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Abstract: Purpose: To evaluate the role of radiomics in preoperative outcome prediction in cirrhotic
patients who underwent transjugular intrahepatic portosystemic shunt (TIPS) using “controlled
expansion covered stents”. Materials and Methods: This retrospective institutional review board-
approved study included cirrhotic patients undergoing TIPS with controlled expansion covered
stent placement. From preoperative CT images, the whole liver was segmented into Volumes of
Interest (VOIs) at the unenhanced and portal venous phase. Radiomics features were extracted,
collected, and analyzed. Subsequently, receiver operating characteristic (ROC) curves were drawn
to assess which features could predict patients’ outcomes. The endpoints studied were 6-month
overall survival (OS), development of hepatic encephalopathy (HE), grade II or higher HE according
to West Haven Criteria, and clinical response, defined as the absence of rebleeding or ascites. A
radiomic model for outcome prediction was then designed. Results: A total of 76 consecutive cirrhotic
patients undergoing TIPS creation were enrolled. The highest performances in terms of the area
under the receiver operating characteristic curve (AUROC) were observed for the “clinical response”
and “survival at 6 months” outcome with 0.755 and 0.767, at the unenhanced and portal venous
phase, respectively. Specifically, on basal scans, accuracy, specificity, and sensitivity were 66.42%,
63.93%, and 73.75%, respectively. At the portal venous phase, an accuracy of 65.34%, a specificity of
62.38%, and a sensitivity of 74.00% were demonstrated. Conclusions: A pre-interventional machine
learning-based CT radiomics algorithm could be useful in predicting survival and clinical response
after TIPS creation in cirrhotic patients.

Keywords: radiomics; transjugular intrahepatic portosystemic shunt; computed tomography; recurrence;
survival analysis; interventional radiology

1. Introduction

Transjugular intrahepatic portosystemic shunt (TIPS) is a treatment of proven efficacy
in cirrhotic patients that present with portal hypertension complications, such as variceal
rebleeding or refractory ascites, which represent the main indications for TIPS creation.
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Other indications include refractory hepatic hydrothorax, and hepato-pulmonary, hepato-
renal, or Budd–Chiari syndromes [1]. Despite its widespread use, one-year survival rates
after TIPS creation still range from 48 to 90%, according to the severity of the underlying
liver disease [1,2]. In TIPS patients, post-procedure liver failure, hepatic encephalopathy
(HE), and sepsis are the most common determinants of poor prognosis [2]. The new
controlled expansion covered stents (Viatorr Controlled Expansion Endoprosthesis, Gore,
Newark, DE, USA) are expected to lower the incidence of HE and early liver failure,
since these stents allow more accurate diameter control and may be customized during
implantation, therefore reducing the risk of complications. However, HE and liver failure
are still a concern after TIPS placement. A possible solution would be to preoperatively
select the patients that potentially carry the lowest risk of complications.

With this aim, clinical scores have been developed, like the model of end-stage liver
disease (MELD), which includes serum bilirubin, international normalized ratio (INR), and
creatinine levels, as well as the presence of HE, pulmonary hypertension, and congestive
heart failure [1]. The incidence of HE after TIPS placement is nonetheless still relatively
high (ranging from 30% to 55%), even in patients without previous HE episodes or with
mild liver disease [2].

New predictive models and biomarkers could be provided by artificial intelligence (AI),
leading to better patient selection, avoiding TIPS whenever a poor outcome is expected. AI
comprises radiomics, deep learning, and machine learning and has proven its value for the
early diagnosis and treatment of various diseases [3,4], as well as in operator-independent
liver segmentation on computed tomography (CT) [5].

Radiomics is a recent and promising field of research that, starting from simple medical
images, allows the extraction and analysis of many quantitative features, converting them
into meaningful data [3,4].

Current radiomics applications involve many aspects of hepatology, including pre-
diction of cirrhosis and nonalcoholic fatty liver disease (NAFLD), liver fibrosis staging,
and the differentiation between benign and malignant nodules [6–8]. Despite its potential
clinical importance, to the best of our knowledge, machine learning-based CT radiomics
models have not yet been implemented in patients undergoing TIPS, especially with new-
generation controlled-expansion covered stents [9].

The aim of our study is to assess the feasibility of a radiomics model based on features
extracted from routinely acquired CT images upon TIPS placement, so as to predict HE,
overall clinical response, and survival after TIPS procedure.

2. Materials and Methods
2.1. Patients

All patients who underwent TIPS using controlled expansion covered stents, from
May 2015 to June 2019 in our hospital, were retrospectively enrolled in this study, after
searching their clinical records on our institutional electronical medical archive. Inclusion
criteria were as follows: patients above 18 years old, with a defined diagnosis of cirrhosis,
hospitalized for prophylaxis of variceal rebleeding, or refractory ascites; without malignant
liver lesions or oncological history; presence of a good-quality CT study performed within
3 months upon the procedure; access to complete clinical medical records. Among exclu-
sion criteria we considered: incomplete or low-quality imaging studies; incomplete clinical
records; patients lost to follow-up; liver transplantation performed within 6 months from
the procedure; presence of complete portal vein thrombosis and/or cavernomatous trans-
formation of portal vein; hepatocellular carcinoma or other malignancies, and Budd–Chiari
syndrome. Endpoints evaluated were 6-month survival, development of HE including
pre-TIPS HE, grade II or higher grade HE according to West Haven Criteria (WHC) [10],
and clinical response, defined as the absence of rebleeding or ascites.

This study followed the Helsinki declaration principles and was approved by the
institutional review board of our hospital. Due to its retrospective nature, written informed
consent was waived.
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2.2. TIPS Procedure

All TIPSs were performed in an angiographic suite (Innova 4100, GE Medical Systems,
Milwaukee, WI, USA) by two radiologists with over twenty years of experience in TIPS
creation, with a technique already described in other publications [11,12]. All procedures
were performed under general anesthesia with ultrasound guidance for portal vein tar-
geting. In all patients, the new covered “controlled expansion stents” were used [11]. All
patients were followed up on with clinical and Doppler Ultrasound evaluation at 1, 3, and
then every 6 months after the procedure.

2.3. CT Examination

All CT studies were performed within one month before the procedure, using a
64-slice CT scanner (GE VCT 64 slice, GE, Milwaukee, USA). Images were stored in the
local Picture Archiving and Communication System (PACS) of our hospital. Technical
parameters applied were as follows: tube voltage 120 kV; tube current range 100–400 mA;
gantry rotation time 0.5 s; slice thickness 2.5 mm; intervals 0 m; matrix 512 × 512; detector
collimation of 64 × 0.625 mm; pitch 0.984: noise index 18; ASIR 30%; large body FOV.
Pictures were acquired on craniocaudal direction, in respiratory apnea. The imaging
protocol included an unenhanced scan followed by contrast-enhanced acquisitions at the
arterial, portal venous, and delayed phases, acquired with a delay of 30, 65, and 180 s
with bolus tracking, respectively. Iodinated contrast agent (Iopromide, Bayer Healthcare,
Leverkusen, Germany) was injected with a dose 1.5 mL × Kg at a rate of 4.0 mL/s, with an
automatic power injector.

2.4. Volume of Interest (VOI) Segmentation and Feature Extraction

Pre-TIPS CT studies were used instead of CT examinations after the TIPS procedure to
evaluate the role of radiomics in predicting the outcomes and in preoperatively selecting
patients. Furthermore, pre-TIPS CT scanning is usually performed to provide an evaluation
of the liver vascular anatomy upon the procedure, while post-interventional follow-up
is usually performed by color Doppler ultrasound (CDUS). CT images from the picture
archiving and communication system (PACS) were reviewed blindly by two board-certified
diagnostic radiologists with 21 and 16 years of experience in liver imaging. The liver
analysis was performed drawing regions of interest (ROIs) along the whole hepatic profile
slide by slide on all the CT axial images obtaining a whole liver volume, namely a VOI. We
consider this method more accurate than the only one axial image at the level of the right
portal vein shown in previous studies [9].

In an independent workstation (ADW 4.7, GE, Milwaukee, WI, USA), the two radiolo-
gists manually drew the ROIs in consensus, on both unenhanced and portal-venous-phase
images, along the margins of the liver by excluding the large portal vessels in the hepatic
hilum. This manual method is more accurate than the automatic segmentation tech-
nique [13–15]. Each ROI was delineated as close to the liver margin as possible but not
beyond the hepatic margin to avoid the influence of adjacent organs and abdominal fat.

Once the target volume was obtained, features were extracted from VOIs through Pyra-
diomics 3.1.0 [16], an open-source piece of software by Image Biomarkers Standardization
Initiative (IBSI) [17], a compliant analysis tool capable of automatically extracting radiomics
features grouped into the following three classes: (1) morphological features describing
geometrical characteristics of the VOI; (2) first-order statistical features, describing grey
level distribution within the VOI; and (3) texture features describing grey level patterns
within the VOI.

The interested readers are encouraged to refer to the website “https://pyradiomics.
readthedocs.io/en/latest/features.html (accessed on 20 March 2024)” for a comprehensive
description of the above-mentioned classes. Segmentation was performed on both unenhanced
and portal-venous-phase images, to explore possible differences in radiomics results.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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2.5. Feature Reduction and Selection

The algorithm used in this study for feature reduction and selection is a statistical sys-
tem based on point-biserial correlation (pbc) and logistic regression analysis, as described
by Barone et al. [18], and successfully used in many radiomics studied [19,20]. The goal
of this algorithm is to categorize the features, assigning them a score, and then to select
the most discriminant ones. Therefore, the pbc between each feature and the dichotomic
outcome was calculated and used to sort the features in a descending fashion, according
to the pbc score. Subsequently, a cycle was initialized, adding one feature at a time, and
then performing a logistic regression analysis until the p-value increased. In this way,
features with a valuable association that presented the desired outcome were identified
and consequently used in the next step of this study, namely the implementation of the
predictive model.

2.6. Predictive Model

To implement and evaluate the predictive model performance, the linear Discriminant
Analysis (DA) was applied with the aim of overcoming the unbalanced dataset issue in our
study. As a matter of fact, unbalanced datasets do not have a negative consequence on DA
performance [21,22], as also shown in a study using DA in a radiomics model predicting
hepatocellular carcinoma response after transarterial embolization [23]. Furthermore, the
k-fold cross-validation strategy was employed by randomly dividing the dataset into
k sub-datasets of equal size. This method yields more robust results compared to splitting
data into ratios like 7:3 or 8:2. In the latter cases, variations in case distribution, coupled
with the limited number of cases, could significantly alter performance. In essence, k-fold
cross-validation mitigates overfitting and asymmetrical sampling, thereby enhancing result
accuracy and robustness. Specifically, the dataset was divided into k-folds, with k = 5. The
value 5 was determined empirically through a trial-and-error method (k range: 5–15, step
size of 5). One of the folds was used as the test set and the remaining folds constituted the
training set.

The k-fold strategy was used in such a way as to (1) guarantee disjointed test sets and
(2) maintain the same percentage of patient status in the folds as in the original dataset.
In this way, each time, a different fold, never used during training, was left for the test.
This process was repeated five times, and the average performance across all experiments
was computed.

2.7. Statistical Performance Analysis

The diagnostic performance was calculated using sensitivity, defined as the ratio
between the number of samples correctly classified as positive and the number of true-
positive (TP); specificity, defined as the number of samples correctly classified as negative
divided by the number of true-negative (TN) samples; positive predictive value (PPV),
defined as the degree to which repeated classifications under unchanged conditions show
the same results; and accuracy. The obtained performance results were expressed as
mean ± standard deviation.

Finally, the ability of the most significant radiomics features to predict the desired
outcome was also assessed by means of receiver operating characteristics (ROCs) with 95%
confidence intervals (CIs) and areas under the ROC curve (AUROCs).

3. Results
3.1. Study Population

A total of 130 consecutive patients who underwent TIPS procedure using controlled
expansion stents from May 2015 to June 2019 were retrospectively included in this study.
Among them, we excluded nine patients who underwent liver transplantation, one patient
who presented with complete portal vein thrombosis, and one patient with Budd–Chiari
syndrome. Twenty-three patients were also excluded since their last CT examination was
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performed > 3 months before the TIPS procedure. Furthermore, we excluded another
20 patients, who were lost to follow-up because we missed their 6-month survival data.

Finally, a total of 76 patients (Figure 1) were consecutively enrolled in this retrospective
study (54 males and 22 females; mean age 59.2, standard deviation 8.9; median age 59.6; range
25–78 years). In this population, liver contrast-enhanced CT examinations were performed
within 1, 2, and 3 months before the TIPS procedure in 42, 28, and 6 patients, respectively.

Figure 1. Selection of study population.

3.2. Clinical Characteristics

The etiology of chronic hepatic disease in the 76 patients analyzed was viral cirrhosis
in 23 patients (30%), nonalcoholic steatohepatitis (NASH)-related cirrhosis in 22 patients
(29%), alcohol-related in 24 patients (32%), cryptogenic in 3 patients (4%), biliary cirrhosis
in 2 patients (3%), and cystic fibrosis in 2 patients (3%).

Clinical indications to the TIPS procedure were ascites in 51 patients (67%), bleeding in
20 patients (26%), and other causes (e.g., hydrothorax, portal vein thrombosis) in 5 patients
(7%). Our population showed a MELD score ranging from 6 to 20.

After the TIPS procedure, overall overt HE was observed in 36 patients (47%). In
this group, mild HE was present before TIPS placement in five cases (14%). This group of
patients with overt HE observed after TIPS showed a pre–TIPS MELD score ranging from
6 to 20 (average: 11). Notably, six patients (8%) with HE before TIPS placement showed
HE regression after the procedure. Overt grade II or higher HE according to West Haven
Criteria was observed in 21 patients (28%), with a pre-TIPS meld score ranging from 7 to 17
(average: 11); in this group, only 3 patients (14%) had HE before the procedure.

At 6 months, the survival was 63 (83%) out of 76 patients, with a pre–TIPS MELD
score ranging from 6 to 18 (average: 11). After the TIPS procedure, a clinical response
(defined as the absence of rebleeding or ascites) was observed in 56 (74%) out of 76 patients,
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with a pre–TIPS MELD score ranging from 6 to 20 (average: 11). In all, 10 (13%) out of the
76 patients underwent liver transplantation.

During the total follow-up period, ranging from less than 1 month and 50.6 months
after the TIPS procedure, 20 patients died (26%).

3.3. Performance of the Radiomics Model

For radiomics analysis, different outcomes were considered: (1) encephalopathy
≥ 2, (2) pre-TIPS encephalopathy, (3) overall encephalopathy, (4) clinical response, and
(5) survival at 6 months. The number of patients and the relative percentage between
positive and negative cases for each outcome are shown in Table 1.

Table 1. The five outcomes considered in the radiomics analysis (number of patients: 76).

Outcome Positive Negative

Hepatic Encephalopathy ≥2 21 55

Pre-TIPS Hepatic Encephalopathy 11 65

Hepatic Encephalopathy 36 40

Clinical response 56 20

Survival at 6 months 63 13

Through Pyradiomics, 112 features were extracted from unenhanced and PVP CT images.
The feature selection and reduction process were performed correlating features with different
outcomes, as described in the previous “Feature reduction and selection” section. Table 2
shows the features identified for each outcome and for each type of CT study.

Table 2. Radiomics features identified for each outcome considering both unenhanced and portal-
venous-phase CT images.

Basal CT Portal CT

Hepatic Encephalopathy ≥2
Feature original_glszm_ZoneEntropy diagnostics_Image-original_Minimum

p-value <0.001 0.008

pre-TIPS Hepatic Encephalopathy
Feature original_ngtdm_Strength original_ngtdm_Complexity

p-value 0.081 0.036

Hepatic Encephalopathy
Feature original_shape_Sphericity original_glszm_ZoneEntropy original_firstorder_RootMeanSquared

p-value 0.026 0.020 0.023

Clinical response
Feature original_ngtdm_Coarseness original_glrlm_GrayLevelNonUniformity original_ngtdm_Coarseness

p-value 0.002 <0.001 <0.001

Survival at 6 month
Feature original_shape_MinorAxisLength original_ngtdm_Busyness original_firstorder_RootMeanSquared

p-value 0.050 0.020 0.013

The discriminant features shown in Table 2 were then used to implement the DA-based
predictive model.

Table 3 shows the diagnostic performance of the implemented predictive model for
each outcome.

The AUROC ranged from 0.429 to 0.767 in unenhanced and portal-venous-phase CT
studies, respectively.

The best performances we observed for the “clinical response” outcome with AUROC
of 0.775 and 0.767, respectively, in unenhanced and portal-venous-phase images. Specifi-
cally, for the unenhanced CT study, the “clinical response” outcome showed an accuracy of
66.42% with a specificity of 63.93% and a sensitivity of 73.75%. For the portal-venous-phase
CT study, the “clinical response” outcome showed an accuracy of 65.34%, a specificity of
62.38%, and a sensitivity of 74.00%.

We also observed a good performance for the “survival at 6 months” outcome in
portal-venous-phase imaging, with an AUROC of 0.757, an accuracy of 71.23%, a specificity
of 69.11%, and a sensitivity of 82.99%.
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Table 3. Diagnostic performance of the predictive model based on radiomics analysis for each outcome.

Sensitivity
[%]

Specificity
[%] PPV [%] Accuracy

[%] AUROC p-Value

Basal CT

Hepatic En-
cephalopathy ≥2 80.67 52.80 82.52 73.21 0.744

(0.615–0.874) 0.002

pre-TIPS Hepatic
Encephalopathy 89.31 4.32 85.58 77.81 0.429

(0.229–0.629) 0.484

Hepatic
Encephalopathy 66.75 51.11 61.13 59.44 0.664

(0.538–0.790) 0.038

Clinical response 73.75 63.93 42.77 66.42 0.755
(0.640–0.870) <0.001

Survival at
6 month 76.53 58.15 25.93 61.21 0.704

(0.563–0.845) 0.017

Portal CT

Hepatic En-
cephalopathy ≥2 97.67 23.81 77.73 77.82 0.559

(0.385–0.733) 0.406

pre-TIPS Hepatic
Encephalopathy 88.59 19.62 87.64 79.26 0.544

(0.312–0.775) 0.710

Hepatic
Encephalopathy 73.08 50.32 62.66 62.45 0.627

(0.499–0.756) 0.044

Clinical response 74.00 62.38 41.71 65.34 0.767
(0.651–0.882) <0.001

Survival at
6 month 82.99 69.11 33.78 71.23 0.757

(0.633–0.880) <0.001

Furthermore, our predictive model showed a good performance for the “HE ≥ 2”
outcome in unenhanced CT images, with an AUROC of 0.744, an accuracy of 73.21%, a
specificity of 52.80%, and a sensitivity of 80.67%.

For completeness of presentation, all ROC curves obtained for the unenhanced and
portal-venous-phase CT studies are shown in Figures 2 and 3, respectively.
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Figure 2. Receiver operating characteristic curves of the prediction model based on unenhanced
CT radiomics features considering the following outcomes: (a) HE ≥ 2, (b) pre-TIPS HE, (c) HE,
(d) clinical response, and (e) survival at 6 months. In the figures, the ROC curves for the predicted
probability (black line) and the selected feature (blue line) coincide.
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Figure 3. Receiver operating characteristic curves of the prediction model based on portal-venous-
phase CT radiomics features considering the following outcomes: (a) HE ≥ 2, (b) pre-TIPS HE, (c) HE,
(d) clinical response, and (e) survival at 6 months. In the figures, the ROC curves for the predicted
probability (black line) and the selected feature (blue line) coincide.

4. Discussion

Careful selection of patients is of paramount importance to optimize the outcome of
TIPS procedures. Nevertheless, no clinical parameters or scores (i.e., MELD scores) have
been demonstrated to be effective outcome predictors in these patients [24,25]. In detail,
although widely used to select patients before TIPS creation, it has been proven that MELD
score calibration, the correspondence of observed to predicted mortality, is unsatisfactory
with both the Mayo and UNOS MELD versions with C-statistics ranging from 0.66 to
0.72 [25]. It is, therefore, of paramount importance to recalibrate MELD scores and to
look for new predictors or novel prediction models. In this scenario, our results suggest
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a possible role for radiomic analysis of preprocedural CT imaging that in our results was
shown to be not inferior to actual MELD models in predicting procedural outcomes.

In this field, only one study has been recently published, by Cheng S et al. [9]. These
authors demonstrated that a machine learning-based CT radiomics model had a better
performance when compared to traditional clinical parameter-based models in the preoper-
ative prediction of HE after TIPS procedures [9]. However, our study shows substantial
differences from that of Cheng S et al. Mainly, (1) we explored various outcomes and
not only a single outcome (HE); (2) in our population, the clinical indication to the TIPS
procedure was mainly ascites (67% of patients) instead of bleeding, which represented the
main indication in the study of Cheng S et al.; (3) our population included only patients
undergoing TIPS procedures with the new-generation “controlled expansion stents”; (4) the
liver analysis was performed drawing ROIs along the whole hepatic profile slide by slide
on all the CT axial images obtaining a whole liver volume, while only one axial image at
the level of the right portal vein was used in the analysis by Cheng S et al. [9].

Also, a study by Cao et al. [26] showed a potentially important role of radiomics,
demonstrating that an integrated model of both radiomics and clinical features could
perform well in predicting HE secondary to hepatitis B-related cirrhosis.

Our intent was to build a more comprehensive model using radiomics features for
patient outcome prediction, other than presence of HE.

To overcome the issue of class imbalance that occurred in our dataset, among the
many machine learning algorithms available at the present, we chose the DA. Indeed,
a class imbalance issue might lead to unreliable results, since most machine learning
approaches assume that the number of positive and negative cases is nearly equal. Rather
than augmenting the data by artificially improving model performance, we chose the DA
as a machine learning algorithm which is not very sensitive to unbalanced datasets [21,22].

Furthermore, the implemented k-fold strategy guaranteed disjointed test sets and
maintained the same percentage of patient status in the different folds of the original dataset
to increase the robustness of the results, unlike studies where models are trained on 80% of
data and tested on the remaining 20% of data following the Pareto principle, also known as
the 80/20 rule. It is important to note that, in these studies, the results strongly depend on
how the choice of the test set is made, showing very optimistic performance in most cases.
The results obtained encourage us to continue our efforts in a prospective study with a
larger population, an external multicentric validation, and further exploration of alternative
feature reduction and selection algorithms such as LASSO (Least Absolute Shrinkage and
Selection Operator) or SVMs (Support Vector Machines) to identify additional predictive
features that may not have been captured in this analysis. Furthermore, we will try to
combine radiomics features with clinical factors, although the efficacy of combined models
has shown no advantages over radiomics models alone [9].

Our study suggested that the proposed radiomics model based on routine CT examina-
tions may be useful for predicting patients’ outcomes after the TIPS procedure. Specifically,
a machine learning-based CT model for the prediction of different patients’ outcomes was
implemented, namely presence of HE (including pre-TIPS HE), development of grade II or
higher HE according to West Haven Criteria, clinical response, and survival at 6 months,
with satisfying performance.

The highest performances of our radiomic model were observed for the “clinical re-
sponse” outcome (absence of rebleeding or ascites) in unenhanced and portal-venous-phase
images (AUROC of 0.755 and 0.767, respectively), for the “survival at 6 months” outcome
in portal-venous-phase imaging (AUROC of 0.757), and for the “HE ≥2” outcome in unen-
hanced CT images (AUROC of 0.744), suggesting that radiomics could be implemented
successfully for preoperative prediction of clinical response and survival of patients who
need to undergo a TIPS procedure. This is an important notion that, especially if supported
by other studies, could have paramount clinical implications for both radiologists and hep-
atologists. To our knowledge, this is the first study that tried to predict multiple outcomes
in patients undergoing TIPS.



Life 2024, 14, 726 11 of 12

Author Contributions: Conceptualization, G.M.; Methodology, A.C.; Software, A.S., V.B. and A.T.;
Formal analysis, G.S.; Data curation, M.M. and A.D.P.; Writing—original draft, G.P.; Writing—review
& editing, L.M.; Supervision, R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study followed the Helsinki declaration principles
and was approved by the institutional review board of our hospital (IRCCS ISMETT; protocol code
IRRB/31/20, approved on: 11 February 2021).

Informed Consent Statement: Due to its retrospective nature, written informed consent was waived.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boyer, T.D.; Haskal, Z.J.; American Association for the Study of Liver Diseases. The role of transjugular intrahepatic portosystemic

shunt (TIPS) in the management of portal hypertension: Update 2009. Hepatology 2010, 51, 306. [CrossRef] [PubMed]
2. Riggio, O.; Angeloni, S.; Salvatori, F.M.; De Santis, A.; Cerini, F.; Farcomeni, A.; Attili, A.F.; Merli, M. Incidence, natural history, and

risk factors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt with polytetrafluoroethylene-covered
stent grafts. Am. J. Gastroenterol. 2008, 103, 2738–2746. [CrossRef]

3. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef] [PubMed]

4. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef] [PubMed] [PubMed Central]

5. Pavone, A.M.; Benfante, V.; Stefano, A.; Mamone, G.; Milazzo, M.; Di Piazza, A.; Parenti, R.; Maruzzelli, L.; Miraglia, R.; Comelli,
A. Automatic Liver Segmentation in Pre-TIPS Cirrhotic Patients: A Preliminary Step for Radiomics Studies. In ICIAP 2022
Workshops LNCS; Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C., Eds.; Springer: Cham, Switzerland, 2022; Volume 13373,
pp. 1–11. [CrossRef]

6. Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.-D.; Fournier, L.; SmaïlTabbone, M.; Danese, S.; Peyrin-Biroulet, L.
Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94. [CrossRef] [PubMed]

7. Ahn, J.C.; Connell, A.; Simonetto, D.A.; Hughes, C.; Shah, V.H. Application of Artificial Intelligence for the Diagnosis and
Treatment of Liver Diseases. Hepatology 2021, 73, 2546–2563. [CrossRef] [PubMed]

8. Su, T.H.; Wu, C.H.; Kao, J.H. Artificial intelligence in precision medicine in hepatology. J. Gastroenterol. Hepatol. 2021, 36, 569–580.
[CrossRef] [PubMed]

9. Cheng, S.; Yu, X.; Chen, X.; Jin, Z.; Xue, H.; Wang, Z.; Xie, P. CT-based radiomics model for preoperative prediction of hepatic
encephalopathy after transjugular intrahepatic portosystemic shunt. Br. J. Radiol. 2022, 31, 20210792. [CrossRef] [PubMed]

10. Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in
chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European
Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [CrossRef] [PubMed]

11. Miraglia, R.; Maruzzelli, L.; Di Piazza, A.; Mamone, G.; Caruso, S.; Gentile, G.; Tuzzolino, F.; Floridia, G.; Petridis, I.; Volpes,
R.; et al. Transjugular Intrahepatic Portosystemic Shunt Using the New Gore Viatorr Controlled Expansion Endoprosthesis:
Prospective, Single-Center, Preliminary Experience. Cardiovasc. Interv. Radiol. 2019, 42, 78–86. [CrossRef] [PubMed]

12. Miraglia, R.; Maruzzelli, L.; Cortis, K.; D’Amico, M.; Floridia, G.; Gallo, G.; Tafaro, C.; Luca, A. Radiation Exposure in Transjugular
Intrahepatic Portosystemic Shunt Creation. Cardiovasc. Interv. Radiol. 2016, 39, 210–217. [CrossRef] [PubMed]

13. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef] [PubMed]

14. Stefano, A.; Antonio Leal, A.; Richiusa, S.; Trang, P.; Comelli, A.; Benfante, V.; Cosentino, S.; Sabini, M.G.; Tuttolomondo, A.;
Altieri, R.; et al. Robustness of PETRadiomics Features: Impact of Co-Registration with, M.R.I. Appl. Sci. 2021, 11, 10170.
[CrossRef]

15. Gotra, A.; Sivakumaran, L.; Chartrand, G.; Vu, K.N.; Vandenbroucke-Menu, F.; Kauffmann, C.; Kadoury, S.; Gallix, B.; de Guise,
J.A.; Tang, A. Liver segmentation: Indications, techniques and future directions. Insights Imaging 2017, 8, 377–392. [CrossRef]
[PubMed]

16. Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper,
S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107.
[CrossRef] [PubMed]

https://doi.org/10.1002/hep.23383
https://www.ncbi.nlm.nih.gov/pubmed/19902484
https://doi.org/10.1111/j.1572-0241.2008.02102.x
https://doi.org/10.1038/nrclinonc.2017.141
https://www.ncbi.nlm.nih.gov/pubmed/28975929
https://doi.org/10.1148/radiol.2015151169
https://www.ncbi.nlm.nih.gov/pubmed/26579733
https://www.ncbi.nlm.nih.gov/pmc/PMC4734157
https://doi.org/10.1007/978-3-031-13321-3_36
https://doi.org/10.1053/j.gastro.2019.08.058
https://www.ncbi.nlm.nih.gov/pubmed/31593701
https://doi.org/10.1002/hep.31603
https://www.ncbi.nlm.nih.gov/pubmed/33098140
https://doi.org/10.1111/jgh.15415
https://www.ncbi.nlm.nih.gov/pubmed/33709606
https://doi.org/10.1259/bjr.20210792
https://www.ncbi.nlm.nih.gov/pubmed/35019776
https://doi.org/10.1002/hep.27210
https://www.ncbi.nlm.nih.gov/pubmed/25042402
https://doi.org/10.1007/s00270-018-2040-y
https://www.ncbi.nlm.nih.gov/pubmed/30073477
https://doi.org/10.1007/s00270-015-1164-6
https://www.ncbi.nlm.nih.gov/pubmed/26126582
https://doi.org/10.1186/s13244-020-00887-2
https://www.ncbi.nlm.nih.gov/pubmed/32785796
https://doi.org/10.3390/app112110170
https://doi.org/10.1007/s13244-017-0558-1
https://www.ncbi.nlm.nih.gov/pubmed/28616760
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://www.ncbi.nlm.nih.gov/pubmed/29092951


Life 2024, 14, 726 12 of 12

17. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput
image-based phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

18. Barone, S.; Cannella, R.; Comelli, A.; Pellegrino, A.; Salvaggio, G.; Stefano, A.; Vernuccio, F. Hybrid descriptive-inferential method
for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 2021, 37, 961–972. [CrossRef]

19. Pasini, G. Assessing the Robustness and Reproducibility of CT Radiomics Features in Non-small-cell Lung Carcinoma. In
Image Analysis and Processing—ICIAP 2023 Workshops, ICIAP 2023; Lecture Notes in Computer Science; Foresti, G.L., Fusiello, A.,
Hancock, E., Eds.; Springer: Cham, Switzerland, 2023; Volume 14366. [CrossRef]

20. Laudicella, R.; Comelli, A.; Liberini, V.; Vento, A.; Stefano, A.; Spataro, A.; Crocè, L.; Baldari, S.; Bambaci, M.; Deandreis, D.;
et al. [68 Ga] DOTATOC PET/CT Radiomics to Predict the Response in GEP-NETs Undergoing [177 Lu] DOTATOC PRRT: The
“Theragnomics” Concept. Cancers 2022, 14, 984. [CrossRef] [PubMed]

21. Xue, J.H.; Titterington, D.M. Do un-balanced data have a negative effect on LDA? Pattern Recognit. 2008, 41, 1558–1571. [CrossRef]
22. Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; Longo, C.; Altieri, R.; Certo, F.; Cosentino, S.; et al.

Feasibility on the use of radiomics features of 11[C]-MET PET/CT in central nervous system tumours: Preliminary results on
potential grading discrimination using a machine learning model. Curr. Oncol. 2021, 28, 5318–5331. [CrossRef]

23. Cannella, R.; Cammà, C.; Matteini, F.; Celsa, C.; Giuffrida, P.; Enea, M.; Comelli, A.; Stefano, A.; Cammà, C.; Midiri, M.; et al.
Radiomics Analysis on Gadoxetate Disodium-Enhanced MRI Predicts Response to Transarterial Embolization in Patients with
HCC. Diagnostics 2022, 12, 1308. [CrossRef]

24. Dissegna, D.; Sponza, M.; Falleti, E.; Fabris, C.; Vit, A.; Angeli, P.; Piano, S.; Cussigh, A.; Cmet, S.; Toniutto, P. Morbidity and
mortality after transjugular intrahepatic portosystemic shunt placement in patients with cirrhosis. Eur. J. Gastroenterol. Hepatol.
2019, 31, 626–632. [CrossRef] [PubMed]

25. D’Amico, G.; Maruzzelli, L.; Airoldi, A.; Petridis, I.; Tosetti, G.; Rampoldi, A.; D’Amico, M.; Miraglia, R.; De Nicola, S.; La Mura,
V.; et al. Performance of the model for end-stage liver disease score for mortality prediction and the potential role of etiology. J.
Hepatol. 2021, 75, 1355–1366. [CrossRef] [PubMed]

26. Cao, J.M.; Yang, J.Q.; Ming, Z.Q.; Wu, J.L.; Yang, L.Q.; Chen, T.W.; Li, R.; Ou, J.; Zhang, X.M.; Mu, Q.W.; et al. A radiomics model
of liver CT to predict risk of hepatic encephalopathy secondary to hepatitis B related cirrhosis. Eur. J. Radiol. 2020, 130, 109201.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1148/radiol.2020191145
https://www.ncbi.nlm.nih.gov/pubmed/32154773
https://doi.org/10.1002/asmb.2642
https://doi.org/10.1007/978-3-031-51026-7_4
https://doi.org/10.3390/cancers14040984
https://www.ncbi.nlm.nih.gov/pubmed/35205733
https://doi.org/10.1016/j.patcog.2007.11.008
https://doi.org/10.3390/curroncol28060444
https://doi.org/10.3390/diagnostics12061308
https://doi.org/10.1097/MEG.0000000000001342
https://www.ncbi.nlm.nih.gov/pubmed/30550458
https://doi.org/10.1016/j.jhep.2021.07.018
https://www.ncbi.nlm.nih.gov/pubmed/34333100
https://doi.org/10.1016/j.ejrad.2020.109201
https://www.ncbi.nlm.nih.gov/pubmed/32738462

	Introduction 
	Materials and Methods 
	Patients 
	TIPS Procedure 
	CT Examination 
	Volume of Interest (VOI) Segmentation and Feature Extraction 
	Feature Reduction and Selection 
	Predictive Model 
	Statistical Performance Analysis 

	Results 
	Study Population 
	Clinical Characteristics 
	Performance of the Radiomics Model 

	Discussion 
	References

