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We present a coherence-based probability semantics and probability propagation 
rules for (categorical) Aristotelian syllogisms. For framing the Aristotelian syllogisms 
as probabilistic inferences, we interpret basic syllogistic sentence types A, E, I, O 
by suitable precise and imprecise conditional probability assessments. Then, we 
define validity of probabilistic inferences and probabilistic notions of the existential 
import which is required, for the validity of the syllogisms. Based on a generalization 
of de Finetti’s fundamental theorem to conditional probability, we investigate the 
coherent probability propagation rules of argument forms of the syllogistic Figures I, 
II, and III, respectively. These results allow to show, for all three figures, that 
each traditionally valid syllogism is also valid in our coherence-based probability 
semantics. Moreover, we interpret the basic syllogistic sentence types by suitable 
defaults and negated defaults. Thereby, we build a bridge from our probability 
semantics of Aristotelian syllogisms to nonmonotonic reasoning. Then we show that 
reductio by conversion does not work while reductio ad impossibile can be applied 
in our approach. Finally, we show how the proposed probability propagation rules 
can be used to analyze syllogisms involving generalized quantifiers (like Most).

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Motivation and outline

There is a long tradition in logic to investigate categorical syllogisms that goes back to Aristotle’s Analyt-
ica Priora. However, not many authors proposed probability semantics for categorical syllogisms (see, e.g., 
[2,3,15,21,22,31,33,54,46,63,91]) to overcome formal restrictions imposed by logic, like its monotonicity (i.e., 
the inability to retract conclusions in the light of new evidence) or its qualitative nature (i.e., the inability to 
express degrees of belief ). In particular, universally and existentially quantified statements are hardly ever 
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used in commonsense contexts: even if people mention words like “all” or “every”, they usually don’t mean 
all in the modern sense of the universal quantifier ∀. Indeed, universal quantified statements are usually not 
falsified by one exception in everyday life. Likewise, people mostly don’t mean by “some” at least one in the 
sense of the existential quantifier ∃. Our aim is to provide a richer and more flexible framework for managing 
quantified statements in common sense reasoning. Specifically, our probabilistic approach is scalable in the 
sense that the proposed semantics allows for managing not only traditional logical quantifiers but also the 
much bigger superset of generalized or intermediate quantifiers (see, e.g., [5,68,69,93]). Such a framework 
will also be useful as a rationality framework for the psychology of reasoning, which has a long tradition in 
investigating syllogisms (see, e.g., [90,59,73]). Finally, a further aim within our probabilistic approach is to 
build a bridge from ancient syllogisms to relatively recent approaches in nonmonotonic reasoning.

Among various approaches to probability, we use the subjective interpretation. Specifically, we use the 
theory of subjective probability based on the coherence principle of Bruno de Finetti (see, e.g., [27,30]). This 
coherence principle has been investigated by many authors and it has been generalized to the conditional 
probability and to imprecise probability (see, e.g., [7,11,12,17,18,20,24,39,43,49,46,57,62,71,81,92]). The co-
herence principle plays a key role in probabilistic reasoning. Coherence is a flexible approach as it allows 
to assign conditional probability directly on an arbitrary family of conditional events—without requiring 
algebraic structures—and to propagate coherent probabilities to further conditional events. Moreover, co-
herence is more general than approaches which require positive probability for the conditioning events. In 
such approaches the conditional probability p(E|H) is defined by the ratio p(E∧H)

p(H) , which requires positive 
probability of the conditioning event, p(H) > 0 (or by making ad hoc assumptions, like setting P (E|H) = 1, 
when P (H) = 0). However, in the coherence-based approach, conditional probability p(E|H) is a primi-
tive notion and it is properly defined and managed even if the conditioning event has probability zero, 
i.e., p(H) = 0. If E and H are logically independent, then, by coherence, p(E|H) can take any value in 
the unit interval [0, 1]. Moreover, for any coherent p, the equation p(E|H)p(H) = p(E ∧ H) follows as a 
theorem (compound probability theorem). In particular, when p(H) > 0, of course coherence requires that 
p(E|H) = p(E∧H)

p(H) ; however, when p(H) = 0, coherence requires that p(E|H) ∈ [0, 1].
In the subjective approach to probability of de Finetti no algebraic structure of events is required. For 

each (conditional) event of interest, the uncertainty is directly evaluated in terms of a degree of belief, by 
means of coherent probability. This evaluation concerns only the (conditional) events of interest, without 
the necessity of evaluating degrees of belief of all events (possibly unrealistic many and irrelevant ones) 
of a presupposed suitable algebra. This approach is therefore more flexible, epistemically economic, and 
more realistic compared to the approaches which presuppose to give probability values to each element of 
the whole algebraic structure. Hence, as degrees of belief are primitive, conditional probabilities are also 
primitive. Moreover, any event E coincides with the conditional event E|Ω and hence the (unconditional) 
probability p(E) coincides with the conditional probability p(E|Ω). Therefore, conditional probability is 
primitive in our approach and does not necessarily require a basis on unconditional probabilities.

For other axiomatic approaches to conditional probability which allow for such zero probabilities but 
which presuppose—differently from coherence—an algebraic structure see e.g., [26,32,78,82,83]. For a dis-
cussion of different axiomatic approaches and interpretations of probability and conditional probability see 
[6,34]. We recall that a coherent assessment P on an arbitrary family F of conditional events—possibly 
without any algebraic structures—can always be extended as a full axiomatic (finitely additive) conditional 
probability p on A ×A0, where A is a Boolean algebra and A0 = A \ {⊥}, such that, for all E|H ∈ F , it 
holds that E ∈ A, H ∈ A0, and p(E|H) = P(E|H) ([81]; see also [24,57,84]). Moreover, given a real-valued 
function p on A ×B, where A is a Boolean algebra and B is an arbitrary nonempty subset of A0 (meaning 
that no restrictions are made for the class of conditioning events B), which satisfies the following properties 
of an axiomatic (finitely additive) conditional probability:

(i) p(·|H) is a finitely additive probability on A, for each H ∈ B;
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Table 1
Traditional and logically valid Aristotelian syllogisms. * denotes syllogisms with implicit exis-
tential import assumptions.

Figure I (term order: M–P , S–M , therefore S–P )
AAA Barbara Every M is P, Every S is M, therefore Every S is P
AAI* Barbari Every M is P, Every S is M, therefore Some S is P
AII Darii Every M is P, Some S is M, therefore Some S is P
EAE Celarent No M is P, Every S is M, therefore No S is P
EAO* Celaront No M is P, Every S is M, therefore Some S is not P
EIO Ferio No M is P, Some S is M, therefore Some S is not P

Figure II (term order: P–M , S–M , therefore S–P )
AEE Camestres Every P is M, No S is M, therefore No S is P
AEO* Camestrop Every P is M, No S is M, therefore Some S is not P
AOO Baroco Every P is M, Some S is not M, therefore Some S is not P
EAE Cesare No P is M, Every S is M, therefore No S is P
EAO* Cesaro No P is M, Every S is M, therefore Some S is not P
EIO Festino No P is M, Some S is M, therefore Some S is not P

Figure III (term order: M–P , M–S, therefore S–P )

AAI* Darapti Every M is P, Every M is S, therefore Some S is P
AII Datisi Every M is P, Some M is S, therefore Some S is P
IAI Disamis Some M is P, Every M is S, therefore Some S is P
EAO* Felapton No M is P, Every M is S, therefore Some S is not P
EIO Ferison No M is P, Some M is S, therefore Some S is not P
OAO Bocardo Some M is not P, Every M is S, therefore Some S is not P

(ii) p(H|H) = 1, for each H ∈ B;
(iii) p(AB|H) = p(A|BH)p(B|H), for every A, B, H, with A, B ∈ A and BH, H ∈ B,

then it could be that the function p is not coherent ([24,42,53]). However, Rigo ([84]) has shown that 
Csàszàr’s condition ([26], see also [44]) is necessary and sufficient for coherence of p on A ×B. Furthermore, 
a function p : A ×B satisfying (i), (ii) and (iii), is coherent, when B has a particular structure, for instance, 
if B is additive ([24,57]), or if B is quasi-additive ([38,85]).

In the present context dealing with zero probability antecedents will be important for analyzing the 
validity of the probabilistic syllogisms and for investigating probabilistic existential import assumptions. 
We also interpret the premise set of each syllogism as a suitable (precise/imprecise) conditional probability 
assessment on the respective sequence of conditional events (without presupposing particular algebraic struc-
tures). Specifically, we are interested in the probability propagation from the premise set to the conclusion. 
Coherence provides therefore tools to systematically investigate these aspects.

Traditional categorical syllogisms are valid argument forms consisting of two premises and a conclusion, 
which are composed of basic syllogistic sentence types (see, e.g., [72]): Every a is b (A), No a is b (E), Some 
a is b (I), and Some a is not b (O), where “a” and “b” denote two of the three categorical terms M (“middle 
term”), P (“predicate term”), or S (“subject term”). As an example of sentence type A consider Every man 
is mortal. The M term appears only in the premises and is combined with P in the first premise (“major 
premise”) and S in the second premise (“minor premise”). In the conclusion only the S term and the P
term appear, traditionally in the fixed order S–P . By all possible permutations of the predicate order, four 
syllogistic figures result under the given restrictions. Following Aristotle’s Analytica Priora, we will focus 
on the first three figures. Specifically, on the traditionally valid Aristotelian syllogisms of Figure I, II, and 
III (see Table 1). Consider (Modus) Barbara, which is a valid syllogism of Figure I: Every M is P , Every S
is M , therefore Every S is P .

Note that some traditionally valid syllogisms require existential import assumption for the validity. For 
example, Barbari (Every M is P , Every S is M , therefore Some S is P ) is valid under the assumption that 
the S term is not “empty” (in the sense that there is some S). The names of the syllogisms traditionally 
encode logical properties. For the present purpose, we only recall that vowels refer to the syllogistic sentence 
type: for instance, Barbara involves three sentences of type A, i.e., AAA (for details see, e.g., [72]).



4 N. Pfeifer, G. Sanfilippo / Annals of Pure and Applied Logic 175 (2024) 103340
Table 2
Probabilistic interpretations of the basic syllogistic sentence types based on P |S and P |S.

Type Sentence Probabilistic interpretation Equivalent interpretation
(A) Every S is P p(P |S) = 1 p(P |S) = 0
(E) No S is P (Every S is not P ) p(P |S) = 0 p(P |S) = 1
(I) Some S is P p(P |S) > 0 p(P |S) < 1
(O) Some S is not P p(P |S) > 0 p(P |S) < 1

In our approach we interpret the syllogistic terms as events. An event is conceived as a bi-valued logical 
entity which can be true or false. Moreover, we associate (ordered) pair of terms S–P with the corresponding 
conditional event P |S, that is as a tri-valued logical object ([46]).

For giving a probabilistic interpretation of the premises and the conclusions of the syllogisms, we inter-
pret basic syllogistic sentence types A, E, I, O by suitable imprecise conditional probability assessments. 
Specifically, we interpret the degree of belief in syllogistic sentence A by p(P |S) = 1, E by p(P |S) = 0, I by 
p(P |S) > 0, and we interpret O by p(P |S) > 0 (Table 2; see also [21,46]). Thus, A and E are interpreted as 
precise probability assessments and I and O by imprecise probability assessments. The basic logical relations 
among this interpretation of the syllogistic sentence types are analyzed in the probabilistic Square and in 
the probabilistic Hexagon of Opposition ([74,75]).

Remark 1. We note that p(P |S) does not constrain p(S|P ). Indeed, as we will show in Proposition 7, 
given two logically independent events S and P , the probability assessment (x, y) on (P |S, S|P ), where 
x = p(P |S) and y = p(S|P ), is coherent for every (x, y) ∈ [0, 1]2. Therefore, the interpretation of all 
the basic syllogistic sentence types in terms of conditional probabilities is not symmetric. For instance, 
p(P |S) > 0 does not constrain p(S|P ) > 0, and hence Some S is P does not imply Some P is S. Moreover, 
the interpretation of (A), (E), (I), (O) in terms of the conditional probabilities is weaker than in terms of 
conjunction probabilities. For instance, the sentence type (I) interpreted by p(S∧P ) > 0 implies p(P |S) > 0
but not vice versa. Indeed, as coherence requires that

p(S ∧ P ) = p(P |S)p(S), (1)

when p(S ∧ P ) > 0, it must be that p(P |S) > 0. Concerning the converse, however, we recall that in the 
coherence approach, the assessment p(P |S) = x and p(S) = p(S ∧ P ) = 0 is coherent for every x ∈ [0, 1], 
and in particular for x > 0 (in such a case equation (1) is satisfied by 0 = 0, even if p(P |S) > 0). Hence, 
p(P |S) > 0 does not imply that p(S∧P ) is necessarily positive and therefore the conditional interpretation is 
weaker than the conjunction interpretation. Notice that, this asymmetry cannot be expressed in approaches 
which require positive probability for the conditioning events.3

For framing the Aristotelian syllogisms as probabilistic inferences, we define validity of probabilistic 
inferences. We recall that in classical logic some Aristotelian syllogisms, like Barbari, require existential 
import assumptions for logical validity (marked by * in Table 1). In the present approach we require 
probabilistic versions of existential import assumptions for the validity of all traditionally valid syllogisms. 
For example, we do not only require an existential import assumption for syllogisms like Barbari but also for 
syllogisms like Barbara. Indeed, from the probabilistic premises of Barbari and Barbara, i.e., p(P |M) = 1 and 
p(M |S) = 1, we cannot validly infer the respective conclusion because only a non-informative conclusion 
can be obtained, i.e., every value of p(P |S) in [0, 1] is coherent. In order to validate the conclusions of 

3 This asymmetry is also not present in predicate logical interpretations of Aristotelian syllogisms (under appropriate existential 
import assumptions), since for example (I) can be equivalently expressed by “for at least one x: x is S and x is P” and by “it is 
not the case that for all x: if x is S then x is not-P”.
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Barbari and Barbara, that is p(P |S) > 0 and p(P |S) = 1, respectively, we add the probabilistic constraints 
p(S|(S ∨M)) > 0 as a probabilistic existential import assumption.

Based on a generalization of de Finetti’s fundamental theorem to (precise and imprecise) conditional 
probability, we study the coherent probability propagation rules of argument forms of the syllogistic Figures 
I, II, and III. These results allow to show, for all three Figures, that each traditionally valid syllogism is 
also valid in our coherence-based probability semantics. Moreover, we build a bridge from our probability 
semantics of Aristotelian syllogisms to nonmonotonic reasoning by interpreting the basic syllogistic sentence 
types by suitable defaults (A: S |∼ P , E: S |∼ P ) and negated defaults (I: S |∼/ P , O: S |∼/ P ). We also show 
how the proposed semantics can be used to analyze syllogisms involving generalized quantifiers (like most 
S are P ).

The paper is organized as follows. In Section 2 we recall preliminary notions and results on the coherence 
of conditional probability assessments and recall an algorithm for coherent probability propagation. In 
Section 3 we define validity and strict validity of probabilistic inferences and probabilistic notions of the 
existential import, which is required for the validity of the syllogisms. In sections 4, 5, and 6 we study the 
coherent probability propagation rules of argument forms of the syllogistic Figures I, II, and III, respectively. 
Then, we show for all three Figures that each traditionally valid syllogism is also valid in our coherence-
based probability semantics. In Section 7 we build a bridge from our probability semantics of Aristotelian 
syllogisms to nonmonotonic reasoning by interpreting the basic syllogistic sentence types by suitable defaults 
and negated defaults. Then we discuss Aristotle’s methods of proof: we show why reductio by conversion
does not hold and to what extent reductio ad impossibile holds in our approach in Section 8. In Section 9 we 
show how the proposed probability propagation rules can be used to analyze syllogisms involving generalized 
quantifiers (like Most). Section 10 concludes the paper by a brief summary of the main results and by an 
outlook to future work.

2. Preliminary notions and results on coherence

In this section we recall selected key features of coherence (for more details see, e.g., [10,14,24,25,48,49,
71,88]). We denote events (which can be true or false) and their indicators (which can be 1 or 0) by the 
same symbols (e.g., the indicator of the event E is denoted by the same symbol E). Given two events E
and H, with H �= ⊥, the conditional event E|H is defined as a three-valued logical entity which is true if 
EH (i.e., E ∧H) is true, false if EH is true, and void if H is false.

Coherence and betting scheme. In betting terms, assessing p(E|H) = x means that, for every real number 
s, you are willing to pay an amount s · x and to receive s, or 0, or s · x, according to whether EH is 
true, or EH is true, or H is true (i.e., the bet is called off), respectively. In these cases the random gain 
is G = sH(E − x). More generally speaking, consider a real-valued function p : K → R, where K is 
an arbitrary (possibly not finite) family of conditional events. Let F = (E1|H1, . . . , En|Hn) be a sequence 
of n conditional events, where Ej|Hj ∈ K , j = 1, . . . , n, and let P = (p1, . . . , pn) be the vector of values 
pj = p(Ej |Hj), where j = 1, . . . , n. We denote by Hn the disjunction H1 ∨ · · · ∨Hn. With the pair (F , P)
we associate the random gain G =

∑n
j=1 sjHj(Ej − pj), where s1, . . . , sn are n arbitrary real numbers. G

represents the net gain of n transactions. Let GHn
denote the set of possible values of G restricted to Hn, 

that is, the values of G when at least one conditioning event is true (bet is not called off).

Definition 1. Function p defined on K is coherent if and only if, for every integer n, for every sequence F of 
n conditional events in K and for every s1, . . . , sn, it holds that: minGHn

� 0 � maxGHn
.

Intuitively, Definition 1 means in betting terms that a probability assessment is coherent if and only if, 
in any finite combination of n bets, it cannot happen that the values in GHn

—that are the values of the 
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random gain by ignoring the cases where the bet is called off—are all positive, or all negative (no Dutch 
Book).

Geometrical interpretation of coherence. Coherence can also be characterized geometrically. Let F =
(E1|H1, . . . , En|Hn). As Ω = EjHj ∨EjHj ∨Hj , j = 1, . . . , n, it holds that Ω =

∧n
j=1(EjHj ∨EjHj ∨Hj). 

By applying the distributive property it follows that Ω can also be written as the disjunction of 3n logical 
conjunctions, some of which may be impossible. The remaining ones are the constituents, generated by F
and, of course, form a partition of Ω. We denote by C1, . . . , Cm the constituents contained in Hn and (if 
Hn �= Ω) by C0 the remaining constituent Hn = H1 · · ·Hn, so that

Hn = C1 ∨ · · · ∨ Cm , Ω = Hn ∨Hn = C0 ∨ C1 ∨ · · · ∨ Cm , m + 1 � 3n .

Let P = (p1, . . . , pn), where pj = P (Ej |Hj), j = 1, . . . , n. For each constituent Ch, h = 1, . . . , m, we 
associate a point Qh = (qh1, . . . , qhn), where qhj = 1, or 0, or pj , according to whether Ch ⊆ EjHj , or 
Ch ⊆ EjHj , or Ch ⊆ Hj . The point Q0 = P is associated with C0. We say that the points Q0, Q1, . . . , Qm

are associated with the pair (F , P). For an instance on how the constituents and the associated points are 
generated we consider the following

Example 1. Let F = (E1|H1, E2|H2) = (C|B, B|A), where A, B, C are three logically independent events, 
and P = (p1, p2) be a probability assessment on F . It holds that:

Ω = (BC ∨BC ∨B) ∧ (AB ∨AB ∨A) = C0 ∨ C1 ∨ · · · ∨ C5,

where the constituents are C1 = ABC, C2 = ABC, C3 = ABC, C4 = ABC, C5 = AB, and C0 = AB. 
We observe that H2 = C1 ∨ · · · ∨ C5 = A ∨ B. Moreover, the points Q1 = (1, 1), Q2 = (1, p2), Q3 = (0, 1), 
Q4 = (0, p2), Q5 = (p1, 0), and Q0 = P = (p1, p2) are associated with (F , P).

Denoting by I the convex hull of Q1, . . . , Qm, by a suitable alternative theorem (Theorem 2.9 in [37]), 
the condition P ∈ I is equivalent to the condition minGHn

� 0 � maxGHn
given in Definition 1 (see, 

e.g., [43,49]). Moreover, the condition P ∈ I amounts to the solvability of the following system (S) in the 
unknowns λ1, . . . , λm

(S) :
∑m

h=1 qhjλh = pj , j ∈ Jn ;
∑m

h=1 λh = 1 ; λh � 0 , h ∈ Jm , (2)

where, Jn = {1, 2, . . . , n}, for every integer n. We say that system (S) is associated with the pair (F , P). 
Hence, the following result provides a characterization of the notion of coherence given in Definition 1
(Theorem 4.4 in [39]; see also [40,47,49]).

Theorem 1. The function p defined on an arbitrary family of conditional events K is coherent if and only 
if, for every finite subsequence F = (E1|H1, . . . , En|Hn) of K , denoting by P the vector (p1, . . . , pn), where 
pj = p(Ej |Hj), j = 1, 2, . . . , n, the system (S) associated with the pair (F , P) is solvable.

Coherence checking. We recall now some results on the coherence checking of a probability assess-
ment on a finite family of conditional events. Given a probability assessment P = (p1, . . . , pn) on 
F = (E1|H1, . . . , En|Hn), let S be the set of solutions of the form Λ = (λ1, . . . , λm) of the system (S). 
Then, assuming S �= ∅, we define

Φj(Λ) = Φj(λ1, . . . , λm) =
∑

r:Cr⊆Hj
λr , j ∈ Jn ; Λ ∈ S ;

M = max Φ (Λ) , j ∈ J ,
(3)
j Λ∈S j n
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and

I0 = {j ∈ Jn : Mj = 0}. (4)

Assuming P coherent, each solution Λ = (λ1, . . . , λm) of system (S) is a coherent extension of the assessment 
P on F to the sequence (C1|Hn, C2|Hn, . . . , Cm|Hn). Then, for each solution Λ of system (S) the quantity 
Φj(Λ) is a coherent extension of the conditional probability p(Hj|Hn). Moreover, the quantity Mj is the 
upper probability p′′(Hj |Hn) over all the solutions Λ of system (S). Of course, j ∈ I0 if and only if 
p′′(Hj |Hn) = 0. Notice that I0 is a strict subset of Jn. If I0 is nonempty, we set F0 = (Ei|Hi ∈ F , i ∈ I0)
and P0 = (p(Ei|Hi), i ∈ I0). We say that the pair (F0, P0) is associated with I0. Then, we have (Theorem 3.3 
in [41]):

Theorem 2. The assessment P on F is coherent if and only if the following conditions are satisfied: (i) the 
system (S) associated with the pair (F , P) is solvable; (ii) if I0 �= ∅, then P0 is coherent.

Let S′ be a nonempty subset of the set of solutions S of system (S). We denote by I ′0 the set I0 defined 
as in (4), where S is replaced by S′, that is

I ′0 = {j ∈ Jn : M ′
j = 0}, where M ′

j = max
Λ∈S′

Φj(Λ) , j ∈ Jn. (5)

Moreover, we denote by (F ′
0, P′

0) the pair associated with I ′0. Then, we obtain (see, e.g., Theorem 7 in [13])

Theorem 3. The assessment P on F is coherent if and only if the following conditions are satisfied: (i) the 
system (S) associated with the pair (F , P) is solvable; (ii) if I ′0 �= ∅, then P′

0 is coherent.

For an illustration of Theorem 3 we consider

Example 1 (continued). We observe that P = (p1, p2) = p1Q2 +(1 −p1)Q4 and P = p1p2Q1 +(1 −p1)p2Q3 +
(1 − p2)Q5. Then, P = 1

2 (p1p2Q1 + p1Q2 + (1 − p1)p2Q3 + (1 − p1)Q4 + (1 − p2)Q5). By assuming that 
(p1, p2) ∈ [0, 1]2, it follows that the system (S) associated with (F , P) is solvable with a solution given by 
Λ = 1

2 (p1p2, p1, (1 − p1)p2, (1 − p1), (1 − p2)). Moreover, Φ1(Λ) = λ1 + λ2 + λ3 + λ4 = p2
2 + 1

2 > 0 and 

Φ2(Λ) = λ1 + λ3 + λ5 = p1p2
2 + (1−p1)p2

2 + 1−p2
2 = 1

2 > 0. Then, by setting S′ = {Λ} it holds that M ′
1 > 0, 

M ′
2 > 0 and hence I ′0 = ∅. Thus, by Theorem 3 the assessment (p1, p2) is coherent for every (p1, p2) ∈ [0, 1]2.

Algorithm for probability propagation. We recall the following extension theorem for conditional probability, 
which is a generalization of de Finetti’s fundamental theorem of probability to conditional events (see, e.g., 
[10,23,57,67,81,94]).

Theorem 4. Let a coherent probability assessment P = (p1, . . . , pn) on a sequence F = (E1|H1, . . . , En|Hn)
and a further conditional event En+1|Hn+1 be given. Then, there exists a suitable closed interval [z′, z′′] ⊆
[0, 1] such that the extension (P, z) of P to (F , En+1|Hn+1) is coherent if and only if z ∈ [z′, z′′].

Theorem 4 states that a coherent assessment of premises can always be coherently extended to a conclu-
sion, specifically there always exists an interval [z′, z′′] ⊆ [0, 1] of all coherent extensions on the conclusion. 
A non informative or illusory restriction is obtained when [z′, z′′] = [0, 1]. The extension is unique when 
z′ = z′′. For applying Theorem 4, we now recall an algorithm (see Algorithm 1 in [46], which is originally 
based on Algorithm 2 in [10]) which allows for computing the lower and upper bounds z′ and z′′ of the 
interval of all coherent extensions on En+1|Hn+1.
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Algorithm 1. Let F = (E1|H1, . . . , En|Hn) be a sequence of conditional events and P = (p1, . . . , pn) be a 
coherent precise probability assessment on F , where pj = p(Ej |Hj) ∈ [0, 1], j = 1, . . . , n. Moreover, let 
En+1|Hn+1 be a further conditional event and denote by Jn+1 the set {1, . . . , n + 1}. The steps below 
describe the computation of the lower bound z′ (resp., the upper bound z′′) for the coherent extensions 
z = p(En+1|Hn+1).

• Step 0. Expand the expression 
∧

j∈Jn+1

(
EjHj ∨ EjHj ∨Hj

)
and denote by C1, . . . , Cm the constituents 

contained in Hn+1 =
∨

j∈Jn+1
Hj associated with (F , En+1|Hn+1). Then, construct the following system 

in the unknowns λ1, . . . , λm, z

⎧⎪⎨
⎪⎩

∑
r:Cr⊆En+1Hn+1

λr = z
∑

r:Cr⊆Hn+1
λr ;∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r∈Jm

λr = 1; λr � 0, r ∈ Jm .

(6)

• Step 1. Check the solvability of system (6) under the condition z = 0 (resp., z = 1). If it is not solvable, 
go to Step 2; otherwise, go to Step 3.

• Step 2. Solve the following linear programming problem

Compute : γ′ = min
∑

r:Cr⊆En+1Hn+1

λr

(respectively : γ′′ = max
∑

r:Cr⊆En+1Hn+1

λr )

subject to:
{∑

r:Cr⊆EjHj
λr = pj

∑
r:Cr⊆Hj

λr, j ∈ Jn ;∑
r:Cr⊆Hn+1

λr = 1; λr � 0, r ∈ Jm .

The minimum γ′ (respectively the maximum γ′′) of the objective function coincides with z′ (respectively 
with z′′) and the procedure stops.

• Step 3. For each subscript j ∈ Jn+1, compute the maximum Mj of the function Φj =
∑

r:Cr⊆Hj
λr, 

subject to the constraints given by the system (6) with z = 0 (respectively z = 1). We have the following 
three cases:

1. Mn+1 > 0;
2. Mn+1 = 0, Mj > 0 for every j �= n + 1;
3. Mj = 0 for j ∈ I0 = J ∪ {n + 1}, with J �= ∅.

In the first two cases z′ = 0 (respectively z′′ = 1) and the procedure stops.
In the third case, defining I0 = J ∪ {n + 1}, set Jn+1 = I0 and (F , P) = (FJ , PJ), where FJ = (Ei|Hi :
i ∈ J) and PJ = (pi : i ∈ J). Then, go to Step 0.

The procedure ends in a finite number of cycles by computing the value z′ (respectively z′′).

Remark 2. Assuming (P, z) on (F , En+1|Hn+1) coherent, each solution Λ = (λ1, . . . , λm) of System (6) is a 
coherent extension of the assessment (P, z) to the sequence (C1|Hn+1, . . . , Cm|Hn+1).

For a software implementation of an algorithm based on [19,24], which is similar to Algorithm 1, see the 
Check-Coherence software ([4]).
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Imprecise probability. Now, we recall the notion of an imprecise (probability) assessment in set-valued 
terms.

Definition 2. An imprecise, or set-valued, assessment I on a finite sequence of n conditional events F is a 
(possibly empty) set of precise assessments P on F .

Definition 2, introduced in [45], states that an imprecise (probability) assessment I on a finite sequence 
F of n conditional events is just a (possibly empty) subset of [0, 1]n. If an imprecise assessment I on F , with 
I = I1 × · · · × In, where Ii ⊆ [0, 1], i = 1, . . . , n, then I on F can be formulated in terms of constraints 
on the probability of the single events in F , i.e.,

(p(E1|H1) ∈ I1, . . . , p(En|Hn) ∈ In). (7)

We recall the notions of g-coherence and total-coherence for imprecise (in the sense of set-valued) probability 
assessments ([45,46]).

Definition 3. Let a sequence of n conditional events F be given. An imprecise assessment I ⊆ [0, 1]n on F
is g-coherent if and only if there exists a coherent precise assessment P on F such that P ∈ I.

Definition 4. An imprecise assessment I on F is totally coherent (t-coherent) if and only if the following 
two conditions are satisfied: (i) I is non-empty; (ii) if P ∈ I, then P is a coherent precise assessment on F .

We denote by Π the set of all coherent precise assessments on F . We recall that if there are no logical 
relations among the events E1, H1, . . . , En, Hn involved in F , that is E1, H1, . . . , En, Hn are logically inde-
pendent, then the set Π associated with F is the whole unit hypercube [0, 1]n. If there are logical relations, 
then the set Π could be a strict subset of [0, 1]n. As it is well known Π �= ∅; therefore, ∅ �= Π ⊆ [0, 1]n.

Remark 3. We observe that:

I is g-coherent ⇐⇒ Π ∩ I �= ∅
I is t-coherent ⇐⇒ ∅ �= Π ∩ I = I .

Then: I is t-coherent ⇒ I is g-coherent.

Definition 5. Let I be a g-coherent assessment on F = (E1|H1, . . . , En|Hn); moreover, let En+1|Hn+1 be a 
further conditional event and let J be an extension of I to (F , En+1|Hn+1). We say that J is a g-coherent 
extension of I if and only if J is g-coherent.

Given a g-coherent assessment I on a sequence of n conditional events F , for each coherent precise 
assessment P on F , with P ∈ I, we denote by [αP, βP] the interval of coherent extensions of P to En+1|Hn+1; 
that is, the assessment (P, z) on (F , En+1|Hn+1) is coherent if and only if z ∈ [z′P, z′′P]. Then, defining the 
set

Σ =
⋃
P∈Π∩I[z′P, z′′P] , (8)

for every z ∈ Σ, the assessment I × {z} is a g-coherent extension of I to (F , En+1|Hn+1); moreover, for 
every z ∈ [0, 1] \ Σ, the extension I × {z} of I to (F , En+1|Hn+1) is not g-coherent. We say that Σ is the 
set of (all) coherent extensions of the imprecise assessment I on F to the conditional event En+1|Hn+1. Of 
course, as I is g-coherent, Σ �= ∅.



10 N. Pfeifer, G. Sanfilippo / Annals of Pure and Applied Logic 175 (2024) 103340
Coherence and penalty criterion. We recall that de Finetti ([28–30]) introduced the notion of coherence 
(for the case of unconditional events) by means of a penalty criterion based on the Brier quadratic scoring 
rule ([16]), which is beyond the betting scheme (for a discussion on these two different justifications of 
probabilistic accounts of belief see, e.g., [58]). De Finetti also gave a geometrical interpretation of coher-
ence and showed that the notion of coherence based on the betting scheme is equivalent to the notion of 
coherence based on the penalty criterion ([30]). The relationship between the notions of coherence and of 
non-dominance, with respect to proper scoring rules, for the case of unconditional events has been inves-
tigated by exploiting the Bregman divergence in [79]. For related work in terms of accuracy and credence 
functions see, e.g., [70]. Coherence based on the penalty criterion has been extended to the case of conditional 
events in [39] (see also [43,52]) as follows. Let the assessment P = (p1, . . . , pn) on F = (E1|H1, . . . , En|Hn)
be associated with a random loss L =

∑n
i=1 Hi(Ei−pi)2 (Brier score adapted to conditional events). Then, 

the value Lh of the random loss L when the constituent Ch is true is given by

Lh =
n∑

i=1
(qhi − pi)2,

where Qh = (qh1, . . . , qhn) is the corresponding point associated with Ch. Of course, L0 =
∑n

i=1(pi−pi)2 = 0
is associated with the constituent C0 = H1 · · ·Hn, which means that the loss is zero when all the conditional 
events are void. Then, the following definition of coherence can be given:

Definition 6. A function p defined on an arbitrary family of conditional events K is said to be coherent
if and only if, for every integer n, for every subsequence F = (E1|H1, . . . , En|Hn) ⊆ K , denoting by 
P = (p1, . . . , pn) the restriction of p to F , by L =

∑n
i=1 Hi(Ei− pi)2 the associated random loss, there does 

not exist P∗ = (p∗1, . . . , p∗n) such that: L∗ � L and L∗ �= L, that is L∗
h � Lh, for every h, with L∗

h < Lh for 
at least an index h.

In [39] it has been shown that coherence based on the betting scheme (Definition 1) and coherence based 
on the penalty criterion (Definition 6) are equivalent (see also [43,52]). In other words, a function p on K
is coherent according to Definition 1 if and only if p on K is coherent according to Definition 6. We also 
recall that, based on Bregman divergences, coherence for conditional events can be characterized in terms 
of admissibility with respect to any given proper scoring rule. More precisely, in [47, Theorem 3] (see also 
[14]) it is shown that, given any bounded (strictly) proper scoring rule s, a probability assessment p on a 
family of conditional events K is coherent if and only if it is admissible with respect to s.

3. Validity and existential import

We define the validity of a probabilistic inference rule as follows:

Definition 7. Given a g-coherent assessment I on a sequence of n conditional events F and a non-empty 
imprecise assessment I′ on a conditional event En+1|Hn+1, we say that the (probabilistic) inference

from I on F infer I′ on En+1|Hn+1

is valid (denoted by |=) if and only if Σ ⊆ I′, where Σ is the set of coherent extensions of the imprecise 
assessment I on F . Moreover, we call a valid inference strictly valid (s-valid, denoted by |=s) if and only if 
I′ = Σ.
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Remark 4. Let from I on F infer I′ on En+1|Hn+1 be a valid inference, let Is be a g-coherent subset of I, 
and let Iw be a supset of I′. Denoting by Σs the set of coherent extensions of the imprecise assessment Is, 
we observe that ∅ �= Σs ⊆ Σ. Then, by Definition 7, the following inference is valid

from Is on F infer I′w on En+1|Hn+1.

Thus, by starting from a valid inference we obtain valid inferences if the premises are strengthened or the 
conclusion is weakened.

In the next remark we explain how Adams’ notion of p-validity ([1]) is interpreted in the framework of 
coherence and how it relates to our notion of s-validity.

Remark 5. We recall that a finite sequence of conditional events F = (E1|H1, E2|H2, . . . , En|Hn) is p-
consistent if and only if the assessment (1, 1, . . . , 1) on F is coherent. In addition, a p-consistent family F
p-entails a conditional event En+1|Hn+1 if and only if the unique coherent extension on En+1|Hn+1 of the 
assessment (1, 1, . . . , 1) on F is p(En+1|Hn+1) = 1 (see, e.g., [48]). The inference from F to En+1|Hn+1 is 
p-valid if and only if F p-entails En+1|Hn+1. We observe that p-valid inferences are special cases of s-valid 
inferences, specifically when, in Definition 7, I = (1, 1, . . . , 1) and I′ = {1}.

Definition 8. The conditional event existential import assumption is defined by assuming that the condi-
tional probability of the conditioning event of the minor premise of a syllogism given the disjunction of all 
conditioning events of the syllogism is positive.

For Datisi, the conditional event existential import assumption is p(M |(S ∨M)) > 0, which makes Datisi 
probabilistically informative:

(Datisi) p(P |M) = 1, p(S|M) > 0, and p(M |S ∨M) > 0 =⇒ p(P |S) > 0 .

We will also consider the following

Definition 9. The unconditional event existential import assumption is defined by assuming that the prob-
ability of the conditioning event of the minor premise is positive.

For example, for Datisi, the unconditional event existential import assumption is p(M) > 0. In the next 
remark we observe that Definition 9 is stronger than Definition 8, and hence for Datisi it means that 
p(M) > 0 implies that p(M |S ∨M) > 0 (but not vice versa).

Remark 6. Let H1, H2, and H3 (where some of them may coincide) denote the conditioning event of the major 
premise, the minor premise, and of the conclusion, respectively. Then, the unconditional event existential 
import assumption is p(H2) > 0 while the conditional event existential import assumption is p(H2|(H1∨H2∨
H3)) > 0. We observe that in general p(H2) = p(H2∧(H1∨H2∨H3)) = p(H2|(H1∨H2∨H3))p(H1∨H2∨H3). 
Then,

p(H2) > 0 =⇒ p(H2|(H1 ∨H2 ∨H3)) > 0. (9)

However, the converse of (9) does not hold. Indeed, in the framework of coherence it could be that p(H2) = 0
even if p(H2|(H1 ∨H2 ∨H3)) > 0, because p(H2|(H1 ∨H2 ∨H3)) > 0, p(H1 ∨H2 ∨H3) = 0, and p(H2) = 0
is coherent. Therefore, Definition 9 is stronger than Definition 8.
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Remark 7. We are aware that it is not straightforward to find a natural language pendent to our conditional 
event existential import assumption, while the stronger unconditional event existential import assumption 
can be seen as a reading of the assumption that the subject term S must not be empty. However, we recall 
that in our approach we can have that p(S|(S ∨P )) > 0 even if p(S) = 0 (Remark 6). This situation cannot 
be represented in purely logical terms and hence there is no corresponding interpretation of the weaker 
existential import assumption. Moreover, we will see that, in order to prove the validity of the traditionally 
valid syllogisms, it is sufficient to use the conditional event existential import assumption. We also recall 
that it is traditionally at least tacitly assumed that the subject term must not be empty in Aristotelian 
syllogistics (for example, in his overview on Aristotle’s logic, Smith claims that “Aristotle in effect supposes 
that all terms in syllogisms are non-empty” [89]). However, we note that there are also arguments that 
challenge this view, i.e., Aristotle in fact “places no requirement that the terms be non-empty” [80, p. 543]. 
We leave the question of whether our interpretation of the existential import comes closer to Aristotle than 
stronger ones to historians of logic.

Remark 8. We define the conditional event existential import assumption by considering the conditioning 
events of all the conditional events involved in the premises and the conclusion. Single syllogistic sentences 
are interpreted by suitable probability assessments on a corresponding conditional events. For example, 
Every S is P by p(P |S) = 1. The corresponding conditional event existential import is p(S|S) > 0. For all 
S �= ⊥ our existential import is always satisfied because coherence requires that p(S|S) must be 1, even if 
p(S) = 0. Indeed, it can easily be proved that the assessment (x, y) on (S, S|S), with S �= ⊥, is coherent if 
and only if x ∈ [0, 1] and y = 1. We also notice that in this case the equation p(S) = p(S∧S) = p(S|S)p(S) is 
always satisfied. Sentences where the conditioning event S is a contradiction, i.e. S = ⊥, are not considered 
because the corresponding conditional event is undefined in our approach.

4. Figure I

In this section, we prove that the probabilistic inference of C|A from the premise set (C|B, B|A), which 
corresponds to the transitive structure of the general form of syllogisms of Figure I, is probabilistically non-
informative. Specifically, we prove that the imprecise assessment [0, 1]3 on (C|B, B|A, C|A) is t-coherent. 
This t-coherence implies that: (i) the assessment [0, 1]2 on (C|B, B|A) is t-coherent, which means that any 
assessment (x, y) ∈ [0, 1]2 on the premise set (C|B, B|A) is coherent; (ii) the degree of belief in the conclusion 
C|A is not constrained by the degrees of belief in the premises, since any value z ∈ [0, 1] is a coherent 
extension of a given pair (x, y) on (C|B, B|A). Then, in order to obtain probabilistic informativeness, we 
add the probabilistic constraint p(B|(A ∨B)) > 0 to the premise set. This constraint serves as the conditional 
event existential import assumption of syllogisms of Figure I according to Definition 8. We show that the 
imprecise assessment [0, 1]3 on (C|B, B|A, B|(A ∨B)) is t-coherent. Then, we recall the precise and imprecise 
probability propagation rules for the inference from (C|B, A|B, B|(A ∨B)) to C|A. We apply these results in 
Section 4.2, where we study the valid syllogisms of Figure I. Contrary to first order monadic predicate logic, 
which requires existential import assumptions for Barbari and Celaront only (see Table 1), our probabilistic 
existential import assumption is required for all valid syllogisms of Figure I.

4.1. Coherence and probability propagation in Figure I

We now prove the t-coherence of the imprecise assessment [0, 1]3 on the sequence of conditional events 
involved in our probabilistic interpretation of syllogisms of Figure I.

Proposition 1. Let A, B, C be logically independent events. The imprecise assessment [0, 1]3 on F =
(C|B, B|A, C|A) is t-coherent.
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Table 3
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, z) on (C|B, B|A, C|A) involved in Figure I.

Ch Qh

C1 ABC (1, 1, 1) Q1
C2 ABC (0, 1, 0) Q2
C3 ABC (x, 0, 1) Q3
C4 ABC (x, 0, 0) Q4
C5 ABC (1, y, z) Q5
C6 ABC (0, y, z) Q6
C0 AB (x, y, z) Q0 = P

Proof. Let P = (x, y, t) ∈ [0, 1]3 be any precise assessment on F . The constituents Ch and the points Qh

associated with (F , P) are given in Table 3. By Theorem 2, coherence of P on F requires that the following 
system

(S) P =
∑6

h=1 λhQh,
∑6

h=1 λh = 1, λh � 0, h = 1, . . . , 6,

is solvable. In geometrical terms, this means that the condition P ∈ I is satisfied, where I is the convex hull 
of Q1, . . . , Q6. We observe that P = xQ5+(1 −x)Q6, indeed it holds that (x, y, z) = x(1, y, z) +(1 −x)(0, y, z). 
Thus, system (S) is solvable and a solution is Λ = (λ1, . . . , λ6) = (0, 0, 0, 0, x, 1 − x). From (3) we obtain 
that Φ1(Λ) =

∑
h:Ch⊆B λh = λ1 + λ2 + λ5 + λ6 = x + 1 − x = 1, Φ2(Λ) = Φ3(Λ) =

∑
h:Ch⊆A λh =

λ1 + λ2 + λ3 + λ4 = 0. Let S′ = {(0, 0, 0, 0, x, 1 − x)} denote a subset of the set S of all solutions of 
(S). Then, M ′

1 = max{Φ1 : Λ ∈ S′} > 0 and hence I ′0 = {2, 3} (as defined in (5)). By Theorem 3, as (S)
is solvable and I ′0 = {2, 3}, it is sufficient to check the coherence of the sub-assessment P′

0 = (y, z) on 
F ′

0 = (B|A, C|A) in order to check the coherence of (x, y, z). The constituents Ch associated with the new 
pair ((B|A, C|A), (y, z)) contained in H2 = A are C1 = ABC, C2 = ABC, C3 = ABC, C4 = ABC and 
the corresponding points Qh are Q1 = (1, 1), Q2 = (1, 0), Q3 = (0, 1), Q4 = (0, 0). The convex hull I of the 
points Q1, Q2, Q3, Q4 is the unit square [0, 1]2. Then (y, z) ∈ [0, 1]2 trivially belongs to I and hence the 
system

(S) : (y, z) = λ1Q1 + λ2Q2 + λ3Q3 + λ4Q4, λ1 + λ2 + λ3 + λ4 = 1, λh � 0,

is solvable. Moreover, as Φ1(Λ) = Φ2(Λ) =
∑

h:Ch⊆A λh = λ1 + λ2 + λ3 + λ4 = 1, for every solution Λ of 
(S), it follows that (the new) I0 (as defined in (4)) is empty and, by Theorem 2, (y, z) is coherent. Then, 
P = (x, y, z) is coherent. Therefore, as any precise probability assessment P = (x, y, t) ∈ [0, 1]3 on F is 
coherent, it follows that the imprecise assessment I = [0, 1]3 on F is t-coherent. �

We now prove the t-coherence of the imprecise assessment [0, 1]3 on the sequence of conditional events 
(C|B, B|A, A|(A ∨ B)). This sequence is involved in our probabilistic interpretation of the premise set of 
Figure I and includes the conditional event used in our existential import assumption.

Proposition 2. Let A, B, C be logically independent events. The imprecise assessment [0, 1]3 on F =
(C|B, B|A, A|(A ∨B)) is t-coherent.

Proof. Let P = (x, y, t) ∈ [0, 1]3 be a probability assessment on F . The constituents Ch and the points Qh

associated with (F , P) are given in Table 4. By Theorem 2, coherence of P = (x, y, z) on F requires that 
the following system is solvable

(S) P =
∑6

h=1 λhQh,
∑6

h=1 λh = 1, λh � 0, h = 1, . . . , 6,

that is
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Table 4
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, t) on (C|B, B|A, A|(A ∨B)) involved in the premise set 
of Figure I.

Ch Qh

C1 ABC (1, 1, 1) Q1
C2 ABC (0, 1, 1) Q2
C3 ABC (x, 0, 1) Q3
C4 ABC (x, 0, 1) Q4
C5 ABC (1, y, 0) Q5
C6 ABC (0, y, 0) Q6
C0 AB (x, y, t) Q0 = P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + xλ3 + xλ4 + λ5 = x,

λ1 + λ2 + yλ5 + yλ6 = y,

λ1 + λ2 + λ3 + λ4 = t,

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1,
λh � 0, h = 1, . . . , 6 .

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = x(λ1 + λ2 + λ5 + λ6),
λ1 + λ2 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t,

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1,
λh � 0, h = 1, . . . , 6 ,

(10)

or equivalently

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = xyt + x(1 − t),
λ1 + λ2 = yt,

λ3 + λ4 = 1 − yt,

λ5 + λ6 = 1 − t,

λh � 0, h = 1, . . . , 6 .

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ5 = xyt + x(1 − t) − λ1,

λ2 = yt− λ1,

λ3 = t(1 − y) − λ4,

λ6 = (1 − t)(1 − x) − xyt + λ1
λh � 0, h = 1, . . . , 6 .

(11)

As (x, y, t) ∈ [0, 1]3 it holds that max{0, xyt − (1 − t)(1 − x)} � min{xyt + x(1 − t), yt}. Then, the System 
(S) is solvable and the set of all solutions S is the set of vectors Λ = (λ1, . . . , λ6) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max{0, xyt− (1 − t)(1 − x)} � λ1 � min{xyt + x(1 − t), yt},
λ2 = yt− λ1,

λ3 = t(1 − y) − λ4,

0 � λ4 � t(1 − y),
λ5 = xyt + x(1 − t) − λ1,

λ6 = (1 − t)(1 − x) − xyt + λ1.

For each conditional event A, B, and A ∨ B in F we associate the function Φ1(Λ) =
∑

h:Ch⊆A λh =
λ1+λ2+λ3+λ4, Φ2(Λ) =

∑
h:Ch⊆B λh = λ1+λ2+λ5+λ6, and Φ3(Λ) = λ1+. . .+λ6, respectively, as defined 

in (3). We observe that Φ3(Λ) = 1 > 0 for each solution Λ ∈ S and hence M3 = max{Φ3 : Λ ∈ S} > 0. 
Then, concerning the strict subset I0 of {1, 2, 3} (defined in (4)), we obtain I0 ⊆ {1, 2}. Notice that I0
cannot be equal to {1, 2}, because Φ3(Λ) > 0 implies that at least Φ1(Λ) or Φ2(Λ) is positive, for each 
Λ ∈ S. Then, M1 = max{Φ1 : Λ ∈ S} and M2 = max{Φ2 : Λ ∈ S} cannot be equal to zero and hence 
I0 ⊂ {1, 2}. Therefore, we distinguish the following three cases: (i) I0 = ∅; (ii) I0 = {1}; (iii) I0 = {2}.

Case (i). As (S) is solvable, we obtain that the assessment P = (x, y, t) is coherent by Theorem 2.
Case (ii). The assessment P0 = x ∈ [0, 1] on F0 = {C|B} is coherent because B and C are logically 

independent. Then, as (S) is solvable and P0 on F0 is coherent, we obtain by Theorem 2 that the assessment 
P = (x, y, t) is coherent.

Case (iii) is analogous to Case (ii), where C and B are replaced by B and A, respectively.
Therefore, the assessment P = (x, y, t) ∈ [0, 1]3 is coherent for every (x, y, t) ∈ [0, 1]3, that is the imprecise 

assessment [0, 1]3 on F is t-coherent. �
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We recall the following probability propagation rule for the inference form: from (C|B, B|A, A|(A ∨B))
to C|A (Theorem 3 in [46]).

Theorem 5. Let A, B, C be three logically independent events and (x, y, t) ∈ [0, 1]3 be any (coherent) assess-
ment on the sequence (C|B, B|A, A|(A ∨ B)). Then, the extension z = p(C|A) from (x, y, t) is coherent if 
and only if z ∈ [z′, z′′], where

[z′, z′′] =
{

[0, 1], t = 0;[
max

{
0, xy − (1−t)(1−x)

t

}
,min

{
1, (1 − x)(1 − y) + x

t

}]
, t > 0 .

Theorem 5 has been generalized to the case of interval-valued probability assessments, which results into 
the following imprecise probability propagation rule (Theorem 4 in [46]):

Theorem 6. Let A, B, C be three logically independent events and I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3
be a (t-coherent) interval-valued probability assessment on (C|B, B|A, A|(A ∨ B)). Then, the set Σ of the 
coherent extension of I is the interval [z∗, z∗∗], where [z∗, z∗∗] =

{
[0, 1], t = 0;[
max

{
0, x1y1 − (1−t1)(1−x1)

t1

}
,min

{
1, (1 − x2)(1 − y1) + x2

t1

}]
, t > 0 .

4.2. Traditionally valid syllogisms of Figure I

In this section we consider the probabilistic interpretation of the valid syllogisms of Figure I (see Table 1). 
Specifically, we firstly adapt the results on Barbara, Barbari, and Darii given in [46] applying the notions 
of (s-)validity. Secondly, we prove s-validity of Celarent and Ferio and validity of Celaront. We use the 
probabilistic interpretation of the basic syllogistic sentence types given in Table 2. By instantiating in 
Proposition 1 the subject S, the middle M , and the predicate P term for the events A, B, C, respectively, 
we observe that the imprecise assessment [0, 1]3 on (P |M, M |S, P |S) is t-coherent. This implies that all 
syllogisms of Figure I are probabilistically non-informative. For instance, modus Barbara (“Every M is 
P , Every S is M , therefore Every S is P”) without existential import assumption corresponds to the 
probabilistically non-informative inference: from the premises p(P |M) = 1 and p(M |S) = 1 infer that every 
p(P |S) ∈ [0, 1] is coherent. Indeed, by Proposition 1, a probability assessment (1, 1, z) on (P |M, M |S, P |S)
is coherent for every z ∈ [0, 1]. In order to construct probabilistically informative versions of valid syllogisms 
of Figure I, we add the conditional event existential import assumption to the probabilistic interpretation 
of the respective premise set: p(S|(S ∨M)) > 0 (see Definition 8). We now demonstrate the validity (and 
when possible the s-validity) of traditionally valid syllogisms by suitable instantiations in Theorem 5 within 
our semantics. Of course, some syllogisms will turn be equivalent when some terms are negated (and the 
corresponding probabilities are adjusted accordingly). However, we provide for each syllogism within each 
figure a direct way of showing its validity by simply instantiating the respective probability propagation 
rule.

Barbara. By instantiating S, M, P in Theorem 5 for A, B, C with x = y = 1 and any value t > 0 it 
follows that z′ = max

{
0, xy − (1−t)(1−x)

t

}
= 1 and z′′ = min{1, (1 − x)(1 − y) + x

t } = 1. Then, the 

set Σ (see Equation (8)) of coherent extensions on P |S of the imprecise assessment {1} × {1} × (0, 1] on 
(P |M, M |S, S|(S ∨M)) is Σ = {1}. Thus, by Definition 7,

{1} × {1} × (0, 1] on (P |M,M |S, S|(S ∨M)) |=s {1} on P |S. (12)
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In terms of probabilistic constraints, (12) can be expressed by

(p(P |M) = 1, p(M |S) = 1, p(S|(S ∨M)) > 0) |=s p(P |S) = 1 , (13)

which is a s-valid (and probabilistically informative) version of Barbara (under the conditional event exis-
tential import assumption).

Remark 9. By instantiating Remark 6 to syllogisms of Figure I we obtain that p(S) = p(S ∧ (S ∨ M)) =
p(S|(S∨M))p(S∨M). Hence, if p(S) > 0 then p(S|(S∨M)) > 0. Then, as p(S) > 0 implies p(S|(S∨M)) > 0, 
from (13) it follows that

(p(P |M) = 1, p(M |S) = 1, p(S) > 0) |=s p(P |S) = 1, (14)

which is an s-valid version of Barbara under the (stronger) unconditional existential import assumption.

Barbari. From (13), by weakening the conclusion (see Remark 4), it follows that

(p(P |M) = 1, p(M |S) = 1, p(S|(S ∨M)) > 0) |= p(P |S) > 0 , (15)

which is a valid (but not s-valid) version of Barbari (“Every M is P , Every S is M , therefore Some S is 
P”).

Darii. By instantiating S, M, P in Theorem 5 for A, B, C with x = 1, any y > 0, and any t > 0, it follows 
that z′ = max

{
0, xy − (1−t)(1−x)

t

}
= y > 0 and z′′ = min{1, (1 − x)(1 − y) + x

t } = 1. Then, the set Σ of 
coherent extensions on P |S of the imprecise assessment {1} × (0, 1] × (0, 1] on (P |M, M |S, S|(S ∨ M)) is 
Σ =

⋃
{(x,y,t)∈{1}×(0,1]×(0,1]}[y, 1] = (0, 1]. Thus, by Definition 7,

{1} × (0, 1] × (0, 1] on (P |M,M |S, S|(S ∨M)) |=s (0, 1] on P |S. (16)

In terms of probabilistic constraints, (16) can be expressed by

(p(P |M) = 1, p(M |S) > 0, p(S|(S ∨M)) > 0) |=s p(P |S) > 0 , (17)

which is a s-valid version of Darii (Every M is P , Some S is M , therefore Some S is P ). Notice that Barbari 
(15) also follows from Darii (17) by strengthening the minor premise (see Remark 4).

Celarent. By instantiating S, M, P in Theorem 5 for A, B, C with x = 0, y = 1, and t > 0, it follows that 
z′ = max

{
0, xy − (1−t)(1−x)

t

}
= 0 and z′′ = min{1, (1 − x)(1 − y) + x

t } = 0. Then, the set Σ of coherent 
extensions on P |S of the imprecise assessment {0} × (0, 1] × (0, 1] on (P |M, M |S, S|(S ∨M)) is Σ = {0}. 
Thus, by Definition 7,

{0} × {1} × (0, 1] on (P |M,M |S, S|(S ∨M)) |=s {0} on P |S. (18)

In terms of probabilistic constraints, (18) can be expressed by

(p(P |M) = 0, p(M |S) = 1, p(S|(S ∨M)) > 0) |=s p(P |S) = 0 , (19)

which is a s-valid version of Celarent (No M is P , Every S is M , therefore No S is P ). Notice that Celarent 
is equivalent to Barbara, because (19) is equivalent to (13) when P is replaced by P and the probabilities 
are adjusted accordingly.
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Celaront. From (19), by weakening the conclusion, it follows that

(p(P |M) = 0, p(M |S) = 1, p(S|(S ∨M)) > 0) |= p(P |S) > 0 , (20)

which is valid version of Celaront (No M is P , Every S is M , therefore Some S is not P ). Notice that 
Celaront (20) is equivalent to Barbari (15), where P is replaced by P .

Ferio. By instantiating S, M, P in Theorem 5 for A, B, C with x = 0, any y > 0, and any t > 0, it follows 
that z′ = max

{
0, xy − (1−t)(1−x)

t

}
= 0 and z′′ = min{1, (1 − x)(1 − y) + x

t } = 1 − y < 1. Then, the set Σ
of coherent extensions on P |S of the imprecise assessment {0} × (0, 1] × (0, 1] on (P |M, M |S, S|(S ∨M)) is 
Σ =

⋃
{(x,y,t)∈{0}×(0,1]×(0,1]}[0, 1 − y] = [0, 1). Thus, by Definition 7,

{0} × (0, 1] × (0, 1] on (P |M,M |S, S|(S ∨M)) |=s [0, 1) on P |S. (21)

In terms of probabilistic constraints, (21) can be equivalently expressed by (see Table 2)

(p(P |M) = 0, p(M |S) > 0, p(S|(S ∨M)) > 0) |=s p(P |S) > 0 , (22)

which is a s-valid version of Ferio (No M is P , Some S is M , therefore Some S is not P ). Notice that Ferio 
(22) is equivalent to Darii (17), where P is replaced by P . Celaront (20) also follows from Ferio (22) by 
strengthening the minor premise (i.e., p(M |S) > 0 is replaced by the stronger constraint p(M |S) = 1).

5. Figure II

In this section, we prove that the probabilistic inference of C|A from the premise set (B|C, B|A), which 
corresponds to the general form of syllogisms of Figure II, is probabilistically non-informative. Like in 
Section 4, we show that the imprecise assessment [0, 1]3 on (B|C, B|A, C|A) is t-coherent. Then, in order to 
obtain probabilistic informativeness, we add the probabilistic constraint p(A|(A ∨C)) > 0 to the premise set, 
which corresponds to the conditional event existential import assumption of syllogisms of Figure II according 
to Definition 8. After showing that the imprecise assessment [0, 1]3 on (B|C, B|A, A|(A ∨C)) is t-coherent, we 
prove the precise and imprecise probability propagation rules for the inference from (B|C, B|A, A|(A ∨C))
to C|A. We apply these results in Section 5.2, where we study the valid syllogisms of Figure II.

5.1. Coherence and probability propagation in Figure II

We prove the t-coherence of the imprecise assessment [0, 1]3 on the sequence of conditional events 
(B|C, B|A, C|A).

Proposition 3. Let A, B, C be logically independent events. The imprecise assessment [0, 1]3 on F =
(B|C, B|A, C|A) is t-coherent.

Proof. Let P = (x, y, z) ∈ [0, 1]3 be any probability assessment on F . The constituents Ch and the points 
Qh associated with (F , P) are given in Table 5. The constituents Ch contained in H3 = A ∨C are C1, . . . , C6. 
We recall that coherence of P = (x, y, z) on F requires that the condition P ∈ I is satisfied, where I is the 
convex hull of Q1, . . . , Q6. This amounts to the solvability of the following system:

(S) P =
∑6

h=1 λhQh,
∑6

h=1 λh = 1, λh � 0, h = 1, . . . , 6.

We observe that P = (x, y, z) = x(1, y, z) + (1 − x)(0, y, z) = xQ5 + (1 − x)Q6, that is system (S) is 
solvable and a solution is Λ = (0, 0, 0, 0, x, 1 − x). As Φ2(Λ) = Φ3(Λ) = λ1 + λ2 + λ3 + λ4 = 0, it holds 
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Table 5
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, z) on (B|C, B|A, C|A) involved in Figure II.

Ch Qh

C1 ABC (1, 0, 0) Q1
C2 ABC (x, 0, 1) Q2
C3 ABC (0, 1, 0) Q3
C4 ABC (x, 1, 1) Q4
C5 ABC (1, y, z) Q5
C6 ABC (0, y, z) Q6
C0 AC (x, y, z) Q0 = P

Table 6
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, t) on F = (B|C, B|A, A|(A ∨C)) involved in the premise 
set of Figure II.

Ch Qh

C1 ABC (1, 0, 1) Q1
C2 ABC (x, 0, 1) Q2
C3 ABC (0, 1, 1) Q3
C4 ABC (x, 1, 1) Q4
C5 ABC (1, y, 0) Q5
C6 ABC (0, y, 0) Q6
C0 AC (x, y, t) Q0 = P

that I ′0 = {2, 3}. Then, by Theorem 3, in order to check coherence of (x, y, z) ∈ [0, 1]3 it is sufficient to 
check the coherence of the sub-assessment (y, z) ∈ [0, 1]2 on (B|A, C|A). The constituents Ch associated 
to the pair ((B|A, C|A), (y, z)) contained in H2 = A are C1 = ABC, C2 = ABC, C3 = ABC, C4 = ABC

and the corresponding points Qh are Q1 = (0, 0), Q2 = (0, 1), Q3 = (1, 0), Q4 = (1, 1). The convex hull I
of the points Q1, Q2, Q3, Q4 is the unit square [0, 1]2. Then (y, z) ∈ [0, 1]2 trivially belongs to I and hence 
the system (y, z) = λ1Q1 + λ2Q2 + λ3Q3 + λ4Q4 has always a nonnegative solution (λ1, λ2, λ3, λ4) with 
λ1 + λ2 + λ3 + λ4 = 1. Moreover, as Φ1(Λ) = Φ2(Λ) = λ1 + λ2 + λ3 + λ4 = 1, it follows that I0 = ∅ and 
hence (y, z) is coherent. �
Proposition 4. Let A, B, C be logically independent events. The assessment (x, y, t) on (B|C, B|A, A|(A ∨C))
is coherent for every (x, y, t) ∈ [0, 1]3.

Proof. Let P = (x, y, t) ∈ [0, 1]3 be a probability assessment on F . The constituents Ch and the points Qh

associated with (F , P) are given in Table 6. By Theorem 2, coherence of P = (x, y, t) on F requires that 
the following system is solvable

(S) P =
∑6

h=1 λhQh,
∑6

h=1 λh = 1, λh � 0, h = 1, . . . , 6,

or equivalently

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = yt,

λ1 + λ2 + λ3 + λ4 = t,

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1,
λi � 0, i = 1, . . . , 6 ,

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = yt,

λ1 + λ2 = t(1 − y),
λ5 + λ6 = 1 − t,

λi � 0, i = 1, . . . , 6.

(23)

System (S) is solvable and a subset S′ of the set of solutions consists of Λ = (λ1, . . . , λ6) such that



N. Pfeifer, G. Sanfilippo / Annals of Pure and Applied Logic 175 (2024) 103340 19
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 = λ3 = 0, λ2 = t(1 − y),
λ4 = yt, λ5 = x(1 − t),
λ6 = (1 − x)(1 − t),
λi � 0, i = 1, . . . , 6 .

(24)

Moreover, for each Λ ∈ S′ it holds that Φ1(Λ) =
∑

h:Ch⊆C = λ1 +λ3 +λ5 +λ6 = 1 − t, Φ2(Λ) =
∑

h:Ch⊆A =
λ1 + λ2 + λ3 + λ4 = t and Φ3(Λ) =

∑
h:Ch⊆A∨C λh = 1 > 0. If 0 < t < 1, it holds that I ′0 = ∅, hence, by 

Theorem 3, (x, y, t) is coherent. If t = 0, it holds that I ′0 = {2} and as the sub-assessment y ∈ [0, 1] on B|A
is coherent, it follows by Theorem 3 that (x, y, t) is coherent. Likewise, if t = 1, it holds that I ′0 = {1} and 
as the sub-assessment x ∈ [0, 1] on B|C is coherent, it follows by Theorem 3 that (x, y, t) is coherent. Then, 
(x, y, t) is coherent for every (x, y, t) ∈ [0, 1]3. �

The next result allows for computing the lower and upper bounds, z′ and z′′ respectively, for the coherent 
extensions z = p(C|A) from the assessment (x, y, t) on (B|C, B|A, A|(A ∨ C)).

Theorem 7. Let A, B, C be three logically independent events and (x, y, t) ∈ [0, 1]3 be any assessment on the 
family (B|C, B|A, A|(A ∨ C)). Then, the extension z = p(C|A) is coherent if and only if z ∈ [z′, z′′], where

[z′, z′′] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0, 1] , if t � x + yt � 1,[x + yt− 1
t x

, 1
]
, if x + yt > 1,[ t− x− yt

t (1 − x) , 1
]
, if x + yt < t.

Proof. Let (x, y, t) ∈ [0, 1]3 be a generic assessment on (B|C, B|A, A|(A ∨ C)). We recall that (x, y, t) is 
coherent (Proposition 4). In order to prove the theorem we derive the coherent lower and upper probability 
bounds z′ and z′′ by applying Algorithm 1 in a symbolic way.

Computation of the lower probability bound z′ on C|A.
Input. F = (B|C, B|A, A|(A ∨ C)), En+1|Hn+1 = C|A.
Step 0. The constituents associated with (B|C, B|A, A|(A ∨ C), C|A) and contained in Hn+1 = A ∨ C are 
C1 = ABC, C2 = ABC, C3 = ABC, C4 = ABC, C5 = ABC, and C6 = ABC. We construct the following 
starting system with unknowns λ1, . . . , λ6, z (see Remark 2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2 + λ4 = z(λ1 + λ2 + λ3 + λ4), λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1, λi � 0, i = 1, . . . , 6 .

(25)

Step 1. By setting z = 0 in System (25), we obtain
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2 + λ4 = 0, λ1 + λ5 = x,

λ3 = y(λ1 + λ3), λ1 + λ3 = t,

λ1 + λ3 + λ5 + λ6 = 1,
λi � 0, i = 1, . . . , 6 .

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 = t(1 − y), λ2 = 0, λ3 = yt,

λ4 = 0, λ5 = x− t(1 − y),
λ6 = 1 − x− yt,

λi � 0, i = 1, . . . , 6 .

(26)

The solvability of System (26) is a necessary condition for the coherence of the assessment (x, y, t, 0) on 
(B|C, B|A, A|(A ∨C), C|A). As (x, y, t) ∈ [0, 1]3, it holds that: λ1 = t(1 −y) � 0, λ3 = yt � 0. Thus, System 
(26) is solvable if and only if λ5 � 0 and λ6 � 0, that is

t− yt � x � 1 − yt ⇐⇒ t � x + yt � 1.
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We distinguish two cases: (i) x + yt > 1 ∨ x + yt < t; (ii) t � x + yt � 1. In Case (i), System (26) is not 
solvable (which implies that the coherent extension z of (x, y, t) must be positive). Then, we go to Step 2 
of the algorithm where the (positive) lower bound z′ is obtained by optimization. In Case (ii), System (26)
is solvable and in order to check whether z = 0 is a coherent extension, we go to Step 3.

Case (i). We observe that in this case t cannot be 0. By Step 2 we have the following linear programming 
problem:
Compute z′ = min(λ2 + λ4) subject to:

⎧⎪⎨
⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6), λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = t(λ1 + λ2 + λ3 + λ4 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 = 1, λi � 0, i = 1, . . . , 6.

(27)

In this case, the constraints in (27) can be rewritten in the following way

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ3 + λ4 = y, λ5 + λ6 = 1−t

t ,

λ1 + λ2 + λ3 + λ4 = 1,
λi � 0, i = 1, . . . , 6 ,

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − y − λ2 + λ5 = x(1 − λ2 − λ4 + 1−t
t ),

λ3 = y − λ4, λ6 = 1−t
t − λ5,

λ1 = 1 − y − λ2,

λi � 0, i = 1, . . . , 6 ,

or equivalently

{
xλ4 + (1 − y) + λ5 = λ2(1 − x) + x

t , λ3 = y − λ4,

λ5 = 1−t
t − λ6, λ1 = 1 − y − λ2, λi � 0, i = 1, . . . , 6.

We distinguish two (alternative) cases: (i.1) x + yt > 1; (i.2) x + yt < t.
Case (i.1). The constraints in (27) can be rewritten in the following way

{
x(λ2 + λ4) = x

t − (1 − y) − 1−t
t + λ2 + λ6, λ3 = y − λ4,

λ5 = 1−t
t − λ6, λ1 = 1 − y − λ2, λi � 0, i = 1, . . . , 6 .

As x > 1 − ty, we observe that x > 0. Then, the minimum of z = λ2 + λ4, obtained when λ2 = λ6 = 0, is

z′ = 1
x

(
x

t
− (1 − y) − 1 − t

t

)
= x− t + yt− 1 + t

xt
= x + yt− 1

xt
. (28)

By choosing λ2 = λ6 = 0 the constraints in (27) are satisfied with

{
λ1 = 1 − y, λ2 = 0, λ3 = y − x+yt−1

xt , λ4 = x+yt−1
xt ,

λ5 = 1−t
t , λ6 = 0, λi � 0, i = 1, . . . , 6.

In particular λ3 � 0 is satisfied because the condition x+yt−1
xt � y, which in this case amounts to yt(1 −x) �

1 − x, is always satisfied. Then, the procedure stops yielding as output z′ = x+yt−1
xt .

Case (i.2). The constraints in (27) can be rewritten in the following way

{
(1 − y) − x

t + λ5 + λ4 = λ2(1 − x) − xλ4 + λ4, λ3 = y − λ4,

λ6 = 1−t
t − λ5, λ1 = 1 − y − λ2, λi � 0, i = 1, . . . , 6 ,

or equivalently
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{
(λ2 + λ4)(1 − x) = (1 − y) − x

t + λ4 + λ5, λ3 = y − λ4,

λ6 = 1−t
t − λ5, λ1 = 1 − y − λ2, λi � 0, i = 1, . . . , 6 .

As t − yt − x > 0, that is x < t(1 − y), it holds that x < 1. Then, the minimum of z = λ2 + λ4, obtained 
when λ4 = λ5 = 0, is

z′ = 1
1 − x

(
1 − y − x

t

)
= t− yt− x

(1 − x)t � 0.

We observe that by choosing λ4 = λ5 = 0 the constraints in (27) are satisfied, indeed they are
{

λ1 = 1 − y, λ2 = t−yt−x
(1−x)t , λ3 = y, λ4 = 0,

λ5 = 0, λ6 = 1−t
t , λi � 0, i = 1, . . . , 6.

Then, the procedure stops yielding as output z′ = t−yt−x
(1−x)t .

Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6)
and the set of solutions of System (26), respectively. We consider the following linear functions (associated 
with the conditioning events H1 = C, H2 = H4 = A, H3 = A ∨ C) and their maxima in S:

Φ1(Λ) =
∑

r:Cr⊆C λr = λ1 + λ3 + λ5 + λ6,

Φ2(Λ) = Φ4(Λ) =
∑

r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4,

Φ3(Λ) =
∑

r:Cr⊆A∨C λr = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 ,

Mi = maxΛ∈S Φi(Λ), i = 1, 2, 3, 4 .

(29)

By (26) we obtain: Φ1(Λ) = t(1 −y) +yt +x −t(1 −y) +1 −x −yt = 1, Φ2(Λ) = Φ4(Λ) = t(1 −y) +0 +yt +0 =
t, Φ3(Λ) = t(1 − y) + 0 + yt + 0 + x − t(1 − y) + 1 − x − yt = 1, ∀Λ ∈ S. Then, M1 = 1, M2 = M4 = t, 
and M3 = 1. We consider two subcases: t > 0; t = 0. If t > 0, then M4 > 0 and we are in the first case of 
Step 3. Thus, the procedure stops and yields z′ = 0 as output.
If t = 0, then M1 > 0, M3 > 0 and M2 = M4 = 0. Hence, we are in third case of Step 3 with J = {2}, I0 =
{2, 4} and the procedure restarts with Step 0, with F replaced by FJ = (B|A).

(2nd cycle) Step 0. The constituents associated with (B|A, C|A), contained in A, are C1 = ABC, C2 =
ABC, C3 = ABC, C4 = ABC. The starting system is

{
λ3 + λ4 = y(λ1 + λ2 + λ3 + λ4), λ2 + λ4 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ2 + λ3 + λ4 = 1, λi � 0, i = 1, . . . , 4 .

(30)

(2nd cycle) Step 1. By setting z = 0 in System (30), we obtain
{
λ1 = 1 − y, λ2 = λ4 = 0, λ3 = y, λi � 0, i = 1, . . . , 4 . (31)

As y ∈ [0, 1], System (31) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . , λ4) and the set of solutions 
of System (31), respectively. The conditioning events are H2 = A and H4 = A; then the associated linear 
functions are: Φ2(Λ) = Φ4(Λ) =

∑
r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4. From System (31), we obtain: Φ2(Λ) =

Φ4(Λ) = 1, ∀Λ ∈ S; so that M2 = M4 = 1. We are in the first case of Step 3 of the algorithm; then the 
procedure stops and yields z′ = 0 as output.

To summarize, for any (x, y, t) ∈ [0, 1]3 on (B|C, B|A, A|(A ∨C)), we have computed the coherent lower 
bound z′ on C|A. In particular, if t = 0, then z′ = 0. We also have z′ = 0, when t > 0 and t � x + yt � 1, 



22 N. Pfeifer, G. Sanfilippo / Annals of Pure and Applied Logic 175 (2024) 103340
that is when 0 < t � x + yt � 1. Then, we can write that z′ = 0, when t � x + yt � 1. Otherwise, we have 
two cases: (i.1) z′ = x+yt−1

xt , if x + yt > 1; (i.2) z′ = t−yt−x
(1−x)t , if x + yt < t.

Computation of the upper probability bound z′′ on C|A.
Input and Step 0 are the same as in the proof of z′.
Step 1. By setting z = 1 in System (25), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 + λ3 = 0, λ5 = x(λ5 + λ6),
λ4 = y(λ2 + λ4), λ2 + λ4 = t,

λ2 + λ4 + λ5 + λ6 = 1,
λi � 0, i = 1, . . . , 6 .

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 = λ3 = 0, λ2 = t(1 − y),
λ4 = yt, λ5 = x(1 − t),
λ6 = (1 − x)(1 − t),
λi � 0, i = 1, . . . , 6 .

(32)

As (x, y, t) ∈ [0, 1]3, System (32) is solvable and we go to Step 3.
Step 3. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6) and the set of solutions of System (32), 

respectively. We consider the functions given in (29). From System (32), we obtain: Φ1(Λ) = 0 + 0 + x(1 −
t) + (1 − x)(1 − t) = 1 − t, Φ2(Λ) = Φ4(Λ) = 0 + t(1 − y) + 0 + yt = t, Φ3(Λ) = 0 + t(1 − y) + 0 + yt +
x(1 − t) + (1 − x)(1 − t) = 1, ∀Λ ∈ S. Then, M1 = 1 − t, M2 = M4 = t, and M3 = 1. If t > 0, then M4 > 0
and we are in the first case of Step 3. Thus, the procedure stops and yields z′′ = 1 as output. If t = 0, then 
M1 > 0, M3 > 0 and M2 = M4 = 0. Hence, we are in the third case of Step 3 with J = {2}, I0 = {2, 4} and 
the procedure restarts with Step 0, with F replaced by FJ = (E2|H2) = (B|A) and P replaced by PJ = y.
(2nd cycle) Step 0. This is the same as the (2nd cycle) Step 0 in the proof of z′.
(2nd cycle) Step 1. By setting z = 1 in System (25), we obtain

{
λ1 + λ3 = 0, λ4 = y, λ2 = 1 − y, λi � 0, i = 1, . . . , 4 . (33)

As y ∈ [0, 1], System (33) is always solvable; thus, we go to Step 3.
(2nd cycle) Step 3. Like in the (2nd cycle) Step 3 of the proof of z′, we obtain M4 = 1. Thus, the procedure 
stops and yields z′′ = 1 as output. To summarize, for any assessment (x, y, t) ∈ [0, 1]3 on (B|C, B|A, A|(A ∨
C)), we have computed the coherent upper probability bound z′′ on C|A, which is always z′′ = 1. �
Remark 10. We observe that in Theorem 7 we do not presuppose, differently from the classical approach, 
positive probability for the conditioning events (A and C). For example, even if we assume p(A|(A ∨C)) =
t > 0 we do not require positive probability for the conditioning event A, and p(A) could be zero (indeed, 
since p(A) = p(A ∧ (A ∨ C)) = p(A|(A ∨ C))p(A ∨ C), p(A) > 0 implies p(A|(A ∨ C)) > 0, but not vice 
versa).

The next result is based on Theorem 7 and presents the set of the coherent extensions of a given interval-
valued probability assessment I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3 on the sequence on (B|C, B|A, A|(A ∨
C)) to the further conditional event C|A.

Theorem 8. Let A, B, C be three logically independent events and I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3
be an imprecise assessment on (B|C, B|A, A|(A ∨ C)). Then, the set Σ of the coherent extensions of I on 
C|A is the interval [z∗, z∗∗], where

[z∗, z∗∗] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0, 1] , if (x2 + y2t1 � t1) ∧ (x1 + y1t1 � 1),[x1 + y1t1 − 1
t1x1

, 1
]
, if x1 + y1t1 > 1,[ t1 − x2 − y2t1

, 1
]
, if x2 + y2t1 < t1.
t1(1 − x2)
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Proof. As from Proposition 4 the set [0, 1]3 on (B|C, B|A, A|(A ∨ C)) is totally coherent, then I is totally 
coherent too. Then, Σ =

⋃
P∈I[z′P, z′′P] = [z∗, z∗∗], where z∗ = infP∈I z′P (i.e., z∗ = inf{z′P : P ∈ I}) and 

z∗∗ = supP∈I z′′P (i.e., z∗∗ = sup{z′P : P ∈ I}). We distinguish three alternative cases: (i) x1 + y1t1 > 1; (ii)
x2 + y2t1 < t1; (iii) (x2 + y2t1 � t1) ∧ (x1 + y1t1 � 1).
Of course, for all three cases z∗∗ = supP∈I z′′P = 1.
Case (i). We observe that the function x + yt : [0, 1]3 is nondecreasing in the arguments x, y, t. Then, in this 
case, x + yt � x1 + y1t1 > 1 for every P = (x, y, t) ∈ I and hence by Theorem 7 z′P = f(x, y, t) = x+yt−1

t x

for every P ∈ I. Moreover, f(x, y, t) : [0, 1]3 is nondecreasing in the arguments x, y, t, thus z∗ = x1+y1t1−1
t1x1

.
Case (ii). We observe that the function x + yt − t : [0, 1]3 is nondecreasing in the arguments x, y and 
nonincreasing in the argument t. Then, in this case, x + yt − t � x2 + y2t1 − t1 < 0 for every P =
(x, y, t) ∈ I and hence by Theorem 7 z′P = g(x, y, t) = t−x−yt

t(1−x) for every P ∈ I. Moreover, g(x, y, t) : [0, 1]3

is nonincreasing in the arguments x, y and nondecreasing in the argument t. Thus, z∗ = t1−x2−y2t1
t1(1−x2) . Case 

(iii). In this case there exists a vector (x, y, t) ∈ I such that t � x +yt � 1 and hence by Theorem 7 z′P = 0. 
Thus, z∗ = 0. �
Remark 11. By instantiating Theorem 8 with the imprecise assessment I = {1} × [y1, 1] × [t1, 1], where 
t1 > 0, we obtain the following lower and upper bounds for the conclusion [z∗, z∗∗] = [y1, 1]. Thus, for every 
t1 > 0: z∗ depends only on the value of y1.

5.2. Traditionally valid syllogisms of Figure II

In this section we consider the probabilistic interpretation of the traditionally valid syllogisms of Figure 
II (Camestres, Camestrop, Baroco, Cesare, Cesaro, Festino; see Table 1). Like in Figure I, all syllogisms of 
Figure II without existential import assumptions are probabilistically non-informative. Indeed, by instanti-
ating S, M , P for A, B, C, respectively, in Proposition 3, we observe that the imprecise assessment [0, 1]3 on 
(M |P, M |S, P |S) is t-coherent. For instance, Camestres (“Every P is M , No S is M , therefore No S is P”) 
without existential import assumption corresponds to the probabilistically non-informative inference: from 
the premises p(M |P ) = 1 and p(M |S) = 1 infer that every p(P |S) ∈ [0, 1] is coherent (see Proposition 3). 
Therefore we add the conditional event existential import assumption: p(S|(S ∨ P )) > 0 (see Definition 8). 
In what follows, we construct (s-)valid versions of the traditionally valid syllogisms of Figure II, by suitable 
instantiations in Theorem 7.

Camestres. By instantiating S, M, P in Theorem 7 for A, B, C with x = y = 1 and t > 0 it follows that 
z′ = x+yt−1

t x = 1 and z′′ = 1. Then, the set Σ of coherent extensions on P |S of the imprecise assessment 
{1} × {1} × (0, 1] on (M |P, M |S, S|(S ∨ P )) is Σ = {1}. Thus, by Definition 7,

{1} × {1} × (0, 1] on (M |P,M |S, S|(S ∨ P )) |=s {1} on P |S. (34)

In terms of probabilistic constraints, (34) can be equivalently expressed by (see Table 2)

(p(M |P ) = 1, p(M |S) = 0, p(S|(S ∨ P )) > 0) |=s p(P |S) = 0 , (35)

which is a s-valid version of Camestres.

Camestrop. From (35), by weakening the conclusion of Camestres, it follows that

(p(M |P ) = 1, p(M |S) = 0, p(S|(S ∨ P )) > 0) |= p(P |S) < 1 , (36)

which is equivalent to
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(p(M |P ) = 1, p(M |S) = 0, p(S|(S ∨ P )) > 0) |= p(P |S) > 0. (37)

Inference (37) is a valid (but not s-valid) version of Camestrop (Every P is M , No S is M , therefore Some 
S is not P ).

Baroco. By instantiating S, M, P in Theorem 7 for A, B, C with x = 1, any y > 0, and any t > 0, it 
follows that z′ = x+yt−1

t x = 1+yt−1
t = y > 0. Then, the set Σ of coherent extensions on P |S of the imprecise 

assessment {1} × (0, 1] × (0, 1] on (M |P, M |S, S|(S ∨P )) is Σ =
⋃

{(x,y,t)∈{1}×(0,1]×(0,1]}[y, 1] = (0, 1]. Thus, 
by Definition 7,

{1} × (0, 1] × (0, 1] on (M |P,M |S, S|(S ∨ P )) |=s (0, 1] on P |S. (38)

In terms of probabilistic constraints, (38) can be expressed by,

(p(M |P ) = 1, p(M |S) > 0, p(S|(S ∨ P )) > 0) |=s p(P |S) > 0 . (39)

Therefore, inference (39) is a s-valid version of Baroco (Every P is M , Some S is not M , therefore Some S
is not P ). Notice that Camestrop (37) also follows from Baroco (39) by strengthening the minor premise.

Cesare. By instantiating S, M, P in Theorem 7 for A, B, C with x = y = 0 and any t > 0, it follows that 
z′ = t−x−yt

t (1−x) = 1 (and z′′ = 1). Then, the set Σ of coherent extensions on P |S of the imprecise assessment 
{0} × {0} × (0, 1] on (M |P, M |S, S|(S ∨ P ) is Σ = {1}. Thus, by Definition 7,

{0} × {0} × (0, 1] on (M |P,M |S, S|(S ∨ P )) |=s {1} on P |S. (40)

In terms of probabilistic constraints, (40) can be expressed by,

(p(M |P ) = 0, p(M |S) = 0, p(S|(S ∨ P )) > 0) |=s p(P |S) = 1 ,

or equivalently by

(p(M |P ) = 0, p(M |S) = 1, p(S|(S ∨ P )) > 0) |=s p(P |S) = 0 . (41)

Therefore, inference (41) is a s-valid version of Cesare (No P is M , Every S is M , therefore No S is P ). 
Notice that Cesare is equivalent to Camestres, because (41) is equivalent to (35) when M is replaced by M
(and the probabilities are adjusted accordingly).

Cesaro. From (41), by weakening the conclusion of Cesare, it follows that

(p(M |P ) = 0, p(M |S) = 1, p(S|(S ∨ P )) > 0) |= p(P |S) > 0 , (42)

which is a valid (but not s-valid) version of Cesaro (No P is M , Every S is M , therefore Some S is not 
P ). Notice that Cesaro is equivalent to Camestrop, because (42) is equivalent to (37) when M is replaced 
by M .

Festino. By instantiating S, M, P in Theorem 7 for A, B, C with x = 0, any y < 1 and any t > 0, 
as x + yt < t, it follows that z′ = t−x−yt

t (1−x) = t−yt
t > 1 − y > 0 (and z′′ = 1). Then, the set Σ of 

coherent extensions on P |S of the imprecise assessment {0} × [0, 1) × (0, 1] on (M |P, M |S, S|(S ∨ P )) is 
Σ =

⋃
[1 − y, 1] = (0, 1]. Thus, by Definition 7,
{(x,y,t)∈{0}×[0,1)×(0,1]}
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{0} × [0, 1) × (0, 1] on (M |P,M |S, S|(S ∨ P )) |=s (0, 1] on P |S. (43)

In terms of probabilistic constraints, (43) can be equivalently expressed by

(p(M |P ) = 0, p(M |S) > 0, p(S|(S ∨ P )) > 0) |=s p(P |S) > 0 , (44)

which is a s-valid version of Festino (No P is M , Some S is M , therefore Some S is not P ). Notice that 
Festino is equivalent to Baroco, because (44) is equivalent to (39) when M is replaced by M . Cesaro (42)
also follows from Festino (44) by strengthening the minor premise.

Remark 12. We observe that, traditionally, the conclusions of logically valid Aristotelian syllogisms of Fig-
ure II are neither in the form of sentence type I (some) nor of A (every). In terms of our probability 
semantics, indeed, this must be the case even if the existential import assumption p(S|(S∨P )) > 0 is made: 
according to Theorem 7, the upper bound for the conclusion p(P |S) is always 1; thus, neither sentence type 
I (p(P |S) > 0, i.e. p(P |S) < 1) nor sentence type A (p(P |S) = 1, i.e. p(P |S) = 0) can be validated.

6. Figure III

In this section, we observe that the probabilistic inference of C|A from the premise set (C|B, A|B), which 
corresponds to the general form of syllogisms of Figure III, is probabilistically non-informative (Proposi-
tion 5). Therefore, we add the probabilistic constraint p(B|(A ∨ B)) > 0, as conditional event existential 
import assumption, to obtain probabilistic informativeness. Then, we prove the precise and imprecise prob-
ability propagation rules for the inference from (C|B, A|B, B|(A ∨ B)) to C|A. We apply these results in 
Section 6.2, where we study the valid syllogisms of Figure III.

6.1. Coherence and probability propagation in Figure III

Proposition 5. Let A, B, C be logically independent events. The imprecise assessment [0, 1]3 on F =
(C|B, A|B, C|A) is totally coherent.

Proof. By exchanging B and A and by reordering the sequence F , Proposition 5 is equivalent to Proposi-
tion 1. �

Now we show that the imprecise assessment [0, 1]3 on the sequence of conditional events (C|B, A|B, B|(A ∨
B)) is t-coherent. Note that the strategy used in the proof of Proposition 5 cannot be applied for proving 
Proposition 6.

Proposition 6. Let A, B, C be logically independent events. The imprecise assessment [0, 1]3 on F =
(C|B, A|B, B|(A ∨B)) is totally coherent.

Proof. Let P = (x, y, t) ∈ [0, 1]3 be a probability assessment on F . The constituents Ch and the points Qh

associated with (F , P) are given in Table 7. By Theorem 2, coherence of P = (x, y, z) on F requires that 
the following system is solvable

(S) P =
∑5

h=1 λhQh,
∑5

h=1 λh = 1, λh � 0, h = 1, . . . , 6,

or equivalently
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Table 7
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, t) on F = (C|B, A|B, B|(A ∨B)) involved in the premise 
set of Figure III.

Ch Qh

C1 ABC (1, 1, 1) Q1
C2 ABC (0, 1, 1) Q2
C3 AB (x, y, 0) Q3
C4 ABC (1, 0, 1) Q4
C5 ABC (0, 0, 1) Q5
C0 AB (x, y, t) Q0 = P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ4 = x(λ1 + λ2 + λ4 + λ5),
λ1 + λ2 = y(λ1 + λ2 + λ4 + λ5),
λ1 + λ2 + λ4 + λ5 = t(λ1 + λ2 + λ3 + λ4 + λ5),
λ1 + λ2 + λ3 + λ4 + λ5 = 1,
λi � 0, i = 1, . . . , 5 ,

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ4 = xt,

λ1 + λ2 = yt,

λ1 + λ2 + λ4 + λ5 = t,

λ3 = 1 − t,

λi � 0, i = 1, . . . , 5 ,

(45)

that is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2 = yt− λ1,

λ3 = 1 − t,

λ4 = xt− λ1,

λ5 = t− xt− yt + λ1,

λi � 0, i = 1, . . . , 5 .

System (S) is solvable because t max{0, x + y − 1} � t min{x, y}, for every (x, y, t) ∈ [0, 1]3 and the set of 
solutions S consists of the vectors Λ = (λ1, . . . , λ5) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tmax{0, x + y − 1} � λ1 � tmin{x, y},
λ2 = yt− λ1,

λ3 = 1 − t,

λ4 = xt− λ1,

λ5 = t− xt− yt + λ1.

Moreover, for each Λ ∈ S it holds that Φ1(Λ) = Φ2(Λ) =
∑

h:Ch⊆B = λ1 + λ2 + λ4 + λ5 = t, and 
Φ3(Λ) =

∑
h:Ch⊆A∨B λh = 1. If t > 0, it follows that, for each Λ ∈ S, Φ1(Λ) = Φ2(Λ) > 0, and Φ3(Λ) > 0. 

Then, I0 = ∅ and by Theorem 2, the assessment (x, y, t) is coherent. If t = 0, it follows that for each Λ ∈ S, 
Φ1(Λ) = Φ2(Λ) = 0. Then, I0 = {1, 2} and as it is well known that the sub-assessment (x, y) on (C|B, A|B)
is coherent for every (x, y) ∈ [0, 1]2, it follows by Theorem 2 that (x, y, t) is coherent. Then, (x, y, t) is 
coherent for every (x, y, t) ∈ [0, 1]3. �

The next theorem presents the coherent probability propagation rules in Figure III under the conditional 
event existential import assumption.

Theorem 9. Let A, B, C be three logically independent events and (x, y, t) ∈ [0, 1]3 be a (coherent) assessment 
on the family (C|B, A|B, B|(A ∨B)). Then, the extension z = p(C|A) is coherent if and only if z ∈ [z′, z′′], 
where

z′ =

⎧⎨
⎩

0, if t(x + y − 1) � 0,
t(x + y − 1)

, if t(x + y − 1) > 0, z′′ =

⎧⎨
⎩

1, if t(y − x) � 0,

1 − t(y − x)
, if t(y − x) > 0.
1 − t(1 − y) 1 − t(1 − y)
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Proof. In order to compute the lower and upper probability bounds z′ and z′′ on the further event C|A
(i.e., the conclusion), we apply Algorithm 1 in a symbolic way. Computation of the lower probability bound 

z′ on C|A.
Input. The assessment (x, y, t) on F = (C|B, A|B, B|(A ∨B)) and the event C|A.
Step 0. The constituents associated with (C|B, A|B, B|(A ∨ B), C|A) are C0 = AB, C1 = ABC, C2 =
ABC, C3 = ABC, C4 = ABC, C5 = ABC, C6 = ABC. We observe that H0 = A ∨B; then, the constituents 
contained in H0 are C1, . . . , C6. We construct the starting system with the unknowns λ1, . . . , λ6, z:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ2 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6),
λ1 + λ3 = y(λ1 + λ3 + λ5 + λ6),
λ1 + λ3 + λ5 + λ6 = t(

∑6
i=1 λi),∑6

i=1 λi = 1, λi � 0, i = 1, . . . , 6 ,

⇐⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ2 = z(λ1 + λ2 + λ3 + λ4),
λ1 + λ5 = xt,

λ1 + λ3 = yt,

λ1 + λ3 + λ5 + λ6 = t,∑6
i=1 λi = 1, λi � 0, i = 1, . . . , 6 .

(46)

Step 1. By setting z = 0 in System (46), we obtain
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 + λ2 = 0, λ3 = yt, λ5 = xt,

λ3 + λ5 + λ6 = t,

λ3 + λ4 + λ5 + λ6 = 1,
λi � 0, i = 1, . . . , 6 .

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 = λ2 = 0,
λ3 = yt, λ4 = 1 − t, λ5 = xt,

λ6 = t(1 − x− y),
λi � 0, i = 1, . . . , 6 .

(47)

As (x, y, t) ∈ [0, 1]3, the conditions λh � 0, h = 1, . . . , 5, in System (47) are all satisfied. Then, System (47), 
i.e. System (46) with z = 0, is solvable if and only if λ6 = t(1 − x− y) � 0. We distinguish two cases: (i)
t(1 − x − y) < 0 (i.e. t > 0 and x + y > 1); (ii) t(1 − x − y) � 0, (i.e. t = 0 or (t > 0) ∧ (x + y � 1)). 
In Case (i), System (47) is not solvable and we go to Step 2 of the algorithm. In Case (ii), System (47) is 
solvable and we go to Step 3.

Case (i). By Step 2 we have the following linear programming problem:
Compute γ′ = min(

∑
i:Ci⊆AC λr) = min(λ1 + λ2) subject to:

⎧⎪⎨
⎪⎩

λ1 + λ5 = x(λ1 + λ3 + λ5 + λ6), λ1 + λ3 = y(λ1 + λ3 + λ5 + λ6),
λ1 + λ3 + λ5 + λ6 = t(

∑6
i=1 λi), λ1 + λ2 + λ3 + λ4 = 1,

λi � 0, i = 1, . . . , 6.
(48)

We notice that y is positive since x + y > 1 (and (x, y, t) ∈ [0, 1]3). Then, also 1 − t(1 − y) is positive and 
the constraints in (48) can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ1 + λ5 = xt(1 + λ5 + λ6),
λ1 + λ3 = yt(1 + λ5 + λ6),
λ5 + λ6 = (t− yt)(1 + λ5 + λ6),
λ1 + λ2 + λ3 + λ4 = 1,
λi � 0, i = 1, . . . , 6,

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ5 + λ6 = t(1−y)
1−t(1−y) ,

λ1 + λ5 = xt(1 + t(1−y)
1−t(1−y) ) = xt

1−t(1−y) ,

λ1 + λ3 = yt(1 + t(1−y)
1−t(1−y) ) = yt

1−t(1−y) ,

λ1 + λ2 + λ3 + λ4 = 1,
λi � 0, i = 1, . . . , 6,

⇐⇒

⎧⎪⎨
⎪⎩

max{0, t(x+y−1)
1−t(1−y)} � λ1 � min{x, y} t

1−t(1−y) ,

0 � λ2 � 1−t
1−t(1−y) , λ3 = yt

1−t(1−y) − λ1, λ4 = 1−t
1−t(1−y) − λ2,

λ5 = xt
1−t(1−y) − λ1, λ6 = t(1−x−y)

1−t(1−y) + λ1.

(49)

Thus, by recalling that x +y−1 > 0, the minimum γ′ of λ1+λ2 subject to (48), or equivalently subject to (49), 
is obtained at (λ′

1, λ
′
2) = ( t(x+y−1) , 0). The procedure stops yielding as output z′ = γ′ = λ′

1 +λ′
2 = t(x+y−1) .
1−t(1−y) 1−t(1−y)
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Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6)
and the set of solutions of System (47), respectively. We consider the following linear functions (associated 
with the conditioning events H1 = H2 = B, H3 = A ∨B, H4 = A) and their maxima in S:

Φ1(Λ) = Φ2(Λ) =
∑

r:Cr⊆B λr = λ1 + λ3 + λ5 + λ6,

Φ3(Λ) =
∑

r:Cr⊆A∨B λr = λ1 + λ2 + λ3 + λ4 + λ5 + λ6,

Φ4(Λ) =
∑

r:Cr⊆A λr = λ1 + λ2 + λ3 + λ4, Mi = maxΛ∈SΦi(Λ), i = 1, 2, 3, 4 .

(50)

By (47) we obtain: Φ1(Λ) = Φ2(Λ) = 0 +yt +xt +t −xt −yt = t, Φ3(Λ) = 1, Φ4(Λ) = yt +1 −t = 1 −t(1 −y), 
∀Λ ∈ S. Then, M1 = M2 = t, M3 = 1, and M4 = 1 − (1 − y)t. We consider two subcases: t < 1; t = 1. If 
t < 1, then M4 = yt +1 − t > yt � 0; so that M4 > 0 and we are in the first case of Step 3 (i.e., Mn+1 > 0). 
Thus, the procedure stops and yields z′ = 0 as output. If t = 1, then M1 = M2 = M3 = 1 > 0 and M4 = y. 
Hence, we are in the first case of Step 3 (when y > 0) or in the second case of Step 3 (when y = 0). Thus, 
the procedure stops and yields z′ = 0 as output.

Computation of the upper probability bound z′′ on C|A. Input and Step 0 are the same as in the proof of 
z′. Step 1. By setting z = 1 in System (46), we obtain

{
λ1 + λ2 = λ1 + λ2 + λ3 + λ4, λ1 + λ5 = xt, λ1 + λ3 = yt,

λ1 + λ3 + λ5 + λ6 = t, λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1, λi � 0, i = 1, . . . , 6 ,

or equivalently

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ3 = λ4 = 0, λ1 + λ5 = xt,

λ1 = yt, λ1 + λ5 + λ6 = t,

λ1 + λ2 + λ5 + λ6 = 1,
λi � 0, i = 1, . . . , 6 ;

⇐⇒

⎧⎪⎨
⎪⎩

λ1 = yt, λ2 = 1 − t, λ3 = λ4 = 0,
λ5 = (x− y)t, λ6 = t(1 − x),
λi � 0, i = 1, . . . , 6 .

(51)

As (x, y, t) ∈ [0, 1]3, the inequalities λh � 0, h = 1, 2, 3, 4, 6 are satisfied. Then, System (51), i.e. System 
(46) with z = 1, is solvable if and only if λ5 = (x − y)t � 0. We distinguish two cases: (i) (x − y)t < 0, i.e. 
x < y and t > 0; (ii) (x − y)t � 0, i.e. x � y or t = 0. In Case (i), System (51) is not solvable and we go to 
Step 2 of the algorithm. In Case (ii), System (51) is solvable and we go to Step 3.

Case (i). By Step 2 we have the following linear programming problem:
Compute γ′′ = max(λ1 + λ2) subject to the constraints in (48). As (x, y, t) ∈ [0, 1]3 and x < y, it follows 
that min{x, y} = x and y > 0. Then, in this case the quantity 1 − t(1 − y) is positive and the constraints 
in (48) can be rewritten as in (49). Thus, the maximum γ′′ of λ1 + λ2 subject to (49), is obtained at 
(λ′′

1 , λ
′′
2) = ( xt

1−t(1−y) , 
1−t

1−t(1−y) ). The procedure stops yielding as output z′′ = γ′′ = λ′′
1 + λ′′

2 = xt
1−t(1−y) +

1−t
1−t(1−y) = 1−t+xt

1−t+yt = 1 − t(y−x)
1−t+yt .

Case (ii). We take Step 3 of the algorithm. We denote by Λ and S the vector of unknowns (λ1, . . . , λ6)
and the set of solutions of System (51), respectively. We consider the functions Φi(Λ) and the maxima Mi, 
i = 1, 2, 3, 4, given in (50). From System (51), we observe that the functions Φ1, . . . , Φ4 are constant for every 
Λ ∈ S, in particular it holds that Φ1(Λ) = Φ2(Λ) = t, Φ3(Λ) = 1 and Φ4(Λ) = yt +1 −t +0 +0 = 1 −t(1 −y)
for every Λ ∈ S. So that M1 = M2 = t, M3 = 1, and M4 = 1 − t(1 − y). We consider two subcases: t < 1; 
t = 1.
If t < 1, then M4 = yt + 1 − t > yt � 0; so that M4 > 0 and we are in the first case of Step 3 (i.e., 
Mn+1 > 0). Thus, the procedure stops and yields z′′ = 1 as output.
If t = 1, then M1 = M2 = M3 = 1 > 0 and M4 = y. Hence, we are in the first case of Step 3 (when y > 0) 
or in the second case of Step 3 (when y = 0). Thus, the procedure stops and yields z′′ = 1 as output. �
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Remark 13. From Theorem 9, we obtain z′ > 0 if and only if t(x + y − 1) > 0. Moreover, we obtain z′′ < 1
if and only if t(y − x) > 0. Moreover, it is easy to verify that

z′{x,y,t} + z′′{1−x,y,t} = 1,

where z′{x,y,t} and z′′{1−x,y,t} are the lower bound and the upper bound of the two assessments (x, y, z) and 
(1 − x, y, z) on ((C|B), (A|B), B|(A ∨B)), respectively.

Based on Theorem 9, the next result presents the set of coherent extensions of a given interval-valued 
probability assessment I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3 on (C|B, A|B, B|(A ∨ B)) to the further 
conditional event C|A.

Theorem 10. Let A, B, C be three logically independent events and I = ([x1, x2] × [y1, y2] × [t1, t2]) ⊆ [0, 1]3
be an imprecise assessment on (C|B, A|B, B|(A ∨B)). Then, the set Σ of the coherent extensions of I on 
C|A is the interval [z∗, z∗∗], where

z∗ =

⎧⎨
⎩

0, if t1(x1 + y1 − 1) � 0,
t1(x1 + y1 − 1)
1 − t1(1 − y1)

, if t1(x1 + y1 − 1) > 0, and

z∗∗ =

⎧⎨
⎩

1, if t1(y1 − x2) � 0,

1 − t1(y1 − x2)
1 − t1(1 − y1)

, if t1(y1 − x2) > 0.

Proof. Since the set [0, 1]3 on (C|B, A|B, B|(A ∨ B)) is totally coherent (Proposition 6), it follows that I
is also totally coherent. For every precise assessment P = (x, y, t) ∈ I, we denote by [z′P, z′′P] the interval of 
the coherent extension of P on C|A, where z′P and z′′P coincide with z′ and z′′, respectively, as defined in 
Theorem 9. Then, Σ =

⋃
P∈I[z′P, z′′P] = [z∗, z∗∗], where z∗ = infP∈I z′P and z∗∗ = supP∈I z′′P.

Concerning the computation of z∗ we distinguish the following alternative cases: (i) t1(x1 + y1 −1) � 0; (ii)
t1(x1+y1 > 1) > 0. Case (i). By Theorem 9 it holds that z′P = 0 for P = (x1, y1, t1). Thus, {z′P : P ∈ I} ⊇ {0}
and hence z∗ = 0.
Case (ii). We note that the function t(x + y − 1) : [0, 1]3 is nondecreasing in the arguments x, y, t. Then, 
t(x + y − 1) � t1(x1 + y1 − 1) > 0 for every (x, y, t) ∈ I. Hence by Theorem 9, z′P = t(x+y−1)

1−t(1−y) for every 

P ∈ I. Moreover, the function t(x+y−1)
1−t(1−y) is nondecreasing in the arguments x, y, t over the restricted domain 

I; then, t(x+y−1)
1−t(1−y) � t1(x1+y1−1)

1−t1(1−y1) . Thus, z∗ = inf{z′P : P ∈ I} = inf
{

t(x+y−1)
1−t(1−y) : (x, y, z) ∈ I

}
= t1(x1+y1−1)

1−t1(1−y1) .
Concerning the computation of z∗∗ we distinguish the following alternative cases: (i) t1(y1 − x2) � 0; (ii)
t1(y1−x2) > 0. Case (i). By Theorem 9 it holds that z′′P = 1 for P = (x2, y1, t1) ∈ I. Thus, {z′′P : P ∈ I} ⊇ {1}
and hence z∗∗ = 1.
Case (ii). We observe that t(y− x) � t1(y − x) � t1(y1 − x) � t1(y1 − x2) > 0 for every (x, y, t) ∈ I. Then, 
the condition t(y−x) > 0 is satisfied for every P = (x, y, t) ∈ I and hence by Theorem 9, z′′P = 1 − t(y−x)

1−t(1−y)

for every P ∈ I. The function 1 − t(y−x)
1−t(1−y) is nondecreasing in the argument x and it is nonincreasing in the 

arguments y, t over the restricted domain I. Thus, 1 − t(y−x)
1−t(1−y) � 1 − t(y−x2)

1−t(1−y) � 1 − t1(y1−x2)
1−t1(1−y1) for every 

(x, y, t) ∈ I. Then z∗∗ = sup{z′′P : P ∈ I} = sup
{

1 − t(y−x)
1−t(1−y) : (x, y, z) ∈ I

}
= 1 − t1(y1−x2)

1−t1(1−y1) . �
6.2. Traditionally valid syllogisms of Figure III

In this section we consider the probabilistic interpretation of the traditionally valid syllogisms of Figure III 
(Darapti, Datisi, Disamis, Felapton, Ferison, and Bocardo; see Table 1). Like in Figure I and in Figure II, 
all syllogisms of Figure III without existential import assumptions are probabilistically non-informative. 
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Indeed, by instantiating S, M , P for A, B, C, respectively, in Proposition 5, we observe that the imprecise 
assessment [0, 1]3 on (P |M, S|M, P |S) is t-coherent. Thus, for instance, from the premises p(P |M) = 1 and 
p(S|M) > 0 infer that every p(P |S) ∈ [0, 1] is coherent. This means that Datisi (“Every M is P , Some 
M is S, therefore Some S is P”) without existential import assumption is not valid. Therefore we add the 
conditional event existential import assumption: p(M |(S ∨M)) > 0 (see Definition 8). In what follows, we 
construct (s-)valid versions of the traditionally valid syllogisms of Figure III, by suitable instantiations in 
Theorem 9.

Darapti. By instantiating S, M, P in Theorem 9 for A, B, C with x = 1, any y = 1, and any t > 0, 
as t(x + y − 1) = t > 0, it follows that z′ = t(x+y−1)

1−t(1−y) = t > 0. Concerning the upper bound z′′, as 
t(y−x) = 0, it holds that z′′ = 1. Then, the set Σ of coherent extensions on P |S of the imprecise assessment 
{1} × {1} × (0, 1] on (P |M, S|M, M |(S ∨M)) is Σ =

⋃
{(x,y,t)∈{1}×{1}×(0,1]}[t, 1] =

⋃
{t∈(0,1]}[t, 1] = (0, 1]. 

Thus, by Definition 7,

{1} × {1} × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s (0, 1] on P |S. (52)

In terms of probabilistic constraints, (52) can be expressed by

(p(P |M) = 1, p(S|M) = 1, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (53)

which is a s-valid version of Darapti.

Datisi. By instantiating S, M, P in Theorem 9 for A, B, C with x = 1, any y > 0, and any t > 0, as 
t(x + y − 1) = ty > 0, it follows that z′ = t(x+y−1)

1−t(1−y) = ty
1−t(1−y) > 0. Concerning the upper bound z′′, as 

t(y−x) = t(y− 1) � 0, it holds that z′′ = 1. Then, the set Σ of coherent extensions on P |S of the imprecise 
assessment {1} ×(0, 1] ×(0, 1] on (P |M, S|M, M |(S∨M)) is Σ =

⋃
{(x,y,t)∈{1}×(0,1]×(0,1]}[

ty
1−t(1−y) , 1]. We now 

prove that Σ = (0, 1]. Of course, Σ ⊆ [0, 1]. Moreover, as for (y, t) ∈ (0, 1] × (0, 1] it holds that ty
1−t(1−y) > 0, 

then 0 /∈ Σ and hence Σ ⊆ (0, 1]. Vice versa, let z ∈ (0, 1]. By choosing any pair (y, t) ∈ (0, 1] × (0, 1] such 
that 0 < t � z and y = 1, we obtain

ty

1 − t(1 − y) = t � z � 1,

which implies that z ∈ Σ. Thus, by Definition 7,

{1} × (0, 1] × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s (0, 1] on P |S. (54)

In terms of probabilistic constraints, (54) can be expressed by

(p(P |M) = 1, p(S|M) > 0, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (55)

which is a s-valid version of Datisi. Therefore, inference (55) is a probabilistically informative version of 
Datisi.

Disamis. We instantiate S, M, P in Theorem 9 for A, B, C with any x > 0, y = 1, and any t > 0. We 
observe that the imprecise assessment I = (0, 1] × {1} × (0, 1] on (P |M, S|M, M |(S ∨M)) coincides with 
I′ ∪ I′′, where I′ = {1} × {1} × (0, 1] and I′′ = (0, 1) × {1} × (0, 1] (notice that here (0, 1) denotes the 
open unit interval). Then, the set Σ of coherent extensions on P |S of the imprecise assessment I on P |S
coincides with Σ′∪Σ′′, where Σ′ and Σ′′ are the sets of coherent extensions of the two assessments I′ and I′′, 
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respectively. In case of I′ (which implies x = 1), it holds that Σ′ =
⋃

{(x,y,t)∈{1}×{1}×(0,1]}[t, 1] = (0, 1] (see 

Darapti). In case of I′′ (which implies x > 0), as t(x +y−1) = tx > 0, it follows that z′ = t(x+y−1)
1−t(1−y) = tx > 0; 

concerning the upper bound, as t(y−x) = t(1 −x) > 0, it holds that z′′ = 1 − t(y−x)
1−t(1−y) = 1 − t(1 −x). Then, 

Σ′′ =
⋃

{(x,y,t)∈{(0,1)×{1}×(0,1]}[tx, 1 − t(1 − x)] = (0, 1). Hence, Σ = Σ′ ∪Σ′′ = (0, 1]. Thus, by Definition 7,

(0, 1] × {1} × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s (0, 1] on P |S. (56)

In terms of probabilistic constraints, (56) can be expressed by

(p(P |M) > 0, p(S|M) = 1, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (57)

which is a s-valid version of Disamis (“Some M is P , Every M is S, therefore Some S is P”). Notice that 
Darapti also follows from Disamis and from Datisi by strengthening the premise.

Felapton. By instantiating S, M, P in Theorem 9 for A, B, C with x = 0, any y = 1, and any t > 0, as 
t(x + y − 1) = 0, it follows that z′ = 0. Concerning the upper bound z′′, as t(y − x) = t > 0, it holds 
that z′′ = 1 − t(y−x)

1−t(1−y) = 1 − t. Then, the set Σ of coherent extensions on P |S of the imprecise assessment 
{0} × {1} × (0, 1] on (P |M, S|M, M |(S ∨M)) is Σ =

⋃
{(x,y,t)∈{0}×{1}×(0,1]}[0, 1 − t]. Equivalently, the set 

Σ of coherent extensions on P |S is Σ =
⋃

{(x,y,t)∈{0}×{1}×(0,1]}[t, 1] =
⋃

{t∈(0,1]}[t, 1] = (0, 1]. Thus, by 
Definition 7,

{0} × {1} × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s (0, 1] on P |S. (58)

In terms of probabilistic constraints, (58) can be expressed by

(p(P |M) = 0, p(S|M) = 1, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (59)

which is a s-valid version of Felapton. Notice that Felapton is equivalent to Darapti, because (59) is equivalent 
to (53) when P is replaced by P (and the probabilities are adjusted accordingly).

Ferison. By instantiating S, M, P in Theorem 9 for A, B, C with x = 0, any y > 0, and any t > 0, as 
t(x + y − 1) = t(y − 1) � 0, it follows that z′ = 0. Concerning the upper bound z′′, as t(y − x) = ty > 0, it 
holds that z′′ = 1 − t(y−x)

1−t(1−y) = 1 − ty
1−t(1−y) . Then, the set Σ of coherent extensions on P |S of the imprecise 

assessment {0} × (0, 1] × (0, 1] on (P |M, S|M, M |(S ∨M)) is Σ =
⋃

{(x,y,t)∈{0}×(0,1]×(0,1]}[0, 1 − ty
1−t(1−y) ]. 

Equivalently, as p(P |S) = 1 −p(P |S), the set of coherent extensions on P |S, denoted by Σ, of the imprecise 
assessment {0} ×(0, 1] ×(0, 1] on (P |M, S|M, M |(S∨M)) is Σ =

⋃
{(x,y,t)∈{0}×(0,1]×(0,1]}[

ty
1−t(1−y) , 1] = (0, 1]. 

Thus, by Definition 7,

{0} × (0, 1] × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s (0, 1] on P |S. (60)

In terms of probabilistic constraints, (60) can be expressed by

(p(P |M) = 0, p(S|M) > 0, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (61)

which is a s-valid version of Ferison. Notice that Ferison (61) is equivalent to Datisi (55), when P is replaced 
by P .
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Bocardo. We instantiate S, M, P in Theorem 9 for A, B, C with any x < 1, y = 1, and any t > 0. We 
observe that the imprecise assessment I = [0, 1) × {1} × (0, 1] on (P |M, S|M, M |(S ∨M)) coincides with 
I′ ∪ I′′, where I′ = {0} × {1} × (0, 1] and I′′ = (0, 1) × {1} × (0, 1] (notice that here (0, 1) denotes the 
open unit interval). Then, the set Σ of coherent extensions on P |S of the imprecise assessment I on P |S
coincides with Σ′∪Σ′′, where Σ′ and Σ′′ are the sets of coherent extensions of the two assessments I′ and I′′, 
respectively. In case of I′ (which implies x = 0), it holds that Σ′ =

⋃
{(x,y,t)∈{0}×{1}×(0,1]}[0, 1 − t] = [0, 1)

(see the set Σ in Felapton). In case of I′′ (which implies 0 < x < 1), it holds that Σ′′ = (0, 1) (see the set 
Σ′′ in Disamis). Hence, Σ = Σ′ ∪ Σ′′ = [0, 1). Thus, by Definition 7,

[0, 1) × {1} × (0, 1] on (P |M,S|M,M |(S ∨M)) |=s [0, 1) on P |S. (62)

In terms of probabilistic constraints, (62) can be expressed by

(p(P |M) < 1, p(S|M) = 1, p(M |(S ∨M)) > 0) |=s p(P |S) < 1 ,

which is equivalent to

(p(P |M) > 0, p(S|M) = 1, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 . (63)

Formula (63) is a s-valid version of Bocardo (“Some M is not P , Every M is S, therefore Some S is not 
P”). We observe that Bocardo (63) is equivalent to Disamis (57), when P is replaced by P .

Remark 14. Notice that, traditionally, the conclusions of logically valid Aristotelian syllogisms of Figure III 
are neither in the form of sentence type A (every) nor of E (no). In terms of our probability semantics, we 
study which assessments (x, y, t) on (P |M, S|M, S|(S ∨M)) propagate to z′ = z′′ = p(P |S) = 1 in order to 
validate A in the conclusion. According to Theorem 9, (x, y, t) ∈ [0, 1]3 propagates to z′ = z′′ = 1 if and 
only if ⎧⎪⎪⎨

⎪⎪⎩
(x, y, t) ∈ [0, 1]3,
t(x + y − 1) > 0,
z′ = t(x+y−1)

1−t(1−y) = 1,
t(y − x) � 0,

⇐⇒

⎧⎨
⎩

(x, y, t) ∈ [0, 1]3,
1 + yt− t > 0,
tx = 1, ty � 1,

⇐⇒

⎧⎨
⎩

x = 1,
0 < y � 1,
t = 1.

Then, z′ = z′′ = 1 if and only if (x, y, t) = (1, y, 1), with 0 < y � 1. However, for the syllogisms it would 
be too strong to require t = 1 as an existential import assumption, we only require that t > 0. Similarly, in 
order to validate E in the conclusion, it can be shown that assessments (x, y, t) on (P |M, S|M, S|(S ∨M))
propagate to the conclusion z′ = z′′ = p(P |S) = 0 if and only if (x, y, t) = (0, y, 1), with 0 < y � 1. 
Therefore, if t is just positive neither A nor E can be validated within in our probability semantics of 
Figure III.

7. Applications to nonmonotonic reasoning

We recall that the default H |∼ E denotes the sentence “E is a plausible consequence of H” (see, e.g., 
[61]). Moreover, the negated default H |∼/ E denotes the sentence “it is not the case, that: E is a plausible 
consequence of H”. Based on Definition 8 in [46], we interpret the default H |∼ E by the probability 
assessment p(E|H) = 1; while the negated default H |∼/ E is interpreted by the imprecise probability 
assessment p(E|H) < 1. Thus, as the probability assessment p(E|H) > 0 is equivalent to p(E|H) < 1, the 
negated default H |∼/ E is also interpreted by p(E|H) > 0. Then, the basic syllogistic sentence types (see 
Table 2) can be interpreted in terms of defaults or negated defaults as follows:

(A) S |∼ P (Every S is P , p(P |S) = 1);
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(E) S |∼ P (No S is P , p(P |S) = 1);
(I) S |∼/ P (Some S is P , p(P |S) > 0);
(O) S |∼/ P (Some S is not P , p(P |S) > 0).

For example, recall the probabilistic modus Barbara (13), which is strictly valid and thus valid, can be 
expressed in terms of defaults and negated defaults as follows: (M |∼ P, S |∼ M, (S ∨M) |∼/ S) |= S |∼ P . 
As pointed out in [46] the default version of Barbara amounts to the well-known inference rule Weak 
Transitivity. We recall that Weak Transitivity is valid in the nonmonotonic System R ([64], i.e., System P 
([61]) plus Rational Monotonicity), because it is equivalent to Rational Monotonicity ([36, Theorem 2.1]). 
For other nonmonotonic versions of transitivity see [9,8]. We present the default versions of the (logically 
valid) syllogisms of Figures I, II, and III in Table 8. These versions, which involve defaults and negated 
defaults, are valid in our approach and can serve as inference rules for nonmonotonic reasoning.

Moreover, we observe that some syllogisms can be expressed in defaults only without using negated 
defaults. For example, if the conditional event existential import of Barbara is strengthened by p(S|(S ∨
M)) = 1, we obtain the following valid default rule:

(M |∼ P, S |∼ M, (S ∨M) |∼ S) |=s S |∼ P. (64)

Note that inference (64) still satisfies AAA of Figure I. In probabilistic terms inference (64) means that the 
premises p-entails the conclusion (see Section 10.2 in [51]), i.e.,

(p(P |M) = 1, p(M |S) = 1, p(S|(S ∨M)) = 1) |=s p(P |S) = 1. (65)

In general, the probability propagation rules for the three figures can be used to generate new syllogisms. 
For example, from the probability propagation rule of Figure III (Theorem 9) we obtain a valid syllogism 
of type AAA with the (stronger) existential import p(M |(S ∨M)) = 1, which is in terms of defaults:

(M |∼ P,M |∼ S, (S ∨M) |∼ M) |=s S |∼ P. (66)

Equations (64) and (66) are p-valid inference rules for nonmonotonic reasoning and constitute syllogisms 
which are beyond traditional Aristotelian syllogisms (since, traditionally, AAA does not describe a valid 
syllogism of Figure III).

The procedure of replacing negated defaults by defaults, for obtaining inference (64), can also yield new 
syllogisms.

8. Conversion and reduction

The most prominent methods of proof in Aristotelian syllogistics are conversion, reductio (by conversion), 
and reductio ad impossibile (by the compound law of transposition; see, e.g., [65,89]). In this section we give 
some probabilistic results to show that conversion and reductio (by conversion) do not hold in our approach 
(Section 8.1). Then we show to what extent reductio ad impossibile can be applied within our approach: we 
will observe that by the application of the compound law of transposition to syllogisms of Figure II and 
Figure III the syllogisms can be reduced to Figure I and that they are hence valid. However, this method 
does not allow for distinguishing between valid and s-valid syllogisms and hence reductio ad impossibile is 
not s-validity preserving (Section 8.2).

8.1. Reductio by conversion

According to Aristotle, three rules of conversion are sound (see, e.g., [65,89]). Conversion means that the 
term position can be interchanged in sentence types I and E (i.e., some S is P logically implies some P is 
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Table 8
Traditional (logically valid) Aristotelian syllogisms of Figure I, II, and III (see Table 1) in terms 
of defaults and negated defaults, under the conditional event existential import assumption.

Figure I
AAA Barbara (M |∼ P, S |∼ M, (S ∨ M) |∼/ S) |=s S |∼ P .
AAI Barbari (M |∼ P, S |∼ M, (S ∨ M) |∼/ S) |= S |∼/ P .
AII Darii (M |∼ P, S |∼/ M, (S ∨ M) |∼/ S) |=s S |∼/ P .
EAE Celarent (M |∼ P, S |∼ M, (S ∨ M) |∼/ S) |=s S |∼ P .
EAO Celaront (M |∼ P, S |∼ M, (S ∨ M) |∼/ S) |= S |∼/ P .
EIO Ferio (M |∼ P, S |∼/ M, (S ∨ M) |∼/ S) |=s S |∼/ P .

Figure II
AEE Camestres (P |∼ M,S |∼ M, (S ∨ P ) |∼/ S) |=s S |∼ P .
AEO Camestrop (P |∼ M,S |∼ M, (S ∨ P ) |∼/ S) |= S |∼/ P .
AOO Baroco (P |∼ M,S |∼/ M, (S ∨ P ) |∼/ S) |=s S |∼/ P .
EAE Cesare (P |∼ M,S |∼ M, (S ∨ P ) |∼/ S) |=s S |∼ P .
EAO Cesaro (P |∼ M,S |∼ M, (S ∨ P ) |∼/ S) |= S |∼/ P .
EIO Festino (P |∼ M,S |∼/ M, (S ∨ P ) |∼/ S) |=s S |∼/ P .

Figure III
AAI Darapti (M |∼ P,M |∼ S, (S ∨ M) |∼/ M) |=s S |∼/ P .
AII Datisi (M |∼ P,M |∼/ S, (S ∨ M) |∼/ M) |=s S |∼/ P .
IAI Disamis (M |∼/ P ,M |∼ S, (S ∨ M) |∼/ M) |=s S |∼/ P .
EAO Felapton (M |∼ P,M |∼ S, (S ∨ M) |∼/ M) |=s S |∼/ P .
EIO Ferison (M |∼ P,M |∼/ S, (S ∨ M) |∼/ M) |=s S |∼/ P .
OAO Bocardo (M |∼/ P,M |∼ S, (S ∨ M) |∼/ M) |=s S |∼/ P .

S and no S is P logically implies no P is S, respectively) and that every S is P logically implies some P
is S. However, the assessment p(P |S) does not constrain p(S|P ). Indeed, as we now show in Proposition 7, 
the assessment (x, y) on (P |S, S|P ) is coherent for every (x, y) ∈ [0, 1]2. Therefore, none of these three rules 
of conversion hold in our approach.

Proposition 7 (Asymmetry of term order). Let P, S be two logically independent events. The imprecise 
assessment [0, 1]2 on F = (P |S, S|P ) is t-coherent.

Proof. Let P, S be two logically independent events. We show that the imprecise assessment [0, 1]2 on 
F = (P |S, S|P ) is totally coherent, by showing that every precise assessment P = (x, y) ∈ [0, 1]2 on F is 
coherent. Let P = (x, y) ∈ [0, 1]2 be a precise assessment on F . Then, the constituents Ch and the points 
Qh associated with (F , P) are

C1 = SP, C2 = SP , C3 = SP, C0 = (x, y),

and

Q1 = (1, 1), Q2 = (0, y), Q3 = (x, 0), Q0 = (x, y) = P.

We observe that C1 ∨ C2 ∨ C3 = S ∨ P . By Theorem 2, coherence of P on F requires that the following 
system

(S) P =
∑3

h=1 λhQh,
∑3

h=1 λh = 1, λh � 0, h = 1, . . . , 3,

or equivalently

{
λ1 + xλ3 = x, λ1 + yλ2 = y,

λ1 + λ2 + λ3 = 1, λh � 0, h = 1, 2, 3,
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is solvable. In geometrical terms, this means that the condition P ∈ I is satisfied, where I is the convex hull 
of Q1, Q2, Q3. We distinguish three cases: (i) x �= 0 and y �= 0; (ii) x = 0; (iii) y = 0.
Case (i). We observe that P = xy

x+y−xyQ1 + y(1−x)
x+y−xyQ2 + x(1−y)

x+y−xyQ3, indeed it holds that

xy
x+y−xy (1, 1) + y(1−x)

x+y−xy (0, y) + x(1−y)
x+y−xy (x, 0) =

(
x2+xy−x2y
x+y−xy , xy+y2−xy2

x+y−xy

)
=

(
x(x+y−xy)
x+y−xy , y(x+y−xy)

x+y−xy

)
= (x, y).

Thus, system (S) is solvable and a solution is Λ = (λ1, λ2, λ3) = ( xy
x+y−xy , 

y(1−x)
x+y−xy , 

x(1−y)
x+y−xy ). From (3) we 

obtain that

Φ1(Λ) =
∑

h:Ch⊆S

λh = λ1 + λ2 = y

x + y − xy
> 0, Φ2(Λ) =

∑
h:Ch⊆P

λh = λ1 + λ3 = x

x + y − xy
> 0.

Let S′ = {( xy
x+y−xy , 

y(1−x)
x+y−xy , 

x(1−y)
x+y−xy )} denote a subset of the set S of all solutions of (S). Then, 

M ′
1 = max{Φ1 : Λ ∈ S′} > 0 and M ′

2 = max{Φ2 : Λ ∈ S′} > 0 and hence I ′0 = ∅ (as defined in (5)). By 
Theorem 3, as (S) is solvable and I ′0 = ∅, the assessment (x, y) ∈ ]0, 1]2 is coherent.
Case (ii). In this case, as x = 0, it holds that P = (0, y) = Q2. Thus, system (S) is solvable and a 
solution is Λ = (λ1, λ2, λ3) = (0, 1, 0). From (3) we obtain that Φ1(Λ) =

∑
h:Ch⊆S λh = λ1 + λ2 = 1 and 

Φ2(Λ) =
∑

h:Ch⊆P λh = λ1 + λ3 = 0. Let S′ = {(0, 1, 0)} denote a subset of the set S of all solutions of 
(S). Then, M ′

1 > 0 and M ′
2 = 0 and hence I ′0 = {2} (as defined in (5)). We recall that the sub-assessment 

P′
0 = (y) on F ′

0 = {S|P} is coherent for every y ∈ [0, 1]. Then, by Theorem 3 the assessment (0, y) on F is 
coherent for every y ∈ [0, 1]. Then, every assessment (x, y) ∈ {0} × [0, 1] is coherent.
Case (iii). In this case, as y = 0, it holds that P = (x, 0) = Q3. Thus, system (S) is solvable and a 
solution is Λ = (λ1, λ2, λ3) = (0, 0, 1). From (3) we obtain that Φ1(Λ) =

∑
h:Ch⊆S λh = λ1 + λ2 = 0 and 

Φ2(Λ) =
∑

h:Ch⊆P λh = λ1 + λ3 = 1. Let S′ = {(0, 0, 1)} denote a subset of the set S of all solutions of 
(S). Then, M ′

1 = 0 and M ′
2 > 0 and hence I ′0 = {1} (as defined in (5)). We recall that the sub-assessment 

P′
0 = (x) on F ′

0 = {P |S} is coherent for every x ∈ [0, 1]. Then, by Theorem 3 the assessment (x, 0) on F is 
coherent for every x ∈ [0, 1]. Then, every assessment (x, y) ∈ [0, 1] × {0} is coherent.
Therefore, every assessment (x, y) ∈ [0, 1]2 is coherent and hence the imprecise assessment [0, 1]2 on F is 
t-coherent. �

Moreover, Aristotle also proposed methods of reduction to prove validity. The method of reduction by 
conversion consists in “reducing” all syllogisms to “perfect” syllogisms of Figure I. Only syllogisms of Figure I 
are perfect because the “transitivity of the connexion between the terms [is] obvious at a glance” ([60, p. 73]): 
perfect syllogisms can be seen as self-evident without requiring further proof (for a discussion of “perfect” 
see, e.g., [35]). More specifically, Aristotle’s full program consists in showing validity by reduction to Barbara
and Celarent. Since this method of reduction requires conversion ([60, p. 236]), reduction is also not valid 
in our approach.

In the next two remarks we observe that the conditional event existential import of Figure II does not 
follow from any syllogism of Figure I (Remark 15) and vice versa (Remark 16). More specifically, assuming 
any degrees of belief in the premises of syllogisms of Figure I (Figure II, respectively) does not imply 
a positive degree of belief in the conditional event existential import of Figure II, i.e., p(S|(S ∨ P ) > 0
(Figure I, i.e., p(S|(S ∨M) > 0, respectively).

Remark 15. Let P = (x, y, t, 0), with (x, y, t) ∈ [0, 1]3, be a probability assessment on F = (P |M, M |S, S|(S∨
M), S|(S ∨ P )), where S, M , and P are three logically independent events. We show that P = (x, y, t, 0)
on F is coherent for every (x, y, t) ∈ [0, 1]3. The constituents Ch and the points Qh associated with (F , P)
are given in Table 9. By Theorem 2, coherence of P = (x, y, t, 0) on F requires that the following system is 
solvable
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Table 9
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, t, 0) on F = (P |M, M |S, S|(S ∨ M), S|(S ∨ P )).

Ch Qh

C1 SMP (1, 1, 1, 1) Q1
C2 SMP (0, 1, 1, 1) Q2
C3 SMP (x, 0, 1, 1) Q3
C4 SM P (x, 0, 1, 1) Q4
C5 SMP (1, y, 0, 0) Q5
C6 SMP (0, y, 0, 0) Q6
C7 SMP (x, y, t, 0) Q7
C0 SM P (x, y, t, 0) Q0 = P

Table 10
Constituents Ch and points Qh associated with the probability assess-
ment P = (x, y, t, 0) on F = (M |P, M |S, S|(S ∨ P ), S|(S ∨ M)).

Ch Qh

C1 SMP (1, 0, 1, 1) Q1
C2 SMP (x, 0, 1, 1) Q2
C3 SMP (0, 1, 1, 1) Q3
C4 SM P (x, 1, 1, 1) Q4
C5 SMP (1, y, 0, 0) Q5
C6 SMP (x, y, t, 0) Q6
C7 SMP (0, y, 0, 0) Q7
C0 SM P (x, y, t, 0) Q0 = P

(S) P =
∑7

h=1 λhQh,
∑7

h=1 λh = 1, λh � 0, h = 1, . . . , 7.

In geometrical terms, this means that the condition P ∈ I is satisfied, where I is the convex hull of 
Q1, . . . , Q7. We observe that P = Q6. Thus, system (S) is solvable and a solution is Λ = (λ1, . . . , λ7) =
(0, 0, 0, 0, 0, 0, 1). From (3) we obtain that Φ1(Λ) =

∑
h:Ch⊆M λh = λ1 + λ2 + λ5 + λ6 = 0, Φ2(Λ) =∑

h:Ch⊆S λh = λ1 + λ2 + λ3 + λ4 = 0, Φ3(Λ) =
∑

h:Ch⊆S∨M λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 0, 
Φ4(Λ) =

∑
h:Ch⊆S∨P λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ7 = 1. Let S′ = {(0, 0, 0, 0, 0, 0, 1)} denote a subset 

of the set S of all solutions of (S). Then, M ′
1 = M ′

2 = M ′
3 = 0, M ′

4 = 1 and hence I ′0 = {1, 2, 3} (as 
defined in (5)). By Theorem 3, as (S) is solvable and I ′0 = {1, 2, 3}, it is sufficient to check the coherence 
of the sub-assessment P′

0 = (x, y, t) on F ′
0 = (P |M, M |S, S|(S ∨ M)) in order to check the coherence of 

(x, y, t, 0) on F . From Proposition 2, by replacing A, B, C with S, M, P , respectively, it holds that (x, y, t)
on F ′

0 = (P |M, M |S, S|(S∨M)) is coherent for every (x, y, t) ∈ [0, 1]3. Therefore, (x, y, t, 0) on F is coherent 
for every (x, y, t) ∈ [0, 1]3.

Remark 16. Let P = (x, y, t, 0), with (x, y, t) ∈ [0, 1]3, be a probability assessment on F = (M |P, M |S, S|(P∨
S), S|(S ∨M)), where S, M , and P are three logically independent events. We show that P = (x, y, t, 0) on 
F is coherent for every (x, y, t) ∈ [0, 1]3. The constituents Ch and the points Qh associated with (F , P) are 
given in Table 10. By Theorem 2, coherence of P = (x, y, t, 0) on F requires that the following system is 
solvable

(S) P =
∑7

h=1 λhQh,
∑7

h=1 λh = 1, λh � 0, h = 1, . . . , 7.

In geometrical terms, this means that the condition P ∈ I is satisfied, where I is the convex hull of 
Q1, . . . , Q7. We observe that P = Q6. Thus, system (S) is solvable and a solution is Λ = (λ1, . . . , λ7) =
(0, 0, 0, 0, 0, 1, 0). From (3) we obtain that Φ1(Λ) =

∑
h:Ch⊆P λh = λ1 + λ3 + λ5 + λ7 = 0, Φ2(Λ) =∑

h:Ch⊆S λh = λ1 + λ2 + λ3 + λ4, Φ3(Λ) =
∑

h:Ch⊆S∨P λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ7 = 0, and 
Φ4(Λ) =

∑
h:Ch⊆S∨M λh = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1. Let S′ = {(0, 0, 0, 0, 0, 1, 0)} denote a subset 

of the set S of all solutions of (S). Then, M ′
1 = M ′

2 = M ′
3 = 0, M ′

4 = 1 and hence I ′0 = {1, 2, 3} (as 
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defined in (5)). By Theorem 3, as (S) is solvable and I ′0 = {1, 2, 3}, it is sufficient to check the coherence 
of the sub-assessment P′

0 = (x, y, t) on F ′
0 = (M |P, M |S, S|(P ∨ S)) in order to check the coherence of 

(x, y, t, 0) on F . From Proposition 4, by replacing A, B, C with S, M, P , respectively, it holds that (x, y, t)
on F ′

0 = (M |P, M |S, S|(P ∨S)) is coherent for every (x, y, t) ∈ [0, 1]3. Therefore, (x, y, t, 0) on F is coherent 
for every (x, y, t) ∈ [0, 1]3.

We observe from Remark 15 that the conditional event existential import of Figure II does not follow 
from any syllogism of Figure I, since p(P |M) = x, p(M |S) = y, and p(S|(S ∨M)) = t > 0 does not imply 
p(S|(S ∨ P )) > 0, because the assessment p(S|(S ∨ P )) = 0 is a coherent extension from (x, y, t). Likewise, 
we observe from Remark 16 that the conditional event existential import of Figure I does not follow from
any syllogism of Figure II, since p(M |P ) = x, p(M |S) = y, and p(S|(S ∨ P )) = t > 0 does not imply 
p(S|(S ∨M)) > 0, because the assessment p(S|(S ∨M)) = 0 is a coherent extension from (x, y, t).

In Aristotelian syllogistics, for example, Cesare can be reduced by conversion to Celarent as follows 
(see, e.g., [89], table in Section 5.4): from the premises of Cesare, i.e., no P is M and every S is M
it follows by conversion that no M is P and every S is M , which in turn implies by Celarent that no 
S is P . In our approach however, this inference does not hold: we observe that the premises of Cesare, 
i.e., p(M |P ) = 0, p(M |S) = 1, p(S|(S ∨ P )) > 0 (see (41)), do not imply the premises of Celarent, i.e., 
p(P |M) = 0, p(M |S) = 1, p(S|(S ∨ M)) > 0, (see (19)), since p(S|(S ∨ M)) = 0 is coherent under the 
premises of Cesare (Remark 16). Therefore, Cesare can not be reduced by conversion to Celarent (which 
requires that p(S|(S ∨M)) > 0) in our approach.

8.2. Reductio ad impossibile

Aristotle described also validity proofs by reductio ad impossibile. According to Łukasiewicz, this should 
correspond to the application of the compound law of transposition ([65, p. 56]), i.e., if (A and B, then C), 
then (if A and not-C, then not-B). For example, by instantiating Barbara in the first conditional (i.e., for 
A and B Barbara’s premises and for C its conclusion), implies logically Baroco by suitable instantiations in 
the second conditional of the compound law of transposition ([65, p. 56]).

In terms of defaults, it can be easily shown that reductio ad impossibile holds in our approach because 
each valid syllogism of Figure II and Figure III can be reduced to a valid syllogism of Figure I. For example, 
Camestres of Figure II can be reduced to Darii of Figure I as follows. The compound law of transposition 
applied to Camestres yields the inference: from P |∼ M , S |∼/ P , and (S ∨ P ) |∼/ S infer S |∼/ M . By 
interchanging P and M , we obtain the valid inference Darii: from M |∼ P , S |∼/ M , and (S ∨M) |∼/ S infer 
S |∼/ P . For a sample reduction of a Figure III syllogism to Figure I consider Darapti. The application of the 
compound law of transposition to Darapti yields the inference from S |∼ P , M |∼ S, and (S ∨M) |∼/ M)
infer M |∼/ P . By interchanging S and M , we obtain the valid inference Celaront of Figure I: from M |∼ P , 
S |∼ M , and (S ∨ M) |∼/ S) infer S |∼/ P . Note that while Darapti is s-valid, Celaront is valid but not s-
valid in our semantics. Since the compound law of transposition ignores this difference, it does not preserve 
s-validity.

Our validity proofs are based on the probability propagation rules, which are different for each figure. 
To what extent they may be reduced to each other, given the asymmetries of the term order between the 
figures and the different existential import assumptions, is a topic of future research.

9. Generalized quantifiers

The basic syllogistic sentence types A, E, I, O involve quantifiers which we represent by special cases of 
probability evaluations, namely equal to 1 or 0 for the universal quantifiers, and excluding 0 or 1 for the 
particular quantifiers. A natural generalization of such quantifiers is to use thresholds between 0 and 1. 
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Then, we obtain generalized (or intermediate) quantifiers (see, e.g., [5,68,69]). For instance, the statement 
Most S are P (sentence type T, for the notation see [69] see also [66]) can be interpreted by the conditional 
probability assessment p(P |S) � x, where x denotes a suitable threshold (e.g., greater than 0.5). Likewise, 
the statement Most S are not-P (sentence type D) can be interpreted by p(P |S) � x with a suitable 
threshold. The choice of the threshold depends on the context of the speaker. By using such sentences, we 
can construct and check the validity of syllogisms involving generalize quantifiers. Specifically, validity can 
be investigated by suitable instatiations of the probability propagation rules, we proved in the previous 
sections. Consider for instance the following generalization of Baroco:

ADD-Figure II: All P are M .
Most S are not-M .
Therefore, Most S are not-P .

In this syllogism, the first premise is of the sentence type A but the second premise and the conclusion 
consist of sentence type D. In our semantics this syllogism is interpreted as follows: from the premises 
p(M |P ) = 1 and p(M |S) � y and the conditional event existential import assumption p(S|(S ∨ P )) > 0
infer the conclusion p(P |S) � y, where y > 0.5. To prove the validity of this syllogism instantiate S, M, P
in Theorem 8 for A, B, C with x1 = x2 = 1, y1 > 0, y2 = 1, t1 > 0, and t2 = 1. Then, we obtain z∗ = y1 and 
z∗∗ = 1. Therefore, the set Σ of coherent extensions on P |S of the imprecise assessment {1} × [y1, 1] × (0, 1]
on (M |P, M |S, S|(S ∨ P )) is Σ = [y1, 1]. Then, we obtain the following generalization of Equation (39):

(p(M |P ) = 1, p(M |S) � y1, p(S|(S ∨ P )) > 0) |=s p(P |S) � y1 . (67)

By choosing y1 > 0.5, Equation (67) validates ADD-Figure II.
Likewise, we can obtain an extension of Darii (17) involving generalized quantifiers. Indeed, by instantiat-

ing S, M, P in Theorem 6 for A, B, C with x1 = x2 = 1, y1 > 0, y2 = 1, t1 > 0, and t2 = 1. Then, we obtain 
z∗ = max

{
0, x1y1 − (1−t1)(1−x1)

t1

}
= y1 and z∗∗ = 1. Therefore, the set Σ of coherent extensions on P |S of 

the imprecise assessment {1} × [y1, 1] × (0, 1] on (P |M, M |S, S|(S ∨M)) is Σ = [y1, 1]. By Definition 7,

(p(P |M) = 1, p(M |S) � y1, p(S|(S ∨M)) > 0) |=s p(P |S) � y1 . (68)

Equation (68) generalizes (17) and validates the following generalized syllogism, when y1 > 0.5

ATT-Figure I: All M are P .
Most S are M .
Therefore, Most S are P .

While, as pointed in Remark 4, valid inferences can generally be obtained from strengthening the premises 
or weakening the conclusion of valid inferences, it is also possible to check the validity of syllogisms with 
weaker premises by exploiting the respective probability propagation rules. For an example of generalized 
syllogism of Figure III consider the following which is a version of Darapti with weakened premises:

TTI-Figure III: Most M are P .
Most M are S.
Therefore, some S is P .

Indeed, by instantiating S, M, P in Theorem 10 for A, B, C with x1 = y1 > 0.5, x2 = y2 = 1, t1 = t > 0, 
and t2 = 1. Then, as x1 + y1 − 1 > 0, we obtain z∗ = t(2x1−1)

1−t(1−x1) and, as t1(y1 − x2) � 0, we obtain 
z∗∗ = 1. We observe that z∗ > t(2x1 − 1) > 0 because t > t and x1 > 0.5. Therefore, the set Σ of 
1−t(1−x1)
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coherent extensions on P |S of the imprecise assessment [x1, 1] × [x1, 1] × (0, 1] on (P |M, M |S, S|(S ∨M)), 
with x1 > 0.5, is Σ =

⋃
t∈(0,1][

t(2x1−1)
1−t(1−x1) , 1] = (0, 1]. Then,

(p(P |M) � x1, p(S|M) � x1, p(M |(S ∨M)) > 0) |=s p(P |S) > 0 , (69)

validates TTI-Figure III, which is a generalization of Darapti involving generalized quantifiers where the 
premises are weakened.

By applying the probability propagation rules (for precise or interval-valued probability assessments) of 
Figures I, II, and III further syllogisms with generalized quantifiers can be obtained.

10. Concluding remarks

In this paper we presented a probabilistic interpretation of the basic syllogistic sentence types (A, E, I, O) 
and suitable existential import assumptions in terms of probabilistic constraints. By exploiting coherence, we 
introduced the notion of validity and strict validity for probabilistic inferences involving imprecise probability 
assessments.

For each Figure I, II, and III, we verified the coherence of any probability assessment in [0, 1]3 on the three 
conditional events which are involved in the major and the minor premise and the conclusion. These results 
show that, without existential import assumption, all traditionally valid syllogisms are probabilistically non-
informative. We also verified for all three figures the total coherence of the imprecise assessment [0, 1]3 on 
the conditional events in the premise set including the existential import. Then, we derived the interval of all 
coherent extensions on the conclusion for every coherent (precise or interval-valued) probability assessment 
on the premise set for each of the three figures. These results were then exploited to prove the validity 
or strict validity of our probabilistic interpretation of all traditionally valid syllogisms of the three figures: 
Barbara, Barbari, Darii, Celarent, Celaront, and Ferio of Figure I; Camestres, Camestrop, Baroco, Cesare, 
Cesaro, and Festino of Figure II; Datisi, Darapti, Ferison, Felapton, Disamis, and Bocardo of Figure III. 
As mentioned before the coherence approach is more general compared to the standard approaches where 
the conditional probability p(E|H) is defined by p(E ∧H)/p(H), where p(H) must be positive. Indeed, we 
showed that the conditional event existential import assumption (which is sufficient for validity) is weaker 
than the requirement of positive conditioning events for the conditional events involved in the syllogisms.

We then built a bridge from our probability semantics of the Aristotelian syllogisms to nonmonotonic 
reasoning by interpreting the basic syllogistic sentence types by suitable defaults and negated defaults. 
We also showed how some new valid syllogisms can be obtained by strengthening our existential import 
assumption. Moreover, by this procedure, the traditionally not valid AAA of Figure III can be validated. 
These new syllogisms, which are expressed in terms of defaults only, are p-valid inference rules which we 
propose, together with default versions of the traditional ones for future research in nonmonotonic reasoning. 
Then we investigated Aristotelian methods of proof within our framework. We observed that reductio by 
conversion does not work while reductio ad impossibile can be applied in our approach. However, the method 
of reductio ad impossibile by suitable applications of the compound law of transposition yields only validity 
by reducing syllogisms of Figure II and Figure III to Figure I: it ignores our distinction between valid and 
s-valid syllogisms. Finally, we showed how the probability propagation rules can be used to analyze the 
validity and the strict validity of syllogisms involving generalized quantifiers. Specifically, sentence like most 
S are P can be interpreted by imprecise probability assessments.

We presented a general method to validate probabilistically non-informative inferences by adding addi-
tional premises. These additional premises can be existential import assumptions, (negated) defaults or other 
probabilistic constraints. These methods can be used to solve inference problems in general with applications 
in various disciplines. For instance, our probabilistic interpretation of Aristotelian syllogisms can serve as 
new rationality framework for the psychology of reasoning, which has a long tradition of using syllogistics 
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for assessing the rationality of human inference. Moreover, our results on generalized quantifiers can be 
applied for investigating semantic and pragmatic problems involving quantification in linguistics. Further-
more, our bridges to nonmonotonic reasoning show the applicability of the proposed approach in reasoning 
under uncertainty, knowledge representation, and artificial intelligence. This selection of applications points 
to new bridges among our semantics, Aristotelian syllogistics, and various disciplines.

We will devote future work to apply our semantics to nonmonotonic reasoning and its relation to prob-
ability logic (see, e.g., [55,56]). Specifically, we will investigate the validity of our default versions of the 
syllogisms in the light of different systems of nonmonotonic reasoning.

Future work will also be devoted to the full probabilistic analysis of Figure IV. Indeed, categorical syl-
logisms of Figure IV go beyond the scope of this paper for two reasons. Firstly, they were introduced after 
Aristotle’s Analytica Priora and are therefore not considered as (proper) Aristotelian syllogisms. Secondly, 
in contrast to the first three figures, based on preliminary results, there seems not to exist a unique condi-
tional event existential import assumption for validating syllogisms of Figure IV ([77]). Therefore, several 
probability propagation rules should be developed only for this figure, which cannot be done in this paper 
owing to lack of space.

Finally, another strand of future research will focus on further generalizations of Aristotelian syllogisms by 
applying the theory of compounds of conditionals under coherence (see, e.g., [50,51]). While, in the present 
paper, we connected the syllogistic terms S and P in the basic syllogistic sentence types by conditional 
events P |S, this theory of compounds of conditionals allows for obtaining generalized syllogistic sentence 
types like If S1 are P1, then S2 are P2 (i.e., (P2|S2)|(P1|S1)) by suitable nestings of conditional events. 
Interestingly, in the context of conditional syllogisms, the resulting uncertainty propagation rules coincide 
with the respective non-nested versions (see, e.g., [76,86–88]). Future research is needed to investigate 
whether similar results can be obtained in the context of such generalized Aristotelian syllogisms.

The various possibilities for applications and generalizations of Aristotelian syllogisms call for future 
research and highlight the impressive research impact of Aristotle’s original work.
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