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Abstract. In (Aiena et al., Math. Proc. R. Irish Acad. 122A(2):101–116,
2022), it has been shown that a bounded linear operator T ∈ L(X),
defined on an infinite-dimensional complex Banach space X, for which
there exists an injective quasi-nilpotent operator that commutes with it,
has a very special structure of the spectrum. In this paper, we show that
we have much more: if a such quasi-nilpotent operator does exist, then
some of the spectra of T originating from B-Fredholm theory coalesce.
Further, the spectral mapping theorem holds for all the B-Weyl spec-
tra. Finally, the generalized version of Weyl type theorems hold for T
assuming that T is of polaroid type. Our results apply to the operators
that belong to the commutant of Volterra operators.
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1. Introduction

This paper concerns operators T ∈ L(X) that belong to the commutant
of an injective quasi-nilpotent operator Q. The spectral properties of such
operators, from the point of view of the classical Fredholm theory, have been
studied in [7]. In this paper, we consider the spectra originating from the
B-Fredholm theory in the sense of Berkani et al., and we show, if a such
operator Q does exist, that the upper B-Weyl spectrum σubw(T ) coincides
with the left Drazin spectrum σld(T ), while the B-Weyl spectrum σbw(T )
coincides with the Drazin spectrum σd(T ). These spectral equalities have,
as a consequence, that the B-Weyl spectrum, as well as the upper B-Weyl
spectrum, obeys to the spectral mapping theorem. Dually, assuming that the
dual Q∗ of a quasi-nilpotent operator is injective, then the lower B-Weyl
spectrum σlbw(T ) coincides with the right Drazin spectrum σrd(T ). In this
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case, both the lower B-Weyl spectrum and the B-Weyl spectrum satisfy the
spectral mapping theorem.

The second section of this article concerns some generalized version of
Weyl type theorems, as the generalized version of a-Weyl’s theorem and the
generalized version of property (ω). If T commutes with an injective quasi-
nilpotent operator, then these generalized versions hold for T assuming that
T is left polaroid, or that T is a-polaroid. Note that the generalized versions of
Weyl type theorems are stronger than the classical versions, see [1, Chapter 5].
Another stronger variant of Weyl’s theorem, the so-called S-Weyl’s theorem,
is also discussed in the last part.

Our results find a natural application to the operators which belong
to the commutant of the Volterra V operator in L2[a, b], since, as it is well
known, both V and its adjoint V ′ are quasi-nilpotent and injective. Since
the Volterra operator is also compact, our results complement each other
with the celebrate Lomonosov result [15] that V admits a non-trivial closed
invariant subspace.

2. Preliminaries and Definitions

Let L(X) denote the Banach algebra of all bounded linear operators acting
on a complex Banach space X. If T ∈ L(X), by α(T ) := dim ker T and
β(T ) := codim T (X), we denote the defects of T . The class of all upper semi-
Fredholm operators is defined by

Φ+(X) := {T ∈ L(X) : α(T ) < ∞ and T (X) is closed},

while the class all lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ L(X) : β(T ) < ∞}.

The class of all semi-Fredholm operators is defined by Φ±(X) := Φ+(X) ∪
Φ−(X). For every T ∈ Φ±(X), the index of T is defined by indT = α(T ) −
β(T ). The upper semi-Fredholm spectrum is defined by

σusf(T ) := {λ ∈ C : λI − T /∈ Φ+(X)},

and similarly, it is defined the lower semi-Fredholm spectrum σlsf(T ). Recall
that an operator T ∈ L(X) is said to be bounded below if is injective and has
closed range. The classical approximate point spectrum is defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below},

while the surjectivity spectrum is defined as

σs(T ) := {λ ∈ C : λI − T is not onto}.

If T ∗ denotes the dual of T , it is well known that σap(T ) = σs(T ∗) and
σs(T ) = σap(T ∗).

Denote by Φ(X) := Φ+(X)∩Φ−(X) the class of all Fredholm operators.
An operator T ∈ L(X) is said to be a Weyl operator if T ∈ Φ(X) and
indT = 0, T ∈ L(X) is said to be upper semi-Weyl if T ∈ Φ+(X) and
indT ≤ 0, while T ∈ L(X) is said to be lower semi-Weyl if T ∈ Φ−(X) and
indT ≥ 0. Denote by σw(T ), σuw(T ) and σlw(T ), the Weyl spectrum, the
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upper semi-Weyl spectrum, and the lower semi-Weyl spectrum, respectively.
Obviously, the inclusions

σusf(T ) ⊆ σuw(T ) ⊆ σap(T ) and σlsf(T ) ⊆ σlw(T ) ⊆ σs(T )

hold for every T ∈ L(X), and there is a duality

σuw(T ) = σlw(T ∗) and σlw(T ) = σuw(T ∗).

Recall that the ascent of T ∈ L(X) is the smallest positive integer
p = p(T ), whenever it exists, such that ker T p = ker T p+1. If such p does
not exist, we set p(T ) = ∞. Analogously, the descent of T is defined to be the
smallest integer q = q(T ), whenever it exists, such that T q+1(X) = T q(X). If
such q does not exist, we set q(T ) = ∞. Note that if p(T ) and q(T ) are both
finite, then p(T ) = q(T ), see Chapter 1 of [1] Moreover, λ is a pole of the
resolvent if and only if 0 < p(λI − T ) = q(λI − T ) < ∞; see [14, Proposition
50.2].

An operator T ∈ L(X) is said to be Browder if T ∈ Φ(X) and p(T ) =
q(T ) < ∞. T ∈ L(X) is said to be upper semi-Browder if T ∈ Φ+(X)
and p(T ) < ∞, while T ∈ L(X) is said to be lower semi-Browder if T ∈
Φ−(X) and q(T ) < ∞. Every Browder operator is Weyl, and every upper
semi-Browder (respectively, lower semi-Browder) operator is upper semi-Weyl
(respectively, lower semi-Weyl); see [1, Chapter 3].

The Browder spectrum, the upper semi-Browder spectrum, and the lower
semi-Browder spectrum are denoted by σb(T ), σub(T ), and σlb(T ), respec-
tively. Note that if λ is a spectral point for which λI − T is Browder, then
λ is an isolated point of σ(T ). Recall that R ∈ L(X) is said to be a Riesz
operator if λI − T ∈ Φ(X) for each λ 	= 0. Quasi-nilpotent operators and
compact operators are examples of Riesz operators. By a well-known result
of Rakočević [16] (see also [3]), the Browder spectra are invariant under Riesz
commuting perturbations R, that is

σub(T ) = σub(T + R), σlb(T ) = σlb(T + R), σb(T ) = σb(T + R). (1)

Semi-Fredholm operators have been generalized by Berkani [8,9] in the
following way: for every T ∈ L(X) and a nonnegative integer n, let us denote
by T[n] the restriction of T to Tn(X), viewed as a map from the space Tn(X)
into itself (we set T[0] = T ). T ∈ L(X) is said to be semi B-Fredholm (resp.
B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if, for some
integer n ≥ 0, the range Tn(X) is closed and T[n] is a semi-Fredholm operator
(resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case,
T[m] is a semi-Fredholm operator for all m ≥ n [8] with the same index of T[n].
This enables one to define the index of a semi B-Fredholm as ind T = ind T[n].
The upper semi B-Fredholm spectrum is defined

σubf(T ) := {λ ∈ C : λI − T is not upper semi B-Fredholm},

and analogously, it may be defined the lower semi B-Fredholm spectrum
σlbf(T ).

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper
semi B-Weyl, lower semi B-Weyl), if, for some integer n ≥ 0, the range Tn(X)
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is closed and T[n] is Weyl (respectively, upper semi-Weyl, lower semi-Weyl).
The B-Weyl spectrum is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},

and analogously may be defined the upper semi B-Weyl spectrum σubw(T )
and the lower semi B-Weyl spectrum σlbw(T ).

Recall that an operator T ∈ L(X) is said to be Drazin invertible if
p(T ) = q(T ) < ∞, i.e., 0 is a pole of the resolvent or T is invertible. An
operator T ∈ L(X) is said to be left Drazin invertible if p := p(T ) < ∞ and
T p+1(X) is closed. A scalar λ ∈ C is said to be a left pole if λI − T is left
Drazin invertible and λ ∈ σap(T ). A left pole λ for which α(λI − T ) < ∞ is
said to have finite rank. Dually, T ∈ L(X) is said to be right Drazin invertible
if q := q(T ) < ∞ and T q(X) is closed. A scalar λ ∈ C is said to be a right
pole if λI − T is right Drazin invertible and λ ∈ σs(T ).

The Drazin spectrum is defined by

σd(T ) := {λ ∈ C : λI − T is not Drazin invertible},

and analogously are defined the left Drazin spectrum σld(T ) and the right
Drazin spectrum σrd(T ). It should be noted that there is a perfect duality,
i.e., σld(T ) = σrd(T ∗) and σld(T ∗) = σrd(T ); see [1, Chapter 1]. The following
inclusions hold for every operator T ∈ L(X):

σubf(T ) ⊆ σubw(T ) ⊆ σld(T ) ⊆ σap(T ), (2)

and
σlbf(T ) ⊆ σlbw(T ) ⊆ σrd(T ) ⊆ σs(T ); (3)

see [1, Chapter 1]. The following lemma has been proved in [4, Lemma 3.5].

Lemma 2.1. Suppose that ρuw(T ) is connected. Then, σuw(T ) = σw(T ).

A proof of the following theorem can be found in [1, Theorem 1.140].

Theorem 2.2. Let T ∈ L(X). Then, T is left Drazin invertible (respectively,
right Drazin invertible, Drazin invertible) if and only if there exists n ∈ N,
such that Tn(X) is closed and the restriction T |Tn(X) is bounded below (re-
spectively, onto, invertible).

3. Injective Quasi-Nilpotent Operators

Recall that an operator Q ∈ L(X) is said to be quasi-nilpotent if σ(Q) = {0}.
In the sequel by comm (T ), we denote the commutant of T . A proof of the
following result may be found in [7].

Theorem 3.1. Let T ∈ L(X) and suppose that Q ∈ comm(T ) is a quasi-
nilpotent operator.

(i) If Q is injective, then α(T ) < ∞ if and only if T is injective.
(ii) If the dual Q∗ is injective, then β(T ) < ∞ if and only if T is onto.
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In the sequel, we set

Qi(X) := {T ∈ L(X) : there exists an injective quasi-nilpotent operator
Q ∈ L(X) such that TQ = QT}.

Several examples of operators that commute with an injective quasi-
nilpotent operator are given in [7]. Theorem 3.1 has some important conse-
quences:

Theorem 3.2. Let T ∈ L(X) and Q ∈ L(X) a quasi-nilpotent operator that
commutes with T .

(i) If Q is injective, then

σusf(T ) = σuw(T ) = σub(T ) = σap(T ) and σb(T ) = σw(T ) = σ(T ). (4)

(ii) If Q∗ is injective, then

σlsf(T ) = σlw(T ) = σlb(T ) = σs(T ) and σb(T ) = σw(T ) = σ(T ). (5)

Proof. (i) Part (i) has been proved in [7, Corollary 3.7 and Theorem 3.8].
(ii) We have σlsf(T ) ⊆ σlw(T ) ⊆ σlb(T ) ⊆ σs(T ), and so, to show the

first equalities in (5), it suffices to prove the inclusion σs(T ) ⊆ σlsf(T ). Let
λ /∈ σlsf(T ) be arbitrary given. Then, β(λI − T ) < ∞. Since T ∗Q∗ = Q∗T ∗,
by Theorem 3.1, we have β(λI − T ) = 0, so λ /∈ σs(T ), and hence, σs(T ) ⊆
σlw(T ).

The equalities σb(T ) = σw(T ) = σ(T ) may be proved in a similar
way. �

An operator T ∈ L(X), X a Banach space, is said to have the single-
valued extension property at λ0 ∈ C, in short T has the SVEP at λ0, if for
every open disc Dλ0 centered at λ0 the only analytic function f : Dλ0 → X
which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0

is the constant function f ≡ 0. T is said to have the SVEP if T has the
SVEP for every λ ∈ C. Evidently, both T and T ∗ have SVEP at the points
λ /∈ σ(T ).

Remark 3.3. Let λ0 ∈ C and suppose that T has SVEP at the points λ of a
punctured open disc D(λ0, ε)\{λ0}. Then, T has SVEP at λ0. Indeed, suppose
that f : D(λ0, ε) → X is an analytic function, such that (λI − T )f(λ) = 0
holds for every λ ∈ D(λ0, ε). Choose μ ∈ D(λ0, ε)\{λ0} and let D(μ, δ) be an
open disc contained in D(λ0, ε)\{λ0}. The SVEP for T at μ entails f(λ) = 0
on D(μ, δ). Since f is continuous at λ0, we then conclude that f(λ0) = 0.
Hence, f ≡ 0 on D(λ0, ε), and thus, T has the SVEP at λ0.

We now consider the Weyl spectra relative to the B-Fredholm theory.

Theorem 3.4. Let T ∈ L(X) and suppose that Q ∈ L(X) is a quasi-nilpotent
operator, such that TQ = QT .

(i) If Q is injective, then

σubf(T ) = σubw(T ) = σld(T ) and σbw(T ) = σd(T ). (6)
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(ii) If Q∗ is injective, then

σlbf(T ) = σlbw(T ) = σrd(T ) and σbw(T ) = σd(T ). (7)

Proof. (i) To show the first equality it suffices, by (2), to prove the inclusion
σld(T ) ⊆ σubf(T ). Let λ /∈ σubf(T ) be arbitrarily given. There is no harm
if we assume that λ = 0. Then, T is upper semi B-Fredholm, so Tn(X) is
closed for some n ∈ N and T[n] = T |Tn(X) is upper semi-Fredholm, and
hence, α(T[n]) < ∞ and T[n] has a closed range. Now, from

Q(Tn(X)) = Tn(Q(X)) ⊆ Tn(X),

we see that Tn(X) is invariant under Q, so we can consider the restriction
Q[n] = Q|Tn(X), and, since T and Q commutes, we have the following:

T[n]Q[n] = Q[n]T[n].

Clearly, Q[n] is injective and quasi-nilpotent. By Theorem 3.1, then α(T[n]) =
0. Since T[n] has closed range, then T[n] is bounded below, so, by Theorem
2.2, T is left Drazin invertible, i.e., 0 /∈ σld(T ). Therefore, the first equalities
in (6) are proved.

The proof of the equality σbw(T ) = σd(T ) is analogous: if 0 /∈ σbw(T ),
then T is semi B-Weyl, so Tn(X) is closed for some n ∈ N and the restriction
T[n] is Weyl, in particular α(T[n]) = β(T[n]) < ∞. The restriction Q[n] =
Q|Tn(X) is injective and commutes with T[n], so, always by Theorem 3.1,
α(T[n]) = β(T[n]) = 0, and hence, T[n] is invertible. By Theorem 2.2, then T
is Drazin invertible, so 0 /∈ σd(T ). Therefore, σbw(T ) = σd(T ).

(ii) According the inclusions (3), to show the first equalities in (7), we
need only to prove that σrd(T ) ⊆ σlbf(T ). Let λ0 /∈ σlbf(T ). Then, λ0I − T
is lower semi B-Fredholm, so, by [1, Theorem 1.117], there exists an open
disc Dε(λ0) centered at λ0 and radius ε > 0, such that λI − T is lower semi-
Fredholm for all λ ∈ Dε(λ0)\{λ0}. Since λI−T commutes with Q, by part (ii)
of Theorem 3.2, then λI−T is lower semi-Browder, and hence, q(λI−T ) < ∞
for all λ ∈ Dε(λ0)\{λ0}, and this implies, by [1, Theorem 2.65], that T ∗ has
SVEP at every λ ∈ Dε(λ0)\{λ0}. From Remark 3.3, we then conclude that
T ∗ has SVEP also at λ0. Since λ0I − T has topological uniform descent (see
Chapter 1 of [1] for details), then, by Theorem 2.98 of [1], λ0I − T is right
Drazin invertible, and hence, λ0 /∈ σrd(T ). Therefore, σrd(T ) ⊆ σlbf(T ).

The proof of the second equality in (7) is similar: we have only to prove
the inclusion σd(T ) ⊆ σbw(T ). Let λ0 /∈ σbw(T ). Then, λ0I − T is semi-B-
Weyl and, by [1, Theorem 1.117], there exists an open disc Dε(λ0) centered
at λ0 and radius ε > 0, such that λI − T is Weyl for all λ ∈ Dε(λ0)\{λ0}.
From part (ii) of Theorem 3.2, it then follows that λI −T is Browder; hence,
p(λI − T ) = q(λI − T ) < ∞ for all λ ∈ Dε(λ0)\{λ0}. This implies, see [1,
Theorem 2.65], that both T and T ∗ have SVEP at every λ ∈ Dε(λ0)\{λ0}.
From Remark 3.3, we then deduce that both T and T ∗ have SVEP at λ0. Since
λ0I − T has topological uniform descent, from Theorem 2.97 and Theorem
2.98 of [1], we then conclude that λ0I − T is both left and right Drazin
invertible, i.e., Drazin invertible; hence, λ0 /∈ σd(T ). �
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Example 3.5. An important example of injective quasi-nilpotent operator is
provided by the classical Volterra operator V , on the Banach space X, where
X := C[0, 1], the space of all continuous functions on the closed interval [0, 1],
or X := L2[0, 1], the Hilbert space of all complex-valued square-integrable
functions on the interval [0, 1]. The operator V is defined by means

(V f)(x) :=
∫ x

0

f(t)dt for all f ∈ X and x ∈ [0, 1].

The class of operators which commute with the Volterra operators is large;
for instance, examples of operators which commute with V have been studied
in the framework of supercyclic operators [17]. Note that the adjoint of the
Volterra operator V on L2[0, 1] is given by

(V ′f)(x) :=
∫ 1

x

f(t)dt.

Evidently, also V ′ is injective and quasi-nilpotent; moreover, V ′ commutes
with the adjoint of every operator which belongs to the commutant of V .

For operators T defined on a Hilbert spaces, H is better to consider the
adjoint T ′ instead of the dual T ∗. We recall now the relationship between the
Hilbert adjoint T ′ of an operator T defined on a Hilbert space and the dual
T ∗. By the Frechét–Riesz representation theorem, there exists a conjugated-
linear isometry U : H → H∗, H∗ the dual of H, that associates to every
y ∈ H the linear form defined

fy(x) :=< x, y > for every x ∈ H.

Moreover

(λ̄I − T ′) = U−1(λI − T ∗)U for every λ ∈ C.

Hence, for a Hilbert space operator T

T ′ is injective ⇔ T ∗ is injective.

Since the adjoint V ′ of the Volterra operator V in L2[0, 1] is also injec-
tive and quasi-nilpotent, from Theorems 3.2 and 3.4, we then conclude the
following:

Corollary 3.6. The equalities (4), (5), (6), and (7) hold for every bounded
linear operator T : L2[0, 1] → L2[0, 1] that belongs to the commutant of the
Volterra operator V .

Let f ∈ H(σ(T )) be an analytic function defined on an open neighbor-
hood U which contains the spectrum, and let f(T ) be defined by the classical
functional calculus

f(T ) :=
1

2πi

∫
Γ

f(λ)(λI − T )−1 dλ,

where Γ is a contour that surrounds σ(T ) in U . It is known that, in general,
the spectral mapping theorem does not hold for σubw(T ) and σbw(T ); indeed,
we have only the inclusions

σubw(f(T )) ⊆ f(σubw(T )) and σbw(f(T )) ⊆ f(σbw(T ));
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see [1, Theorem 3.24], and these inclusions may be strict.
Let Hnc(σ(T )) denote the subset of H(σ(T )) of all functions nonconstant

on each component of its domain of definition.

Theorem 3.7. Let T ∈ L(X) and suppose that there exists a quasi-nilpotent
operator Q that commutes with T .

(i) If Q is injective, then the spectral mapping theorem holds for σubw(T )
and σbw(T ), i.e.,

σubw(f(T )) = f(σubw(T )) for all f ∈ Hnc(σ(T )),

and

σbw(f(T )) = f(σbw(T )) for all f ∈ Hnc(σ(T )).

(ii) If Q∗ is injective, then the spectral mapping theorem holds for σlbw(T )
and σbw(T ), i.e.,

σlbw(f(T )) = f(σlbw(T )) for all f ∈ Hnc(σ(T )),

and

σbw(f(T )) = f(σbw(T )) for all f ∈ Hnc(σ(T )).

Proof. (i) By Theorem 3.4, we know that σubw(T ) = σld(T ). The spectral
mapping theorem holds for the left Drazin spectrum, since the set of all left
Drazin invertible operators is a regularity; see [1, Theorem 3.109], hence

f(σubw(T )) = f(σld(T )) = σld(f(T )).

Let Q be an injective quasi-nilpotent operator Q which commutes with T .
Evidently, if λ ∈ ρ(T ) := C\σ(T ), then Q commutes also with (λI − T )−1,
and consequently, Q commutes with f(T ). Therefore, always by Theorem 3.4,
we have σld(f(T )) = σubw(f(T )), so the spectral mapping theorem holds for
σubw(T ).

The spectral mapping theorem for the B-Weyl spectrum follows sim-
ilarly, taking into account that, by Theorem 3.4, we have σbw(T ) = σd(T )
and that the spectral mapping theorem holds for σd(T ).

(ii) Evidently, Q∗ commutes with T ∗, and hence, with f(T ∗) = f(T )∗,
so by Theorem 3.4, we have σrd(f(T )) = σlbw(f(T )). The spectral mapping
theorem also holds for the right Drazin spectrum, since the set of all right
Drazin invertible operators is a regularity, see [1, Theorem 3.109], hence

f(σlbw(T )) = f(σrd(T )) = σrd(f(T )) = σlbw(f(T )).

The spectral mapping theorem for σbw(T ) is proved similarly using the equal-
ity σd(f(T )) = σbw(f(T )), proved in part (ii) of Theorem 3.4. �

Corollary 3.8. If a bounded linear operator T : L2[0, 1] → L2[0, 1]) commutes
with the Volterra operator V , then the spectral mapping theorem holds for all
B-Weyl spectra.
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4. Weyl Type Theorems

An operator T ∈ L(X) is said to verify Weyl’s theorem if σ(T ) \ σw(T ) =
π00(T ), where π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞}. The operator
T ∈ L(X) is said to verify a-Weyl’s theorem if σap(T ) \ σuw(T ) = πa

00(T ),
where πa

00(T ) := {λ ∈ iso σap(T ) : 0 < α(λI − T ) < ∞}, while T ∈ L(X) is
said to verify property (ω) if σap(T )\σuw(T ) = π00(T ). Note that

either a-Weyl’s theorem or property (ω) ⇒ Weyl’ s theorem;

see [1, Chapter 6]. An operator T ∈ L(X) is said to verify generalized Weyl’s
theorem (shortly, (gWt)), if σ(T )\σbw(T ) = E(T ), where E(T ) := {λ ∈
iso σ(T ) : 0 < α(λI − T )}. The operator T ∈ L(X) is said to verify general-
ized a-Weyl’s theorem (shortly, (gaWt)) if σap(T )\σubw(T ) = Ea(T ), where
Ea(T ) := {λ ∈ iso σap(T ) : 0 < α(λI − T )}, while T ∈ L(X) is said to ver-
ify generalized property (ω) (shortly, (gω)) if σap(T )\σubw(T ) = E(T ). Note
that (gaWt) entails a-Weyl’s theorem and generalized property (ω) entails
property (ω). Furthermore

either (gaWt) or (gω) ⇒ (gWt);

see [1, Chapter 6]. In [7], it has been proved that the existence of an injective
quasi-nilpotent operator that commutes with T ensures that a-Weyl’s the-
orem or property (ω) hold for T . It is a natural question if the generalized
versions of Weyl type theorems hold for T ∈ Qi(X). In the sequel, we shall
prove that this is true under some additional conditions.

Let iso F denote the isolated points of F ⊆ C. Recall that if Q is any
quasi-nilpotent operator that commutes with T , then

σap(T ) = σap(T + Q) and σs(T ) = σs(T + Q); (8)

see [1, Corollary 3.24]. Since σ(T ) = σap(T ) ∪ σs(T ), this easily implies that
σ(T ) = σ(T + Q).

Theorem 4.1. Let T ∈ L(X) and suppose that Q is an injective quasi-nilpotent
operator that commutes with T .

(i) If isoσ(T ) = ∅, then both T and T + Q satisfy generalized Weyl’s theo-
rem.

(ii) If isoσap(T ) = ∅, then both T and T + Q satisfy generalized a-Weyl’s
theorem and generalized property (ω).

Proof.
(i) We show first that σd(T ) = σ(T ). It suffices to prove that σ(T ) ⊆

σd(T ). Let λ /∈ σd(T ). Then, λI − T is Drazin invertible, and hence,
λI − T is either invertible or λ is a pole of T . If λ is a pole, then λ
is an isolated point of σ(T ), but this is impossible, since by assump-
tion iso σ(T ) = ∅. Hence, λ /∈ σ(T ), so σd(T ) = σ(T ). To show that
T satisfies generalized Weyl’s theorem, observe that, by Theorem 3.4,
σ(T )\σbw(T ) = σ(T )\σd(T ) = ∅, and obviously, E(T ) = ∅, since there
are no isolated points in σ(T ). Since T + Q commutes with Q and
iso σ(T +Q) = iso σ(T ) = ∅, the argument above proves that also T +Q
satisfies generalized Weyl’s theorem.
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(ii) We show first that σld(T ) = σap(T ). Evidently, every bounded below
operator is left Drazin invertible, so σld(T ) ⊆ σap(T ). To prove the
opposite inclusion, let λ /∈ σld(T ) be arbitrary given. Then, λI−T is left
Drazin invertible. There are two possibilities: λ ∈ σap(T ) or λ /∈ σap(T ).
If λ ∈ σap(T ), then λ is a left pole of T , and hence, by [1, Theorem 4.3],
an isolated point of σap(T ), but this is impossible since iso σap(T ) = ∅.
Hence, λ /∈ σap(T ), so the equality σld(T ) = σap(T ) holds. Now, by
Theorem 3.4,

σ(T ) \ σbw(T ) = σ(T ) \ σd(T ) = ∅,

and obviously, Ea(T ) = ∅, since there is no isolated point in σap(T );
hence, T satisfies generalized Weyl’s theorem. Since T + Q commutes
with Q and

iso σap(T + Q) = iso σap(T ) = ∅,

the argument above proves that T + Q satisfies generalized a-Weyl’s
theorem.
To prove the generalized property (ω) for T , observe, as above, that

σ(T )\σbw(T ) = ∅. Furthermore, also E(T ) = ∅, since every isolated point
λ of the spectrum belongs to σap(T ); see [1, Theorem 1.12], and hence, λ ∈
iso σap(T ) and this is impossible. Therefore, also generalized property (ω)
holds for T .

Since T + Q commutes with Q and isoσap(T + Q) = ∅, then the previ-
ous reasoning shows that both generalized a-Weyl’s theorem and generalized
property (ω) hold for T + Q. �

An operator T ∈ L(X) is said to be polaroid if everyλ ∈ iso σ(T ) is a pole
of the resolvent. T ∈ L(X) is said to be left polaroid if every λ ∈ iso σap(T )
is left pole of the resolvent, while T ∈ L(X) is said to be a-polaroid if every
λ ∈ iso σap(T ) is pole of the resolvent. Note that

T a-polaroid ⇒ T left polaroid ⇒ T polaroid;

see [1, Corollary 4.13]. Recall that the spectral theorem holds for σap(T ).

Lemma 4.2. Suppose that T ∈ L(X) is polaroid (respectively, left polaroid,
a-polaroid). Then, f(T ) is polaroid (respectively, left polaroid, a-polaroid) for
every f ∈ Hnc(σ(T )).

Proof. The case where T is polaroid is proved in [1, Theorem 4.19], while
for the case where T is left polaroid; see [1, Remark 4.20]. Now, let T
be a-polaroid and suppose that λ0 ∈ iso σap(f(T )) = iso f(σap(T )). We
show that λ0 is a pole of the resolvent of f(T ). Let us first to show that
λ0 ∈ f(iso σap(T )). Select μ0 ∈ σap(T ), such that f(μ0) = λ0. Let Ω be the
connected component of the domain of f which contains μ0 and suppose that
μ0 is not isolated in σap(T ). Then, there exists a sequence (μn) ⊂ σap(T )∩Ω
of distinct scalars, such that μn → μ0. The set Γ := {μ0, μ1, μ2, . . . } is a com-
pact subset of Ω, so, by the Principle of isolated zeros of analytic functions,
the function f may assume the value λ0 = f(μ0) at only a finite number of
points of Γ. Consequently, for n sufficiently large f(μn) 	= f(μ0) = λ0, and
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since f(μn) → f(μ0) = λ0, it then follows that λ0 is not an isolated point of
f(σap(T )), a contradiction.

Hence, λ0 = f(μ0), with μ0 ∈ iso σap(T ). Since T is a-polaroid, then μ0

is a pole of the resolvent of T , and hence, by [1, Theorem 4.16], λ0 is a pole
of the resolvent of f(T ). Thus, f(T ) is a-polaroid. �

Theorem 4.3. Let T ∈ Qi(X). Then, we have the following:

(i) If T is polaroid, then f(T ) satisfies generalized Weyl’s theorem for every
f ∈ Hnc(σ(T )).

(ii) If T is left polaroid, then f(T ) satisfies generalized a Weyl’s theorem
theorem for every f ∈ Hnc(σ(T )).

(iii) If T is a-polaroid, then f(T ) satisfies generalized property (ω) for every
f ∈ Hnc(σ(T )).

Proof.

(i) Let T be polaroid. By Theorem 3.4, we have σbw(T ) = σd(T ). Hence

σ(T )\σbw(T ) = σ(T )\σd(T ) = Π(T ),

so every λ ∈ σ(T )\σbw(T ) is a pole of the resolvent, hence an isolated
point of σ(T ) and an eigenvalue of T . Therefore, λ ∈ E(T ) and this
show that σ(T )\σbw(T ) ⊆ E(T ).
The opposite inclusion is also true, if λ ∈ E(T ) then λ is a pole, since T
is polaroid, and so, by Theorem 3.2, λ ∈ σ(T )\σd(T ) = σ(T )\σbw(T ),
and hence, (gW ) holds for T . By Lemma 4.2, also f(T ) is polaroid for
every f ∈ Hnc(σ(T )), and since f(T ) commutes with Q, then (gW )
holds for f(T ), by the first part of the proof.

(ii) Let T be left polaroid. If λ ∈ Ea(T ), then λ ∈ iso σap(T ), and hence, λ
is a left pole, since T is left polaroid; in particular, λI −T is left Drazin
invertible.Taking into account Theorem 3.2

λ ∈ σap(T ) \ σld(T ) = σap(T ) \ σubw(T ),

so Ea(T ) ⊆ σap(T ) \ σubw(T ).
On the other hand, the opposite inclusion also holds. Indeed, if

λ ∈ σap(T )\σubw(T ) = σap(T )\σld(T ) = Πa(T ),

then λ ∈ iso σap(T ). Furthermore, α(λI − T ) > 0; otherwise, if were
α(λI − T ) = 0, we would have p(λI − T ) = 0, and hence, since λ /∈
σld(T ), (λI − T )0+1(X) = (λI − T )(X) would be closed, contradicting
the assumption that λ ∈ σap(T ). Therefore, λ ∈ Ea(T ), so σap(T ) \
σubw(T ) = Ea(T ); thus, generalized a-Weyl theorem holds for T .
As above, the same argument shows that generalized a-Weyl theorem
holds for f(T ), since f(T ) commutes with Q and f(T ) is left polaroid,
by Lemma 4.2.

(iii) Observe first that E(T ) is contained in σap(T )\σubw(T ). Indeed, every
isolated point of the spectrum belongs to its boundary and hence to
σap(T ), by [1, Theorem 1.12]. Therefore, every λ ∈ E(T ) is an isolated
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point of σap(T ), and hence, a pole of the resolvent, since by assumption
T is a-polaroid; in particular, λ is a left pole. By Theorem 3.4, then

λ ∈ σap(T ) \ σld(T ) = σap(T ) \ σubw(T ).

To show the opposite inclusion σap(T )\σubw(T ) ⊆ E(T ), observe that if
λ ∈ σap(T )\σlbw(T ) = σap(T )\σld(T ), then λ is a left pole, hence an isolated
point of σap(T ). The assumption that T is a-polaroid then entails that λ is
a pole of T , hence an isolated point of σ(T ). Since λ is also an eigenvalue
of T , we then conclude that λ ∈ E(T ), so property (gω) holds for T . Since
f(T ) is a-polaroid then, as above, we conclude that property (gω) holds
for f(T ). �

Corollary 4.4. Let T ∈ L(L2[0, 1]) commute with the Volterra operator and
f ∈ Hnc(σ(T )). If T is polaroid, then f(T ) satisfies generalized Weyl’s theo-
rem. If T is left polaroid, then generalized a-Weyl’s theorem holds for f(T ).
If T is a-polaroid, then generalized property (w) holds for f(T ).

Denote by Π(T ) the set of all poles of T , i.e., Π(T ) := σ(T )\σd(T ) and
by Πa(T ) the set of all left poles. i.e., Πa(T ) := σap(T )\σld(T ). Note that
Πa(T ) ⊆ iso σap(T ) ( [1, Theorem 4.3]. According to [10] and [11], an operator
T ∈ L(X) is said to satisfy property (gb) if σap(T )\σubw(T ) = Π(T ).

Theorem 4.5. Le T ∈ Qi(X) be a-polaroid. Then, T satisfies property (gb).

Proof. From Theorem 3.4, we know that

σap(T )\σubw(T ) = σap(T )\σld(T ) = Πa(T ).

Obviously, the inclusion Π(T ) ⊆ Πa(T ) holds for every operator. If λ ∈
Πa(T ), then λ ∈ iso σap(T ), and since T is a-polaroid, then λ ∈ Π(T ); hence,
Πa(T ) ⊆ Π(T ), and thus, Πa(T ) = Π(T ). �

To introduce another stronger variant of Weyl’s theorem, we introduce
the following property.

Definition 4.6. An operator T ∈ L(X) is said to verify property (gaz) if σ(T )\
σubw(T ) = Πa(T ).

Theorem 4.7. Let T ∈ Qi(X). Then, property (gaz) holds for T if and only
if σap(T ) = σ(T ).

Proof. Suppose that property (gaz) holds for T . Then, σap(T ) = σ(T ), by
Theorem 3.2 of [5]. Conversely, suppose that σap(T ) = σ(T ). Since T ∈
Qi(X), then σubw(T ) = σld(T ), by Theorem 3.2, so we have

σ(T )\σubw(T ) = σap(T )\σld(T ) = Πa(T ),

i.e., (gaz) holds for T . �

It should be noted that the equality σap(T ) = σ(T ) holds if T ∗ has
SVEP, and hence, if T � has SVEP, then property (gaz) holds for T .

The following variant of Weyl type theorems has been introduced in [6].
An operator T ∈ L(X) is said to satisfy S-Weyl’s theorem, if σ(T )\σubw(T ) =
π00(T ). Note that S-Weyl’s theorem holds for T if and only if T satisfies
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property (gaz) and the equality Πa(T ) = π00(T ) holds; see [6, Theorem 3.6].
Furthermore, S-Weyl’s theorem entails both a-Weyl’s theorem and property
(ω); see [6, Theorem 3.8].

Observe that for operators T ∈ Qi(X), we have

π00(T ) = πa
00(T ) = ∅,

since, if λ belongs to one of these sets, then 0 < α(λI − T ) < ∞ and this is
impossible by Theorem 3.1.

Corollary 4.8. Let T ∈ Qi(X) be such that σap(T ) = σ(T ). Then, S-Weyl’s
theorem holds for T if and only if T has no left poles. In particular, if
isoσap(T ) = ∅, then S-Weyl’s theorem holds for T .

Proof. By Theorem 4.3, if σap(T ) = σ(T ), then T has property (gaz). Fur-
thermore, as noted above, π00(T ) = ∅. Hence

∅ = Πa(T ) = π00(T );

thus, S-Weyl’s theorem holds for T . Conversely, if S-Weyl’s theorem holds
for T , then Πa(T ) = π00(T ) = ∅, so T has no left poles.

The last assertion is clear: every left pole of the resolvent of an operator
is an isolated point of σap(T ); see [1, Theorem 4.3]. �

Theorem 4.9. Suppose that σap(T ) has no hole and that σap(T ) has no iso-
lated point. If Q is an injective quasi-nilpotent operator that commutes with
T , then S-Weyl’s theorem holds for T and T + Q.

Proof. Since σap(T ) = σuw(T ), by Theorem 3.2, the set ρuw(T ) := C\σuw(T )
is connected, so, by Lemma 2.1 and Theorem 3.2, we have

σap(T ) = σuw(T ) = σw(T ) = σ(T ).

Therefore, T has property (gaz), by Theorem 4.3. To prove that S-Weyl’s
theorem holds for T , we need to prove that Πa(T ) = π00(T ). As noted before,
π00(T ) is empty and also Πa(T ) = ∅, since Πa(T ) ⊆ iso σap(T ), and thus, T
satisfies S-Weyl’s theorem. To show that S-Weyl’s theorem holds also for
T + Q, note that T + Q commutes with Q, iso σap(T + Q) = iso σap(T ) = ∅
and σap(T + Q) = σap(T ) has no hole. �
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Università di Palermo (Italia)
Viale delle Scienze
90128 Palermo
Italy
e-mail: salvatore.triolo@unipa.it

Pietro Aiena
e-mail: pietro.aiena@unipa.it

Fabio Burderi
e-mail: fabio.burderi@unipa.it

Received: November 25, 2023.

Revised: November 25, 2023.

Accepted: December 2, 2023.

https://doi.org/10.1007/s00020-010-1790-y
https://doi.org/10.1007/s00020-010-1790-y

	Further Properties of an Operator Commuting with an Injective Quasi-Nilpotent Operator
	Abstract
	1. Introduction
	2. Preliminaries and Definitions
	3. Injective Quasi-Nilpotent Operators
	4. Weyl Type Theorems
	Acknowledgements
	References


