c12, ĉε > 0 (see (3) and (30)).

Choosing ε ∈ (0, c12), we obtain

t0
d

dt
ϕ̂λ(tu)

∣∣∣
t=t0
≥ c13‖y‖p − ĉε‖y‖r for some c13 > 0 and with y = t0u.

Since p < r, if ρ ∈ (0, 1] is small and 0 < ‖u‖ ≤ ρ, then

(31) t0
d

dt
ϕ̂λ(tu)

∣∣∣
t=t0

> 0 with t0 ∈ (0, 1) such that ϕ̂λ(t0u) = 0.

But from (29), we have

ϕ̂λ(t2u) = 0,

⇒ ϕ̂λ(tu) > 0 for all t ∈ (t̂2, t̂2 + δ] with δ < t̂1 − t̂2 (see (31)).(32)

Let Ĉλ = {t ∈ (t̂2 + δ, t̂1] : ϕ̂λ(tu) = 0} and define

(33) t∗ =

{
min Ĉλ if Ĉλ 6= ∅,
1 if Ĉλ = ∅.

From (29), (32) and (33) we infer that

(34) t∗ > t̂2 + δ.
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Since ϕ̂λ(t∗u) = 0, from (31) we have

(35) ϕ̂λ(tu) < 0 for all t ∈ (t∗ − δ̂, t∗), δ̂ < t∗ − (t̂2 + δ) (see (34)).

From (32), (35) and Bolzano’s theorem, we see that there exists t̃ ∈ (t̂2 + δ, t∗ − δ̂)
such that ϕ̂λ(t̃u) = 0, which contradicts (33). Hence t̂1 ≤ t̂2. In fact from the definition
of t̂1 and (29), we see that t̂1 = t̂2.

Let t̂(u) = t̂1 = t̂2. Then

ϕ̂λ(tu) < 0 for all t ∈ (0, t̂(u)) and ϕ̂λ(tu) > 0 for all t ∈ (t̂(u), 1].

For Bρ = {y ∈ W 1,p(Ω) : ‖y‖ ≤ ρ}, let θ̂λ : Bρ \ {0} → [0, 1] be defined by

θ̂λ(u) =

{
1 if u ∈ Bρ \ {0}, ϕ̂λ(u) ≤ 0,

t̂(u) if u ∈ Bρ \ {0}, ϕ̂λ(u) > 0.

It is easy to see that θ̂λ(·) is continuous. Then we introduce the map µλ : Bρ \ {0} →
(ϕ̂0

λ ∩Bρ) \ {0} defined by

µλ(u) =

{
u if u ∈ Bρ \ {0}, ϕ̂λ(u) ≤ 0,

θ̂λ(u)u if u ∈ Bρ \ {0}, ϕ̂λ(u) > 0.

The continuity of θ̂λ(·) implies the continuity of µλ(·). Moreover, we see that

µλ

∣∣∣
(ϕ̂0
λ∩Bρ)\{0}

= id
∣∣∣
(ϕ̂0
λ∩Bρ)\{0}

.

It follows that (ϕ̂0
λ ∩Bρ) \ {0} is a retract of Bρ \ {0}. The set Bρ \ {0} is contractible.

Therefore (ϕ̂0
λ∩Bρ)\{0} is contractible (see Gasiński-Papageorgiou [4], Problems 4.153

and 4.159). Also using the deformation

h(t, u) = (1− t)u for all (t, u) ∈ [0, 1]× (ϕ̂0
λ ∩Bρ),

we see that ϕ̂0
λ ∩ Bρ is contractible too. Invoking Proposition 6.1.31, p. 385, of

Papageorgiou-Rǎdulescu-Repovš [16], we have

Hk(ϕ̂
0
λ ∩Bρ, (ϕ̂

0
λ ∩Bρ) \ {0}) = 0 for all k ∈ N0,

⇒ Ck(ϕ̂λ, 0) = 0 for all k ∈ N0.

�

Now we can prove the existence of nodal solutions.

Proposition 6. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ L+ ∩ L−,
then problem (Pλ) has a nodal solution yλ ∈ [vλ∗ , u

λ
∗ ] ∩ C1(Ω).

Proof. From (25), (26) and (3) we see that ϕ̂+
λ is coercive. Also it is sequentially weakly

lower semicontinuous. So, we can find ûλ∗ ∈ W 1,p(Ω) such that

(36) ϕ̂+
λ (ûλ∗) = inf[ϕ̂+

λ (u) : u ∈ W 1,p(Ω)].

As before, since q < p, we have that

ϕ̂+
λ (ûλ∗) < 0 = ϕ̂+

λ (0),

⇒ ûλ∗ 6= 0.(37)
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From (36) it follows that

ûλ∗ ∈ Kϕ̂+
λ

= {0, ûλ∗} (see Proposition 4),

⇒ ûλ∗ = uλ∗ ∈ D+ (see (37)).

Note that

ϕ̂λ

∣∣∣
C+

= ϕ̂+
λ

∣∣∣
C+

(see (26)),

⇒ uλ∗ ∈ D+ is a local C1(Ω)-minimizer of ϕ̂λ,

⇒ uλ∗ ∈ D+ is a local W 1,p(Ω)-minimizer of ϕ̂λ(38)

(see Papageorgiou-Rǎdulescu [13], Proposition 8).

Similarly using this time the functional ϕ̂−λ , we show that

(39) vλ∗ ∈ −D+ is a local W 1,p(Ω)-minimizer of ϕ̂λ.

We may assume that ϕ̂λ(v̂
λ
∗ ) ≤ ϕ̂λ(û

λ
∗).

The reasoning is similar if the opposite inequality holds using this time (39) instead
of (38). Also, on account of Proposition 4, we may assume that

(40) Kϕ̂λ is finite.

Otherwise we already have an infinity of smooth nodal solutions and so we are done.
Then from (38), (40) and invoking Proposition 5.7.6, p. 367, of Papageorgiou-

Rǎdulescu-Repovš [16], we can find ρ ∈ (0, 1) small such that

(41) ϕ̂λ(v
λ
∗ ) ≤ ϕ̂λ(u

λ
∗) < inf[ϕ̂λ(u) : ‖u− uλ∗‖ = ρ] = m̂λ, ‖vλ∗ − uλ∗‖ > ρ.

The functional ϕ̂λ(·) is coercive (see (3) and (25)). Therefore

(42) ϕ̂λ satisfies the Palais-Smale condition.

Then (41), (42) permit the use of the mountain pass theorem (see Papageorgiou-
Rǎdulescu-Repovš [16], Theorem 5.4.6, p. 329). So, we can find yλ ∈ W 1,p(Ω) such
that

yλ ∈ Kϕ̂λ ⊆ [vλ∗ , u
λ
∗ ] ∩ C1(Ω) (see Proposition 4), m̂λ ≤ ϕ̂λ(yλ),

⇒ yλ 6∈ {uλ∗ , vλ∗} (see (41)).

Since yλ is a critical point of ϕ̂λ of mountain pass type, from Theorem 6.5.8, p. 431,
of Papageorgiou-Rǎdulescu-Repovš [16], we have

(43) C1(ϕ̂λ, yλ) 6= 0.

On the other hand, from Proposition 5, we have

(44) Ck(ϕ̂λ, 0) = 0 for all k ∈ N0.

Comparing (43) and (44), we see that

yλ 6= 0,

⇒ yλ ∈ [vλ∗ , u
λ
∗ ] ∩ C1(Ω) is a nodal solution of (Pλ).

�

Therefore we can state the following multiplicity theorem for problem (Pλ).
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Theorem 1. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then for all λ > 0 small
(λ ∈ L+ ∩ L− 6= ∅) problem (Pλ) has at least three nontrivial solutions u0 ∈ D+,
v0 ∈ −D+ and y0 ∈ [v0, u0] ∩ C1(Ω) nodal.
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