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aDepartment of Earth and Marine Sciences, University of Palermo, Palermo, Italy; bSchool of Science and Technology, Geology Division,
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ABSTRACT
The research proposes a simple but geomorphologically adequate method to produce a
combined landslide susceptibility map. In fact, in a logic of real use, offering type-specific
landslide susceptibility maps to land use planners and administration could be not a
successful solution. On the other hand, the simple grouping of more types of landslides
could be misleading for model calibration considering that the relationships between slope
failures and geo-environmental predictors should be conveyed by the abundance of each
type of landslide resulting not specific and diagnostic for each typology. In this test, after
having produced independent models for flow, slide and complex landslide by exploiting
MARS (Multivariate Adaptive Regression Splines) and a set of type-specific geo-
environmental variables, a combined landslide susceptibility map was obtained by
combining the scores of the three source maps. The combined map was finally validated
with a new unknown archive, showing very good performances.
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1. Introduction

One of the main issues of researchers in landslide
hazard mapping, and specifically, landslide suscepti-
bility evaluation study is to offer an easy-to-apply/-
read map for the final user (land use planners and
administration, Bufalini et al., 2021; Martinello et al.,
2021; Smith et al., 2011). This reflects not only in the
adequate partitioning of the study area, which should
define mapping units geomorphologically suitable
both for the modelling procedures and for obtaining
final landslide susceptibility maps (Martinello et al.,
2021, 2022a). In fact, considering the different typolo-
gies of landslides (Hungr et al. 2014) and the different
influence of each factor in landsliding, specific model-
ling procedures should be analysed, and the related
final maps produced. At the same time, the manage-
ment of several landslide susceptibility maps, type-
specific, could be not easy for local administration.
For this reason, efforts should be addressed to obtain
combined landslide susceptibility maps, grouping
different typologies of phenomena according to geo-
morphologically adequate criteria. In this sense, a fre-
quently adopted approach is to produce an a priori
grouped model which means aggregating landslides
of more than one typology for calibrating the model.
However, generally, these studies do not focus their

attention on different behaviours and characteristics
of grouped phenomena or, even more, on different
the relationships between the geo-environmental pre-
dictors and each landslide type.

In this study, an integrated landslide susceptibility
map combining flow, slide and complex types is pre-
sented for the Visso (Marche, Italy – Main Map,
figures a and b) area, which was obtained by combining
the final score of the three source independent suscepti-
bility maps. The original landslide inventory was
obtained by the reviewing the existing CARG (Geologi-
cal and Geomorphological Mapping of Italy, Regione
Marche 2014) landslide dataset for the ‘Visso’ map. In
facts, mapped single phenomena were often grouped
inside large polygons, with a low resolution both in
terms of the spatial pattern and typological characteriz-
ation. For this reason, by exploiting topography maps
and orthophotos, the original polygons were split
according to the movement typology thus producing
separated slides, flows, and complex landslides archives
(198, 91, and 51 cases, respectively). By exploiting the
LCL_SLU (Martinello et al., 2021, 2022a) as mapping
units and Multivariate Adaptive Regression Splines
(MARS) statistical method, three specific susceptibility
models were prepared by regressing each landslide
inventory on a specific set of physical-environmental

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrest-
ricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the
Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Margherita Bufalini margherita.bufalini@unicam.it Via Gentile III da Varano, Camerino 62032, Italy

JOURNAL OF MAPS
https://doi.org/10.1080/17445647.2023.2198148

http://crossmark.crossref.org/dialog/?doi=10.1080/17445647.2023.2198148&domain=pdf&date_stamp=2023-04-19
http://orcid.org/0000-0001-9527-487X
http://orcid.org/0000-0003-3278-7058
http://orcid.org/0000-0002-5119-3004
http://orcid.org/0000-0002-1072-3160
http://orcid.org/0000-0002-9480-5680
http://creativecommons.org/licenses/by/4.0/
mailto:margherita.bufalini@unicam.it
http://www.tandfonline.com/loi/tjom20
http://www.tandfonline.com


predictors. Furthermore, multicollinearity and variable
importance analyses were carried out to verify their rel-
evance and influence in landslide susceptibility assess-
ment. After attesting the sharing of some of the most
important variables for the three models, a combined
landslide susceptibility map was obtained by adding
the three scores of the three single maps. The final inte-
gratedmap (whose combined scorewas scaled to a range
between 0 and 1) was finally submitted to double vali-
dation: the first with respect to the modified CARG
archive (putting together slide, flow and complex
archives); the second, by exploiting a new inventory
obtained by remote checking on Google Earth. The
highperformance of themodel suggests a geomorpholo-
gically suitable final map.

2. Data and methods

2.1. Geological, geomorphological and climatic
setting

The Umbria-Marche Apennines constitutes the exter-
nal sector of the central Apennines, a fold-and-thrust
belt, NE verging, formed by the convergence between
the Corsica-Sardinia and the Adria continental mar-
gins. This sector of the Apennines is characterized
by arcuated contractional structures (Neogene folds
and thrusts faults) involving a Mesozoic-Tertiary sedi-
mentary sequence (Figure 1).

The study area consists of a ∼ 30 km2 sector of the
Sibillini Massif, that characterizes the southern portion
of the Umbria-Marche Apennines. The geological fra-
mework is characterized by the Umbria-Marche succes-
sion (Calamita & Deiana, 1988; Pierantoni et al., 2013)
composed by a multilayer of pelagic and emipelagic for-
mations, with alternating calcareous, marly calcareous,
calcareous-siliceous and siliceous rocks.

The physical landscape is characterized by a predomi-
nantly mountainous territory, with reliefs that exceed
1800-2000m a.s.l. (2051m a.s.l. at Mount Bicco). The
slopes are often steep, with angles that exceed even 70°,
while the valley floors are narrow and strongly incised.

In these conditions the continental deposits (Pleisto-
cene-Holocene in age) are reduced both in extension
and in thickness and aremainlymade up of slope depos-
its, sometimes cemented, debris and alluvial fans, and
fluvial deposits (Gentili et al., 2017). Gravitational mor-
phogenesis is also very important and represented by
rockfalls, slides (both rotational and translational), and
flows (mainly debris flows); very frequent are the com-
plex phenomena usually made by slides that evolve
downstream in rapid flows (Aringoli et al., 2010; Bucco-
lini et al., 2020; Materazzi et al., 2021) (Figure 2).

From a climatic point of view, the study area is
characterized by an Apennine-Adriatic regime with
rainfall almost uniformly distributed throughout the
year; the highest values are recorded late in autumn

and during spring while the lowest ones, in July and
January (Gentilucci et al., 2020, 2021). The total
annual precipitation often exceeds 1500 mm with
1000 mm isohyet encompassing the whole mountain
area. A snowy contribution from November to April
is also present; the quantity and persistence of snow
increase with the altitude. The study area shows aver-
age temperatures of almost 11°C, with a significant
increase of 0.5 C in the last 30 years on average, due
to climate change (Gentilucci et al., 2019).

2.2. Landslide inventory dataset and diagnostic
area

For this study, the data from the landslide inventory of
the Marche Region in the year 2000 were initially col-
lected and homogenized, later also used for the editing
of the Regional Geological Map at 1: 10,000 scale
(Marche Region, 2014). Subsequently, to verify their
evolution over time, integration and re-measurement
of the landslide areas were carried out using a colour
orthophoto of 2020 at the same scale. For the classifi-
cation of landslides, according to Cruden and Varnes
(1996), three main categories (slides, flows, and com-
plex) and four states of activities (new activation, inac-
tive, reactivated, and partly reactivated), were assumed;
among these, only one seismic-induced landslide as a
consequence of the 2016 central Italy earthquake seis-
mic sequence has been recorded (Aringoli et al., 2021;
Farabollini et al., 2018; Romeo et al., 2017;). Fall and
topple as well as deep-seated landslide were here
excluded as literature generally employs a direct and/
or physical-based approach (e.g. Agnesi et al., 2015;
Cafiso et al., 2021; Cafiso & Cappadonia, 2019;
Cappadonia et al., 2019, 2021; Pappalardo et al., 2021).

According to the inventory review, 351 phenomena
(Figure 3) were included, whose summary character-
istics are given in Table 1.

The data collected show that the most numerous
phenomena fall into the ‘slides’ category although com-
plex landslides are those that, referring to the single
phenomenon, have the greater areal extension. The most
elevated landslide density is, instead, that of flows which
represent, among other things, almost all the new
phenomena (90%) that tookplace between2000 and2020.

The recognized landslides were mapped by using a
Landslide Identification Point (LIP), which corresponds
to the highest point along the crown of the landslide area
here assumed as diagnostic in potentially marking
unstable slope conditions (Cama et al., 2015; Lombardo
et al., 2014, 2016; Rotigliano et al., 2011, 2018, 2019).

2.3. Mapping units and landslide conditioning
factors

According to Martinello et al. (2021, 2022a), the
LCL_SLU were used as mapping unit. This type of
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slope unit is obtained by intersecting the classic hydro-
morphological unit by means of 5000 cells contribut-
ing area threshold with the classes of the Landform
Classification (LCL; Guisan et al., 1999). The LCL
was obtained by exploiting the TPI-based Landform
Classification (LCL; Guisan et al., 1999) SAGA tool,
by fixing the inner/outer radius as 100/1000 metres.
For more information about the LCL_SLU, please

refer to the original research of Martinello et al.
(2021) and Martinello et al. (2022a).

Each LCL_SLU was then classified as stable or
unstable (positive or negative cases) depending on
whether it hosts at least one LIP.

Based on the expected direct or proxied role in
landsliding (Costanzo et al., 2012; Mercurio et al.,
2021; Rotigliano et al., 2018, 2019; Vargas-Cuervo

Figure 1. Geological sketch of the study area.
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et al., 2019) eleven geo-environmental factors were
considered as potential predictors: outcropping lithol-
ogy (LITO), land use (obtained by the Corine Land
Cover 2000 – USE), elevation (ELE), landform classifi-
cation (LCL), steepness (SLO), aspect (expressed as

Northerness and Easterness), plan (PLN) and profile
(PRF) curvatures, topographic wetness index (TWI),
and stream power index (SPI). Table 2 gives for each
of the selected predictors the main characteristics
and the potential proxied significance.

Before starting the modelling procedures, the
DEM-derived variables were submitted to multicolli-
nearity analysis, based on the evaluation of the Var-
iance Inflation Factor (VIF) obtained by applying
the ‘usdm’ R-package (Naimi, 2017). All the variables
passed the multicollinearity test. According to the
specific characteristics of the landslide types analysed
in this research, all the predictors were employed for
complex type modelling, SPI predictor was excluded
for the slide model, while the TWI variable was
excluded for the flow model.

To assign the variables to the slope units, the con-
tinuous variables were attributed by deciles, while
relative frequencies were employed for categorical
ones.

2.4. Statistical model and validation tools

Between the different approaches offered by the litera-
ture, several researchers have been exploiting the

Figure 2. Mountain portion of the Nera River basin: landslide inventory used in the present study.

Figure 3. Violin boxplots of the three single models both for
prediction and success procedures.
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Multivariate Adaptive Regression Splines (MARS;
Friedman, 1991) method to favourably determine
nonlinear relationships and complex interactions in
several fields of the science (e.g. Cervantes et al.,
2020; Conoscenti et al., 2021). In the last ten years,
the MARS method successfully was employed for
landslide susceptibility evaluation (e.g. Conoscenti
et al., 2015, 2016; Felicísimo et al., 2013; Martinello
et al., 2021, 2022a, 2022b; Mercurio et al., 2021; Roti-
gliano et al., 2018, 2019; Wang et al., 2015), by regres-
sing the outcome (stable/unstable status) onto the
covariates set from the controlling factor layers.

MARS is a non-parametric regression method that
exploits the splitting of each independent variable into
hinge functions to boost the maximum likelihood-
based adaptation skill of the logistic regression
method, according to

y = f (x) = a+
∑N

i=1

bihi(x) (1)

where y is the dependent variable (the outcome) pre-
dicted by the function f(x), α is the model intercept,
and βi is the coefficient of the hi basis functions,
given the N number of basis functions. By exploiting
the ‘earth’ R-package (Milborrow, 2014), the MARS
analysis was performed.

Since this type of statistical modelling relies on a
balanced assessment of status cases, a random extrac-
tion of negative in the same number of positive cases
was carried out. For testing the independence of the
result from the selection of negative/positive cases:
(1) the extraction of negative cases was replicated
one-hundred times and the models’ accuracy and pre-
cision evaluated (Costanzo et al., 2014; Martinello
et al., 2021; Martinello et al., 2022a, 2022b); (2)
according to Chung and Fabbri (2003), random split-
ting procedures were employed to verify the predic-
tion skill of the model by using 75% of the balanced
archive for the training phase and the remaining
25% for the validation one.

The performances of the models were evaluated by
adopting both cut-off independent and dependent

metrics. In particular, the AUC value (Area Under
Curve) in the ROC (Receiver Operating Character-
istics – Fawcett, 2006; Goodenough et al., 1974;
Lasko et al., 2005) was employed to evaluate the pre-
diction skill of the model and to obtain the Youden
index optimized cut-off (Youden, 1950). Then, by
exploiting the optimized cut-off the true/false posi-
tive/negative cases (i.e. TP, TN, FP, and FN, respect-
ively) were distinguished and confusion matrices
evaluated.

2.5. Model building and validation strategies

According to the aim of this research, single models
for each type of landslide were first prepared by
using the three 2000 inventories. In this way, three
source models and related landslide susceptibility
maps were prepared and validated: reg_slide,
reg_flow and reg_complex, for slide, flow and complex
landslides, respectively. A combined map was then
obtained by adding the three source scores and re-
scaling the combined value on the 0–1 range. Finally,
the prediction skill of the combined map was tested in
detecting both all the 2000 landslides and, according
to a temporal partition, the unknown 2020
phenomena.

3. Results

In Figure 3 the boxplot for the three single models
reg_slide, reg_flow and reg_complex, both for the vali-
dation to the blinded 25% (prediction) and the success
validations are reported. In particular, based on repli-
cates we produced through multiple random positive/
negative extraction, the distribution of the one-hun-
dred AUC values is plot, so to estimate accuracy and
precision of each of the three models. The results attest
good and excellent (Hosmer & Lemeshow, 2000) AUC
mean values for the prediction (0.78, 0.81 and 0.8,
respectively for reg_flow, reg_slide and reg_complex).
However, medium standard deviations are associated
with these AUC mean values (from 0.05 to 0.09).

Table 1. Summary table of the landslide inventory.
Type of
landslide

N. of landslides
(year 2000)

N. of landslides (year
2020)

Area involved – year
2000 (km2)

Landslide density
2000 (n./area)

Area involved – year
2020 (km2)

Landslide density
2020 (n./area)

Flow 73 100 1.29 56.59 1.35 74.07
Slide 197 199 5.23 37.67 5.23 38.04
Complex 51 52 3.69 13.82 3.69 14.09
Total 321 351 10.21 31.44 10.27 34.17

State of
Activity

N. of landslides
(year 2020)

Area involved – year
2020 (km2)

Inactive 312 10.07
New
activation

30 0.16

Reactivated 2 0.01
Partly
reactivated

7 0.01

Total 351 10.25

JOURNAL OF MAPS 5



Better performances are obtained from success
models, with outstanding AUC mean values (0.95,
0.92 and 0.99, respectively for reg_flow, reg_slide
and reg_complex) and very low standard deviations
of replicates (from 0.01 to 0.02).

High performances are also revealed by the con-
fusion matrices (Table 3) both for prediction and suc-
cess validation. For the latter, the increase in the
performances is more marked, especially for the com-
plex type model. The sensitivity for the prediction vali-
dation is just below 0.8 while the values increase for
success validations ranking from 0.82 to 0.97. Similar
behaviour is reported for the specificity which attests
around 0.7 for the prediction validations, increasing
up to 0.97 in success validations.

Table 4 shows the 10 most important variables for
the reg_flow, reg_slide and reg_complex success
models. It is important to note that this type of analy-
sis highlights only how frequently the class of the vari-
ables is employed for the construction of the model.
Therefore, the analysis shows if a class of the variable
is used to discriminate positive to negative cases by the
model, but it is not diriment for defining if the class is
positively or negatively correlated with landsliding. In

this sense, the old landslide deposits class (lito12) is a
very important class for all types of models consider-
ing that its overall ranks from 95 to 100 (even
employed for the model construction). The max
value of the elevation is a very important class of vari-
able for reg_complex and reg_flow models. These
models also share the natural grassland class of USE
as important. The second most important class for
reg_slide, the max value of PRF, is also the 5th for
reg_flow while the Q100 of PLC, in common between
reg_slide and reg_complex, is recalled around 10
times.

In figure c of the main map, the combined landslide
susceptibility map for the Visso area is proposed. The
four different landslide susceptibility classes are
defined by employing nested Youden index cut-offs
(low = 0.25, mean = 0.39, high = 0.61). For a more
manageable definition of susceptibility, the ranges
are linked to nominal classes described as S1 or
‘low’, S2 or ‘moderate’, S3 or ‘High’ and S4 or
‘Very High’ susceptibility levels.

The validation of the final map with respect to the
2000 inventory shows good performances with an
AUC value of 0.87 (Figure 4(a)) and a very high

Table 2. Details of the employed geo-environmental variables (modified from Martinello et al., 2022b).
Factor Acronym Description of predictor Units References Potential proxy signifiance

Elevation ELE distribution of elevation m Tinitaly (Tarquini
et al., 2007)

Mean annual rainfall

Landform
classification

LCL morphological classification of the territory based
on the variation in elevation with respect to the
neighbouring areas

Guisan et al.
(1999)

Morphological setting

Steepness SLO the first derivative of elevation degree Burrough and
McDonnell (1998)

Speed of the water and potential
underlying rupture surfaces
(Martinello et al., 2022a)

Northerness N cosine of aspect (direction in which the slope
degrades more rapidly)

Wilson and Gallant
(2000)

Seasonal wet/dry cycles of soils
(Auslander et al. 2003)

Easterness E sine of aspect (direction in which the slope
degrades more rapidly)

Wilson and Gallant
(2000)

Seasonal wet/dry cycles of soils
(Auslander et al. 2003)

Plan
curvature

PLN The second derivative of elevation, computed
along the horizontal plane

rad/m Zevenbergen and
Thorne (1987)

Activation and propagation of
landslides (Ohlmacher, 2007)

Profile
curvature

PRF The second derivative of elevation, computed
along the direction of the highest slope gradient

rad/m Zevenbergen and
Thorne (1987)

The direction of flow (Ohlmacher,
2007)

Topographic
wetness index

TWI Calculated as ln[A/tanβ], where A and β,
computed on each cell, corresponds to the area
of upslope drained cells and the slope gradient,
respectively

m Beven and Kirkby
(1979)

Potential infiltration or saturated
soil thickness (Martinello et al.,
2022a; Rotigliano et al., 2011)

Stream Power
Index

SPI natural logarithm of the catchment area
multiplicated the tangent of the slope gradient

Florinsky (2012) Proxy of the intensity of surface
water erosion (Martinello et al.,
2022a)

Lithological map LITO original geological map Marche Region
(2014)

Physical-mechanical properties of
rocks (Martinello et al., 2022a)

Soil use USE CORINE land cover (2000) Büttner et al.
(2000)

Potential hydrological and surface
hydric erosion induced
disturbances (Martinello et al.,
2022a)

Table 3. Confusion matrix of the three single models both for prediction and success procedures.
Model Cut-off TN FN FP TP Acc. Sens. Spec.

Prediction reg_flow 0.42 21 7 9 23 0.73 0.77 0.69
reg_slide 0.46 41 13 17 45 0.74 0.77 0.71
reg_complex 0.11 11 3 4 12 0.75 0.79 0.71

Success reg_flow 0.5 107 13 15 109 0.88 0.89 0.88
reg_slide 0.46 191 33 43 201 0.86 0.82 0.84
reg_complex 0.47 58 1 2 59 0.98 0.97 0.97
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value of sensitivity (0.87) and good specificity (0.78).
At the same time, the comparison with the 2020
inventory confirms a generally good quality of the
final map despite a slight lowering of the performance,
with an AUC value of 0.84 and 0.79 e 0.72 for sensi-
tivity and specificity, respectively. In Figure 4(b) the
degree of fit for the landslides of 2000 and 2020 is
shown. It is worth noting that more than 80% of land-
slides are correctly classified both with respect to the
2000 archive and the 2020 ones (87% and 80% respect-
ively). Only 5% of the 2000 inventory (4% for the 2020
inventory) is incorrectly classified by the map in the
low susceptibility class, while 8% (15% for the 2020
inventory) is allocated in the moderate class.

4. Discussion and conclusion

Excellent performances result for the three single
models (reg_flow, reg_slide, reg_flow), both in predic-
tion validation and in the success tests. The violin
plots show a larger but limited (std. dev. < 0.1)

dispersion of the AUC values for the prediction analy-
sis. On the other hand, excellent and stable AUC
values were obtained in success analysis. These high
performances were confirmed also by the cut-off
dependent matrices. The analysis of the importance
of the variables suggested lito12 (‘old landslide depos-
its’) is the more employed class for the construction of
the models, for all the typologies investigated. This
suggests that most of the landslides of the 2000 inven-
tory (that correspond to the calibration archive) are a
reactivation of old phenomena. The comparison
shows also that other variables or classes of predictors
are in common between the three models: prf (max
value), ele (max value) plc (max value) and use10.
On the other hand, some classes of geo-environmental
predictors are essential only for single specific models:
lito5 (clayey marls) is important for flow type, lito18
(‘scaglia bianca’ clays) for slides while more use of
dem-derived variables resulted for complex type.
These behaviours encourage the grouping of the
three types of landslides, suggesting also that grouping
in the calibration phase could have hidden some of the
relationships between a specific movement and its
related geo-environmental predictors. On the con-
trary, by adding together the susceptibility score
obtained by the single modelling procedures, the
specificity of each model and, in this way, the
peculiarity of landslide typology can be noticed. At
the same time, the combined landslide map showed
high performances in validation both with respect to
the 2000 and the unknown 2020 inventories. For the
latter, it is worth noting a slight lowering of the per-
formances. According to the analysis of the variable’s
importance, the models are more sensitive to reactiva-
tion movements. Considering the characteristics of the
two landslide inventories, this lowering could be
linked to the state of activity of the phenomena: with

Table 4. Most important variables for the three main models.
reg_flow reg_slide reg_complex

variable mean variable mean variable mean

lito12 100 lito12 98 lito12 95
lito5 52 prf[q100] 56 ele[q100] 42
ele[q100] 48 lito18 44 lcl0 17
lito9 29 lcl0 27 E[q20] 15
prf[q100] 23 lcl5 23 use7 15
ele[q10] 18 slo[q60] 21 ele[q90] 13
use10 12 prf[q10] 16 ele[q80] 13
lito19 12 plc[q100] 12 use10 12
use8 11 N[q100] 11 N[q90] 8
lcl0 10 slo[q80] 11 plc[q100] 7

In red, the predictors are employed by all three models: in light blue, by
only two models. Legend: lito12 = old landslide deposits; lito5 = clayey
marls, lito9 = calcareous units, lito19 = ‘scaglia cinerea’ clays, lito18
= ‘scaglia bianca’ clays, corine10 = natural grassland, corine8 = conifer-
ous forest, corine7 = broad-leaved forest, lcl0 = streams, lcl5 = open
slopes.

Figure 4. Validation indices of the combined map for the validation with respect to the 2000 inventory and the 2020 one. (a) ROC-
curves and AUC values and, in the bottom, confusion matrices; (b) degree of fit plot.
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respect to the 2020 year, the most of 2000 landslides
are in facts still dormant.

The results obtained in this application on the
Visso area allow us to consider the approach employed
for producing a combined landslide susceptibility map
for the flow, slide and complex landslide types as geo-
morphological suitable.

Software

The landslides were remotely verified and remapped
by using Google Earth Pro. In the first step for the pro-
duction of LCL_SLU, GRASS GIS (GRASS Develop-
ment Team, 2022) was utilized to obtain the SLU by
using the r.watershed processing. In the second step,
Saga GIS 8.0.0 (Conrad et al., 2015) was employed to
produce the LCL map and to clip the SLUs with the
LCL map. Saga GIS 8.0.0 was also employed to obtain
the dem-derived variables and to rasterize the vari-
ables available in.shp format. Quantum GIS3.8.2 Zan-
zibar (QGIS.org, 2022)was used to print all maps
displayed in this research. The models were
implemented by using the RStudio (RStudio Team,
2020) software.
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